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Chapter 1

INTRODUCTION

1.1 How to use this manual

If you have not yet installed the software, you should read Chap. 2 and then install
the software. Afterwards, you should read Chap. 3 to get started.
If you already have experience with the software and want to know more about
the models implemented in the packages, please go to the relevant chapters in the
manual:

• Part I contains a rough overview of how the software works and how to fix
common convergence problems. We strongly urge all new users of the software
to read these chapters thoroughly.

• Part II gives a description of the physical and numerical models common to all
our device simulators and is recommended for all users.

• Part III gives a description of certain physical and numerical models that are
used only in specific device simulators. Users of our other tools can safely skip
the chapters that do not concern them.

• Part IV contains product-specific tutorial examples. Since some concepts re-
occur in various devices, users are encouraged to read though all the tutorials:
even if an example cannot be run, it can still provide valuable insight into the
software.

• Part V explains the various commands used in our software and their syntax.
All users should refer to it as needed.
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1.2 What is Crosslight Software ?

Crosslight Software provides a number of technology computer aided design (TCAD)
simulation packages: PICS3D, LASTIP and APSYS. These packages are designed
to simulate semiconductor electronic or optoelectronic devices. We shall also refer
to these simulation software packages as simulators. It also provides growth pro-
cess modeling tools (CSUPREM, PROCOM) which are beyond the scope of this
document.
Crosslight simulators are based on finite element analysis in 2/3 dimensions. They
involve a large number of sophisticated physical and numerical models; our purpose
here is to give a complete description of these models.

1.3 What is APSYS ?

APSYS is a general purpose 2D/3D modeling software program for semiconductor
devices. Based on finite element analysis, it includes many advanced physical models
such as hot carrier transport, heterojunction models and thermal analysis. APSYS
offers a very flexible and simulation environment for modern semiconductor devices.

1.3.1 Applications

APSYS has a wide range of applications and can handle almost all semiconductor
devices:

• 1. Silicon MOSFET, bipolar transistors and CCD.

• 2. HBT based on SiGe, AlGaAs and InGaAsP.

• 3. GaAs MESFET and Photodectors.

• 4. GaN HEMT.

• 5. Light Emitting Diodes (LED).

• 6. Electro-absorption modulators.

• 7. Organic semiconductor devices (OLED).

• 8. Compound, thin film and multi-junction Solar Cells.

The main restriction of APSYS is that it does not include the photon rate equation
necessary for laser modeling. As such, it is a complimentary tool to LASTIP and
PICS3D which are specifically designed for laser simulations.
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1.3.2 Capabilities

APSYS can solve self-consistently the hydrodynamic equations, the heat transfer
equations as well as the conventional drift-diffusion equations. Data generated by
APSYS include the following:

• 1)Current versus voltage (I-V) characteristics.

• 2)2D potential, electric field and current distributions.

• 3)2D distributions of electron and hole concentrations.

• 4)2D distributions of hot carrier temperatures in the hydrodynamic model.

• 5)2D distributions of lattice temperature for the heat transfer model.

• 6)Band diagrams under various bias conditions.

• 7)Results of AC small signal analysis for any frequency range. Extraction of
2-port AC parameters such S- and Y- parameters.

• 8)Quantum well subband structure with valence mixing model for quantum
devices.

• 9)2D distributions of occupancy and concentration of deep level traps in a
semiconductor.

• 10)2D optical field distribution for photonic devices such as photodetectors.

• 11)Spontaneous emission spectrum as a function of current for LED.

• 12)All of the above as a function of time (transient model).

• 13)All of the above at different environment temperatures.

1.4 What is LASTIP ?

LASTIP (LASer Technology Integrated Program) is a powerful device simulation
program designed to simulate the operation of a semiconductor laser in two dimen-
sions (2D). Given the structural and material properties, it produces a large amount
of simulation data to describe the lasing characteristics.
Based on well established physical models, it provides the user with a quantitative
insight into various aspects of a semiconductor laser. It can be used as a computer
aided design (CAD) tool to optimize existing lasers or to assess new designs. With
the physical models and advanced capabilities of LASTIP, the user can concentrate
on device optimization and design while leaving all the numerical modeling work to
the computers.
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1.4.1 Applications

LASTIP can be used to model the electrical and optical behaviors of semiconductor
lasers on a 2D cross section. Most cavity designs are supported and there are no
restrictions on the emission wavelength or material composition, provided that the
material parameters are known.
Since it is limited to a 2D analysis, LASTIP should only be used to model devices
with little longitudinal variation. In practice, this means Fabry-Perot lasers.

1.4.2 Capabilities

LASTIP solves the appropriate differential equations for both quantum well and bulk
semiconductor lasers. LASTIP can be used to analyze a large number of physical
variables. These include (but are not limited to) the following:

• 1) Light versus current (L-I) characteristics.

• 2) Current versus voltage (I-V) characteristics.

• 3) 2D potential, electric field and current distributions.

• 4) 2D distributions of electron and hole concentrations.

• 5) Band diagrams under various bias conditions.

• 6) Quantum well subband structure with valence mixing model.

• 7) 2D distributions of occupancy and concentration of deep level traps in a
semiconductor.

• 8) 2D optical field distribution.

• 9) 2D local optical gain distribution.

• 10) Modal gain spectrum as a function of current.

• 11) Spontaneous emission spectrum as a function of current.

• 12) Far-field distribution.

• 13) All of the above as a function of time (transient model).

• 14) All of the above at different temperatures.
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1.5 What is PICS3D ?

PICS3D (Photonic Integrated Circuit Simulator in 3D) is a three dimensional (3D)
simulator for laser diodes and related waveguiding photonic devices/circuits.
Based on 3D finite element analysis, it solves the semiconductor and optical wave
equations to provide an accurate description of the device characteristics. When
calibrated with specific material/process, it can be used as a computer-aided design
tool to optimize existing devices or to assess new designs.

1.5.1 Applications

PICS3D is designed to simulate a variety of semiconductor optoelectronic devices
including the following:

• 1. Fabry-Perot (FP) lasers.

• 2. Distributed Feedback (DFB) lasers.

• 3. Distributed Bragg Reflector (DBR) lasers.

• 4. Semiconductor Optical Amplifiers (SOA).

• 5. Waveguide photodetectors.

• 6. Vertical Cavity Surface Emitting Lasers (VCSELs).

• 7. External cavity lasers.

• 8. Fiber grating lasers.

• 9. Electrode absorption modulators (EAM ).

• 10. Multisection/Multielectrode DFB or DBR lasers.

• 11. Multisection photonic integrated circuit combining more than one of the
above devices.

Note that FP lasers can also be modeled with LASTIP so there is an overlap in
modeling capabilities. There are important differences though: the 2D model of
LASTIP is quicker and easier to converge than PICS3D but does not include any
longitudinal variation effects. LASTIP will also assume lasing occurs at the modal
gain peak where as PICS3D considers the position of the longitudinal cavity modes.
It is up to the user to determine which of these tools best suits their needs.
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1.5.2 Capabilities

PICS3D is a provides a full 3D analysis by coupling multiple 2D cross-sections of
a waveguiding device with a round-trip gain equation based on the propagation in
the longitudinal direction. Both quantum well and bulk semiconductor lasers can
be modeled. Advanced quantum well models (such as k.p theory) are implemented,
which allows the user to model strained quantum wells. The semiconductor materials
implemented include ternary/quaternary III-V materials, nitrides and many others:
additional materials can be defined as needed by the user.
The capabilities of simulation include the following:

• 1) Light versus current (L-I) characteristics.

• 2) 3D potential, electric field and current distributions.

• 3) 3D distributions of electron and hole concentrations.

• 4) Band diagrams under various bias conditions.

• 5) Quantum well subband structure with valence mixing model.

• 6) 3D distributions of occupancy and concentration of deep level traps in a
semiconductor.

• 7) 3D optical field distribution.

• 8) 3D local optical gain distribution.

• 9) Full multiple mode emission spectra at different power levels.

• 10) Lasing wavelength, output power and longitudinal photon density distri-
bution as a function of bias current.

• 11) Characteristics of DFB lasers with spatial and spectral hole burning effects.

• 12) Full multi-mode simulation of DFB lasers.

• 13) Relative Intensity Noise (RIN), Frequency Noise (FM) and spectral line-
width under different bias conditions.

• 14) Static tuning and dynamic modulation characteristics of single- and multi-
electrode DFB or DBR lasers.

• 15) Second harmonic distortion in a laser system under direct current modu-
lation.



Chapter 2

INSTALLATION

2.1 System Requirements

The minimum system requirements are a Pentium 4 CPU (or equivalent) with 256
MB of memory, at least 200 MB of available hard disk space and 250 MB of swap
space. The recommended configuration has at least 1 GB of RAM to limit the use
of the slower virtual memory/swap space.
For large-scale simulations and/or very dense meshes, you may need to run a 64-bit
version of the software in order to access sufficient memory. This will require both a
64-bit capable CPU and a 64-bit operating system. In these situations, you may also
benefit from using the multi-CPU solvers to speed up certain calculations. Please
consult Crosslight for details.

2.2 Installation

The installation program will guide you through the installation process. Version-
specific instructions may come with your installation CD or download. After instal-
lation, the program may be launched from the Start menu.
Note that unless specifically instructed to do so, you should not install multiple
software packages in the same directory. This may cause version errors between
shared files.
If you are using a version of the software controlled by a dongle key, you also need
to install the dongle driver at this time. The driver file should be included on your
installation CD.
If you are using a remote license, please make sure that your computer has access
to the internet. Some of the programs will need to access a server in our office to
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validate your license so make sure to configure your firewall appropriately. Consult
your IT department or Crosslight for assistance.

2.3 Additional Software

By default, Crosslight uses Gnuplot (http://www.gnuplot.info/) to view simu-
lation results. This is done by generating Postscript (.ps) files: we recommend
installing Ghostview (http://pages.cs.wisc.edu/~ghost/) if you do not have a
viewer for .ps files.
Results may also be plotted without additional software by using our CrosslightView
program.

http://www.gnuplot.info/
http://pages.cs.wisc.edu/~ghost/


Chapter 3

BASIC FILES AND
PROCEDURES

3.1 For the Impatient

To start the Crosslight software, (supposing you are using LASTIP; APSYS and
PICS3D follow the same routine), click on Start -> Programs -> Lastip_20xx.xx.
The Simucenter window will pop up, which is the main Graphical User Interface of
Crosslight Software: most simulation tasks can be accomplished from within this
interface. Depending on the software you are using, this window may be labeled
SimuLASTIP, SimuAPSYS or SimuPICS3D: we will use SimuCenter as a common
name for all these programs.
At this point, any problems with your license will stop the program. If this should
occur, contact the Crosslight support staff for assistance.
We have produced several introductory movies to help users get started. Please click
on HELP from the Simucenter main menu and select “Movies: Getting Started”.
Have fun watching this and the other included movies !!!
After watching the movies, you may want be tempted to start modeling your own
devices right away. However, we strongly urge you to take the time to work through
the included tutorial examples to learn how to use the software. No matter how
eager you are, the learning curve can be quite steep and you will benefit in the long
run from a slower approach.
Even after you work on the examples, it is preferable to use an existing example as
a basis for your own simulations. Whenever possible, you should modify existing
designs step by step to fit your needs rather than make an entirely new simulation
from scratch.
To run an existing simulation (such as the tutorial examples), click on File->Open
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Project from within Simucenter to browse and select an existing project in the exam-
ples directory. Load the project by clicking on the .sol, .gain or .spj file. To act on
the input files, right-click and select the appropriate action from the pop-up menu:

1. Run the “*.layer” files to ‘process and generate the .geo files.

2. Run the “*.geo” files to generate the mesh.

3. (Optional) Run the “*.mplt” files to inspect the mesh generated if you wish to
know if the mesh is reasonable.

4. (Optional) Run “*.gain” files to preview the gain spectrum or other critical
physical variables. If no .gain files exist, you can create a basic file by right-
clicking the .mater file.

5. Run the main equation solver with the “*.sol” input file .

6. (Optional) Analyze and plot the results with the “ *.plt” input files.

7. (Optional) Results can also be plotted by using CrosslightView. This can
launched by right-clicking on the .std files in SimuCenter or with the main
menu: “Action → View Results → CrosslightView”. The program can also be
launched independently from the Start Menu.

3.2 How Crosslight Simulation Program Works

A simulation is controlled by one or more input files which define the device structure
and the simulation parameters. There are three basic input file types with different
file extensions: .layer, .sol and .plt . These are used (respectively) to input the device
structure/generate the mesh, solve the equations and plot the results. In some cases,
intermediate input files are also needed for the simulation; this will be described
below.
Each input file contains a collection of statements recognized by the program; these
statements allow the user to interact with the program. Although the input files have
been designed to be processed by a stand-alone command-line program, Crosslight
has also created a number of user interface programs to facilitate the creation of
these input files; these are also described in the following sections.

3.2.1 Input / Output Files

The overall file structure is show in Fig. 3.1. As we discussed previously, the main
input files are .layer, .sol and .plt. There are also other auxiliary input/output files
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Figure 3.1: Overall file structure and flow chart of Crosslight device simulators
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that the user needs to know in order to use the simulation software effectively. We
give a detailed description of the most important ones below:

1. .geo. The main input file that describe the full details of the device geometry
and the initial mesh allocation.

2. .sol. The main input file that defines the material properties and controls the
bias and other conditions of main equation solver.

3. .layer. An important auxiliary input file that uses the layer structure descrip-
tion to generate the .geo, .doping and .mater files,

4. .doping which contains doping information that is to be included in the .sol
file.

5. .mater which contains material information that is to be included in the .sol
file.

6. .mplt can be used to plot the mesh generated from .geo file.

7. .gain file is another important auxiliary input file that can be used to preview
the optical gain spectrum, spontaneous emission rate spectrum, quantum well
subbands, and other critical physical properties. This may be used by the user
to do some preliminary estimates before the full simulation is performed.

8. .out files may appear as .out_0001, .out_0002, etc... These are numerical
output data from the main equation solver. They can be used by the .plt
program to be plotted. These output files are not meant to be understood by
the user.

9. .std files may appear as .std_0001, .std_0002, etc.. These are another form of
numerical output data from the main equation solver. They can be used by
the CrosslightView program to be displayed in 3D color graphics.

10. .plt file is used to plot the data in .out output files. The program calls the
public domain software GNUPLOT to display the graphics in various com-
puter platforms and printers. Typically, Postscript files (.ps) are used as the
GNUPLOT output.

3.2.2 The direct approach

Since the core simulation software interacts directly with the input files (.layer, .sol
and .plt), the direct approach is to directly edit these files.
While at first, a basic input file may be created with one of the setup tools provided,
direct control has several advantages for advanced users:



3.2 How Crosslight Simulation Program Works 43

1. Allows the user to use the full capabilities of the software.

2. Can create of new simulations by modifying an older example or merging parts
of different examples.

3. Easier to reproduce problems when technical support is required. If an error
is encountered, the basic input files can simply be emailed for assistance.

4. Text files are portable across systems: being able to use the direct approach
means not having to rely on setup tools which may not be available on other
computer platforms.

3.2.3 Input Statement Syntax

To modify the input files, it is helpful to grasp the basic syntax used for statements:

• Comment lines start with “ $" and will be ignored during file processing.

• Each line can only have a maximum of 80 characters and any information after
this limit will be ignored during processing.

• Statements that need to be split up due to their length should use the continu-
ation symbol “&&”. Characters after the continuation symbol will be ignored.

• Each line can only contain one statement.

• Each statement starts with a keyword which may or may not be followed by
parameters specified with “=". Some parameters may have a default value and
do not need to be specified while others are mandatory and must be defined
by the user.

• Each parameter has its own type (character string, integer or floating point
value). Using a value of the wrong type is an error.

• Certain values need to be grouped for input (e.g. a set of (x,y) coordinates).
The following symbols are invisible to the parser used for processing and may
be used to group data: space, “ ,", “ (", “ )",“ [", “ ]", “ {" and “ }".

• Certain statements (esp. those used to describe material properties such as
band_gap) can be used more than once. If so, then the last value issued
takes precedence.

In some cases, a formula or table may be used instead of defining a value for a material
parameter. Please consult Part V and Appendix B for detailed information on the
syntax of statements and parameters as well as rules for mathematical functions that
can be used in the input.
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3.2.4 The Setup Utility Programs

At first, creating the main input files (.layer, .sol and .plt) from scratch may be
difficult because of the need to learn the syntax and the large number of parameters
that need to set to define a simulation.
However for many structures, it is possible to create a simplified input file where fewer
parameters will need to be adjusted to meet user requirements. The command-line
setup programs allow you do this:

1. SetupLayer prompts the user to enter material layer thickness, doping and
material composition parameters. It will generate the .layer file which may
then be used to generate .geo, .doping and .mater

2. SetupApsys, SetupLastip, or SetupPics3d can be used to produce the .sol, .gain
and .plt input files.

3.2.5 The graphic user interface

In addition to the command-line setup programs, Crosslight has developed GUI tools
to facilitate the process of creating input files and running a simulation.
At the time of printing of this manual, the following tools are available:

1. SimuCenter: at its heart, a simple text editor for the input files. However, it
also integrates various device setup utilities and graphic input/output programs
and can launch the main solver. It also includes online help capabilities as well
as a “Wizard” to assist with use of the various commands. This should be the
starting point of any simulation.

2. LayerBuilder which generates layers of material used to build a device. Reads
and creates .layer files to define simple device structures.

3. GeoEditor which allows the user to draw complex devices with irregular shapes
that are compatible with the .geo input file format. Should be used instead of
LayerBuilder when the device structure does not follow the typical layer/column
pattern found in most devices.

4. CrosslightView. A 3D color graphic display tool using the OpenGL technology.
Compatible with the .std file format.

Please refer to the online manuals for specific help on these programs. They can be
accessed from the “Help” menu in SimuCenter.



3.3 Defining the device structure 45

3.3 Defining the device structure

Although the main simulator recognizes only the finite element mesh, it is important
to correctly define the device structure first. The basic input file used for this is
the “.geo” file. It provides a versatile and flexible geometric data specification for
finite element analysis. Virtually any device geometry or material variation may be
handled by the “.geo” data format. However, it relies on absolute point coordinates
to define polygon corner points so it may be tedious to use this format for simple
devices.
Therefore, we have created a separate program called LAYER to help generate the
“.geo” file easily. The LAYER program is controlled by a simpler input file with
file extension “.layer”. The .layer specification allows simultaneous definition of the
device geometry, doping, material information and mesh parameters.
The following subsections describe the “.geo” and and “.layer” input file formats.
Serious users of the simulator should study the “.geo” input file format. For beginners
or casual users, “.layer” input file may be sufficient.
In this section, we will also show how to use some of the command-line tools to
define and process these input files. Note that these tools can also be accessed via
SimuCenter by right-clicking on the input file and selecting the appropriate action.
We will also use LASTIP for this example but the process is essentially the same for
APSYS and PiCS3D.

3.3.1 SetupLayer

To create a basic .layer file, we can use the setuplayer command-line program. Let
us illustrate its use by using this very simple 1D laser diode structure:

1 µm Al0.5Ga0.5As p=1e24 m−3
0.2 µm GaAs undoped, active region
1 µm Al0.5Ga0.5As n=1e24 m−3

Please note that when we enter the layer structure, we start from bottom as layer
#1 and work our way up until the top layer is reached.
The program is called as follows:

C:\Work>c:\crosslig\lastip\setuplayer.exe -layer test1

Setting up file:test1.layer
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We assume a 1D layer structure on the xy-plane.

Please enter the device width (um)
(Or half width if it is a symmetric device)
[typical:1-5 um]

1.5

Please enter the total number of mesh points
for all the layers; typical [20-40]

30
Enter the maximum mesh spacing:

typical [0.1 - 0.5 um]
0.25

Please enter the layer structure starting from
bottom as layer 1

For layer number 1

Please enter layer thickness (um)
1

Please select doping (1/m^3):
n-doping: (1) 2.0e24; (2) 1.5e24

(3) 1.0e24; (4) 0.5e24; (5) other n-doping
(6) undoped

p-doping: (7) 2.0e24; (8) 1.5e24
(9) 1.0e24; (10) 0.5e24; (11) other p-doping

3

Is there DFB/DBR grating structure in this layer? [y/n]
n

Is this layer an active layer (y/n)?
n

Please enter layer bulk material macro to be used
(1) gaas -- bulk GaAs
(2) inp -- bulk InP
(3) ingaas -- bulk InGaAs
(4) algaas -- bulk AlGaAs
(5) ingaasp -- bulk InGaAsP (matched to InP)
(6) ingaasp_xy -- bulk InGaAsP (strained)
(7) Enter another macro name other than the above
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4
Do you wish to grade Al [y/n] ?

n
Please enter the Al composition [0-1]

0.5
Next?

(1) next layer
(2) go back to a previous layer

(so that I can re-enter parameters)
(3) repeat the previous few layers

(as in a MQW device)
(4) finish.
(5) cancel without generating input file.

1

For layer number 2

Please enter layer thickness (um)
0.2

Please select doping (1/m^3):
n-doping: (1) 2.0e24; (2) 1.5e24

(3) 1.0e24; (4) 0.5e24; (5) other n-doping
(6) undoped

p-doping: (7) 2.0e24; (8) 1.5e24
(9) 1.0e24; (10) 0.5e24; (11) other p-doping

6

Is there DFB/DBR grating structure in this layer? [y/n]
n

Is this layer an active layer (y/n)?
y

Please enter active layer material macro
quantum subbands, gain, etc.

Please enter the active region material system
(1) AlGaAs/AlGaAs --- quantum well
(2) InGaAs/AlGaAs --- strained quantum well
(3) InGaAsP/InP --- InGaAsP/InGaAsP strained

quantum well/barrier; substrate=InP.
(4) AlGaAs --- bulk AlGaAs
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(5) InGaAsP --- bulk InGaAsP lattice matched to InP
(6) InGaAsP/GaAs --- InGaAsP/InGaAsP strained

quantum well/barrier; substrate=GaAs.
(7) InGaAlAs/InP --- InGaAlAs/InGaAlAs strained

quantum well/barrier; substrate=InP.
(8) GaN --- bulk GaN (9) AlGaN --- bulk AlGaN
(10) InGaN --- bulk InGaN
(11) InGaN/AlGaN -- strained well/barrier;

substrate = GaN.
(12) InGaAlP/GaAs --- In(1-xw-yw)Ga(xw)Al(yw)P

/In(1-xb-yb)Ga(xb)Al(yb)P; substrate=GaAs
(13) InGaN/InGaN --- Strained well grown on material

lattice matched to GaN.
(14) Active macro other than the above

4
Enter Al composition (0 to 1)

0

Please enter layer bulk material macro to be used
(1) gaas -- bulk GaAs
(2) inp -- bulk InP
(3) ingaas -- bulk InGaAs
(4) algaas -- bulk AlGaAs
(5) ingaasp -- bulk InGaAsP (matched to InP)
(6) ingaasp_xy -- bulk InGaAsP (strained)
(7) Enter another macro name other than the above

4
Please enter the Al composition [0-1]

0
Next?

(1) next layer
(2) go back to a previous layer

(so that I can re-enter parameters)
(3) repeat the previous few layers

(as in a MQW device)
(4) finish.
(5) cancel without generating input file.

1

For layer number 3

Please enter layer thickness (um)
1
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Please select doping (1/m^3):
n-doping: (1) 2.0e24; (2) 1.5e24

(3) 1.0e24; (4) 0.5e24; (5) other n-doping
(6) undoped

p-doping: (7) 2.0e24; (8) 1.5e24
(9) 1.0e24; (10) 0.5e24; (11) other p-doping

9

Is there DFB/DBR grating structure in this layer? [y/n]
n

Is this layer an active layer (y/n)?
n

Please enter layer bulk material macro to be used
(1) gaas -- bulk GaAs
(2) inp -- bulk InP
(3) ingaas -- bulk InGaAs
(4) algaas -- bulk AlGaAs
(5) ingaasp -- bulk InGaAsP (matched to InP)
(6) ingaasp_xy -- bulk InGaAsP (strained)
(7) Enter another macro name other than the above

4
Do you wish to grade Al [y/n] ?

n
Please enter the Al composition [0-1]

0.5
Next?

(1) next layer
(2) go back to a previous layer

(so that I can re-enter parameters)
(3) repeat the previous few layers

(as in a MQW device)
(4) finish.
(5) cancel without generating input file.

4
Generating .layer file

For your convenience, the setup parameters you have just
typed in have been saved in a file named setup_script.txt.
You may modify the script file and use it
(to avoid typing the same parameters all over again)
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when you run the SetupLayer program next time, as follows:
[path]\setuplayer.exe -vlayer mydevice < setup_script.txt
This may be launched from the SimuCenter or from DOS prompt

This is the resulting file (test1.layer):

$file:test1.layer
begin_layer
column column_num=1 w= 0.150000E+01 mesh_num=2 r=1.
bottom_contact column_num=1 from=0 to= 0.150000E+01 &&

contact_num=1 contact_type=ohmic
$
layer_mater macro_name=algaas &&

var_symbol1=x var1= 0.500000E+00 &&
column_num=1

layer d= 0.100000E+01 n= 13 &&
n_doping1= 0.100000E+25 &&
r= 0.800000E+00

$
layer_mater macro_name=algaas &&

var_symbol1=x var1= 0.000000E+00 &&
active_macro=AlGaAs &&
avar_symbol1=xw avar1= 0.000000E+00 &&
column_num=1

layer d= 0.200000E+00 n= 5 &&
shift_center= -0.111111E-01 &&
r= -0.120000E+01

$
layer_mater macro_name=algaas &&

var_symbol1=x var1= 0.500000E+00 &&
column_num=1

layer d= 0.100000E+01 n= 11 &&
p_doping1= 0.100000E+25 &&
r= 0.120000E+01

$
top_contact column_num=1 from=0 to= 0.150000E+01 &&

contact_num=2 contact_type=ohmic
end_layer

We will explain the .layer file in the following subsection.
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3.3.2 Growing the layers: .layer files

The “.layer” format is a simplified way to define the device structure. It is meant to
be processed and generate the .geo file that is required for mesh generation. It also
produces other input files that will be used for the main solver (.mater and .doping).
From the command-line, this processing is done with the layer.exe program:

C:\Work>c:\crosslig\lastip\layer.exe test1.layer

Note that if you are using the SimuCenter GUI, this can also be accomplished by
right-clicking on the .layer file and choosing the “Process ...” option.
The .layer format is based on the idea that most devices are grown by depositing
several parallel layers on top of each other. Extra features such as etching and
regrowth can be modeled by allowing lateral variation of the materials through the
use of multiple columns.
These layers and columns define the grid lines that serve as polygon boundaries in
the .geo file. The .layer format simplifies the .geo definition since it automatically
numbers the polygons and calculates the corner point’s absolute coordinates. The
only thing required is knowledge of the the layer thicknesses and column widths.
Before proceeding any further, let us look at the structure of the .layer file we are
using as an example. The relevant file contents are bracketed by begin_layer and
end_layer. To process layers, the program needs to know how many columns are
involved so the next set of commands will be the column statements: columns must
be numbered 1,2,3,... starting from the left. Layers are not numbered: they are added
automatically from the bottom up as the .layer file is processed from beginning to
end.
column statements define the width of the columns and also control the lateral mesh
allocation. In this particular case, we only have one column with 2 mesh points so
there is no real lateral variation allowed: we refer to this as a 1D simulation. This is
the simplest kind of device we can build and also the quickest to model.
As each layer is being processed, there must be one layer_mater statement for
each column to define the material. For example, to define a ridge or regrowth, the
material in column 2 would be different than in column 1. Material numbers in .geo
are generated automatically when new macro definitions are found and assigned to
the relevant polygon.
If no material is to be defined in a particular column, use the “void” macro; this will
prevent any mesh from being allocated in this region. Note that in some cases, this
will affect the physics of the simulation by shifting the position of the boundaries.
In that case, the “vacuum” or “air” macro may be used instead; this will define an
insulator region so mesh points will be allocated but there will be no current flow.
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Active regions can be recognized by the two different macros they define. The reason
for this will be explained in more detail in section 3.5.
After the layer_mater statements, there must also be a layer statement to define
the layer thickness as well as the vertical mesh information. In that sense, layer is
very similar to the column statement which provides size and lateral mesh informa-
tion for the columns.
The layer statement also provides doping information with n_dopingj or p_dopingj
where j is the column number. It is also possible to define doping for each column
in the layer_mater statement but layer provides additional tools to linearly grade
doping levels. Also, note that doping is defined in m−3 for input purposes; care
should be taken to convert from the commonly used cm−3 units as low doping levels
can lead to poor convergence.
The last statements define equipotential boundary regions and may be placed any-
where in the file after the column statements. top_contact and bottom_contact
define contact regions in a given column on the top or bottom of the layer stack.
Position information defines the extent of the contact with respect to the contact
width.
Note that our usual convention is to grow devices n-side down and to use electrode
#1 as the n electrode. This choice mostly influences the sign of the current on the
electrodes when bias is applied and is for convenience’s sake only.

3.3.3 Dealing with polygons: .geo files

This section is for experienced users, beginning uses can safely skip it.
The .layer example above produces this output file (test1.geo) when processed:

begin_geometry
point label=a001 xy=[ 0.000000000000E+000 0.000000000000E+000 ]
point label=a002 xy=[ 0.000000000000E+000 0.100000000000E+001 ]
point label=a003 xy=[ 0.000000000000E+000 0.120000000000E+001 ]
point label=a004 xy=[ 0.000000000000E+000 0.220000000000E+001 ]
$
point label=b001 xy=[ 0.150000000000E+001 0.000000000000E+000 ]
point label=b002 xy=[ 0.150000000000E+001 0.100000000000E+001 ]
point label=b003 xy=[ 0.150000000000E+001 0.120000000000E+001 ]
point label=b004 xy=[ 0.150000000000E+001 0.220000000000E+001 ]
$
polygon name=p001 4_points=[ a001 b001 b002 a002 ] material= 1 &&

boundary_1=[ a001 b001 ] &&
limits_1=[ 0.000000000000E+000 0.150000000000E+001 ]
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polygon name=p002 4_points=[ a002 b002 b003 a003 ] material= 2
polygon name=p003 4_points=[ a003 b003 b004 a004 ] material= 1 &&

boundary_2=[ b004 a004 ] &&
limits_2=[ 0.000000000000E+000 0.150000000000E+001 ]

$
end_geometry
begin_meshgen
internal_xpoint xp_size= 0.2000E-03
put_mesh polygon=p001 edge=[ b001 b002 ] &&

point_from= 0.000000000000E+000 point_to= 0.100000000000E+001 &&
number= 13 ratio= 0.800000000000E+000

put_mesh polygon=p002 edge=[ b002 b003 ] &&
point_from= 0.000000000000E+000 point_to= 0.200000000000E+000 &&
shift_center= -0.111111000000E-001 &&
number= 5 ratio= -0.120000000000E+001

put_mesh polygon=p003 edge=[ b003 b004 ] &&
point_from= 0.000000000000E+000 point_to= 0.100000000000E+001 &&
number= 11 ratio= 0.120000000000E+001

$
put_mesh polygon=p001 edge=[ a001 b001 ] &&

point_from= 0.000000000000E+000 point_to= 0.150000000000E+001 &&
number= 2 ratio= 0.100000000000E+001

$
mesh_output mesh_outfile=test1.msh order=yes
end_meshgen

The first half of a .geo file is bracketed by the begin_geometry and end_geometry
statements.
Within this section, point coordinates are assigned labels using the point statement.
Polygons are then defined by using point labels in counter-clockwise order with the
polygon statement.
Each polygon is also identified by its material number. Different materials require
different polygons so that material boundaries can be modeled accurately. As a rule,
an insulator macro must be given a larger material number than a semiconductor.
One major limitation of the .geo format is that it requires that if two polygons
touch each other, the shared edges must fully overlap. For complex geometries, it is
recommended to sketch out the polygons and point labels to avoid errors caused by
this limitation. In certain cases, it may be necessary to sub-divide polygons in order
to ensure this rule is always enforced.
Boundary regions occupy part of an edge and can be defined either in the polygon
or add_boundary statements. In our device simulators, these are used to define
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equipotential boundaries (i.e. contacts). In the above example, these boundaries
have been inherited from the contact definitions in the .layer file.
While polygons can be triangles, trapezoids are preferred since it is easier to refine
the mesh afterwards. All .geo files obtained by processing .layer will be based on
trapezoids due to its grid format.
For rounded edges, the edge_curve statement may be used to add a concave or
convex arcs.
The second half of the .geo format deals with mesh allocation and will be discussed
in the next section.

3.4 Creating a good mesh

In order to run the simulation, we will need a finite element mesh based on the
geometry and material properties of our device. Usually, the mesh data file is given
a .msh file extension and it is generated by processing a .geo file. In our example,
the mesh file is generated with this command:

C:\Work>c:\crosslig\lastip\geometry.exe test1.geo

Note that if you are using the SimuCenter GUI, this can also be accomplished by
right-clicking on the .geo file and choosing the “Generate ...” option.
This will produce a .msh file that contains mesh point and triangle element informa-
tion as well as a .mplt file that can used to plot the mesh.

3.4.1 Mesh definition in .layer files

In the previous section, the mesh allocation was done automatically by the setu-
player program. To modify the number of mesh points, the mesh_num parameter in
column and the n parameter in layer must be changed. The number of mesh points
in this system will be roughly ∑ (mesh_num) ×∑ (n); some extra mesh points may
be added at certain interfaces.
To control the distribution of mesh points within a layer or column, use the r and
shift_center parameters of column and layer. These parameters will be part of
various put_mesh statements in the .geo file when the .layer file is processed. For
a more detailed explanation of these parameters, consult the reference section for
the put_mesh statement.
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3.4.2 Mesh definition in .geo files

This section is for experienced users, beginners may safely skip it.
The second half of a .geo file controls the mesh generation and is bracketed by the
begin_meshgen and end_meshgen statements.
The basic statement for this section is the put_mesh statement which directly
allocates the mesh along the edges of a polygon. If your .geo file is a converted .layer
file, these statements will be initialized with the mesh parameters from the column
and layer statements. Note that just like in .layer, the distribution of mesh points
along an edge can be controlled.
To mesh the inside of the polygons, mesh lines will automatically propagate from
one side of a polygon to its opposite edge and continue on to neighboring polygons
until termination. For triangles, it assumed that each edge is opposed to the other
two but trapezoid edges oppose each other in pairs. Crossing mesh lines are then
sub-divided into mesh triangles.
It is therefore not necessary to mesh all polygon edges as the mesh lines propagate
automatically. Conflicting or redundant put_mesh statements will be overridden
and the last statement issued will have precedence. Note that un-meshed edges will
also be assigned a default minimum mesh when detected; this should be shown as a
warning message when the .geo file is processed.
It is recommended that the user practice setting up a simple mesh to get used to the
mesh generator before attempting a more complicated design.
Optionally, you can also use double_mesh to double the mesh density in a specified
region of a polygon or half_mesh to reduce it. This gives users additional control
on the local mesh density without over-meshing the entire device.

3.4.3 Troubleshooting mesh

An unsatisfactory mesh is a major cause of non-convergence. The first step to trou-
bleshooting a mesh is plot it as shown above and check that the mesh distribution
is OK.
The next step is to check if the mesh is too coarse. While it can be tempting to
put fine mesh everywhere in a device, this is not practical. For example, if the
mesh is too dense, the simulation time may be prohibitively long. Also, the memory
requirements may go beyond what the mesh generator supports or even beyond what
your computer allows. The latter is unlikely in a 1D/2D simulation but often occurs
with 3D simulations on 32-bit systems.
Therefore, we must make an effort to allocate mesh points intelligently and con-
centrate them only where needed. In general, the mesh must be dense near sharp
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material interfaces (e.g. contacts, boundaries between different materials or different
doping levels, etc...) and near other regions where the electrical properties change
rapidly over a small distance (e.g. areas where there is current crowding, tunnel
junctions, etc...).
There is no systematic error analysis that can help you determine if a mesh is dense
enough. It is recommend that you plot available simulation results to ensure that
material properties and important quantities like the band diagram are well-sampled.
However, there is a refine_mesh statement that can assist you in this task. This
command can add mesh points anywhere the change in material parameters between
neighboring mesh points exceeds a specified amount. This will generate a new mesh
file that can be used in future simulations.
Additional discussions on this topic can be found in Chap. 4.

3.5 Material parameters

3.5.1 Material Macros

In the Crosslight system, many material parameters are needed to model the physical
behavior of devices. Each of these parameter is defined through a separate statement
such as band_gap. For convenience, these parameters are lumped together into a
“macro”. In this context, a “macro” is a groups of material parameters commands
lumped together under the same name: this makes it easy to set all of the material
properties for a given material using a single command.
In order to be used by the software, each material property must be assigned to
the right mesh points. This is done by using material numbers (1,2,3,...) which
are defined along with the mesh polygons in the .geo file. Note that we do the
same for contacts to facilitate the application of bias to the simulation: voltage_1
or current_1 refers to bias on electrode # 1.
The link between the material numbers and the macro name can be seen in the
.mater file that is produced when a .layer file is processed:

contact num= 1 type=ohmic
contact num= 2 type=ohmic
load_macro name=algaas mater= 1 &&

var_symbol1=x var1= 0.5000E+00
load_macro name=algaas mater= 2 &&

var_symbol1=x var1= 0.0000E+00
get_active_layer name=AlGaAs mater= 2 &&

var_symbol1=xw var1= 0.0000E+00



3.5 Material parameters 57

active_reg mater= 2 &&
thickness= 0.200000000000E+000

When using the .layer format to input the device layout, material numbers are as-
signed automatically by layer.exe and transferred to the .geo file. If the .geo format is
used to input the device layout directly, the material numbers for each mesh polygon
must be defined manually; material macros must also be assigned manually for each
material.
In this example, we see that there are two kinds of macros: passive and active. In our
convention, passive macros are recognized by their lowercase names and are loaded
with load_macro. Active macros can have mixed-case names and are loaded with
get_active_layer.
Passive macros define bulk material properties such as bandgap, carrier mobility and
refractive indexes. Active macros define material parameters needed to calculate the
optical properties (gain/absorption, spontaneous emission) of this material. Active
macros also come in different flavors: bulk, QW and complex QW. The differences
between the different models are discussed further in Sec. 8.1.
Typically, only the active regions of light-emitting devices need to use active macros:
the optical transitions in other layers can safely be assumed to be at wavelengths
that are not of interest. The main reason to use active macros in a certain region is
that the light emission from that layer is of great interest to the device simulation:
for example the active region of a laser device or LED controls almost all of the
interesting device properties.
An exception to the above rule is regions where quantum confinement occurs (e.g.
HEMTs or certain MOSFET channel designs) and a 2D electron gas (2DEG) is
expected. In that case, the active macro for a QW must be used in the channel as
the active macros enable the quantum-mechanical solvers. This is purely a historical
accident as Crosslight tools were originally designed to model laser diodes; new users
may find it beneficial to keep this tidbit of information in mind as it explains many
of our design choices.
The actual parameters defined in a macro are outside the scope of this section. How-
ever users who wish to examine the content of the default macros should look to
their installation directory (default is c:\crosslig). The default macros are contained
in the crosslight.mac (silicon, GaAs and most III-V compounds) and more.mac (ni-
trides, organic semiconductors, metals) files. A few sample macros are also included
in Appendix B.
Additional help regarding macro syntax is included in the header of these files. This
can be of help to advanced users who wish to create new material definitions or
who have access to better material data and want to override the default material
parameters. However, it is STRONGLY recommended that the default macro files
not be altered in any way since that would affect all the simulations that use these
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files.
Instead, the use_macrofile statement can be used to load a custom or modified
macro file for use in a simulation. Material parameters can also be overwritten
directly in the simulation file by re-issuing the statement that defines it once the
macros have been loaded.

Simplified Complex QW Library (SCXLIB)

Starting with the 2014 version of the software, a simplified model is being introduced
to define material parameters. We have found that new users often make mistakes
when invoking the passive and active material macros separately and sometimes
define conflicting sets of material parameters: for example, the QW active macro
declaration may define a certain barrier composition but the barrier layers themselves
have another.
To avoid this common problem and ease the learning curve of the software, we have
introduced the concept of a “library” which is simply a wrapper around the “macro”
concept. When a material is declared with a library, a single set of input parameters
is given in the .layer file. The file is then processed and macro invocations are
adjusted to correctly send the parameter values to the right variable names.
The definition of quantum well regions is also simplified using the library system. In
the .layer file, each quantum well layer is simply tagged (model=quantum_well) as
follows:

layer_mater column_num=1 mater_lib=AlGaAs &&
var_symbol1=x grade_var=1 &&
grade_from=0.71 grade_to=0.33

layer d=0.15 n=10 r=1

layer_mater column_num=1 mater_lib=AlGaAs &&
var_symbol1=x grade_var=1 &&
grade_from=0.33 grade_to=0.0 &&
model=quantum_well

layer d=0.001 n=5 r=1

layer_mater column_num=1 mater_lib=AlGaAs &&
var_symbol1=x var1=0. model=quantum_well

layer d=0.005 n=25 r=1

layer_mater column_num=1 mater_lib=AlGaAs &&
var_symbol1=x grade_var=1 &&
grade_from=0.0 grade_to=0.33 &&
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model=quantum_well
layer d=0.001 n=5 r=1

layer_mater column_num=1 mater_lib=AlGaAs &&
var_symbol1=x grade_var=1 &&
grade_from=0.33 grade_to=0.71

layer d=0.15 n=10 r=1

The software will automatically look to the neighboring layers without the quan-
tum well tag to define the outer barrier regions; if multiple neighboring layers are
tagged as a quantum well, then they all belong to the same quantum-confined region.
This system thus automatically uses complex QW macros for the tagged layers (and
outer barriers) to support this kind of aggregation. The resulting band profile and
wavefunctions can be seen in Fig. 3.2.
Note that existing users of the software may continue to use the old macro system
indefinitely and that older input files will continue to work as before. For new
users however, we strongly recommend the use of this new library method: we will
progressively update our tutorial examples in the coming years to reflect this. There
is one small caveat though: the “macro” and “library” systems cannot co-exist in
the same .layer file.
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Figure 3.2: A sample complex QW set up using the simplified “library” method.
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3.6 Previewing Physical Properties

Before the main equation solver is used it may be a good idea to preview physical
properties such as the optical gain/absorption spectrum. For example, this can help
confirm that the gain curve is centered on the right wavelength in a laser design.
This can be done with a “.gain” file. A basic input file can be created by right-clicking
on the .mater file in SimuCenter or by running the setuplastip/setupapsys/setuppics3d
program as follows:

C:\Work>c:\crosslig\lastip\setuplastip -gain test1

Setting up input file:
test1.gain
You may use it to plot the gain/loss spectrum

and other physical properties

Enter estimated operating wavelength in um
for example 0.82:

0.82
Enter carrier density range in m**(-3)

for example:
5.e23 1.e25

1e23 5e24
Enter temperature in degrees Kelvin

300
Please enter the graphics device

(1) postscript (2) window (3) x11
Your choice?

1
Please select the physical properties to plot
(1) gain spectrum
(2) spontaneous emission rate
(3) index change spectrum
(4) current vs. active region density
(5) alpha factor spectrum
(6) gain vs. active region density
(7) quantum well subbands (k.p)
(8) dipole moment vs. k (k.p)
(9) 1 - 4 above
(10) 1 - 6 above
(11) finish

10
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Enter your next choice (1-11)
11
Done

This will produce the following file:

$file:test1.gain
begin_gain
plot_data plot_device=postscript
temperature temp= 0.3000E+03
include file=test1.mater
gain_wavel wavel_range=[ 0.8000E+00 0.8400E+00] &&

conc_range=[ 0.1000E+24 0.5000E+25] &&
curve_number=20

sp.rate_wavel wavel_range=[ 0.8000E+00 0.8400E+00] &&
conc_range=[ 0.1000E+24 0.5000E+25] &&
curve_number=20

index_wavel wavel_range=[ 0.8000E+00 0.8400E+00] &&
conc_range=[ 0.1000E+24 0.5000E+25] &&
init_conc=1.5e24 &&
curve_number=20

current_conc conc_range=[ 0.1000E+24 0.5000E+25] &&
data_point=30 &&
use_macro=yes fit_outfile=tmp.data

alpha_wavel wavel_range=[ 0.8000E+00 0.8400E+00] &&
conc_range=[ 0.1000E+24 0.5000E+25] &&
curve_number=20

gain_density conc_range=[ 0.1000E+24 0.5000E+25] &&
wavel_range=[ 0.8000E+00 0.8400E+00] &&
data_point=30

end_gain

The .gain file includes the material definitions of the .mater file through the include
statement. It also defines the isothermal temperature used for the following calcu-
lations. A series of statements then produces a set of curves to preview the physical
properties of the first active region found in the .mater file.
To plot these curves, right-click on the .gain file in SimuCenter or use the command
line:

C:\Work>c:\crosslig\lastip\lastip.exe test1.gain
C:\Work>c:\crosslig\lastip\psplot.bat test1.ps

If there is more then one active region defined in .mater that you wish to preview,
replace the .mater include statement with the desired active region definition.
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3.7 Setting up a simulation

The .sol file is the main simulation input used in Crosslight. It consolidates all the
device structural information as well as the material and simulation parameters.
Once again, a basic input file can be created with the command-line setup tools or
by right-clicking on an empty .sol file in SimuCenter:

C:\Work>c:\crosslig\lastip\setuplastip -sol test1
Setting up .sol file for filebase=test1

Please enter the cavity length (um):
200
Please enter the expected emission wavelength (um):

0.83
Please enter 1 for 1D laser optical wave boundary
Please enter 2 for other 2D laser boundary

1
Please enter the current bias you wish to apply (mA)

100
Please enter the contact number for the n-type laser contact
(look up .layer or .geo file if necessary)

1
Generating .sol file

The exact dialogue that will be shown is different for APSYS, LASTIP and PICS3D
but the basic principles stay the same. Since we are using LASTIP in this example,
we get this .sol file:

$file:test1.sol
begin
load_mesh mesh_inf=test1.msh
include file=test1.mater
include file=test1.doping
output sol_outf=test1.out
newton_par damping_step=5. max_iter=100 print_flag=3
use_sor max_iter=3000 print_sor=noprint
init_wave &&

length= 0.2000E+03 backg_loss=500. &&
boundary_type=[2 2 1 1] init_wavel= 0.8300E+00 mirror_ref=0.32 &&
wavel_range=[ 0.8100E+00 0.8500E+00]

equilibrium
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newton_par damping_step=1. print_flag=3
scan var=voltage_1 value_to= -0.1345E+01 print_step= 0.1345E+01 &&

init_step= 0.2689E+00 min_step=1.e-5 max_step=0.5
scan var=current_1 value_to= 0.2500E+03 print_step= 0.2500E+03 &&

init_step= 0.2500E+01 min_step=1.e-5 max_step= 0.2500E+02
end

There are a few categories of statements that are commonly used in .sol files.

3.7.1 Input/output

In this category, we include all the statements that are used to load previously
generated data such as the mesh (load_mesh) or merge other input files (include)
that define the material parameters and doping profiles.
The output statement defines a base name that will be used for the output data
files. It is generally considered a good idea to used the same base name for input
and output files: this is what the command-line setup program does by default.
Using the same base file name ensures that the GUI programs can detect and handle
the files correctly.

3.7.2 Physical models

This next set of statements should be located after the input/output statements and
varies a lot for each software and indeed, for any given simulation. These statements
turn on certain physical models that needed for that particular simulation.
In this example, the use_sor statement is used to define a basic 1D mode solver.
The init_wave statement defines the boundary conditions for the waveguide as well
as other critical parameters for the device (length, mirror reflectivity, background
losses, etc...).
Depending on the type of simulation, other statements may be used in this section.
For example, a solar cell in APSYS would use the light_power statement to define
the optical pumping conditions.

3.7.3 Bias statements

This category includes the statements that are used to call the Newton solver and
find the state of the device under bias. These statements must therefore be preceded
by at least one newton_par statement to control the solver parameters.
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The first of these statements is equilibrium. It calls the Newton solver to get the
initial solution of the device under thermal equilibrium conditions: this means only
the Poisson equation is solved and the net current is zero for both electrons and
holes. This is a required first step before bias can be applied.
Subsequent bias is applied with the scan statement. The variable controls which elec-
trode is biased as well as the type of bias which is applied: for example, voltage\_1
is the voltage on electrode #1. Multiple bias variables can be applied simultaneously.
Time is also available as a variable for transient simulations. Note that if you start
a transient simulation, it is a good idea to consistently continue to use the time
variable as you may otherwise encounter convergence difficulties.

3.8 Running a simulation

To run a simulation, you may right-click the .sol file from SimuCenter or call the
main solver from the command line:

C:\Work>c:\crosslig\lastip\lastip.exe test1.sol

This will produce the following output (truncated for convenience):

-------------------------------------------------------------

# # ##### ####### ### ######
# # # # # # # # #
# # # # # # # #
# # # ##### # # ######
# ####### # # # #
# # # # # # # #
####### # # ##### # ### #

Version: 2009.04.01
Build-date:[y/m/d/h]=2009/ 4/26/14

Copyright (c) 1995-2008, Crosslight Software Inc.
Portions of This Software Copyright (c) 1995-2008,

National Research Council of Canada
Licensed to:

Evaluation User

Simulation for Device:
test1.sol
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-------------------------------------------------------------
Date(d/m/y): 15 5 2009
Time(s/m/h): 11 34 10

======Statement: load_mesh=====

Loading mesh file:
test1.msh
Total mesh points= 58

======Statements of load_macro (band_gap,etc)=====
======Statements of doping=====
======Statements of contact=====

Initializing parameters.
(Please wait)
--------------Information------------------
Older solver of sor_par has been replaced

by direct_eigen with default settings.
If you really need to go back to older solver

please use use_sor instead.
-------------------------------------------

======Statement: output=====

======Statement: equilibrium=====
scan number-> 0

Solving equations at equilibrium

Error report for equations and variables:
it# eqns potential

1 0.440E+04 0.747E+04
2 0.414E+04 0.326E+04
3 0.849E+03 0.435E+03
4 0.112E+03 0.921E+02
5 0.549E+02 0.217E+02
6 0.423E+02 0.127E+02
7 0.256E+02 0.704E+01
8 0.126E+02 0.318E+01
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9 0.129E+02 0.365E+01
10 0.114E+02 0.422E+01
11 0.301E+01 0.112E+01
12 0.147E+01 0.459E+00
13 0.299E+00 0.929E-01
14 0.107E-01 0.326E-02
15 0.131E-04 0.388E-05
16 0.487E-09 0.424E-09

Calculate optical index change

Direct eigen solver at lambda= 0.830000000000000
Select modes with max index:

3.64984451858962
Start Arnoldi eigen solver
sigma= (763.400219073982,0.000000000000000E+000)
End of Arnoldi eigen solver
Eigen Value=[ 0.694621E+003 0.140020E+002] Eqn. Error= 0.2731E-09
Cmplx lateral modal index for z-segment: 1

1 (3.48172365230206,3.508816922721083E-002)

Searching for modal gain peak.
Modal gain (1/m): -359812.782918322
At lambda= 0.850000000000000

Active Reg.# 1 Average Conc. (n&p)= 0.7683E+23 0.1429E+24
Save bias data and continue.

Lambda(um)= 0.850000000000000
Lateral mode(s)= 1
Emitted Power(mW):
(Mode) (Total) (Front) (Back)
1 0.4674E-32 0.2337E-32 0.2337E-32

Solver converged at
Voltage: (Volt) 0.0000E+00 0.0000E+00
Current: (A/m) 0.0000E+00 0.0000E+00

Data set # 1 printed at
Voltage: (Volt) 0.0000E+00 0.0000E+00
Current: (A/m) 0.0000E+00 0.0000E+00
light: 0.4674E-32

Printing 2D/3D data to output file
Data file:test1.out_0001
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Generating .std file
Completed .std file

======Statement: scan=====
scan number-> 1

Solving equations with bias.

Changing: voltage_1 with step: 0.2689E+00
Error report for equations and variables:
it# eqns potential elec hole other

1 0.182E+02 0.273E+03 0.273E+03 0.272E+03 0.913E-25
2 0.181E+02 0.164E+03 0.164E+03 0.164E+03 0.588E-25
3 0.180E+02 0.937E+02 0.937E+02 0.936E+02 0.841E-25
4 0.178E+02 0.502E+02 0.502E+02 0.501E+02 0.110E-24
5 0.175E+02 0.249E+02 0.249E+02 0.250E+02 0.129E-24
6 0.168E+02 0.113E+02 0.113E+02 0.130E+02 0.136E-24
7 0.153E+02 0.469E+01 0.468E+01 0.634E+01 0.136E-24
8 0.120E+02 0.187E+01 0.187E+01 0.329E+01 0.250E-24
9 0.559E+01 0.826E+00 0.822E+00 0.235E+01 0.711E-24

10 0.510E-02 0.505E+00 0.506E+00 0.195E+01 0.153E-23
11 0.393E-02 0.428E+00 0.428E+00 0.111E+01 0.197E-23
12 0.624E-03 0.414E+00 0.414E+00 0.480E+00 0.298E-23
13 0.116E-03 0.224E+00 0.224E+00 0.331E+00 0.251E-23
14 0.223E-04 0.699E-02 0.700E-02 0.577E-02 0.315E-24
15 0.224E-07 0.469E-08 0.398E-07 0.540E-04 0.302E-27
16 0.953E-11 0.102E-13 0.422E-12 0.127E-08 0.399E-36

Modal Gain & Mirror Loss [1/m] -0.359304E+006 0.569717E+004
Calculate optical index change

Direct eigen solver at lambda= 0.850000000000000
Select modes with max index:

3.64995114629961
Start Arnoldi eigen solver
sigma= (727.940677315902,0.000000000000000E+000)
End of Arnoldi eigen solver
Eigen Value=[ 0.661040E+003 0.955849E+001] Eqn. Error= 0.2910E-09
Cmplx lateral modal index for z-segment: 1

1 (3.47827733528838,2.514625154027444E-002)

Searching for modal gain peak.
Modal gain (1/m): -354284.287056734
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At lambda= 0.850000000000000
Active Reg.# 1 Average Conc. (n&p)= 0.8041E+23 0.1469E+24

Save bias data and continue.
Lambda(um)= 0.850000000000000
Lateral mode(s)= 1
Emitted Power(mW):
(Mode) (Total) (Front) (Back)
1 0.1829E-22 0.9147E-23 0.9147E-23

Solver converged at
Voltage: (Volt) -0.2689E+00 0.0000E+00
Current: (A/m) 0.2316E-10 -0.2289E-10

...etc....

...etc....

...etc....

...etc....

Changing: current_1 with step: 0.9872E+01
Error report for equations and variables:
it# eqns potential elec hole other

1 0.642E+02 0.119E-01 0.735E-02 0.534E-02 0.132E-01
2 0.387E+01 0.344E-04 0.222E-04 0.263E-04 0.622E-04
3 0.125E-01 0.359E-08 0.307E-09 0.337E-08 0.201E-06
4 0.813E-04 0.123E-11 0.413E-12 0.145E-11 0.131E-08
5 0.460E-06 0.131E-12 0.262E-13 0.155E-13 0.141E-10

Modal Gain & Mirror Loss [1/m] 0.569680E+004 0.569717E+004
Calculate optical index change

Direct eigen solver at lambda= 0.850000000000000
Select modes with max index:

3.65739599522727
Start Arnoldi eigen solver
sigma= (730.913284438270,0.000000000000000E+000)
End of Arnoldi eigen solver
Eigen Value=[ 0.663343E+003 -0.154368E+000] Eqn. Error= 0.5271E-09
Cmplx lateral modal index for z-segment: 1

1 (3.48423999577868,-4.054128695061282E-004)

Searching for modal gain peak.
Modal gain (1/m): 5696.79608291268
At lambda= 0.850000000000000
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Active Reg.# 1 Average Conc. (n&p)= 0.1743E+25 0.1813E+25
Save bias data and continue.

Lambda(um)= 0.850000000000000
Lateral mode(s)= 1
Emitted Power(mW):
(Mode) (Total) (Front) (Back)
1 0.6664E+02 0.3332E+02 0.3332E+02

Solver converged at
Voltage: (Volt) -0.1978E+01 0.0000E+00
Current: (A/m) 0.2500E+03 -0.2500E+03

Data set # 3 printed at
Voltage: (Volt) -0.1978E+01 0.0000E+00
Current: (A/m) 0.2500E+03 -0.2500E+03
light: 0.6664E+02

Printing 2D/3D data to output file
Data file:test1.out_0003

Generating .std file
Completed .std file
Date(d/m/y): 15 5 2009
Time(s/m/h): 16 34 10

Every time a bias step is attempted, the previously converged solution will serve as
the initial guess to the Newton solver. The type of bias step as well as its value is
also shown in the log.
Once the Newton solver is called, it will iteratively attempt to reduce the equation
error, which indicates how well the discretized equations are being satisfied. If the
equations are exactly solved at the end of an iteration, then this value will be zero.
It also tries to minimize the variable error in order to get a stable solution. This is
done by comparing the solution between successive iterations: the difference should
go to zero once the solution stabilizes.
This is shown in the log in tabular form with each column having its own meaning:

it# : iteration number

eqns : equation error

potential : error on the potential variables

elec : error on the electron variables (electron concentration or quasi-fermi level)
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hole : error on the hole variables (hole concentration or quasi-fermi level)

other : error on other variables not listed above (usually, photon density)

If a bias step should fail to converge, it is usually because the previously converged
solution is a poor initial guess for this bias step. In that case, there is a built-
in algorithm to retry with a smaller bias step which may have a better chance of
converging.
If this procedure should also fail, then examining the evolution of the equation and
variable errors may provide clues on how to improve convergence.

3.9 Output Data Organization

For performance reasons, we do not print all output data at every bias step taken. In-
stead, we divide the output data into two categories: bias-dependent data (scan_data)
and structural/spectral data (xy_data).
The former includes bias current, voltage, laser power, etc... and is accumulated at
every bias step. The latter includes position-dependent data like the carrier densities
and certain spectral values like the modal gain which is only printed at specified
intervals. This printing occurs either when a scan statement is finished, as specified
by the print_step parameter of the scan statement. Whenever structural data is
printed, any accumulated scan-dependent data is also printed.
By convention, the output file names are defined by the output statement in “*.sol”
and by adding a numbered extension “_####". The extension is always _0001 for
the equilibrium calculations and increases by one every time printing of the data is
requested.
This means that all output data is assigned a “data set number” for later use. For
example, let us supposed that there is a scan from 0V to 1V with max_step=0.3.
Then the following data sets would be produced: #1 (equilibrium), #2 (0.3 V), #3
(0.6 V), #4 (0.9V) and #5 (end of scan at 1V). This can be confirmed by examining
the “.sol.msg” file which contains a list of all data sets printed in a simulation and
the associated bias value.

3.10 Analyzing the Results

To plot data, you can either use the CrosslightView GUI or use a .plt file. This input
file is responsible for post-processing and can created in the same way as the other
input files: by right-clicking in SimuCenter or using the command line:
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C:\Work>c:\crosslig\lastip\setuplastip -plt test1
Setting up .plt file for filebase=test1
Please enter the graphics device

(1) postscript (2) window (3) x11
Your choice?

1
Generating .plt file

Adding a new plot to .plt file
Please select the type of plot:

(1) 1d plot along y
(2) 1d plot along x
(3) 2d contour plot
(4) 2d vector plot
(5) 3d surface plot
(6) I-V characteristics
(7) I-t characteristics
(8) L-I characteristics
(9) finish

plot_type?
8

Please enter the electrode number for I
I_electrode_num?

1

Adding a new plot to .plt file
Please select the type of plot:

(1) 1d plot along y
(2) 1d plot along x
(3) 2d contour plot
(4) 2d vector plot
(5) 3d surface plot
(6) I-V characteristics
(7) I-t characteristics
(8) L-I characteristics
(9) finish

plot_type?
1

Please enter the x-position of the 1d plot
(1) at 0
(2) at 1/10 xsize
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(3) at 1/4 xsize
(4) at 1/2 xsize
(5) at 3/4 xsize
(6) at xsize

x-position?
4
Please enter the variable you wish to plot
(1) electron concentration (2) hole concentration
(3) trap concentration (4) potential
(5) both electron & hole conc. (6) energy bands
(7) elec current [x-component] (8) elec current [y-component]
(9) hole current [x-comp] (10) hole current [y-comp]
(11) displac. curr. [x-comp] (12) displac. curr. [y-comp]
(13) total current [x-comp] (14) total current [y-comp]
(15) x-comp. electric field (16) y-comp. electric field
(17) trap occupancy (18) optical generation rate
(19) optical field (20) hot electron energy
(21) donor concentration (22) acceptor concentration
(23) radiative recombination (24) Auger recombination
(25) SRH recombination (26) lattice temperature
(27) electron conc difference between nodes
(28) wave intensity (29) local gain
(30) stimulated recombination
variable?

28

Adding a new plot to .plt file
Please select the type of plot:

(1) 1d plot along y
(2) 1d plot along x
(3) 2d contour plot
(4) 2d vector plot
(5) 3d surface plot
(6) I-V characteristics
(7) I-t characteristics
(8) L-I characteristics
(9) finish

plot_type?
9

This creates the following:

$file:test1.plt
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begin_pstprc
plot_data plot_device=postscript
get_data main_input=test1.sol &&

sol_inf=test1.out &&
xy_data=[ 3 3] scan_data=[1 3]

plot_scan scan_var=current_1 &&
variable=laser_power

plot_1d variable=wave_intensity &&
from=[ 0.7500E+00 0.0000E+00] &&
to=[ 0.7500E+00 0.2200E+01]

end_pstprc

To run this .plt file, you can right click on the file in SimuCenter or use the command
line again:

C:\Work>c:\crosslig\lastip\lastip test1.plt
C:\Work>c:\crosslig\lastip\psplot test1.ps

This will produce two plots. The first is the LI curve for the whole simulation: the
specified scan_data range in get_data covers the whole simulation. The second
plot will be the wave intensity profile at the last bias point (#3).
Note that certain seldom-used variables are not (by default) available for plotting.
To make them available, you may need to use the more_output statement in the
.sol file and re-run the simulation.
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Chapter 4

CONVERGENCE ISSUES

This chapter deals with convergence of the sparse matrix solver. In most cases, the
simulator will attempt to correct the problem by using a smaller bias step but there
are cases where the equation and variable error terms cannot be reduced properly.
This will stall the progress of the simulation and cause the simulator to print an
error message.
There are several possible causes of convergence difficulties: we have tried to discuss
the most common problems and their solution in the following sections. Note that
there may be several different solutions to the same problem.
Please report all other cases of non-convergence to Crosslight for technical assistance.
However, please keep in mind that the the simpler the structure, the easier it is to
debug. If possible, start from a simplified 1D device that works and progressively
iterate towards your final design until the convergence problem appears.

4.1 Choice of voltage or current bias

The choice of voltage or current bias affects the convergence and stability of the
Newton solver. In order to guarantee convergence, small changes in the applied bias
should always result in small changes in the overall solution.
One particular situation where current bias is not appropriate is when the total
amount of current flowing in the device is very small. Under these conditions, the
actual current amount may fluctuate due to lack of numerical precision, making it
difficult to use current bias. This situation can be detected by observing the net
current over all the electrodes: if the sum is not zero, then Kirchoff’s Current Law
is violated and the current is too low to use as a control variable.
The solver can also enter a non-convergent state if the applied voltage bias is much
higher than the turn-on voltage. Since the conductivity increases exponentially with
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bias in a typical diode, seemingly small changes in voltage can result in very large
changes of the solution.
This leads us to a simple general rule:

• Use voltage bias for devices with high resistance

• Use current bias for devices with low resistance

For example, a typical diode under forward bias has low resistance past its turn-on
point but high resistance at lower bias or under reverse bias conditions. With these
two extremes in mind, the following general strategy is recommended when setting
up a simulation under forward bias:

1. Solve for equilibrium solution

2. Apply voltage until 80-90% of the built-in bias value is reached. It is also
possible to automatically terminate a voltage scan when a certain current is
reached by using the auto_finish parameter in the scan statement.

3. Verify that Kirchoff’s Current Law is satisfied at this bias point

4. Apply current bias until desired value is reached

For laser devices, the photon coupling adds some complications that need to be
considered. Once threshold is reached, the carrier concentration and Fermi-level
splitting at the junction are pinned by the large stimulated recombination term. It
is almost impossible to apply any voltage bias (which is roughly equal to the Fermi
level splitting at the junction) without disturbing the solution.
Therefore, under lasing conditions, the only way to perform the simulation properly
is to use current controlled bias. The general strategy outlined above should be
slightly revised to ensure that the current scan starts below threshold.
For non-laser devices, there are a few typical applications where, based on the ex-
perience of the Crosslight team, the consistent use of voltage bias is strongly recom-
mended:

• Devices based on organic semiconductors (OLED) and other materials with
wide bandgap

• Devices with a large contact resistance

• Solar cells and photodectors
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4.2 Special bias considerations for PICS3D

In PISC3D, the coupling of the photon density is more complicated than in LASTIP
so it is not included by default. This introduces some extra steps that must be taken
when defining the applied bias in a simulation.
In order to turn on the photon coupling, we need to know how many photons are
in each longitudinal modes. This can be obtained by evaluating the round-trip gain
equation (RTG) which is a function of the longitudinal index and gain profiles. How-
ever, these profiles are also affected by the local photon density through longitudinal
spatial hole burning (LSHB) so it is difficult to set the initial guess.
To solve this conundrum, we consider the case where the laser cavity is below thresh-
old. It is then safe to assume that the photon density is close enough to zero that the
index profile is unaffected by LSHB. We can then use the unperturbed index profile
to get an initial estimate of the photon density.
It is therefore required that the scan preceding the introduction of the photon cou-
pling use the auto_finish=rtgain condition to terminate. This will calculate the
positions of the longitudinal modes as well as provide an initial guess of the photon
density in each mode.
However, the choice of the RTG value on which to terminate this scan can have a
strong influence on the simulation and its convergence. If it is too high, then the
photon density may not be as close to zero as originally thought and the initial guess
may be inaccurate when the photon coupling is turned on. On the other hand, if the
ending value is too low, then some modes critical to the simulation may be missing
from the initial mode search. As a compromise, we suggest that the RTG ending
value be set just above the transparency density of the gain material.
With this in mind, let us revise the general strategy from above for PICS3D use:

1. Solve for equilibrium solution

2. Apply voltage until 80-90% of the built-in bias value is reached. It is also
possible to automatically terminate a voltage scan when a certain current is
reached by using the auto_finish parameter in the scan statement.

3. Verify that Kirchoff’s Current Law is satisfied at this bias point

4. Apply current bias with auto_finish=rtgain. The peak value of the RTG should
be high enough to offset the mirror losses while still being less than 1.0 (in order
to avoid the lasing threshold).

5. Double-check the modes found in the mode search to make sure all relevant
modes are included.

6. Apply current bias with solve_rtg=yes until desired value is reached
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For highly resistive devices or VCSELs with very low threshold currents, it may be
advisable to merge steps 2 & 4 and use the auto_finish=rtgain condition during
the voltage scan. A second termination condition using auto2_finish can be used
to ensure the current is large enough for the final step.

4.3 Unphysical boundary

When the boundary condition is not reasonable, it may cause convergence problems.
One such example occurs when an Ohmic contact is too close to an active region or
an area with large splitting of IMREF’s.
The Ohmic contact is an ideal boundary that forces the IMREF’s to the same equi-
librium level. Such an abrupt change may be hard for the continuity equation to
follow and therefore, lead to a loss of convergence.
Another common case of non-convergence is in thermal simulations where the an
external heat resistor is attached to a contact which is too close to the self-heating
region.

4.4 Thermal runaway

Since material properties are affected by temperature effects, convergence may be
adversely affected if the temperature increases too quickly in the device. In that
case, the solution from a previous bias step may be too poor to use as the initial
guess of the next bias step.
In that case, the only remedy is to use smaller bias steps to ensure a smooth increase
in temperature. The max_step parameter of the scan statement may be used to
control the step size.
The heat_flow statement also supports a max_temp_incr parameter that will force
the use of a smaller step if the temperature increase is too high. However, this can
cause a simulation to fail if the smaller step falls below the minimum allowed by the
min_step parameter in scan.

4.5 Coarse mesh

A coarse mesh is a common cause of non-convergence. It is wise to stop the simulation
and plot the bands, the distribution of potential and the carrier concentrations at
the point of failure or at a previous data set. Inspection of the plots may enable you
to locate rough mesh points in regions where solutions vary rapidly with distance or
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are poorly sampled.
In particular, you should make sure to have sufficient mesh points near these regions
of interest:

• Barriers formed by Schottky contacts, heterojunctions or boundaries between
different doping levels

• Interband/intraband tunnel junctions

• Regions with strong current crowding

• Quantum well regions where there are many energy levels and the wave func-
tions must be sampled correctly

• Regions where the optical mode peaks

For a given number of mesh points, their distribution within a given layer can also
have an influence on convergence. If one of the above situations occurs within a layer,
mesh point ratios should be used to put denser mesh near the region of interest. If
there is a region of interest on both sides of a layer, symmetric mesh point distribution
should be considered. For more details on mesh point ratios, consult the reference
manual for the put_mesh, layer and column statements.
If an increased number of mesh points is still called for, then you may wish to try
automatic mesh refinement with the refine_mesh command.
If a refined mesh does not help, try to reduce the complexity of the device (e.g. try
a 1D device with similar structure). Testing a simple device may help you to find
out the cause of the problem in the more complex device. Sometimes you may find
that the solution has difficulty converging for a particular type of junction. This can
be caused by approximations made to boundary conditions, or by unintentionally
imposing unrealistic boundary conditions.

4.6 Fine mesh

Just as coarse mesh can lead to lack of convergence, too fine a mesh can sometimes
also cause problems. In particular, regions with very low resistivity (metals, highly-
doped contact regions, etc...) are at risk. The reason for this is simple: if the whole
layer has a very small voltage drop, then the ∆V between closely-spaced mesh points
can become negligible.
In the limiting case of a material with low resistivity, applying Ohm’s law in this
situation will result in a situation where ∆I = ∆V

R
→ 0

0 and the current between
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closely-spaced mesh points becomes numerically unstable. The simulator will usually
print a message about its inability to accurately control the current in this situation.
We note that this is a very rare situation that can usually be remedied by simply
altering the distribution of mesh points in the low-resistance region.

4.7 Use of basic variables

The default basic variables in our simulator are the potential and quasi-Fermi levels.
In some structures with many current blocking or high resistance regions, the solution
at low bias is difficult to obtain with high accuracy. Devices of this type includes
laser diodes (LD) with highly doped current blocking layers, junction field effect
transistors (JFET) and charge coupled devices (CCD).
The reason is that under high resistance, the current is so small that to satisfy the cur-
rent continuity equation within a small but finite tolerance, there are actually many
possible solutions for the quasi-Fermi levels. As a consequence, the variables tend
to vary between these many solutions and refuse to converge to a unique solution.
Since the value itself of the quasi-Fermi levels is not small under these conditions,
this fluctuation cannot simply be neglected.
The choice of electron and hole concentrations as the basic solution variable avoids
the fluctuation problem mentioned above. The minority carrier concentration density
is too low to show up in the error vector and we do not care about the accuracy of
the minority carriers in those regions with low current densities.
The newton_par statement provides the parameter change_variable to allow the
user to switch from Fermi levels to carrier concentrations. However, use of carrier
concentration also has drawbacks.
The accuracy for minority carriers may not be accurate. The variables may also vary
over 20 orders of magnitudes and as a result, the inversion of the Jacobian matrix
may cause numerical overflow problems. Therefore, some of the off-diagonal matrix
elements must be reduced artificially which may affect the overall solution.

4.8 Slow transient technique

For structures with high resistivity or with complicated high doping, convergence
may be difficult at low bias before current is turned on. For example, nitride-based
MQW structures with strong polarization interface charges are known to be difficult
to converge.
One useful and surprisingly powerful technique is the Ťslow transientŤ method. For
example, we may have an original difficult step:
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scan var=voltage_1 value=-3.5

We can replace this with:

scan var=voltage_1 value=-3.5 var2=time value2_to=1.0

This means that the voltage will be increased over the course of 1 second. This is
slow enough that transient effects will be minimal (since carrier lifetimes are in the
ns range). However, the time step is also small enough that the displacement current
makes a numerically significant contribution to the current continuity equations.
There is physical and numerical basis for such a method: highly insulating regions
inherently cause instabilities with the current continuity equation simply because
the system may flip between different states that have similar steady state currents.
In reality, this flip is facilitated by a transient charging/discharging current which
drives the system into the correct physical steady state. As a matter of fact, one can
make the point that there is no such thing as steady state: just the limiting case
where dt → ∞. Adding a transient component merely restores some of the original
physics to the equations.
Such a technique has been used to tackle some conventionally difficult cases such as
floating poly gate in MOSFET and highly insulating organic/insulator structures.

4.9 Poor initial guess solution

As is well known for Newton’s method, a poor initial guess solution may cause the
solution to diverge. Such a situation is normally not a concern because the simulator
has automated the procedure of finding the best guess solution. If a solution is
not found with an initial guess solution from a previous bias, then the simulator
automatically reduces the bias step and tries a new Newton iteration.
As mentioned previously, simulations of some structures with highly doped current
blocking layers have difficulty converging at low bias because of high resistance. A
poor initial guess may cause problems in this situation. One may wish to avoid the
solution at low bias by applying a large initial bias step. If the device structure is
relatively simple this trick often works.
In a case where the device structure is complicated and the doping of the current
blocking layer is high, this trick may fail. One of the reasons for such a failure is that
the guess solution (equilibrium solution) is too far away from the solution at high
bias. Such a condition is worsened by high doping at the current blocking layer.
A trick to overcome the convergence difficulty is to solve for an “ easy device” at
high bias first. Then the solution from the “ easy device” is used to initialize the



82 CONVERGENCE ISSUES

solution for the “ target device” at high bias. Here the “ easy device” has the same
mesh and geometric structure as the “ target device” except the current blocking
layer is lightly doped. For the simulator, a structure with a lightly doped blocking
layer is an easy structure.

4.10 Current-blocking structures

4.10.1 n-p-n & p-n-p junctions

Convergence may be difficult for structures which use n-p-n or p-n-p junction to
block the current flow for a certain region. This kind of design is commonly used in
buried heterostructure (BH) lasers.
This type of structure requires special attention since the use of quasi-Fermi levels as
the default variables often causes convergence difficulties. As mentioned in a previous
section, the change of variable from Fermi levels to carrier concentrations may avoid
such convergence problems. However, if the Fermi levels solution is desired for any
reason, or if the use of new variables fails, the following techniques may be used to
force the convergence of the solver using quasi-Fermi levels.
Current-blocking structures have difficulty converging because more material regions
are involved. The heavy doping in the current blocking layer also tends to cause
trouble, because the current flow condition there is very different from that in the
other regions.
To guarantee good convergence, we must supply the simulator with a good guess
solution at a reasonably high bias voltage. Slowly ramping up the bias voltage does
not always help because low bias itself is a problem, as was discussed in previous
sections.
We recommend the following trick whenever a heavily doped current-blocking struc-
ture shows non-convergence:

1. Create an identical structure with lightly doped current blocking layer. Declare
this lightly doped current blocking layer as having a “new_doping” instead of
the usual “doping”.

2. Run the simulator for this structure and ramp up the voltage to 80-90 % of the
bandgap of the active region. This should be much easier than before since we
are dealing with a structure where the doping has been artificially reduced.

3. Ramp up the doping density in the blocking layer (marked as “new_doping”)
to a realistic doping level.
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4. Now that the device structure/doping is what we intend to simulate, continue
the simulation with current bias and other standard simulation tasks.

4.10.2 Barriers/Superlattices

High barriers (≫ kT ) may block current injection if only thermionic emission is
considered. They are commonly found at Schottky contacts or at material/doping
interfaces. Quantum tunneling may be required to overcome this and allow the
current to flow properly. Periodic structures may also support miniband tunneling
at some carrier energies (Esaki-Tsu model).
The user is advised to consult Chapter 9 for a more complete discussion of tunneling
models.

4.10.3 Insulating layers

In our software, insulating materials such as SiO2 are often described by a special
kind of macro (material type=insulator). Regions using these macros are special in
that the current continuity equation is not solved: instead, the current is explicitly
set to zero. This means that features that enhance the current (tunneling, impact
ionization, etc...) will not function since they would multiply a current value that is
exactly zero.
In order for these features to function, the zero current must be replaced with a nu-
merically small value that better represents reality. This can be done by considering
the insulator material as a wide bandgap semiconductor. For example, users may
substitute the sio2 macro for s-sio2 in their design.

4.10.4 Deep MQW regions

Very deep and shallow QWs such as those found in nitride-based devices may block
current if we assume that all carriers are thermalized (i.e. Drift-Diffusion model).
This can manifest itself as an unrealistically high turn-on voltage since a stronger
field is required to get the current flowing.
A non-local/quantum transport correction term can facilitate the current injection
and solve the related convergence issues. This can be turned on by using the
q_transport statement.
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4.11 Use of Auxiliary Ohmic Contacts

A powerful technique to force the simulation software to converge is the use of aux-
iliary ohmic contacts. For some complex devices, certain high resistance areas are
far away from any boundaries. For example, a p-n-i-p-n structure under reverse bias
condition has its i-region well isolated from the ohmic contacts. As a result, the
variables may fluctuate in the i-region and we may have a convergence problem no
matter how fine the mesh spacing is.
In such a case, we may add an auxiliary ohmic contact to be attached to a single
mesh point in the isolated high resistant region. When we use voltage control on the
auxiliary contact, the solver should be easier to converge because the new contact
prevents the variables from fluctuating in the high resistance region.
However, the voltage control on the contact may cause current to flow in or out of it
while in reality, no current should exist in such a contact. To eliminate the effects of
the auxiliary contact, we can use current control to reduce its current to zero after
the desired bias on the other electrodes has been obtained.
For example, in the above p-n-i-p-n structure (see Fig. 4.1), we wish to reverse bias
to breakdown at about 10 volts. We can simultaneously ramp up the voltages at the
auxiliary contact to about 5 volts to ensure convergence. After the device breaks
down and current starts to flow at around 10 volts of total bias, we can use current
control to force the current at the auxiliary contact to be zero, thus eliminate its
effects on the device. Without the the auxiliary contact, the above device would be
difficult to bias to breakdown.

4.12 Bandgap reduction technique

Wide bandgap materials are hard to converge since their intrinsic carrier densities
are low. The reverse junction current is orders of magnitude lower than their narrow
bandgap counterparts. The problem is more serious if impact ionization is involved
because the surge of ionization current in reverse junction may never be detected by
the numerical solver since the reverse current is below the numerical floating point
accuracy.
One technique is to artificially reduce the bandgap first, achieve the desired bias
current and finally increase the semiconductor bandgap back to its original value.
For example:

equilibrium bandgap_reduction = 0.2
scan var=voltage_1 value_to = -0.5
scan var=current_1 value_to = 10e-3
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Figure 4.1: Schematic for the use of auxiliary contact for a p-n-i-p-n reverse biased
structure.

scan var=bandgap_reduction value_to=0.0 var2=current_1 value2_to=10e-3
scan var=voltage_1 value_to = 0.0

This reduces the original bandgap value by 20% (e.g. 1 eV → 0.8 eV) and increases
the bias to the desired value. Afterwards, the bandgap is restored to its original
value while keeping the desired bias current fixed; the voltage will change to match.
As a final step, we get the IV curve by ramping down the bias: since the bandgap
was altered during when the bias was ramped up, the IV curve is incorrect for this
region. In this situation, care should be taken to only plot data from the last scan
statement.

4.13 Negative differential mobility issues

For materials with negative differential mobility due to transition of electrons from
the Γ band to L and/or X bands, convergence may become a problem when the
applied voltage is high. Examples of such problems are a HEMT under high voltage
bias and a laser diode under high current injection condition.
The steady state solution can be driven into non-convergence because of the negative
differential resistance due to the special field dependence mobility as shown in Fig.
4.2 (as defined by the “n.gaas” velocity model in the gaas macro).
In reality, the device may be driven into unstable or oscillation states (Gunn effect)
at some bias points. We rarely see such kind of negative I-V characteristics in steady
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Figure 4.2: Field dependence electron velocity of undoped GaAs. The solid curve
is the “n.gaas” mobility model while the dash curve is the “beta” model.

state measurements. A possible explanation is that the field/current adjusts itself
in the region of negative resistance in the form of transient redistribution and the
steady state terminal I-V curve bypasses the peak of negative resistance.
Thus, to overcome the non-convergence in steady state simulation in such a situation,
we suggest using a different form of mobility model (such as the “beta” model, as
illustrated by dash line in Fig. 4.2).
An alternative method to overcome the non-convergence is to use transient simulation
while biasing the FET. This method means the simulator and the computer hardware
must work harder.



Part II

PHYSICAL AND NUMERICAL
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Chapter 5

DRIFT-DIFFUSION MODEL

This chapter provides a description of the basic theories used in all of Crosslight’s
simulation software packages. The variety of physical phenomena in a semiconductor
require many different physical models. However, the drift-diffusion (DD) model is
the most basic since many of the well known characteristics of a semiconductor device
such as the capability to amplify electrical signal may be explained using the DD
theory.
This chapter will also explain the boundary conditions and basic properties such as
mobility and pure resistor behavior.

5.1 Basic equations

The basic equations[1] used to describe the semiconductor device behavior are Pois-
son’s equation:

− ∇ ·
(
ϵ0ϵdc

q
∇V

)
= −n+ p+ND(1 − fD) −NAfA +

∑
j

Ntj(δj − ftj), (5.1)

and the current continuity equations for electrons and holes:

∇ · Jn −
∑

j

Rtj
n −Rsp −Rst −Rau +Gopt(t) = ∂n

∂t
+ND

∂fD

∂t
, (5.2)

∇ · Jp +
∑

j

Rtj
p +Rsp +Rst +Rau −Gopt(t) = −∂p

∂t
+NA

∂fA

∂t
. (5.3)

These equations govern the electrical behavior (e.g., I-V characteristics) of a semi-
conductor device.
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Optionally, two more equations are used to described the carrier energy (w) or the
carrier temperature distribution. This is not to be confused with the lattice tem-
perature; the former is a description of how the carrier distribution deviates from
Fermi-Dirac distribution. Such a model is also referred to as the hydrodynamic
model.
Our theory here is based on the formulation derived by Azoff [2][3]. For simplicity,
we only present the equations for hot electrons. The corresponding equations for hot
holes are completely analogous:

∇ · S +Rnw − ∇Ec · Jn + n(w − w0)
τw

+ ∂(nw)
∂t

= 0 (5.4)

S = −5
3
Jnw − 10

9
µnnw∇w. (5.5)

where w is the total energy of an electron and w0 = 3kT/2 is the electron energy at
equilibrium. S is the electron energy flux intensity and τw is the energy relaxation
time.
Definitions of symbols are listed in the nomenclature at the end of this chapter. More
details about the derivation and discretization of the hydrodynamic model is given
in the Appendix.
The primary function of our simulator is to solve these equations self-consistently
for the electrostatic potential, V , the electron and hole concentrations (n, p) and the
electron and hole energies (Wn,Wp).
From theories of semiconductor device physics [1] the carrier flux densities Jn and Jp

in Equations (5.2) and (5.3) can be written as functions of the carrier concentration
and the quasi-Fermi levels:

Jn = nµn∇Efn (5.6)
Jp = pµp∇Efp (5.7)

where µn and µp are mobilities of electrons and holes. For convenience, we use carrier
flux density and current density interchangeably even though they differ by a factor
of electron charge.
For the hydrodynamic model, the expression for the electron (or hole) current is
modified:

Jn = µn

{
−n∇[ψ + χ+ γn] + 2

3
∇(nw) − nw∇ln(mn)

}
(5.8)

More details about the current flow expression in the hydrodynamic model is given
in the Appendix.
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5.1.1 SRH and Auger recombination

The software treats carrier recombination due to deep level traps [Shockley-Read-
Hall (SRH) recombination] using:

Rtj
n = cnjnNtj(1 − ftj) − cnjn1jNtjftj (5.9)

Rtj
p = cpjpNtjftj − cpjp1jNtj(1 − ftj) (5.10)

where n1j is the electron concentration when the electron quasi-Fermi level coincides
with the energy level Etj of the jth trap. A similar definition applies to p1j.
Under transient conditions, the following trap dynamic equation is valid [4]:

Ntj
∂ftj

∂t
= Rtj

n −Rtj
p (5.11)

The capture coefficients cnj and cpj for electrons and holes relate to the lifetime of
the carrier due the jth recombination center by the following relation:

1
τnj

= cnjNtj (5.12)

1
τpj

= cpjNtj (5.13)

One can show that Equations (5.9) to (5.13) are equivalent to the standard expression
of the SRH model [1] under steady state conditions.
The capture coefficients can be further expressed as:

cnj = σnjvn (5.14)

vn =
√

8kT
πmn

(5.15)

cpj = σpjvp (5.16)

vp =

√√√√ 8kT
πmp

(5.17)

A trap (or recombination center) is completely specified by its density Ntj, capture
cross sections σnj and σpj, and energy level Etj.
The Auger recombination rate is given by

Rau = (Cnn+ Cpp)(np− n2
i ), (5.18)

where the Auger coefficients Cn and Cp depends on the type of material simulated.
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5.1.2 Carrier statistics

The electron and hole concentrations in semiconductors are defined by Fermi-Dirac
distributions and a parabolic density of states which, when integrated, yield [1]:

n = NcF1/2

(
Efn − Ec

kT

)
(5.19)

p = NvF1/2

(
Ev − Efp

kT

)
(5.20)

where F1/2 is the Fermi integral of order one-half.
For the convenience of numerical evaluation, the approximation proposed by Bed-
narczyk and Bednarczyk is used [5]:

F1/2(x) ≈
(
e−x + ξ(x)

)−1
(5.21)

ξ(x) = 3
4

√
π [ν(x)]3/8 (5.22)

ν(x) = x4 + 50 + 33.6x
{
1 − 0.68exp[−0.17(x+ 1)2]

}
(5.23)

This expression is accurate to within 0.4% of error in all ranges.
In the limit of low carrier concentration Equations (5.19) and (5.20) reduce to the
familiar Boltzmann statistics:

n = Ncexp
(
Efn − Ec

kT

)
(5.24)

p = Nvexp
(
Ev − Efp

kT

)
(5.25)

The program uses the more general Fermi-Dirac statistics of Equations (5.19), (5.20)
and (5.21) by default.

5.1.3 Incomplete ionization of impurities

The simulation program can accurately account for the incomplete ionization of shal-
low impurities in semiconductors. The occupancies fD and fA are used to describe
the degree of ionization. It is assumed that the shallow impurities are in equilibrium
with the local carriers and therefore the occupancy of the shallow impurities can be
described by:

fD = 1
1 + g−1

d exp[(ED − Efn)/kT ]
(5.26)

fA = 1
1 + g−1

a exp[(EA − Efp)/kT ]
(5.27)
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where the subscripts D and A are used to denote shallow donors and acceptors,
respectively. The degeneracy levels are automatically set to gd = 2 and ga = 4.
From the discussions of Section 5.1.1, the occupancy of a deep level trap can be
determined through the trap dynamic equation, Equation (5.11). In general the
deep trap is not in equilibrium with the carriers (i.e., the trap does not share the
same quasi-Fermi level as the carriers).
From Equations (5.9), (5.10) and (5.11), one obtains the following expression for the
trap occupancy under steady state conditions:

ftj = cnjn+ cpjp1j

cnj(n+ n1j) + cpj(p+ p1j)
(5.28)

In the case of surface states or surface recombination centers, the software allows for
the distribution of dense traps near the surface region. This provides a mechanism
for the surface charge states as well as for surface recombination. Fermi level pinning
effects on a semiconductor surface can be modeled using this approach.
In a transient simulation the trap occupancy is a function of time, depending on the
trap capture rates as well as on the local carrier concentrations. The program uses
Equation (5.11) to determine the trap states at each transient time step.
By default the simulation software assumes incomplete ionization of dopants with en-
ergy level defined by the level parameter in the doping statement. The dopants of a
specific material may be forced to be fully ionized with the command full_ionization.
For a more accurate model of incomplete ionization in heavily-doped semiconductors,
the Mott transition model can also be used.

5.1.4 Poole-Frenkel model of incomplete ionization

The Poole-Frenkel effect (also Frenkel-Poole effect or field induced emission) was
originally used to describe field dependent thermionic emission from traps in the
bulk of an insulator [1]. This mechanism is, however, equally applicable to incomplete
ionization of impurities in semiconductors.
Under an electric field F , the electrostatic potential near an impurity center is mod-
ified and the effective work function or the ionization energy is reduced by:

∆EP F =
√
qF

πϵ0ϵ
(5.29)

The Poole-Frenkel model is implemented by shifting the ionization energy by ∆EP F .
The field dependence of this shift introduces some complication into the discretized
Poisson’s equation. The reason is that at each node, additional work must be done
to search for the maximum field component surrounding the node.
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Another complication associated with the Poole-Frenkel model occurs at the ohmic
contacts, because the simulator solver is set up such that the built-in potential at an
ohmic contact is always fixed, or in other words, the dopant energy level or the Imref
at the contact is fixed relative to the band edges. Such an assumption contradicts
with the Poole-Frenkel model which changes the ionization energy and the Imrefs as
the applied field is varied.
To overcome this difficulty, the ionization energy at the contact is allowed to be
shifted to a constant value before the simulation. Without such a shift in the ion-
ization energy at the contact, the ohmic contact may behave like a Schottky contact
because of a large fixed built-in potential.
The Poole-Frenkel model is important when the ionization energy is large and the
temperature is low (e.g., 100 meV at 100K). Without such a model, the semiconduc-
tor may have an unrealistic high resistance.
By default, this model is turned off and can be enabled using the parameter pf_model
of the doping statement.

5.1.5 Heavy doping effects

The Mott transition occurs at high doping concentrations, when the distance between
impurities/dopants becomes comparable to the Bohr radius. It has been shown[6]
that the effective Bohr radius a∗

B and critical impurity concentration Ncrit are deter-
mined by:

a∗
B = ϵr

m∗/m0
0.53Å (5.30)

N
1/3
crit = 1

4a∗
B

(
π

3

) 1
3

(5.31)

where ϵr is the relative dielectric constant and m∗ is the carrier effective mass. The
ionization energy of the impurity as a function of the concentration can then be
obtained by:

ED = ED0[1 − (ND/Ncrit)1/3] (5.32)

A similar expression exists for acceptors. This model is activated by default for all
shallow dopants in Crosslight Software.
The applicability of this model to deeper dopants such as GaN:Mg is not as well
understood so a maximum ionization energy of 100 meV is used to switch the Mott
transition on/off. This behavior can be controlled on a per-material basis using the
dopant_ionization_model command.
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The ionization energy can also be manually controlled by the user to match measured
values. There are multiple ways of doing so but the most convenient methods are:

• The adjust_doping statement in the layer file. This overrides the level
parameter of the doping statement generated by layer.exe.

• The shal_acpt_level and shal_dnr_level commands can be implemented
as parameter overrides in the input files or as part of a material macro. These
commands are flexible and can even be used to create custom formulas for the
activation energy dependence on the dopant concentration.

5.1.6 Carrier mobility

The carrier mobilities µn and µp account for the scattering mechanism in electrical
transport.
One of the main effects on the mobility is the local electrical field [1]. The software
provides several analytical formulas of field dependent mobility:

• 1. The simplest mobility model uses constant mobilities µ0n and µ0p for elec-
trons and holes, respectively, throughout each material region in the device.
This model should not be confused with constant velocity: constant mobility
means linear velocity.

• 2. Another simplified field dependent mobility model is the two-piece mobility
model:

µn =

µ0n for F < F0n,

vsn/F for F ≥ F0n.
(5.33)

vsn = µ0nF0n (5.34)

for the electron mobility. F0n is a threshold field beyond which the electron
velocity saturates to a constant.
Similar expressions can be defined for holes:

µp =

µ0p for F < F0p,

vsp/F for F ≥ F0p.
(5.35)

vsp = µ0pF0p (5.36)

We note that this model may be used to approximate a constant velocity model
by setting a very low of F0 so that the velocity is saturated throughout the
useful simulation range.
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• 3. The Canali or beta model[7] is commonly used in the literature and has the
following form for electrons and holes, respectively:

µn = µ0n

(1 + (µ0nF/vsn)βn)1/βn
(5.37)

µp = µ0p

(1 + (µ0pF/vsp)βp)1/βp
(5.38)

• 4. The transferred electron model[7] or n.gaas model is used in many III-V
compound semiconductors which exhibit negative differential resistance due to
the transition of carriers into band valleys with lower mobility [1]. The software
has implemented the following field dependent model for this case:

µn = µ0n + (vsn/F0n)(F/F0n)3

1 + (F/F0n)4 (5.39)

• 5.Poole-Frenkel is the name given by Crosslight to the hopping mobility model
commonly used for organic semiconductors; this movement is very similar to
the Poole-Frenkel effect (Frenkel-Poole emission) in insulators[1] with an expo-
nential field-dependent term determining the probability of a highly localized
carrier moving from one site to another.
The mobility from this model may be expressed using the following formula:

µ = µ0exp[(F/Fcr)px] (5.40)

• 6. A modified transferred-electron mobility model designed for GaN devices[7].
See beta_mte for details.

• 7. User-defined mobility model. More details can be found in the reference
section under user_defined_mobility.

Besides the field dependence of the mobility, another important effect is the impurity
dependence of the low field mobility [1]. The program by uses the following formulas
by default:

µ0n = µ1n + (µ2n − µ1n)

1 +
(

ND+NA+
∑

j
Ntj

Nrn

)αn (5.41)

µ0p = µ1p + (µ2p − µ1p)

1 +
(

ND+NA+
∑

j
Ntj

Nrp

)αp (5.42)

where the various parameters are fitting parameters from experimental data which
may also be temperature-dependent. Additional impurity models may be invoked
through low_field_mobility_model.
In many applications, the mobility is anisotropic and also depends on the vertical
field. A number of vertical field dependent model (such as the Lombardi model) are
implemented within the statement of mobility_xy.
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5.2 Boundary Conditions

The boundary conditions for the electrical part [Equations (5.1) to (5.3)] include
ohmic contacts, Schottky contacts, Neumann (reflective) boundaries, lumped ele-
ments and current controlled contacts. For the hot carrier equations, the boundary
condition here is the contact carrier temperature.

5.2.1 Ohmic contact

Ohmic contacts are implemented as simple Dirichlet boundary conditions, where the
surface potential and electron and hole quasi-Fermi levels (Vs, Es

fn,Es
fp) are fixed.

The minority and majority carrier quasi-Fermi potentials are equal and set to the
applied bias of the electrode:

ϕs
n = ϕs

p = −Es
fn = −Es

fp = Vapplied. (5.43)

The potential Vs at the boundary is fixed at a value consistent with zero space charge:

− n+ p+ND(1 − fD) −NAfA +
∑

j

Ntj(δj − ftj) = 0. (5.44)

With the solution of Vs and Equation (5.43) one can use Equations (5.19) and (5.20)
to calculate ns and ps.
It should be pointed out that the purpose of creating an Ohmic contact in a simula-
tion is to have a boundary condition which does not disturb the area of simulation
but provides a path for current flow. This is in contrast to the Schottky contact
which can be either injecting or depleting carriers, depending on the polarity of the
bias.
In most device simulations, the ideal Ohmic contact with a charge neutral assumption
is sufficient as a good carrier injector if the contact area is highly doped or if the
carrier injection requirement is not too high. If the vicinity of the contact has low
doping or if a high level of carrier injection is required, the ideal Ohmic contact
described above ceases to be a valid model for a realistic Ohmic metal contact. In
such a case, the simulator refuses to inject carriers into the device, no matter how
large the bias current is.
To avoid this problem, remember to use high doping in the vicinity of an ideal Ohmic
contact region. Otherwise, a low barrier Schottky contact may also be used.

5.2.2 Schottky contacts

Schottky contacts to the semiconductor are defined by the barrier height of the
electrode metal and a surface recombination velocity.
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The surface potential at a Schottky contact is defined by:

Vs = χ− χref − ϕb + Vapplied. (5.45)

where χ and χref are the electron affinities of the semiconductor and a reference
material, respectively, and ϕb is the Schottky barrier height.
Note that this applies only for n-contacts. For p-contacts, this equation needs to be
modified by the semiconductor bandgap to calculate the proper hole barrier. The
sum of the barrier heights for electron and holes is expected to be equal to the
bandgap [1].
In general, the quasi-Fermi levels Es

fn and Es
fp are no longer equal to Vapplied and are

defined by a current boundary condition at the surface instead:

Jsn = γnv
therm
n (ns − neq), (5.46)

Jsp = γpv
therm
p (ps − peq), (5.47)

where Jsn and Jsp are the electron and hole currents at the contact, ns and ps are
the actual surface electron and hole concentrations, and neq and peq are the equilib-
rium electron and hole concentrations if infinite surface recombination velocities are
assumed (i.e. ϕn = ϕp = Vapplied).
The thermal recombination velocities are given by:

vtherm
n =

√
kT

2mnπ
, (5.48)

vtherm
p =

√√√√ kT

2mpπ
, (5.49)

The constants γn and γp provide a mechanism to include any correction (e.g. due to
tunneling) to the standard theory.

5.2.3 Abrupt heterojunctions

An abrupt junction is also considered a boundary condition in the program because
most physical quantities are discontinuous at the interface. Similar to a Schottky
contact, an abrupt heterojunction exhibits non-ohmic behavior, such as rectification
effects.
The physical model used by the software for current transport across the junction is
the thermionic emission model [1]. A similar expression for the current flux across
the junction can be defined as:

Jhn = γhnv
therm
bn (nb − nb0), (5.50)

Jhp = γhpv
therm
bp (pb − pb0), (5.51)
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where nb and pb denote the electron and hole concentrations, respectively, on the
barrier side of the junction. nb0 and pb0 are the corresponding concentrations when
the quasi-Fermi levels are the same as those on the opposite side. These equations
ensure that, when the quasi-Fermi levels on both sides of the barriers are the same,
the net current is zero. The derivation of the boundary conditions of the above
equations can be found in Refs. [8] and [9].
The thermal recombination velocities are given by:

vtherm
bn =

√
kT

2mbnπ
, (5.52)

vtherm
bp =

√√√√ kT

2mbpπ
. (5.53)

Other symbols have similar meanings as those in Section 5.2.2.
The abrupt heterojunction model described here is important to accurately model
the thermionic emission behavior (e.g. temperature dependence) of a device using
an abrupt heterojunction as a means of carrier confinement.
The abrupt junction model has its limitations, however, especially when both sides
of the junction are heavily doped with the same type of dopant (e.g. donors). In
such a case, the Fermi level is strongly pinned at the band edges on both sides, and
the potential barrier is forced to form a sharp peak above the Fermi level. Since the
peak region in the barrier is strongly depleted of carriers, the resistance is very high
according to Equation (5.6). If this junction happens to be reverse biased (i.e. the
carriers on the barrier side tend to be more depleted when the bias is applied), the
high resistance can cause an unrealistically large voltage drop there.
Fortunately, the difficulty associated with a highly doped abrupt heterojunction does
not occur very often near the active regions, because junctions there are rarely heavily
doped with the same dopant on both sides. If the heavily doped contact region has
an abrupt heterojunction, problems may arise. An example of this is GaAs/AlGaAs,
which may have a heavily doped GaAs substrate under the heavily doped cladding
region.
In most cases the abrupt junction model implemented in the program is adequate.
In setting up a new device structure one may ignore the problem mentioned above
unless the simulation result shows an unrealistically large voltage drop. The user
may be able to spot such a problem just from simulator’s run-time printout. For
example, if the printout shows shows that 10 Volts are needed to pass a few mA of
current, it usually indicates there is a barrier of some kind.
By plotting the band diagram, it should be possible to locate if an abrupt junction is
causing this problem. If so, we can replace the abrupt junction with a graded barrier
without affecting any active regions. Usually a graded barrier with grading length
of 100 Åor so is adequate to replace the heavily doped junction that is causing the
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trouble.
This limitation of the program arises from the assumption of drift-diffusion as the
key transport mechanism. In reality the main mechanism of carrier transport across
the thin and sharp barrier is quantum tunneling.

5.2.4 Neumann boundaries

Along the outer non-contacted edges of simulated devices, homogeneous reflecting
Neumann boundary conditions are imposed so that current only flows out of the
device through the contacts. Additionally, in the absence of surface charge along
such edges, the normal electric field component goes to zero. In a similar fashion,
current is not permitted to flow from the semiconductor into an insulating region;
further, at the interface between two different materials, the difference between the
normal components of the respective electric displacements must be equal to any
surface charge present along the interface.

5.2.5 Lumped elements

Lumped elements have been created to cut down the number of grid points to dis-
cretize some device structures, thereby saving CPU time. Lumped resistance might
be useful in a simulation of a semiconductor device structure with a substrate contact
located far away from the active region. If the whole structure were to be simulated,
a tremendous number of grid points, probably more than half, would be wasted to
account for a purely resistive region of the device. Because CPU time is generally
a superlinear function of the number of grid points, including such regions can be
quite expensive.
Applying this boundary condition creates an extra unknown (Vs), the voltage on the
semiconductor contact, which if defined by Kirchoff’s equation:

Vapplied − Vs

Rs

−
Nb∑
i=1

(Jn + Jp) = 0, (5.54)

where Nb is the number of boundary grid points associated with the electrode of
interest.
Note that this auxiliary equation, due to the currents inside the summation, has
dependencies on the values of potential and carrier concentrations at the nodes on
the electrode as well as all nodes directly adjacent to the electrode. It is important
to remember that a lumped element contact will have a single voltage (or potential-
adjusted for possible doping non-uniformity) associated with the entire electrode.
The simulator should be used as much as possible to calculate any resistance compo-
nents that might be included as lumped elements. For instance, in the case of sub-
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strate resistance of a semiconductor device, one could just simulate the n-substrate
with ohmic contacts at both ends. From the plot of the contact current versus
voltage, the resistance can be directly extracted from the slope.

5.2.6 Current boundary condition

The current boundary condition is a very important option in the simulation of de-
vice. For example, when a laser diode is biased beyond threshold, the gain and
carrier concentration essentially saturate. This also causes the bias voltage to satu-
rate, while the current continues to rise because of stimulated emission. Under such
conditions, operating the simulator at a voltage-controlled mode would cause the
current to jump to huge values for a small increase in voltage.
In some devices (not necessarily lasers), the terminal current is a multi-valued func-
tion of the applied voltage. This condition implies that for some voltage boundary
conditions, a numerical procedure may end up, depending on the initial guess so-
lution, with a solution in either of two distinct and stable states. Furthermore, a
condition of primary interest is at the trigger point, where dV/dI = 0, which is dif-
ficult to obtain with a simple voltage boundary condition. Additionally, it is nearly
impossible to compute any solutions in the negative resistance regime with voltage
inputs.
A possible alternative to the difficult situation mentioned above would be to de-
fine a current controlled boundary condition, since voltage can be thought of as a
single-valued function of the terminal current. Such a boundary condition has been
implemented in the software, as an auxiliary equation with an additional unknown
boundary potential. Like the lumped element case, a Kirchoff equation is written at
the contact points:

Jsource −
Nb∑
i=1

(Jn + Jp) = 0. (5.55)

Note that unlike the lumped element case, Jsource is a constant specified by the
user and has no dependence on the boundary potential Vs (the Vs dependence is
buried in the summation). Since the full Newton’s method is used for the solution of
all equations in the program, no degradation of convergence has been observed for
current controlled simulations.
The choice of a voltage or current bias is mostly a function of the dI/dV slope; this
is explained in more detail in Sec. 4.1. For regions where dI/dV is small, the voltage
boundary condition is definitely preferable; this occurs frequently below the turn-on
voltage or under reverse bias conditions. If the opposite is true, then the current
bias is preferable.
It is not uncommon for the negative resistance regime of certain devices to have a
slope dI/dV very close to zero. Such behavior should be considered when using a
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current source to trace out an entire I-V curve. It might be preferable to switch back
to a voltage source after passing the trigger point.

5.3 Pure Resistor Regions and Metal Macros

For resistors and metals, we assume the following conditions are true:

• Charge neutrality: we assume that the space charge at any point is always zero
even when current flows.

• Zero diffusion current: the distribution of carriers is uniform enough that only
drift current exists.

• Equilibrium carrier density: we assume that carrier density stays constant even
when current flows so that no recombination occurs.

• Uniform material properties throughout the layer.

Under such assumptions, the Poisson and current continuity equations reduce to:

∇ ·
(
ϵ0ϵdc

q
∇V

)
= 0 (5.56)

∇ · J = 0 (5.57)

These can be combined into a single equation by writing the drift current as:

J = σ∇V (5.58)

Therefore, only the Poisson equation needs to be solved in metal/resistor regions.

Model History

Crosslight’s metal models have undergone a number of major changes over the years
so it is important to document the history of these changes for existing users.

Pseudo-metal semiconductor

Prior to the 2007.3 version, the standard metal model described above was used to
represent resistors. However, this model had some limitations. For semiconductor
regions, the drift-diffusion model solves three equations so solving a single equation
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for certain points did not integrate very well other models such as our small-signal
AC solver or the quantum tunneling code.
To simplify integration of metals with these models, starting from version 2007.3,
Crosslight’s device simulators approximated a resistor region as a special kind of
semiconductor with a heavy carrier mass (∼10) and very small bandgap (0.1 eV). This
approach allowed the semiconductor to duplicate many properties of metals including
Fermi level pinning. However, the need to define an equivalent carrier mobility (to
match the desired metal resistivity) introduced a dependency on the carrier density.
As this was controlled by the increased DOS mass, there was a mismatch with
the conduction/transport mass used in the quantum tunneling formulation which
required further corrections.
Feedback from users has ultimately demonstrated that this pseudo-metal semicon-
ductor approach has its own set of limitations, especially with thicker layers. As of
the October 2014 version, this approach is now considered obsolete and the pre-2007
standard model has been restored. However, our AC and quantum tunneling models
have now been improved and may be used in conjunction with resistors.

Band alignment

Starting with version 2013, a subroutine was added to automatically adjust the work
function of resistors and align it with the affinity of the neighboring semiconductor.
This was done to facilitate the use of metals which, in most applications, are used for
ohmic contacts. However, since thermionic emission is used at all internal boundaries,
Schottky contacts of poor quality may be formed if the affinity of the resistor macro
is not adjusted properly. An example of this is ITO which can be either a p (for GaN)
or n (for OLED) contact metal depending on the application: the affinity needed to
successfully inject the correct carriers changes greatly in these two cases.
The pre-2013 Schottky-like behavior can be recovered using the no_auto_workfunction
statement. This may be necessary in cases where the Schottky behavior is expected,
when the effect of the metal’s affinity must be studied, or in thermal simulations
where affinity shifts due to temperature may ruin the automatic alignment process.

Interaction with quantum tunneling models

One should exercise caution when setting up quantum tunneling between a metal
macro and a semiconductor barrier. When using the propagation matrix approach,
the program uses the default density of state (DOS) mass from the macro to define
the tunneling probability; put differently, tunneling depends on the kinetic energy of
an individual particle. However, the DOS mass is a measure of the shape of the E(k)
dispersion relation and describes “how many” carriers there are in a band rather than
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“how fast” those carriers are traveling. These two mass values may not always be
the same.
Luckily, the DOS mass is not needed in the current version of the metal/resistor
macros and unlike previous the pseudo-metal approach, we no longer need to cal-
culate an equivalent carrier mobility. Instead, we use experimental data and the
mobility-carrier density relationship is completely abstracted away:

σ = 1
ρ

= q(µnn+ µpp) (5.59)

The tunneling transport mass in our model is thus defined in the following way:

• 1 Internally, the DOS mass of metal/resistor macros is set at a default value of
0.1 for n and p. This can be overridden by explicitly declaring the DOS mass
in the resistor macro.

• 2 The transport mass is calculated using a ratio of 1:1 with the DOS mass. This
ratio may be overridden using the commands cond_dos_mass_ratio_n
and cond_dos_mass_ratio_p.

5.4 Bandgap Narrowing Effect

It is observed experimentally that the shrinkage of bandgap occurs when impurity
concentration is particulary high, eg. nimp > 1023m−3. This effect is so called
bandgap narrowing effect which is ascribed to the emerging of the impurity band
formed by the overlaped impurity states. The bandgap narrowing model proposed
by Slotboom is given by

∆Eg = Eref

{
ln nimp

nref

+
√

ln2 nimp

nref

+ 0.5
}

(5.60)

where Eref , nrefandnimp represent energy parameter, density parameter and impurity
concentration, respectively.
In case of silicon, Eref and nref were obtained by fitting experiment, which yeilds

Eref = 0.009 [V ] (5.61)
nref = 1023 [m23] (5.62)

It should be noted that the bandgap narrowing effect is doping dependent effect,
whereas the many body effect, which reduces band gap as well, is carrier dependent
effect.
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It should also be pointed out that the macro system in Crosslight software provides
an easy way for user to define any kind of bandgap narrowing model since dopant
density is an internal variable automatically passed to any macro functions, including
the bandgap.

5.5 Trap Models

A deep level trap located with the semiconductor bandgap is described by both the
charge property (deep donor or deep acceptor) as it appears in Poisson’s equation
and by a rate equation with capture and escape terms:

Rtj
n = cnjnNtj(1 − ftj) − cnjn1jNtjftj, (5.63)

Rtj
p = cpjpNtjftj − cpjp1jNtj(1 − ftj) (5.64)

Traps can be defined as either localized defects using the doping statement or as
an integral part of a material using the material statement. The latter method
is especially convenient when dealing with amorphous materials like a-Si:H. When
combining the two methods, the following rules are used:

• 1. Load all macros and initialize trap properties and trap level models if any
material statements define traps.

• 2. Get trap information from doping statement regarding trap concentration
and level. This will affect all materials in a given area since doping is done at
the mesh level and does not distinguish by material.

• 3.

– If (2) exists for traps, we should now have density, level and charge-types.
Calculate capture cross section according to material lifetime for trap_1
only.

– If (2) does NOT exist, assume a low mid-gap donor of 1.e6 1/m3. Then,
calculate capture cross section according to material lifetime for trap_1
only.

• 4. Check trap_conc_i commands. If they exist, we ADD that concentration
to that obtained in (2).

• 5. Check for trap_level_i statements which override values obtained from
(2) and (3).

• 6. Check for trap_ncap_i and trap_ncap_i statements that override val-
ues obtained from (3).
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The software is limited to only a few species of traps (defined by numeric labels) but
a single species of trap can represent many different trap levels within the bandgap.
In the extreme of densely populated traps such as those appearing in amorphous
materials, it is more convenient to use a continuous function to describe the energy
distribution of the trap levels.
As of the 2015 version, the software supports Gaussian, exponential tail and uniform
trap distributions.

Trap Photo-Excitation

When the photon energy of light is less than the semiconductor bandgap, it is still
possible to generate photo-carriers if deep level traps are sensitive to light. Electrons
and holes being trapped in the deep level trap centers require less than bandgap
energy to be excited to the conduction or valence bands. We shall refer to this
process as trap photo-excitation.
In such a case, the Schokley-Read-Hall recombination terms of the drift-diffusion
must be revised to include photo-carrier generation terms due to emission from traps
(Gtn and Gtp):

Rtj
n = cnjnNtj(1 − ftj) − cnjn1jNtjftj −Gtn, (5.65)

Rtj
p = cpjpNtjftj − cpjp1jNtj(1 − ftj) −Gtp (5.66)

We will derive the generation term Gtn from the consideration that it must be pro-
portional to trap density and electron occupancy. It must also be proportional to
light intensity. Let us recall the photon generation term of direct electron-hole pairs:

Geh = vgSα (5.67)

where vg is the group velocity of light, S the photon density and α the absorption
coefficient.
In analogy, we can write down the trap excitation term as:

Gtn = vgSNtjftjσxn (5.68)

where σxn has the unit of area and shall be defined as the trap photo-excitation cross
section. Please note that this cross section times the amount of trapped electrons
(i.e., Ntjftj) may be compared with usual bulk material absorption coefficient in
units of 1/m.
Similarly, trap excitation for holes is given by:

Gtp = vgSNtj(1 − ftj)σxp (5.69)

To activate this model, the user should use the trap_excitation statement.



Chapter 6

NUMERICAL TECHNIQUES
AND 3D SIMULATION

This chapter discusses numerical issues related to solving the drift-diffusion equations
on a discretized 2/3 dimensional finite element mesh. The 3D mesh may be regarded
as a collection of 2D planes with carefully constructed plane-to-plane finite element
connectivity. The reduction of 3D into 2D in case of cylindrical symmetry is also
discussed.

6.1 Numerical Techniques

6.1.1 Introduction

All Crosslight software packages involve solving the drift-diffusion equations along
with a few others, mostly related to the optical part of the device simulation. Since
a substantial amount of computation time is spent on the DD equations, we shall
concentrate mainly on the numerical techniques related to them here.
Equations (5.1) to (5.3) describe the electrical behavior of the bulk or quantum well
semiconductor devices. Poisson’s equation (Equation 5.1) governs the electrostatic
potential and the continuity equations (Equations (5.2)-(5.3)), govern the carrier
concentrations.
These differential equations are discretized as described in the next section. The re-
sulting set of equations is coupled and nonlinear. Consequently, there is no method
to solve the equations in one direct step. Instead, solutions must be obtained by
a nonlinear iteration method, starting from some initial guess. The solution meth-
ods are detailed in subsection 6.1.3, and the choice of initial guess is explained in
subsection 6.1.4.
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6.1.2 Discretization

To solve the device equations on a computer, they must be discretized on a simula-
tion grid. That is, the continuous functions of the PDE’s are represented by vectors
of function values at the nodes, and the differential operators are replaced by suit-
able difference operators. Instead of solving for four unknown functions (potential,
electron and hole concentrations, and the electron or hole energy), the simulator
solves for 3N or 4N unknown numbers, depending on the model choice, where N is
the number of grid points.
The key to discretizing the differential operators on a general triangular grid is
the box method [10]. Each equation is integrated over a small polygon enclosing
each node, yielding 4N nonlinear algebraic equations for the unknown potential,
concentrations and the wave amplitude. The integration equates the flux into the
polygon with the sources and sinks inside it, so that conservations of current and
electric flux are built into the solution.
The integrals involved are performed on a triangle by triangle basis, leading to a
simple and elegant way of handling general surfaces and boundary conditions. In
this case the integral is simply replaced by a summation of the integrand evaluated
at the node multiplied by the area surrounding it.
In the case of the continuity equations, the carrier fluxes must be evaluated with
care; the classic finite difference formulas are modified as first demonstrated by
Scharfetter and Gummel (SG-formula) in 1969 [11]. From the user’s point of view,
the discretization is completely automatic and no intervention is required.
For the hydrodynamic model, the SG-formula for discretization must be modified.
The details are worked out in the Appendix.

6.1.3 Newton’s method

We discuss the numerical solution of drift-diffusion equations. In Newton’s method,
all of the variables in the problem are allowed to change during each iteration, and
all of the coupling between variables is taken into account. Due to this, the New-
ton algorithm is very stable, and the solution time is nearly independent of bias
conditions.
The basic algorithm is a generalization of the Newton-Raphson method for the root
of a single equation. Equations (5.1)–(5.3) can be written as:

F j
v (V j1, Ej1

fn, E
j1
fp) = 0, (6.1)

F j
n(V j1, Ej1

fn, E
j1
fp) = 0, (6.2)

F j
p (V j1, Ej1

fn, E
j1
fp) = 0, (6.3)

where j runs from 1 to N, and j1 includes j itself plus its surrounding mesh points.
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Equations (6.1) to (6.3) represent a total number of 3N equations, which is sufficient
to solve for 3N variables: (V 1, E1

fn, E1
fp, V 2, E2

fn, E2
fp, ..., V N , EN

fn, EN
fp).

Once the equations are discretized in the above form, standard Newton techniques
can be used to solve for them. These involve the evaluation of the Jacobian ma-
trix to linearize Equations (6.1) to (6.3), followed by a linear solver (involving LU
factorization of the matrix) and finally, nonlinear iteration to get the final solution.
Since the Jacobian matrix is sparse, sparse matrix techniques are used to improve
the computation speed.
The major acceleration of a Newton iteration is the Newton-Richardson method,
whereby the Jacobian matrix is only refactored when necessary. When it is not
necessary to factorize, the iterative method using the previous factorization is em-
ployed. The iterative method is extremely fast provided the previous factorization is
reasonable. Frequently the Jacobian need only be factorized only once or twice per
bias point using the Newton-Richardson method, as opposed to the twenty to thirty
times required in the conventional Newton method. The decision to refactor is made
on the basis of the decrease per step of the maximum error of both the equation
residuals and the variable differences. This mechanism has been automated within
the program and no user intervention is needed.

6.1.4 Initial guess and adaptive bias stepping

Several types of initial guess solutions are used in the simulator. The first is the
simple charge neutral assumption used to obtain the first (equilibrium) bias point.
For the wave equation, the guess solution is a delta function at the center of the
active region. This is the starting point of any device simulation.
Any later solution with applied bias needs an initial guess of some type, obtained
by modifying one or two previous solution(s). When only one previous solution is
available, the solution currently loaded is used as the initial guess, modified by setting
the applied bias at the contact points. The same is true for the wave equation. When
two previous solutions with two different biases are available, it is possible to obtain
a better initial guess by extrapolating the two previous solutions All of these steps
are automated within the program and no user intervention is needed.
A schematic of the biasing strategy is given in Figure 6.1.
As in any Newton method, convergence strongly depends on the wise choice of the
initial guess solution. In principle, the Newton nonlinear iteration should always
converge as long as the initial guess is close enough to the solution. The closer the
initial guess is to the solution, the fewer nonlinear iterations are required to reach
convergence. The program takes this fact into account and implements an adaptive
method to control the bias step after the successful convergence of the previous
solution.



110 NUMERICAL TECHNIQUES AND 3D SIMULATION

No

Yes

Equilibrium/Initial Solution

Update Current/Voltage Bias

Bias step reduction

All
Solvers Convergent &

Consistent

Frequently-Updated
Wave Equation Solver

Figure 6.1: Flow diagram of how the simulator performs a typical simulation.

Assuming that the previous solution takes K1 number of iterations for a bias step
of ∆V1 to reach convergence and the user believes (by experience) that the optimal
number of iterations should be K0, the current bias step ∆V2 is adjusted to ∆V2 =
∆V1K0/K1. In this way an optimal step can be determined such that the nonlinear
Newton iteration is controlled to converge within K0 iterations. Again this procedure
is completely automated for the user.
One common cause of convergence problems in a Newton method is oscillations in the
solution. This usually occurs when the initial guess is poor and the solver overshoots
the solution. In order to prevent this, a damping value has been implemented which
prevents the solver to change the solution too much between successive iterations.
This value is defined in the newton_par statement. A small damping value will
damp the oscillations effectively but may cause slower convergence. A large value
allows faster convergence when the initial guess is poor but carries a larger risk of
oscillations.
Another important topic for the Newton solver is the choice of solver variables: please
refer to section 4.7 for details.

6.1.5 Transient simulation

The method used to discretize the differential equations in time is the backward
Euler method. Its basic approximation is the following equation:

∂S

∂t
= S(t) − S(t− ∆t)

∆t
. (6.4)
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This method has the advantages of being highly stable and recovers the steady state
solution in the limit ∆t → ∞.
Strictly speaking, the simulation system has more than 5 sets of equations when the
trap dynamic equation (Equation (5.11)) is also included in a transient simulation.
However, this equation is only dependent on local variables and can be solved before
the major Newton step involving all mesh points.
Once all the equations are discretized in terms of solution of the previous time step,
one can treat the solution of the present time step using the same method as for
the steady state solution, i.e. one can linearize the discretized equations and use
Newton’s method to solve them.

6.1.6 Mesh issues

Correct allocation of the grid is a crucial issue in device simulation. The number
of nodes in the grid (N) has a direct influence on the simulation time, where the
number of arithmetic operations necessary to achieve a solution is proportional to
Np where p usually varies between 1.5 and 2.
Because the different parts of a device have very different electrical and optical
behavior, it is usually necessary to allocate a fine grid to some regions and a coarse
grid to others. Whenever possible, it is desirable not to allow the fine grid in some
regions to spill into regions where it is unnecessary, in order to maintain a reasonable
simulation time. For more mesh allocation suggestions, please refer to sections 4.5
and 4.6.
The first step in mesh generation is to specify the device boundaries and the region
boundaries for each material. The program uses triangles and trapezoids as the
basic building blocks to describe an arbitrary device. Furthermore, the edge of each
polygon can be bent to the desired shape.
The basic operation in the mesh generator after the boundaries have been defined
is to draw lines parallel to the edges of the polygons (see Figure 6.2). This way
one obtains, smaller trapezoids which can be bisected into two triangles (the basic
elements in the finite element method).
Another basic operation is doubling the mesh density in a specified region as shown
in the example of Figure 6.2. This is accomplished by drawing a new line between
the old mesh lines. Repeating this operation, one can manually generate a mesh
with any variation of mesh densities.
The simulator has provided another practical approach to automatic mesh generation
and refinement. The mesh is refined according to the variation of specified physical
quantities. For example, in a case where the potential variation between two adjacent
nodes is greater than a value specified by the user, the program will automatically
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d2

d1

Figure 6.2: Schematic for the basic operations in the mesh generator. Two mesh
lines in the d2 direction, are used to double the mesh near the center of the polygon.

allocate additional mesh points between the two nodes. More detail can be found in
the description of the statement refine_mesh in the reference section.

6.2 The Cylindrical Coordinate System

6.2.1 Introduction

Since many devices are fabricated with cylindrical symmetry (e.g. VCSELs, pho-
todetectors), it is a good idea to establish a cylindrical coordinate system for device
simulation. By making use of the rotational symmetry, we can reduce the three-
dimensional coordinate system to a two-dimensional one. To do so, we first consider
our differential equation systems under a general coordinate system. Then, we apply
the theory to the cylindrical system.

6.2.2 Some general considerations for an arbitrary coordi-
nate system

Our purpose is to re-write the drift-diffusion equation, usually written in cartesian
coordinates, (x,y,z), in the new coordinate system (q1, q2, q3) which are orthogonal
to each other. We start by considering a small distance along each of the three
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coordinates:

dsj = Hjdqj, Hj =

√√√√( ∂x
∂q1

)2

+
(
∂y

∂q2

)2

+
(
∂z

∂q3

)2

. (6.5)

Then the gradient of a scalar variable u is given by:

∇u = 1
H1

∂u

∂q1
e1 + 1

H2

∂u

∂q2
e2 + 1

H3

∂u

∂q3
e3 (6.6)

where ej is used to denote the unit vector for each of the new coordinates.
Let us derive the expression for the divergence, ∇ · A of an arbitrary vector A. We
consider a small volume defined within from q1 to q1 + dq1, q2 to q2 + dq2, and q3 to
q3 + dq3. The out-going flux (A ) though the surfaces at q1 and q1 + dq1 of this small
volume is given by:

(A1H2H3)|q1+dq1dq2dq3 − (A1H2H3)|q1dq2dq3 = ∂

∂q1
(A1H2H3)dq1dq2dq3 (6.7)

Similarly, the flux through surfaces at q2 and q2 + dq2 is given by:

∂

∂q2
(A2H3H1)dq1dq2dq3 (6.8)

and the flux through surfaces at q3 and q3 + dq3 is given by:

∂

∂q3
(A3H1H2)dq1dq2dq3 (6.9)

The divergence is defined as the the total out-going flux divided by the volume under
consideration:

∇ · A = 1
H1H2H3

[
∂

∂q1
(H2H3A1) + ∂

∂q2
(H3H1A2) + ∂

∂q3
(H1H2A3)

]
(6.10)

6.2.3 Cylindrical coordinate system

The relation between the old (x1, y1, z1) and the new coordinate system (r, θ, zr) is
given by:

x1 = rcosθ
y1 = rsinθ
z1 = zr

(6.11)

To avoid confusion with the (x,y,z) system used in our simulation software, we have
used a new set of symbols here. In our simulator, x, y are the lateral and vertical
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coordinates of a 2D plane and z is a depth coordinate used to stack planes. In the
cylindrical system, the zr axis is usually normal to the layers and corresponds to y
so that r corresponds to x.
It is easy to find that:

Hr = 1, Hθ = r,Hz = 1. (6.12)

Therefore, the gradient is given by:

∇u = ∂u

∂r
er + 1

r

∂u

∂θ
eθ + ∂u

∂zr

ez (6.13)

and the divergence is given by:

∇ · A = 1
r

[
∂

∂r
(rAr) + ∂

∂θ
(Aθ) + ∂

∂zr

(rAz)
]

(6.14)

or
∇ · A = 1

r

∂

∂r
(rAr) + 1

r

∂

∂θ
Aθ + ∂

∂zr

Az (6.15)

6.2.4 Application to devices with cylindrical symmetry

For device with cylindrical symmetry, ∂
∂θ

yields zero. The operators of gradient and
divergence become:

∇u = ∂u

∂r
er + ∂u

∂zr

ez (6.16)

∇ · A = 1
r

[
∂

∂r
(rAr) + ∂

∂zr

(rAz)
]

(6.17)

Therefore it is easy to see that in the cylindrical system, all we need to do is to
replace A by rA and multiply 1

r
in front of the differential operators.

Our next task is to convert the new differential equation into a suitable discretization
scheme for the cylindrical system. Let us recall how we discretize the drift-diffusion
equation in the old coordinate system. We evaluate the gradient (the electric field
or the current density vector) for each boundary of the finite box which we create
for the neighboring elements. We then sum up the total flux and divide it by the
area of the finite box. In the new system, we need to multiply the flux by r which
is evaluated at the boundary point. We also divide the total flux by the area of the
finite box and by r evaluated at the center of the box (or the center point).
It is obvious that we should keep in mind that the missing dimension is no longer
infinite but has rotational symmetry. For example, we need to integrate current
density over the 2π radians to get the total current.
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6.3 3D Modeling in Semiconductors

6.3.1 Introduction

For historical reasons and previous limitations on available computer power, most
of the Crosslight Software packages are written for a two-dimensional cross-section
of a semiconductor device. Recent progress has allowed computer power to increase
significantly so we can now consider doing 3D simulations on a desktop PC.
Some outstanding issues must be resolved to extend the solver from 2D to 3D:

• The user input/interface should be a natural extension of a 2D simulation.
All material macros in 2D should be usable in 3D. All physical models and
boundary conditions must be extendable to 3D.

• A useful 3D simulation should be able to handle geometry and material varia-
tion in the z-dimension easily.

• Smart memory management scheme must be developed so that the 3D package
can be run on anything from a laptop to a supercomputer.

We have successfully overcome most of these difficulties and created an option for 3D
modeling. We call this capability “3D-Current Flow” or “3D-Flow” since it allows
current to flow both in all three dimensions. We will explain the design ideas behind
this model in the following subsections.

6.3.2 From 2D to 3D

Three-dimensional mesh generation is very complex and is still the subject of intense
research by many groups. However, we have a two-dimensional mesh generation and
refinement system which works very well: it is natural to extend this system as far
as we can.
As usual, we find the parallel cross sections of a device that has the most variation
in physical variables and define them as x, y planes. Within these planes, we use the
same 2D mesh generation routines as before. The z direction will have a relatively
slower variation and can be sparsely meshed to reduce the overall number of mesh
points: every z mesh point will be accompanied by a 2D mesh plane.
For example, a ridge waveguide laser would use the waveguide cross-section as the
x, y direction and the z axis would be the longitudinal propagation axis. On the
other hand, an LED with complex electrode shapes would define the x, y planes to
be parallel to the electrodes and the z axis would be perpendicular to the QW layers.
In a cylindrical system, 3D simulations imply a lack of rotational symmetry and the
x, y (or r, zr) planes would stack together in the θ direction.
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6.3.3 3D structure and material input

A 3D simulation in .sol is always defined by using the 3d_solution_method state-
ment with the option 3d_flow=yes. Other options can also be added to control the
way the mesh planes connect to each other as will be explained later in this chapter.
The next step of the input is to define regions that have the same material properties
and composition. These are called ‘segment” or “z-segment” and are defined by the
z_structure statement. A segment can have multiple mesh planes: these will share
the same material properties such as bandgap and doping but physical variables such
as potential and carrier concentrations are allowed to change between planes.
To define a 3D volume, at least 2 mesh planes must be defined. However, at least 3
mesh planes must be present to get a variation along the z-axis. Segments containing
a single mesh plane are allowed but must have zero thickness: additional planes and
segments will be needed to define a 3D volume.
After all the z_structure statements have been issued, multiple load_mesh state-
ments must be issued. Each of these statements must use the zseg_num parameter
to identify the segment they belong to. In the special case where there is only a
single segment, this can be omitted and zseg_num = 1 will be assumed.
After the mesh has been loaded, the material properties for each segments must be de-
fined. This must be done inside blocks bracketed by begin_zmater ... end_zmater.
These blocks must also be numbered by zseg_num with the exception of the case
with a single segment: in this case, zseg_num = 1 will be assumed and the _zmater
statements can be omitted.
Material properties that need be defined in this way include:

• material declarations: load_macro and define_material

• active region declarations: active_reg and get_active_layer

• doping statements

• contact definitions

Note that for material declarations, a macro should be loaded only once, in the
segment where a material first appears. Further occurrences of this material should
invoke define_material instead of load_macro.
Just as materials can reoccur between segments, so can contacts the same boundary
conditions applies everywhere and the electrode current is also summed up for all
segments. If each segment is to be biased independently from the other, then different
contact numbers must be used. For example, it is possible for a tunable DBR laser
to have a shared bottom electrode (#1) with split top contacts for the gain (#2),
tuning (#3) and DBR (#4) segments.
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The 2D .layer files can be used in a 3D simulation to facilitate this input: the .mater
and .doping files it generates can be included inside the _zmater blocks. However,
when processed by itself, a layer file will always number materials 1,2,3,... as it
encounters them which can cause conflicts between segments. To avoid this, make
sure to use the previous_layer statement to refer to the preceding segment’s .layer
file: this will fix numbering issues and will also detect materials that have already
been declared so it will issue define_material statements where appropriate.
However, contacts in each 2D layer file should be numbered according to the final
3D structure and whether or not they will be shared between segments.

6.3.4 3D mesh generation

As explained above, the three-dimensional mesh consists of a series of two-dimensional
mesh planes stacked together. The position of these mesh planes is determined by
the length of the segments and the number of planes that have been assigned. This
number must be assigned manually by the user, just like the number of mesh points
in a column or layer.
When a segment has multiple planes, there will usually be planes at the beginning
and end of the segment. If there are multiple segments, this can cause a problem
since two mesh planes cannot exist in the same z position. The software has two ways
of dealing with this, depending on the value of the xy_compatible_mesh parameter
in 3d_solution_method:

• If set to “no” (the default), mesh planes on either side of the segment boundary
will be shifted by a small value.

• If set to “yes”, then one of conflicting the planes will be eliminated and no
shifting is required.

Care should be taking when using xy_compatible_mesh=yes. If there is a hetero-
junction at a segment boundary, then eliminating the extra plane can have disastrous
consequences on convergence. Just like the 2D case, the closely spaced mesh points
on either side of the junction are needed to get convergence.
For the other planes inside a segment, their position can be also be controlled via
mesh point ratios: the z_structure statement supports a feature similar to that of
put_mesh in the 2D mesh generator.

6.3.5 Discretization in 3D

As explained in subsection 6.1.2, every mesh point has a polygon associated with it.
To connect mesh points between planes, we extrude this polygon in either direction
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Figure 6.3: Schematic of taper lines between two different segments.

to the midpoint of the preceding and following mesh plane. This forms prism-like
3D objects that are different from the traditional tetrahedral elements used in 3D
FEM.
Flux conservation is consistent with the box method described earlier: connecting
mesh points are assigned part of the flux based on the overlap between the two
extruded polygons. A projection is used to account for the case where the two mesh
planes are not parallel.

6.3.6 Taper structures

To explain how tapers are handled in the software, we need to introduce the concept
of “taper lines" as illustrated in Fig. 6.3.
Consider a structure with a taper extending from points A1-B1 on segment 1 to A2-
B2 on segment 2. We define a “taper line” A1-C1 on segment 1 and a corresponding
taper line A2-C2 (point C2 is hidden behind the figure). These taper lines are used
to extend a particular boundary from one plane to the corresponding boundary on
the other.
This will divide the mesh on either side of the taper line and force mesh points to
connect across planes without crossing the taper lines: this is especially important
when dealing with semiconductor/insulator interfaces. As a result, the extrusion
process described above no longer follows the z axis: it follows taper lines.
To define a taper in .sol, two segments must be defined with the taper_pointsj
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parameters: multiple sets of taper points can be used to define multiple taper lines.
The two segments must not overlap and the taper region will extend in the empty
space between the last plane of the first segment and the first plane of the second
segment.
Note that a very common misconception is that material properties in tapers are
linearly interpolated between planes: for the electrical calculations, this is completely
untrue. Tapers only control the connectivity between mesh planes: actual mesh
planes must be assigned at various z positions in order to sample the variation of
physical properties.

6.3.7 3D simulator control

Once the 3D material data and mesh has been created, a 3D simulation is relatively
straightforward. The .sol file works the same as before and bias can still be applied to
specified electrodes. When the Newton solver is called, all mesh planes will be solved
simultaneously to obtain the 3D solution. The main difference is that 2D simulations
use currents in A/m units (since the z depth is not known). A 3D simulation, just
like a cylindrical simulation, can compute the full current in Amperes.
For simulations with split contacts between segments, we advise caution when biasing
as you may inadvertently create a short between neighboring electrodes in certain
situations. This can usually be avoided by biasing multiple electrodes simultaneously.
For plotting results, the .plt file can still be used: plotting statements such as
lplot_xy, lplot_xyz, vplot_xy, etc... can be used to view 3D data. CrosslightView
can also plot data from 3D simulations.

6.4 3D modeling in PICS3D

PICS3D adds an extra complication to the 3D modeling. As will be discussed in
Chapter 16 and Sec. 18.4, the lasing behavior is controlled by an additional set of
equations which depend on the longitudinal round-trip gain (RTG). These equations
are based on the propagation of the optical mode in the cavity and are most often
written using transfer matrix formalism.
As such, RTG evaluation requires gain and index profiles at various points in the
cavity. These points can be considered an “optical mesh” and do not necessarily
match the position of the electrical mesh planes described in the previous section.
The optical mesh always follows the direction of the light propagation in the cavity so
by the usual convention, it always follows the z-direction. For edge emitting devices
like DFB lasers, the z-direction is defined as the direction in which x-y mesh planes
are stacked: we will assume we are dealing with such a device for the rest of this
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section.
With this in mind, we can consider how to evaluate the RTG equations. The problem
here is one of consistency: to calculate the propagation, the gain profile is needed
which requires knowing the local photon density and the associated longitudinal hole
burning. However, the photon density itself is only known by calculating the RTG.
In older versions of PISC3D, the solution to this problem was to use a quasi-3D
approach and tabulate the gain at various photon densities. The RTG equations
were then solved separately from the main Newton solver to get the photon density
and longitudinal gain profile. However, this method sometimes led to convergence
issues.
As of version 2008, PICS3D couples the RTG equations and solves them in the main
Newton solver. The RTG equations are still use the “optical mesh” but the modal
gain and index for the propagation are directly interpolated from the electrical mesh
at every iteration of the Newton solver. This means that all PICS3D simulations
must be done in full 3D. For edge-emitting devices, PICS3D relies on the ability
to solve multiple electrical mesh planes simultaneously to interpolate the gain and
index profiles on the optical mesh. This increased self-consistency makes the model
fully 3D and greatly increases the convergence and stability of the software.
As a result, all edge-emitting laser simulations in PICS3D must use the 3d_solution_method
statement with 3d_flow=yes. However, the z_connect option is available to turn
on or off the electrical coupling between mesh planes: only the ability to interpo-
late the gain from multiple mesh planes is actually required. In many devices, the
longitudinal current contribution is negligible so turning off the electrical connection
between mesh planes has a few advantages:

• it can often result in a smaller and more stable sparse matrix since the con-
necting elements between planes will be left out of the sparse matrix entirely

• it can avoid unintentionally shorting contacts between segments in certain bias
configurations

6.4.1 3D VCSEL modeling in PICS3D

For cylindrical devices such as VCSELs, the z-axis is as defined in Sec. 6.2. This
means that the propagation is normal to the QW layers and the optical mesh is
perpendicular to what is used in edge-emitting devices. In addition, rotational sym-
metry implies that only a single mesh plane is required to do a full 3D model:
3d_solution_method is not required for most cases.
However, the same basic principles of the coupled RTG method still apply: optical
properties are derived from the electrical mesh points and used to calculate the
mode propagation. The coupled RTG equations are solved in the main Newton
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solver alongside the rest of the electrical problem.
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Chapter 7

AC ANALYSIS AND HIGH
FREQUANCY PARAMETERS

For many users of Crosslight simulation software, assessment of high frequency per-
formance of their devices is a key reason of the modeling. Analysis of high frequency
behavior of a semiconductor device is more than solving the wave propagation in a
passive medium. The response of a semiconductor to high frequency modulation is
rather complex and requires special transformation of the drift-diffusion equations.
This chapter gives an outline of the AC analysis theory for semiconductor devices.

7.1 Theory

7.1.1 Introduction

AC small signal analysis for semiconductor equations was first developed by Laux
[12] in 1985. A modified version of this technique including the deep level trap model
was later developed by Li and Dutton [13]. We shall follow their formulation in this
section. We derive the formulas in subsection 7.1.2. The numerical techniques are
given in section 7.2.
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7.1.2 Basic formulas

We re-write the basic semiconductor equations and trap dynamic model as follows:

−∇ ·
(
ϵ0ϵdc

q
∇V

)
= −n+ p+ND(1 − fD) −NAfA +

∑
j

Ntj(δj − ftj) (7.1)

∇ · Jn −
∑

j

Rtj
n −Rsp −Rst −Rau +Gopt(t) = ∂n

∂t
+ND

∂fD

∂t
(7.2)

∇ · Jp +
∑

j

Rtj
p +Rsp +Rst +Rau −Gopt(t) = −∂p

∂t
+NA

∂fA

∂t
(7.3)

Rtj
n −Rtj

p = Ntj
∂ftj

∂t
(7.4)

where:

Rtj
n = cnjnNtj(1 − ftj) − cnjn1jNtjftj (7.5)

Rtj
p = cpjpNtjftj − cpjp1jNtj(1 − ftj) (7.6)

The basic variables involved in the AC analysis are V , the potential; n and p, the
electron and hole concentrations, respectively; and ftj, the trap occupancy of the jth
trap species. To simplify our derivation, we use the following notation to represent
Equations (7.1) to (7.4):

F1(V, Un, Up, ftj) = 0 (7.7)

F2(V, Un, Up, ftj) =
(
∂n

∂Un

+ND
∂fD

∂Un

)
∂Un

∂t
(7.8)

F3(V, Un, Up, ftj) =
(

− ∂p

∂Up

+NA
∂fA

∂Up

)
∂Up

∂t
(7.9)

Hj(Un, Up, ftj) = Ntj
∂ftj

∂t
(7.10)

where we have changed the variables n and p into Un and Up, their respective nor-
malized quasi-Fermi levels. For the electron or hole transport equations (F2 or F3)
the first term on the right hand side represents ∂n

∂t
or ∂p

∂t
, giving the time dependence

of electron or hole concentration; the second term gives the time-dependent change
in carrier concentration associated with the trap dynamics.
In general, the AC input signal (voltage) and solution variables are expressed as:

ξ = ξ0 + ∆ξeiωt (7.11)

where ξ0is the DC solution and ∆ξ is the complex AC solution under a modulation
frequency ω = 2πf . This form ξ can represent any variable of the system (V, Un,
Up, or ftj) as a complex solution.
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By substituting ξ back into the trap equation and doing a Taylor series expansion
to first order at the DC solution, Equation (7.4) becomes:

∂Hj

∂Un

∆Un + ∂Hj

∂Up

∆Up + ∂Hj

∂ftj

∆ftj = Ntjiω∆ftj (7.12)

Solving the above for ∆ftj gives:

∆ftj =
(
∂Hj

∂Un

∆Un + ∂Hj

∂Up

∆Up

)(
Ntjiω − ∂Hj

∂ftj

)−1

(7.13)

∆ftj =
−∂Hj

∂Un

(
∂Hj

∂ftj
+ iωNtj

)
∆Un − ∂Hj

∂Up

(
∂Hj

∂ftj
+ iωNtj

)
∆Up

(Ntjω)2 +
(

∂Hj

∂ftj

)2 (7.14)

which can be rewritten as:

∆ftj = Fn(ω)∆Un + Fp(ω)∆Up (7.15)

By similarly expanding the Poison equation and electron and hole continuity equa-
tions as a first order Taylor Series and then substituting the above expression for
∆ftj, we obtain the following equations:

∂F1

∂V
∆V + ∂F1

∂Un

∆Un + ∂F1

∂Up

∆Up+∂F1

∂ftj

(Fn∆Un + Fp∆Up)

= 0 (7.16)
∂F2

∂V
∆V + ∂F2

∂Un

∆Un + ∂F2

∂Up

∆Up+∂F2

∂ftj

(Fn∆Un + Fp∆Up)

=
(
∂n

∂Un

+ND
∂fD

∂Un

)
iω∆Un (7.17)

∂F3

∂V
∆V + ∂F3

∂Un

∆Un + ∂F3

∂Up

∆Up+∂F3

∂ftj

(Fn∆Un + Fp∆Up)

=
(

− ∂p

∂Up

+NA
∂fA

∂Up

)
iω∆Up (7.18)

We rewrite these 3 equations in 3 × 3 matrix form as:

(J +D)ξ = 0 (7.19)

for each mesh point in the semiconductor, where the J matrix or Jacobian contains
the first 3 terms in each equation while D contains the remaining terms concerning
the traps and the right-hand side of the equation.
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Using this notation with ξ = (∆V,∆Un,∆Up) the D matrix at each point is of the
form:

D =


0 ∂F1

∂ftj
Fn(ω) ∂F1

∂ftj
Fp(ω)

0 −( ∂n
∂Un

+ND
∂fD

∂Un
)iω + ∂F2

∂ftj
Fn(ω) ∂F2

∂ftj
Fp(ω)

0 ∂F3
∂ftj

Fn(ω) −(− ∂p
∂Up

+NA
∂fA

∂Up
)iω + ∂F3

∂ftj
Fp(ω)


(7.20)

Consider the boundary points and the internal mesh points separately so that:

J → J + JB (7.21)

and
D → D +DB (7.22)

The matrix equation can then be rewritten in a separated form for internal and
boundary mesh points as follows:

(J +D)ξ + (JB +DB)ξB = 0 (7.23)

AC Dirichlet boundary conditions imply that ∆Un and ∆Up=0 so that the AC voltage
drive at the contact has the boundary solution:

ξB =

∆VB

0
0

 (7.24)

where ∆VB is the applied AC voltage of one volt.
Since the first column in the D matrix must be zero the matrix equation becomes:

(J +D)ξ = −JB · ξB ≡ B (7.25)

To simplify the numerics, we now wish to write equations involving only real numbers:

D = Dr + iDi (7.26)
ξ = ξr + iξi (7.27)

The matrix is thus rewritten as:

(J +Dr + iDi)(ξr + iξi) = B (7.28)

By expanding the real and imaginary parts, a new expanded matrix can be written:(
J +Dr −Di

Di J +Dr

)(
ξr

ξi

)
=
(
B
0

)
(7.29)



7.2 Numerical techniques in AC analysis 127

7.2 Numerical techniques in AC analysis

Our task has been reduced to solving the expanded matrix equation detailed in the
previous subsection. The AC solution matrix (ξr, ξi) is easily solved using the sparse
matrix inverter to invert the expanded Jacobian and multiply by the matrix on the
RHS. However, the inversion can be slow because the expanded Jacobian J+D is
twice the order of original Jacobian matrix obtained from the DC solution. We use
direct solution techniques to perform the matrix inversion so that convergence is
guaranteed for all frequencies.
In our simulator, the AC analysis is implemented as a post-processor, i.e., the analysis
is done after the DC solution is obtained from the main solver input file ( with .sol
extension). This is done in two steps:

• The AC analysis matrix is constructed from Jacobian matrix elements used for
DC simulation. To enable export of the additional data from the usual DC
analysis, we use the more_output statement.

• The AC analysis is activated by the input file with extension .plt. The input
file must specify which data set (thus the DC bias condition) is used for the
AC analysis. The statement ac_voltage is used to apply a 1V AC signal on
one of the contacts (or electrodes). The resulting AC current data are stored
in an output file defined by the user for later plotting.

• Once the AC current is calculated, a statement such as plot_ac_curr is used
to plot the results.

The basic outputs are the complex AC currents at all the electrodes and the AC
current distribution, in response to the applied AC voltage (one volt) at one of the
electrodes. The following important quantities can be extracted from the AC current:

• The conductance matrix elements are computed from the real part of the elec-
trode AC current with one volt applied AC bias at one of the electrodes.

• The capacitance matrix elements are computed from the imaginary part of the
electrode AC current, divided by ω, with one volt applied AC bias at one of
the electrodes.

• The current gain can be computed from ratio of the AC current magnitudes
between two electrodes, with one volt applied AC bias at one of the electrodes.

• The voltage gain is slightly more complicated. It must be done in two steps.
For example, we wish to obtain the voltage gain ∆V2

∆V1
. This may be written as:

∆V2

∆V1
= ∆I2

∆V1
× ∆V2

∆I2
(7.30)
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TWO-PORT�
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V1
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V2
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+ +

- -

Port #1 Port #2

Figure 7.1: Schematics of a general 2-port network. Please note the direction of
current flow.

which means we must apply the ac_voltage command twice to two different
electrodes to obtain the individual ratios.

7.3 Two-Port Network Parameters

Linear networks, or nonlinear networks operating with signals sufficiently small to
cause the networks to respond in a linear manner, can be completely characterized
by parameters measured at the network terminals (ports) without regard to the
contents of the networks. Once the parameters of a network have been determined,
its behavior in any external environment can be predicted without regard to the
contents of the network. We shall introduce some useful 2-port parameters in this
section and explain how they are extracted from DC simulations.
A general 2-port network is indicated in Fig. 7.1. Please note that the positive
direction of the current flow is different than in the simulator and all 2-port param-
eters related to current flow direction will be different by a sign from current flow
calculated from the simulator which assigns a positive sign to all current flowing out
of a device.
In an AC analysis of semiconductor devices, it is common to share one contact for
the input and output. For example, it is often convenient to use the common emitter
configuration in a bipolar transistor. By default, all contacts of a device have zero
AC voltage bias from a DC simulation. Thus, it is sufficient to specify a single
contact as input or output since all other contacts are grounded in AC voltages.
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Such a situation is ideal for the computation of the Y-parameters which are defined
as follows (referring to Fig. 7.1).

I1 = Y11V1 + Y12V2

I2 = Y21V1 + Y22V2 (7.31)

It is often convenient to express the Y-parameters relative to the system characteristic
admittance Yc = 1/Zc where Zc is the system characteristic impedance (often set to
be 50 Ohm). We denote the relative admittance using lower case letters here, for
example, y11 = Y11/Yc.
Based on our discussions in previous sections, the complete set of Y-parameters can
be obtained if we excite the device twice, once at the input and once at the output
contact. Once the Y-parameters are obtained, the important S-parameters can be
computed from the following equations (please refer to any text books on microwave
theories):

s11 = (1 − y11)(1 + y22) + y12y21)
(1 + y11)(1 + y22) − y12y21

s12 = −2y12

(1 + y11)(1 + y22) − y12y21

s21 = −2y21

(1 + y11)(1 + y22) − y12y21

s22 = (1 + y11)(1 − y22) + y12y21

(1 + y11)(1 + y22) − y12y21
(7.32)

The theories discussed in this section strongly suggest a convenient way of studying
the 2-port parameters: if you wish to understand the S-parameters, always go back
to the Y-parameters which may be easily understood from a simple AC-voltage
excitation of the input or output. Also, a convenient way to check the correctness
of 2-port parameters should be to plot the Y-parameters which may be compared
with AC-current responses from single-terminal excitations, keeping in mind the sign
difference mentioned earlier in this section.

7.4 AC Photo-response

In standard AC analysis, the AC source is voltage applied to one of the electrodes.
The source of perturbation appears as the B vector on the right hand side of Equation
7.28 and is non-zero only at boundary nodes where the AC voltage is applied.
When a device is illuminated by a modulated optical signal, similar modulation vec-
tor can be set up. The contribution of the optical signal comes from the generation-
recombination term which is distributed throughout the whole area sensitive to the



130 AC ANALYSIS AND HIGH FREQUANCY PARAMETERS

light signal. Therefore, the vector B is non-zero in all mesh points where there is
light illumination.
To activate the AC photo-response model, the approach is similar to that of AC
voltage but instead of using ac_voltage, we use ac_light. The output results are
shown as AC current on a certain electrode, much in the same way as for an AC
voltage bias.

7.5 Laser Diode Modulation Response

Laser diode modulation response is a special case of AC analysis with additional
variable of photon density. Similar to the AC photo-response described in the
previous section, the same photon-carrier interaction is through the same genera-
tion/stimulated recombination term: Rst = vggmS(x, y, z) where vg is the group
velocity of light, gm is the modal optical gain and S is the bulk photon density. In
the case of photo-sensitive devices, the optical gain becomes negative and carriers
are generated instead of annihilated. An additional photon rate equation must be
solved together with all other equations of the drift-diffusion system.
To activate the modulation model, AC small voltage excitation (through ac_voltage)
is used. The corresponding AC current is computed and used in the plotting the laser
diode modulation response.



Chapter 8

QUANTUM WELLS AND
INTERBAND TRANSITIONS

This chapter presents the quantum well models and related interband optical transi-
tions in Crosslight simulation software. Different levels of approximations for quan-
tum well models are described along with the corresponding optical gain/absorption
calculations. The theory of many-body gain enhancement implemented in the soft-
ware is also explained near the end of the chapter.

8.1 Quantum Well Models

8.1.1 Introduction

Quantum well models are among the most sophisticated models used in Crosslight
Software and there are different levels of approximation available. They are summa-
rized in Fig. 8.1 and detailed below:

• 1. The simple (also the default) quantum model assumes a a single, symmetric,
flat-band and step-wise potential profile. Quantum wells in a MQW region are
assumed to be isolated from each other and the wave functions do not overlap.

• 2. The complex MQW removes the restriction of symmetry and allows us to
treat asymmetric wells (2a) or coupling between wells (2b).

• 3. The self-consistent MQW model removes the restriction of flat-band and
couples the potential with charge density in a self-consistent manner. This can
be used in isolated quantum wells (3a) or in a coupled complex MQW (3b).

Note that an extra layer of complexity/accuracy can be introduced by considering
valence mixing models when solving the Hamiltonian.
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Default: symmetric and isolated QW

Complex-QW:

Self-consistent 

QW:

(1)

(3a)

(2a) (2b)

(3b)

Complex-MQW:

Self-consistent 

MQW:

Figure 8.1: Different levels of approximation for quantum wells models in Crosslight

8.1.2 Simple quantum wells

When a confining potential well gets narrow, it is necessary to treat it as a quantum
well. We consider the case of a simple quantum well without external applied field.
All the quantum levels for the sub-bands of Γ, L, light holes and heavy holes (and
crystal field holes for wurtzite) are computed from well known formulas in quantum
mechanics for a square quantum well [14].
As the external field is applied, we allow the quasi-Fermi level to vary as a function
of distance. The density of states and quantum levels are assumed to be the same
as if there were no applied field.
The quantum well levels are calculated at every bias point during an actual simulation
because the bandgap of the active region is a function of carrier density. As the bias
increases, the higher carrier density in the quantum well reduces the bandgap and
changes the quantum well depth. Therefore the quantum levels must be recomputed
at every bias point.
Note that by default, the heavy and light holes are assumed to be parabolic and
decoupled. A simplification has been made so that, by default, all the in-plane
effective masses of heavy hole or light hole subbands are assumed to be same. If the
user wishes to alter the effective mass of a particular subband, the software allows
him/her to do so with the modify_qw statement.
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8.1.3 Anisotropic parabolic approximation

Inclusion of biaxial strain in a quantum-well has become a common practice for
many heterojunction devices. Strain offers an additional degree of freedom and can
produce some desirable effects such as lower threshold current for a laser diode.
Strain is known to cause the valence band of a III-V semiconductor to split into
separate light hole (LH) and heavy hole (HH) bands (or CH for wurtzite structure)
which are strongly non-parabolic. A rigorous treatment of strain effects on the band
structure is rather complicated [15] and the gain function involves an integration
over k-space.
We may approximate the non-parabolic band structure by an anisotropic parabolic
one. One can show that with proper choices of parameters, a good approximation
to the non-parabolic band structure can be obtained. This approximation greatly
simplifies the calculation of gain, spontaneous emission and carrier concentration and
allows the incorporation of strain effects into the program.
For zincblende structures, a simplified analytical band structure of a strained quan-
tum well has been developed [15] using an efficient decoupling method to transform
the original 4 × 4 valence band Hamiltonian into two blocks of 2 × 2 upper and lower
Hamiltonians. As a result of the decoupling, an analytical expression can be derived
[15]. To be consistent with our convention the y-axis (equivalent to the z-axis in
[15]) is defined to be perpendicular to the quantum-well plane and the z-axis to be
along the direction of light propagation.
We use the following expression for the bulk valence band energy [15]:

−E = ~2γ1
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(~2γ2

2m0
(k2

x − 2k2
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)2
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(
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2
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(8.1)

ε = a0 − a(x)
a0

(8.2)

δEsh = b
(

1 + 2c12

c11

)
ε (8.3)

ζ = 1
2
δEsh (8.4)

where the valence band is given in the kx − ky plane. The information on strain is
contained in ζ; compressive strain is represented by a negative ζ.
The valence band mixing effect for bulk material has been taken into account since
the coupling between heavy and light holes has been included in the above equations.
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Note that the in-plane direction for Equation (8.1) is the [100] crystal direction, and
is different from the [110] direction. For many applications, it is desirable to average
the energy dispersion in both the [100] and [110] directions. One can show that the
average can be approximated by replacing γ2 in the second term under the square
root of Equation (8.1) by (γ2 + γ3)/2: this is called the axial approximation. The
simulator provides an option to turn on this approximation.
To convert the non-parabolic bulk band structure into a suitable form, the software
fits the valence band to the following anisotropic parabolic band expression, over a
range large enough to cover all the optical transitions in k-space:

E = − ~2

2mvxm0
k2

x − ~2

2mvym0
k2

y . (8.5)

The quality of the fit is found to be reasonable for practical cases. Such an approxi-
mation is appropriate not only because of the reasonable quality of the fit, but also
because the approximation has not lost the basic effects of strain, i.e., it causes the
symmetry in the band structure to be broken.
The splitting of the heavy and light hole bands is described as [15]:

δEhy = 2a(1 − c12/c11)ε, (8.6)
Ehh

g = Eu
g + δEhy − δEsh, (8.7)

Elh
g = Eu

g + δEhy

+1
2

[
δEsh + ∆ −

√
∆2 + 9δE2

sh − 2δEsh∆
]
. (8.8)

Once the band structure is simplified to an anisotropic parabolic form, the program
uses a one-band model to solve for the subbands of the quantum well from the
effective masses perpendicular to the quantum well plane. By default, the mixing
between different subbands is ignored and all the subbands of heavy holes (or light
holes) are assumed to have the same effective in-plane mass. The resulting subbands
from such a theory agree qualitatively with k.p theories with multiband full mixing
effects, especially for subbands near the band edges and near the Γ center. Since the
most important subbands are those near the band edges, the subband model here
is expected to be reasonable. This approach of a one-band model with parabolic
subbands has been used extensively for many years and is included in many frequently
cited papers (see for example, [16]-[17]).
Once the parabolic subbands are found, one can apply conventional approaches to
treat the carrier concentration and the optical transition probabilities. Specifically,
the effective mass perpendicular to the plane (mvy) determines the quantum subband
levels (or quantum confinement effects) and the optical transition energies. The (2D)
density of states and joint density of states of each subband depends on the effective
mass in the plane (mvx).
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For those users who wish to adjust in-plane effective masses for different subbands,
so that the theory here agrees with other k.p models, the program provides an option
to do so. That is, the user can shift a subband level or change a subband in-plane
mass to match any other theory.

8.1.4 Carrier density in anisotropic parabolic approximation

We use the effective masses parallel to the plane of the quantum well for the evalu-
ation of carrier concentrations.

n =
∑

j

ρx0
j kT ln

[
1 + e(Efn−Ej)/kT

]
+ unconfined electrons,

(8.9)
p =

∑
i

ρx0
i kT ln

[
1 + e(Ei−Efp)/kT

]
+ unconfined holes,

(8.10)

where the subscript i denotes all confined states for the heavy and light holes, and j
designates those for the Γ and L bands. The unconfined carriers are calculated using
Fermi statistics as described in Section 5.1.2. Note that the effective mass perpen-
dicular to the plane, (mvy), affects the quantum levels and therefore the distribution
of carriers in the quantum well.

8.1.5 Valence mixing

Early theories of bulk and quantum well semiconductor lasers assumed parabolic
subbands for both the conduction and valence bands. Many early classic papers
on quantum well semiconductor lasers used the concept of effective mass, which
is equivalent to the parabolic band approximation. A partial list of publications
includes Refs.[16, 17].
The reason for the use of parabolic band, regardless of its inaccuracy, is very simple:
the computation of the energy subbands is not the end of the story and one has to
use the subbands to calculate other more interesting physical quantities, such as the
optical gain. Calculation of the optical gain for a non-parabolic subband is not easy
and one is much better off staying with a parabolic band approximation.
More recent theories of quantum well subbands are mostly based on k.p theory with
valence band mixing effects. These usually involve solving a 4 × 4 [15], 6 × 6 [18]
or 8 × 8 [19, 20] Hamiltonian of the Luttinger-Kohn type and imposing an envelope
function approximation in solving the quantum well subband structures (e.g. [21]).
The valence subband structures obtained from this approach are complicated and
heavily mixed in many cases. For some cases, the effective masses of some of the
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hole subbands are negative at the Γ point in k-space, making it impossible to use
analytical approaches.
Generation of the subbands using a valence mixing model is not difficult and has been
done previously by many authors [15, 18–20, 22]. In contrast, the computation of
quasi-Fermi level and optical transition probabilities is not easy because the subbands
are non-parabolic and the wave functions can be heavily mixed.
The detailed formulation of k.p theory for quantum well subband structure calcula-
tions has been described in many publications. We have closely followed the formulas
of S.L Chuang [15]. Details will not be repeated here; rather, an outline of physical
models is presented to give an overview of the theory.
In the k.p theory for a bulk crystal, the basic problem is the following: given the
energy level and wave function at a symmetry point of the k-space (e.g. the Γ point),
how does one calculate the band structure near such a symmetry point?
Based on the symmetry properties of the crystal, a 4 × 4 or 6 × 6 Luttinger-Kohn
Hamiltonian for the Γ valence band can be constructed, depending on how many
valence bands are involved. As a solution of the bulk Luttinger-Kohn Hamiltonian,
the energy dispersion is expressed in terms of Luttinger numbers and quadratic
equations in k [23] [24]. Note that the energy is accurate to the k2 term and no
further. The wave function at a general k-point is expressed as a linear combination
of the wave function at the symmetry point.
If the solid crystal is under perturbation, one may assume that the perturbed wave
function can still be expressed as a linear combination of the wave functions at the
symmetry point. Within the envelope function approximation, the wave function of
the perturbed crystal (due to the potential of a quantum well or of an impurity) can
be written as (see Eq. (IV.12) in [23]):

Ψ =
∑
j=1

F (r)ϕj(r), (8.11)

where ϕ is the periodic part of the Bloch function obtained at the Γ point in the
absence of any perturbation. In the work of Luttinger and Kohn [23], the perturbing
impurity potential was assumed to be “gentle” and involving only tens of meV.
Today the application of the envelope function approximation has been very much
broadened.
For a quantum well, the envelope function F (r) in the linear combination is deter-
mined by two boundary conditions: the continuity of the wave function and the
continuity of the current density. As a result of the solution of the envelope func-
tion, the subband energy dispersion and the wave function can be obtained. Due to
the non-vanishing off-diagonal terms in the Luttinger-Kohn Hamiltonian, the wave
function is a mixture of heavy hole and light hole functions (hence the name valence
mixing).
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In general, the valence subband structure obtained from such a model has the fol-
lowing features:

• 1. The energy and wave function at the Γ point are the same as those derived
from the decoupled methods discussed in previous sections. This makes it
possible to label each subband as heavy hole and light hole based on the base
function there. For this reason, many concepts developed in the effective mass
approximation can still be used. For example, the selection rule and matrix
element for optical transitions at or near the Γ point can still be used.

• 2. The key difference of this model is the anti-crossing behavior of the subbands
in the valence mixing model, i.e., the subband of the light hole can not cross
that of the heavy hole. This causes some major discrepancies for structures
where light holes and heavy holes are close. The software has captured this
major feature of anti-crossing by adjusting the in-plane effective masses of the
subbands so that the subbands do not cross each other.

• 3. Some of the subbands have negative effective masses at the Γ point. In
the effective mass theory for optical gain calculation, negative masses are not
allowed. Therefore, at first glance, there is nothing one can do about this in
the effective mass theory. If one takes another look at the subband structure
over a larger k-range, the effective mass eventually returns to a positive value.
If a large enough k fitting range is considered, one can still approximate the
funny-looking subband by a parabolic band with positive effective mass. The
approximation is not so bad considering the density of states is to be broadened
by a scattering lifetime, and the exact location of the energy level is meaningless
in a practical calculation anyway.

In summary, Crosslight simulator has two levels of models regarding strains and va-
lence mixing effects. By default, the simulator fits the non-parabolic bulk valence
band dispersion with two parabolic curves in each direction to obtain anisotropic ef-
fective masses. Efficient computation of carrier density and interband optical transi-
tion may be achieved this way. By setting valence_mixing=yes in the active_reg
or set_active_reg statements, a full computation of subbands using k.p theory is
performed. Carrier densities and interband optical transitions are obtained using
numerical integral over the non-parabolic subbands, resulting in longer computation
time.

8.1.6 Complex MQW active regions

In previous subsections, it has been implied that quantum wells in an MQW system
do not couple with each other. This is a reasonable approximation if the wells
are far apart and the wave function decays significantly in the barriers. There are
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circumstances in which we need to consider the effect of coupling between quantum
wells.
Initially, it appeared that extension of a non-coupled model to a coupled one should
be straightforward: just use the potential for two wells instead of one. However in
an actually simulation, we must solve problem of localizing the carriers in a complex
coupled MQW structure.
Consider the simple case of two wells. As the two wells are brought closer together,
the degenerate subbands start to split. From the view point of wave mechanics, the
wave function of each energy level belong to both wells. However, drift-diffusion
theory (classical theory) requires that we must know where the carriers are located.
Therefore, we face the task of deciding which well will be assigned the carriers from
each coupled confined state. Similarly, for optical interband transition, the process
takes place in the whole coupled complex structure. Again, we must decide in which
well a given transition takes place. The situation is like quantum tunneling where
we have a contradiction: the wave nature in a quantum theory versus the particle
nature in drift-diffusion theory. We must create a reasonable method to bridge the
gap.
For carrier density calculation, we localize the coupled confined states as follows.
Suppose the probability of finding an electron of a confined state in well 1 is p1 and
that of well 2 is p2. In general, p1 + p2 < 1 and the remaining probability is spent in
the barriers. We consider that the electron is localized in well 1 with a probability
of p1/(p1 + p2). Similar consideration is given for holes.
For optical transition from the valence band to the conduction band, we regard the
optical process take place in well 1 with a chance of p1q1/(p1q1 + p2q2), where q1 and
q2 are probabilities of finding the hole in well 1 and 2, respectively.
Note that as we relax the approximations of the simple QW model, it may also be
desirable to have quantum well designs with non-symmetric barriers. The same sys-
tem is used as with the coupled well situations: complex MQW macros. These special
macros must be used to define a complex structure and use “type=strained_complex”
in the layer_type statement. By convention, complex macros have names start with
“cx-” in the material database.
Regions where the complex active region is defined must be labeled by the statements
begin_complex and end_complex. This will be done automatically by layer.exe
if a complex macro is used. Users should remember that since the whole MQW
structure needs to be solved at once, barrier layers must also invoke the complex
MQW macros.
Some restrictions are present in the complex MQW macros. The first is that an odd
number of layers must be used: this is normally not a problem since most designs
use a barrier/well/..../barrier layout. If need be, split one of the outer barriers into
two to get an odd number of layers.
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Related to this assumption, the software will only calculate the gain in even-numbered
layers since they are presumed to be wells. For complicated structures such as wells
with graded compositions or Type II band alignment (where the electrons and holes
are localized in different layers), this can cause a problem. Use the inner_bar_gain
statement to force gain calculations in all the layers of the complex MQW. Also note
that outer barriers are always excluded from the gain calculations as they only serve
as a boundary layers where the wave can decay before reaching zero: see Fig. 8.4
below.
As alternative to the above, complex quantum well regions can also be declared
using the “library” method of Sec. 3.5. This automatically declares all tagged lay-
ers as being part of the same quantum-coupled region and does not rely on the
barrier/well/barrier approximation for the inner barriers. Outer barriers are still
excluded from the gain calculations though.

8.2 Self-consistent carrier density model

8.2.1 Localized confined states

As we discussed previously, the default approach in our simulator is to solve the
quantum confined states in flat-band condition (assuming no electric field). When
there is a local variation of potential, we assume it is small enough that flat-band
solution is still valid but only introduces a local correction to the confined energy
level (see Fig. 8.2).
For simplicity of numerical computation, we also assume that carrier density is only
confined within the well and is computed according to the local Fermi level and local
confined energy level. The following formula for confined 2D carrier electron density
is used:

n2D(x, y) = 1
dw

∑
j

ρ0
jkT ln [1 + exp[(Efn(x, y) − Ej(x, y))/kT ]] , inside well

= 0, outside well (8.12)

where dw is the well thickness. The subscript j denotes all confined states.Please note
that both the Fermi level and confined level are assumed to be spatially dependent.
ρ0

j is the 2D density of states.
The variation of the confined level Ej(x, y) follows that of potential, much in the same
way the conduction band edge follows the potential change (see Fig. 8.2). Please note
that the spatial variation in this model is uniform except for variations introduced by
variation in Fermi level and confined level. We shall refer to this model as “uniform
profile” density model.
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Figure 8.2: Default model of quantum well carrier density calculation.

The above model is simple to implement and efficient to compute. It gives the right
MQW behavior if the realistic band structure is close to flat-band condition and we
do not care about the details of the carrier density within the scale of the quantum
well. Such is the case of most MQW lasers under lasing condition when the band
structure is close to flat-band under forward bias and high injection condition.
However, we may run into trouble if the details of carrier density indeed matter when
the well is heavily tilted to one-side or another due to strong electrical field such as
piezoelectric field. We will consider this case in the next subsection.
The above discussion is limited to electron density but discussion for hole density is
completely similar.

8.2.2 Self-consistent carrier density distribution

When the potential well is under strong electric field such as in the case of piezo-
electric field, the well will be tilted to one side. The confined wave function will also
be tilted to one side (see Fig. 8.3). Furthermore, the optical transition between con-
duction and valence band will have a different dipole moment than under flat-band
condition. The tilting of the well will have strong consequences to current overflow
which may affect the device performance.
As an option in our software, the self-consistent electron density is given as

n2D(x, y) =
∑

j

gj
n(y)ρ0

jkT ln [1 + exp[(Efn(x, y) − Ej)/kT ]] (8.13)
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Figure 8.3: Schematics of the self-consistent carrier density model for a single quan-
tum well.

where gj
n(y) is the electron wave function assuming the well is parallel to x-axis.

The confined level Ej is no longer a function of position. Computation of the above
density distribution requires more work because the density at one point depends
on a global function gj

n(y). We also have to update the wave function and confined
energy levels at different biases.
Similar expressions can be obtained for the hole subbands.
To achieve complete self-consistency, the following procedures are used:

• 1) At equilibrium, solve the potential using flat-band approximation. The
default uniform profile model is used for the density. This gives us the initial
potential distribution.

• 2) At equilibrium, solve the potential again with potential obtained in 1) above.
The self-consistent density model is used. A new density profile is obtained in
this step.

• 3) Iterate 2) above until numerical self-consistency is achieved for density profile
and potential distribution.

• 4) Once we achieve self-consistency in equilibrium after a number of numerical
iterations, we increase the bias and repeat 2) and 3) above.
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Figure 8.4: Schematic diagram explaining the self-consistent wave boundary condi-
tions

8.2.3 Wave function boundary conditions

When solving the Schrödinger equation under self-consistent conditions, the most
important parameters are the boundary conditions on the left and right side of the
QW or MQW region. We will use the example of a single quantum well in Fig. 8.4
to explain in detail.
Analytical solutions to the Schrödinger equation state that the wave functions decays
to zero at infinity. In a numerical solution, we must use a finite value instead:
one may assume an infinite potential wall a certain distance away from the QW
region. In order not to perturb the position of the energy levels or the shape of
the wave function, a large enough value must be used. However, larger values can
cause numerical accuracy issues so by default, a distance equal to three times the
well width is used. This may be overridden by the left_mesh and right_mesh
parameters of modify_qw.
In addition, we place some restrictions to the shape of the confining potential. The
potential profile used in the solution must not extend too far since stable confined
quantum states may not exist when one side of the potential is lowered too much by
the applied field. Therefore, we choose a reasonable distance (wave_range in the
self_consistent statement) to truncate the potential profile (at points b and d) on
Fig. 8.4 and artificially extend the potential (to points c and e of the figure instead
of the original a and f). Note that the value of wave_range may be cut short if a
material interface is detected.
The wave function outside the region specified by wave_range is ignored and trun-
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cated to zero. This does not affect the shape of the wave function or the position of
the energy levels like the position of left_mesh and right_mesh. It only forces
the wave to be normalized to the [b,d] range. This may cause a bit of inaccuracy
in the carrier distribution if the wave has not decayed sufficiently but this model
prevents perturbations near the artificial boundary wall from affecting the results
of the simulation. We also note that any states with energies above the confining
potential at both ends of this range are considered unconfined states.
After this adjustment of the potential profile, reasonable confined states can be
obtained in most cases. If more confined states are required than those provided
by this fix, the parameters more_cond_energy and more_val_energy of the
modify_qw statement may be used to increase the search range for confined levels.

8.2.4 MQW regions

By default, the software will treat multiple wells with same composition as the same
active region in order to save on computation time. When a self-consistent calcula-
tion is used, this approximation is no longer valid since even identical wells can be
subjected to different local potentials.
In order to force the software to treat individual wells as different active regions,
use the independent_mqw statement in the .layer file. This will assign different
material numbers to every quantum well. Users should expect a slower simulation
with this setting since more computational work is required.

8.2.5 Cases of valence mixing and complex MQW

In the case of valence mixing model, the valence subbands are no longer parabolic
and we must abandon the formulas given in the previous subsections. The confined
hole density can be written as an integral over the non-parabolic subbands Ej(k):

p =
∑

j

gj
p(y) 1

2π

∫ Ek(0)

−∞
[1 − fv(Ej(k), Efp)]dk2 (8.14)

where fv is the Fermi function for the valence band.
For complex MQW with coupled wells, the same expression can be used except that
we need to use a proper density partition scheme to make sure that the correct
portion of carrier density from a quantum level be allocated to each well.
An additional complication arises for thick complex MQW regions under a strong
local potential. The entire MQW region will be tilted but, as mentioned above,
the confined energy levels are no longer a function of position in a self-consistent
simulation. This means that sometimes, the solver will find energy levels only at the
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outer edges of the complex MQW region: the wave functions for these levels may
have very poor overlap.

8.2.6 Quantum wells in quantum-MOS and HEMT

When the gate of an MOS structure is under bias, the interface of silicon and SiO2
forms a triangular-well for electrons or holes, depending on the polarity of the bias.
A similar situation arises in high mobility electron field effect transistors (HEMT)
where the internal electric field causes the heterojunction to form a triangular well
to confine the 2D electron gas system.
A triangular well formed in such a way may be regarded as a special case of a
quantum well discussed above. To derive such a structure from a simple symmetric
flat-band quantum well we take the following steps:

• 1. The left barrier is lowered to the point of zero barrier height

• 2. External and internal electric field is allowed to tilt the potential in such a
way that a triangular well is formed between the bottom of the well and right
barrier.

Thus, a realistic quantum well model for quantum-MOS and HEMT may be achieved
if we apply the complex-MQW and self-consistent models to a non-symmetric quan-
tum well. Since our models are well established for quantum wells with two barriers,
we prefer to treat triangular wells as if they have a left-barrier of zero height.
In the case of quantum-MOS, some special treatment is required since the conduc-
tion band should be treated with anisotropic electron masses which may affect the
conduction band quantum states, depending on the crystal orientation with respect
to the SiO2.

8.3 Interband Optical Transition

8.3.1 Introduction

Many direct-bandgap devices handled by Crosslight simulation software interact with
light in one way or another. For indirect bandgap devices such as silicon MOS, this
section may be skipped.
For active devices such as laser diodes and LED’s, the interband optical gain and
spontaneous emission spectrum are important. For photo-sensitive devices such as
photo-detectors, the interband absorption (opposite of gain) is important.
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In this section, we start with the basic theory of optical gain based on a parabolic
band structure. The parabolic band model is the default model and is also our
starting point for more complex optical gain models. The parabolic band restriction
may be removed if a numerical integral is used to replace the effective masses.
Note that the formulas for quantum wells we consider here are rather general and
are also applicable to bulk material. In the case of bulk material, only one subband
need to be considered with three-dimensional reduced density of states.

8.3.2 Interband transition model

Similar to the derivation of the absorption coefficients for a solid, the local gain due
to a transition from a conduction band labeled j to a valence band labeled i can be
written as [25],

gij(E0
ij) =

∫
Pij

(
ϵ1

nc

)
ρijdEij

=
∫ (2π

~

)
| Hij |2 (fj − fi)δ(Eij − ~ω)

(
ϵ1

nc

)
ρijdEij

=
(2π
~

)
| Hij |2 (f ′

j − f ′
i)
(
ϵ1

nc

)
ρij (8.15)

ρij = ρ0
ijh(~ω − E0

ij), (8.16)

| Hij |2=
(
q

m0

)2
(

2~ω
4ϵ1ϵ0ω2

)
M2

ij. (8.17)

where n is the real part of the refractive index. fi and fj are the Fermi functions for
the ith and the jth levels, respectively, and f ′

i and f ′
j are given by

f ′
i =

{
1 + exp

[
(E0

i − mij

mi

(E − E0
ij) − Efp)/kT

]}−1
, (8.18)

f ′
j =

{
1 + exp

[
(E0

j + mij

mj

(E − E0
ij) − Efn)/kT

]}−1

. (8.19)

Note that the above formulas for the gain are rather general and are applicable to
quantum wells as well as to bulk material. In the case of bulk material, only one pair
of energy bands need be considered. Three-dimensional reduced density of states and
bulk momentum matrix elements are to be used. In the case of quantum wells, many
subbands in both the valence band and the conduction band need to be considered.
2D density of states and quantum well momentum matrix elements are to be used.
Therefore one can consider the expression for the bulk material as a special case of
that for quantum wells. The following discussion assumes the formulas for quantum
wells.
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The gain function is the sum of gij over all the subbands for the allowed transitions.
The software uses the following expression for the density of electrons and holes in
the quantum well:

n =
∑

j

ρ0
jkT ln

[
1 + e(Efn−Ej)/kT

]
+ unconfined electrons

(8.20)
p =

∑
i

ρ0
i kT ln

[
1 + e(Ei−Efp)/kT

]
+ unconfined holes

(8.21)

where the subscript i denotes all confined states for the heavy and light holes, and
j designates those for the Γ and L bands. The number of unconfined carriers are
calculated using Fermi statistics as described in Section 5.1.2.
At the current stage of model development the software assumes that the electron
states outside the quantum wells can be treated as unbound states so that three di-
mensional Fermi statistics can be applied to these regions for the carrier density. This
assumption is reasonable in most applications, and greatly simplifies the simulation
since the potential profile is generally a strong function of bias voltages.
All the quantum levels for the sub-bands of Γ, L, light holes and heavy holes are
computed from well known formulas in quantum mechanics for a square quantum
well [14]. The quantum well levels are calculated at every bias point during an actual
simulation because the bandgap of the active region is a function of carrier density.
As the bias increases, the higher carrier density in the quantum well reduces the
bandgap and changes the quantum well depth. Therefore the quantum levels must
be re-computed at every bias point in a self-consistent simulation.
Note that by default, the heavy and light holes are assumed to be decoupled and can
be treated separately. Simplification has been made so that, by default, all the in-
plane effective masses of heavy hole or light hole subbands are assumed to be same.
If the user wishes to alter the effective mass of a particular subband, the simulator
allows him/her to do so with the “modify_qw" statement. Further discussion on the
effect of valence band mixing is given in Sections 8.1.3 and 8.1.5.
The simulator uses TE (transverse electromagnetic) mode as the default. The user
should set the polarization mode to TM (transverse magnetic) mode if a large tensile
strain is present in the material. We use the following anisotropic dipole moment for
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the heavy and light hole transitions in a quantum well [26]:

Ahh = 3 + 3cos2(θe)
4

(TE), (8.22)

Alh = 5 − 3cos2(θe)
4

(TE), (8.23)

Ahh = 3 − 3cos2(θe)
2

(TM), (8.24)

Alh = 1 + 3cos2(θe)
2

(TM), (8.25)

Mhh = AhhOijM0 , (8.26)
Mlh = AlhOijM0 , (8.27)

where Ahh and Alh are the quantum well dipole moment enhancement factors. M0
is the dipole moment of the bulk material given by the following expression:

M0 = 1
6
m0

me

Eg0(Eg0 + ∆)
Eg0 + 2∆/3

. (8.28)

cos(θe) is defined as

cos(θe) = Eej/[Eej +mr/me(E − Eij)] forE > E0
ij, (8.29)

cos(θe) = 1 forE ≤ E0
ij. (8.30)

where Eej is the electron confined subband energy of level j and mr is the reduced
mass.
A few interesting points about dipole enhancement are discussed here. The above
equations show that the heavy hole transition is favored under TE polarization while
the light hole is favored for TM polarization. With a particular polarization (TE or
TM) the bulk moment is split between the heavy and light holes and they average
out to the bulk moment. It is interesting to note that the light hole under TM has
a larger dipole moment than the heavy hole under TE. Therefore, from the point of
view of the larger dipole moment, the light hole transition is very attractive. A major
drawback for light hole transition is that, due to light mass, the quantum mechanic
wave function tends to spread out more than for the heavy hole. As a result, the
overlap integral (Oij above) is reduced.

8.3.3 Lorentzian model of gain broadening

Broadening of intra-band scattering significantly reduces the local gain function and
must be considered. To describe the broadening of the quantum levels, the software



148 QUANTUM WELLS AND INTERBAND TRANSITIONS

uses a line shape function L() in a convolution integral with the optical gain. The
final expression for the gain function in the quantum well then becomes

gqw =
∑
i=j

∫
gij(Ex)τ/~L

[
(Ex − E0

ij)/(~/τ)
]
dEx. (8.31)

The simplest line shape function is the Lorentzian shape function:

L(Ex − E0
ij) = 1

π

Γ0

(Ex − E0
ij)2 + Γ2

0
, (8.32)

where Γ0 is the constant half width of the shape function.
The expression in Equation (8.31) cannot be integrated analytically and an efficient
numerical approach for the evaluation of the integral is necessary to perform the
2-D simulation. The program has approximated the Fermi functions fi and fj with
linear combinations of four exponential terms, which gives an error of less than 0.04%
. The Lorentzian shape function is approximated with a linear combination of three
exponential terms to give an error of less than 1.2% for a range of -8 to +8 for a
standard Lorentzian function.
Equation (8.31) is used to evaluate the stimulated emission and dielectric constants
in the basic equations at all the points of the 2D mesh.
The corresponding local loss can be written as

αqw = −αfnn− αfpp− αact, (8.33)

where the first two terms are due to free carrier absorption in the quantum well. αact

is an adjustable background loss term to account for losses in the active quantum
well for mechanisms other than interband transitions and free carrier absorption.
When a laser is biased near threshold, the current is mainly determined by the
spontaneous emission rate and/or Auger recombination. Therefore the evaluation
of the spontaneous emission rate is important. The following expression for the
spontaneous emission rate is used [27]:

rqw
sp (E) =

∑
i=j

(2π
~

)
| Hij |2 f ′

j(1 − f ′
i)D(E)ρij, (8.34)

where D(E) is the optical mode density in the material which has a refractive index
of n, given by [27],

D(E) = n3E2

π2~3c3 . (8.35)

The software has used the same broadening line shape functions for the spontaneous
emission spectrum in Equation (8.34) as for the gain function. This allows the user
to compare his/her experimental data with the broadened spontaneous spectrum.
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The broadened spontaneous emission spectrum is, however, not used in the main
simulation. The reason is that since carrier recombination involves emission at all
frequencies, it is only necessary to integrate the un-broadened spectrum in Equation
(8.34) over all possible frequencies:

Rqw
sp =

∫ ∞

0
rqw

sp (E)dE. (8.36)

Note that Equations (8.31) and (8.36) are given in terms of the quasi-Fermi levels
which can be treated directly as variables for the Newton’s method used by the
software.
The choice of τ is important since it reduces the peak gain and directly determines
the threshold current. Also note that the lasing frequency is determined by the
maximum of the modal gain gm at the present injection level rather than the local
gain g, since it is the modal gain that appears in the rate equation. The former is an
average gain over the optical field. For simplicity the software uses the wavelength
at the peak mode gain as the single wavelength appearing in the wave equation.
The effective bandgap for optical gain calculations is reduced because of exchange
effects [16]. Such a bandgap shrinkage is given by: ∆Eg = Ax

(
n+p

2

)1/3
. Since this

term increases with carrier concentration, it causes a “red shift” tendency in the
optical gain spectrum as the carrier concentration is increased. The peak optical
gain also has a “blue shift” tendency due to the band filling effect (i.e., the Fermi
level separation becomes larger as more subbands are filled). The blue shift effect is
usually stronger than the red shift effect due to bandgap shrinkage, and one often
observes a blue shift in experiment [28] [29].
In the case of anisotropic parabolic approximation for strained quantum wells, the
optical gain formulas can simply be extended by using the in-plane quantities (labeled
"x") as follows. The local gain due to a transition from the jth in the conduction
band to ith in the valence band is

gij(E0
ij) =

(2π
~

)
| Hij |2 (f ′

j − f ′
i)
(
ϵ1

nc

)
ρx

ij, (8.37)

ρx
ij = ρx0

ij h(~ω − E0
ij), (8.38)

| Hij |2 =
(
q

m0

)2
(

2~ω
4ϵ1ϵ0ω2

)
M2

ij, (8.39)

where fi and fj are the Fermi functions for the ith and the jth levels, respectively.
The gain function is the sum of the gij over all allowed transitions.
Similar to the treatment of the gain function, the spontaneous emission rate can be
written as

rqw
sp (E) =

∑
i,j

(2π
~

)
| Hij |2 f ′

j(1 − f ′
i)D(E)ρij , (8.40)
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where D(E) is the optical mode density.
The program assumes that the dipole moment of a strained quantum well system is
the same as that for its unstrained counterpart. This assumption should be accurate
near the Γ point. As in the case of the unstrained quantum well, the overlap integral
in the dipole moment is assumed to be k-independent in this model.

8.3.4 Landsberg model of gain broadening

The simplest model for gain broadening is to use the following Lorentzian function
in a convolution integral:

g(E) =
∫
g0(E1)Fl(E1 − E)dE1, (8.41)

where g0 is the gain function without broadening. The Lorentzian function is given
by the expression:

Fl(E1 − E) = 1
π

Γ0

Γ2
0 + (E1 − E)2 , (8.42)

where Γ0 is the half-width of the broadened energy level and is assumed constant.
The assumption of constant Γ0 means that the gain spectrum is broadened to the
same degree across the whole spectrum. The advantage of this model is that it
is relatively simple to implement and results in a most stable solution in the 2D
simulations.
According to Landsberg’s model, the broadening across the spectrum should not be
uniform.
The basic mechanism for Landsberg’s model is carrier-carrier scattering. The original
formulas were derived for bulk material [30] [31] and were extended successfully by
Zielinski et.al. [28] [29] for quantum well laser modeling. This model is phenomeno-
logical and is the most simple form of non-Lorentzian shape function. The success
of such a model in comparison with experiment is very encouraging [28] [29].
According to Landsberg’s model [30] [31] [32], the half-width Γ is a complicated
function of the transition energy which has its maximum value at the bottom of the
band (or band edge) and decreases to zero as the energy approaches the quasi-Fermi
level. Therefore the half-width is a function of both the transition energy and the
carrier density. The software has used the following approximation according to
Martin and Stormer [32]:

Fl(E1 − E) = 1
π

Γ(E1)
Γ(E1)2 + (E1 − E)2 , (8.43)

where

Γ(E1) = Γ0

1 − 2.229 E1

Efn − Efp

+ 1.458
(

E1

Efn − Efp

)2

− 0.229
(

E1

Efn − Efp

)3
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for Efn − Efp ≥ 0 & 0 ≤ E1 ≤ Efn − Efp (8.44)

For bulk material a Γ0 value of 1.2 meV was found. For quantum wells the broadening
is much larger (up to 30 meV). The implementation of this model is important for
accurate modeling of the gain spectrum, especially for quantum wells. The maximum
broadening Γ0 in the Landsberg model is treated as a fitting parameter for the case
of quantum wells.
Note that Equation 8.44 is valid only when the peak gain is positive, i.e., only
when the difference between the quasi-Fermi levels is greater than the bandgap of
the quantum well subbands. The transition energy must also be between the band
gap and this difference. To extend the spectrum to other conditions, the formulas
proposed by Zielinski et.al. [28] are used:

g(E) = Iconv(g0, E) forE < Efn − Efp, (8.45)
g(E) = Iconv(g0, E) + g0(E) forE ≥ Efn − Efp, (8.46)

with

Iconv(g0, E) =
∑
i,j

∫ Efn−Efp

Eij

1
π

Γ(E1)dE1

Γ(E1)2 + (E1 − E)2

for Efn − Efp ≥ Eij, (8.47)

and

Iconv(g0, E) = 0

for Efn − Efp < Eij. (8.48)

The two-piece function is continuous across the spectrum because because g0(E) = 0
when E = Efn − Efp.
In the current version of the software, no broadening is imposed on the gain of the
bulk material for two reasons. First, the level broadening coefficient is relatively
small (1.2meV), and second, the un-broadened gain spectrum does not have a sharp
edge near the bandgap as in the quantum well case. Therefore the error caused by
not using broadening in bulk material gain is relatively small.
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8.3.5 Landsberg broadening and experimental data

This Section gives an example of how the user can calibrate the gain model with
experimental data. For a description of the program’s commands and syntax, please
refer to the Reference Manual. The gain function here uses the Landsberg broadening
formula, discussed in Section 8.3.4, which is based on well established physical models
for emission spectra from recombination of electron-hole pairs. It uses an energy
and carrier density dependent half width in the Lorentzian broadening function.
The broadening results in a more symmetric quantum well gain spectrum than the
Lorentzian broadening function with constant Γ. The Landsberg model is usually in
close agreement with experiment and is strongly recommended when an experimental
gain spectrum is used for the purpose of calibration.
The experimental gain data are taken from Ref. [29]. Since the details of the multiple
quantum well system were not given in the reference (except for the composition and
well width), the optical confinement factor was fitted according to the information
accompanying the published data.
Here, two sets of experimental data for quantum well and bulk InGaAs/InP are used
to compare with the results from the gain module of the software. Detailed input files
can be found in the standard examples that come with installation of the software.
The input files are named “lands.gain”, which models the multiple quantum well
device, and “lands2.gain”, which models the bulk device.
Implementation of the Landsberg broadening model is very simple. The parameter
broadening=landsberg is set in the statement active_reg in “*.sol”. First we
consider an InGaAs/InP quantum well structure of well thickness 0.0105 µm. A
carrier scattering lifetime of 0.2×10−13 seconds is used, and a background loss of
45 cm−1 is assumed for this structure. The result of the program’s gain spectrum
together with the experimental data from Ref. [29] is given in Figure 8.5.
In another example, the bulk InGaAs/Inp structure is considered. The background
loss is again assumed to be 45 cm−1. The optical gain spectrum for the bulk material
along with experimental data from Ref. [29] is given in Figure 8.6.
To plot experimental data on the same plot as the simulated gain curve, the param-
eter include_data is used in the file “lands.gain”. The quantum well model of the
software agrees with the published data very well using the same carrier density as
that suggested in Ref. [29]. The carrier density for the bulk material is slightly dif-
ferent from the value suggested in Ref. [29] in order to obtain a good fit of the data.
This slight difference may be due to the lack of broadening for bulk material gain
in the program. Note that the current version of the software assumes the broaden-
ing effect is negligible for bulk material (which is a good approximation compared
with quantum well gain). In both cases the quality of the fit and the values of the
parameters are reasonable according to the information given in Ref. [29].
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Figure 8.5: Gain spectrum of InGaAs/InP quantum well structure as compared with
experimental data. Landsberg type gain broadening is used in the gain model.
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Figure 8.6: Gain spectrum for bulk InGaAs/InP as compared with experimental
data.
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8.3.6 Gain integral with valence mixing

In the case of valence mixing, the valence bands are not parabolic and we must use a
different formula for the optical gain spectrum. Based on theories developed in Ref.
[33], the gain spectrum can be expressed in numerical integration over kt.

g(E) = g0

2πtE
∑
i,j

∫ ∞

0

(π/Γ)fdip(kt)Mb(fj − fi)dk2
t

1 + (Ecj(kt) − Ekpi(kt) − E)2/Γ2 (8.49)

where t is the quantum well thickness; Γ = ~/τscat is broadening due to intraband
scattering relaxation time τscat; Ecj is the jth conduction subband; Ekpi is the ith
valence subband from the k.p calculation; the sum is over all possible valence and
conduction subbands; g0 is a constant defined as

g0 = πq2~
ε0cm2

0n
(8.50)

where q is free electron charge; n is the real part of the refractive index; all other
symbols have their usual meanings.
Mb is the bulk dipole momentum given by:

Mb = 1
6
m0q

mc

Eg0(Eg0 + ∆so)
Eg0 + (2/3)∆so

(8.51)

where Eg0 is the unstrained bandgap; mc is the effective mass of the conduction
band; ∆so is spin-orbit coupling energy.
The dipole factor due to non-parabolic subbands are given by the following overlap
integral for the case of symmetric well:

fdip = (3/2)[< c|g1(kt, z) >2 +(1/3) < c|g2(kt, z) >2] (TE)
fdip = 2 < c|g2(kt, z) >2 (TM) (8.52)

where |c > is the conduction band wave function; |g1 > and |g2 > are the valence
band envelop function.
fj and fi are the Fermi functions expressed as follows:

f−1
j = 1 + exp

[
1
kT

(
Ecj0 + ~2k2

t

2m0mc

− Efn

)]

f−1
i = 1 + exp

[
Ekpi(kt)
kT

]
(8.53)

where Ecj0 is the bottom of jth conduction subband.
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8.3.7 Non-linear gain model

Conventional optical gain is a concept based on linear response theory, i.e., only first
order perturbation is used to treat a system under an external optical field. For
semiconductor lasers, it is often necessary to include the higher order effects (or non-
linear effects). The optical gain tends to decrease as a function of photon density
when non-linear effects are included. Such an effect is also called gain suppression.
The non-linear gain effect is responsible for the spectral hole burning effect in semi-
conductor lasers [34].
The non-linear gain effect is commonly expressed as [34].

g = g0(1 − ϵS). (8.54)

where ϵ is the non-linear gain suppression coefficient which is not to be confused
with the dielectric constant, and S is the photon density. Since the correction term
is typically of the order of a few percent, one can use the following alternative form:

g = g0

1 + ϵS
(8.55)

Such a formula has the numerical advantage that the correction term can never make
the optical gain negative. Equation (8.55) has the same format as the gain saturation
for a simple, two-level system [35].
In the case of multi-lateral modes, the photon density S is replaced by the sum of
the densities of all the modes.

8.4 Refractive Index Model

8.4.1 Index change due to interband transitions

In many applications, especially DFB lasers in fiber optic communications, the
change of refractive index as a function of injection carriers is an important pa-
rameter. It affects the laser linewidth, FM noise and modulation characteristics.
Therefore it is desirable for laser designers to evaluate the index change for a partic-
ular device structure. The program implements such a change in refractive index due
to interband optical transitions based on the standard Kramers-Kronig formulas.
A modified version of the Kramers-Kronig formula relating the real and imaginary
parts of the refractive index of an arbitrary material can be written as [36]:

∆n(E) = − c~
πe

∫ ∞

0

∆g(E ′) − ∆g(E)
(E ′ − E)(E ′ + E)

dE ′ (8.56)
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The integral above is difficult to evaluate numerically because of the singularity at
E = E ′. To obtain an accurate integral, we separate it into the following three parts:

∆n(E) = − c~
πe

∫ ∞

0

∆g(E ′) − ∆g(E)
(E ′ − E)(E ′ + E)

dE ′

= − c~
πe

∫ E−ε

0

∆g(E ′) − ∆g(E)
(E ′ − E)(E ′ + E)

dE ′

− c~
πe

∫ ∞

E+ε

∆g(E ′) − ∆g(E)
(E ′ − E)(E ′ + E)

dE ′

− c~
πe

∫ E+ε

E−ε

∆g(E ′) − ∆g(E)
(E ′ − E)(E ′ + E)

dE ′ (8.57)

where ε is a small number. The third term may be written as

− c~
πe

dg

dE

∫ E+ε

E−ε

1
E ′ + E

dE ′ (8.58)

and this can be evaluated analytically.
To ensure the correct implementation of the standard model, we have compared
our calculations with experimental data obtained by C.H. Henry et.al. [36] for a
bulk GaAs material system. The calculation is done at transparency conditions.
Note that in Henry’s paper, the transparent density was estimated to be about
0.8×1024m−3 while our calculation gives a value of 1.5×1024m−3. Since our value of
transparent density agrees with values from a more recent theory by Vahala et.al.[37],
we have decided to use this theoretical value here. Our result (also included in
LASTIP’s examples under examples/index_change/henry.gain) agrees well with that
from Henry’s paper (see Figure 8.7).
Once the index change is calculated, it is trivial to compute the alpha factor (or the
linewidth enhancement factor), which is very important for DFB lasers and related
devices used in telecommunications. Again we have calculated the index change
for bulk GaAs (see Figure 8.8) and find that the results are similar to those from
theoretical calculations by Vahala et.al. [37].
It is clear from Figures 8.7 and 8.8 that the index change is very sensitive to the
wavelength being used. Therefore any effort to improve the alpha factor or the
index change should take into account the spectral dependence. A small shift in the
operating wavelength may mean a large improvement or degradation.

8.4.2 Other models of index change

Crosslight software also implemented for the following forms of index change model.
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Figure 8.7: Index change with respect to equilibrium. The index change is evaluated
at transparent conditions for bulk GaAs material. The points are experimental data
from the work of C.H. Henry et.al.
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Figure 8.8: The linewidth enhancement factor (alpha factor) as a function of wave-
length at two different carrier densities (1.8 × 1024m−3 and 2.5 × 1024m−3).
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• 1) Use a line with enhancement factor αlw to compute the index change based
on local gain change as follows.

∆n(E) = −αlw

2k0
(g − g0) (8.59)

• 2) Free-carrier/plasma part 1:

∆n(E) = − q2n

2meω2ε0n
(8.60)

• 3) Linear model:

∆n(E) = [a(a)
n + b(a)

n (T − 300)](n− n0) + [a(a)
p + b(a)

p (T − 300)](p− p0) (8.61)

8.5 Optical Gain with Many Body Coulomb In-
teraction

Coulomb interaction between electrons and holes confined in an active region of laser
diodes can significantly enhance it’s optical gain value and influence the emission
spectrum. In particular, it has been reported that, Coulomb enhancement is stronger
in short wavelength blue-green ZnCdSe and InGaN quantum well lasers compare to
the long wavelength III-V lasers, due to the lower value of dielectric constant in
wide-bandgap materials[38]. We discover that another major reason for wurtzite
material system to have higher many-body (MB) effect is that the due to imbalance
of density of states between the conduction and the valence bands, the occupancy is
much different in the two bands, which causes the enhancement factor to increase.
The role of Coulomb interaction between electrons and holes confined into an active
region of laser diode can be explained within a simple physical picture; while Coulomb
force attracts electrons and holes at a closer distance, e-h radiative recombination
rate increases, which manifests in enhancement in intensity of spontaneous emission
as well as in gain magnitude. In addition Coulomb interaction modifies spontaneous
emission and gain spectra of laser diodes by shifting the gain peak towards lower
energies.
One of the inherent characteristics of electron-hole plasma is screening of the Coulomb
potential. The modified, screened Coulomb potential Vs(q, ω), as described in the
momentum and frequency domain, relates to an unscreened Coulomb potential, Vq,
as:

Vs(q, ω) = Vq

ε(q, ω)
, (8.62)

1Starting with version 2010, n is used instead of ε in the denominator to fix a longstanding
error in the model
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where ε(q, ω) is the longitudinal dielectric function. If one neglects the dynamic as-
pect of screening contained in a frequency dependence of the dielectric function,ε(q, ω),
one can obtain the following dielectric function using the plasmon-pole approximation[39–
41]:

1/ε(q) = 1 − ω2
pl/ω

2
q , (8.63)

where ωpl is the plasma frequency, while ωq is an effective plasmon mode frequency.
In particular, in case of electrons and holes confined in a quantum well, one should
use a two-dimensional (2D) Coulomb interaction, given by:

Vq = e2/2ε0q, (8.64)

and 2D plasma frequency:

ω2
pl = e2N2Dq

2εbε0mr

(8.65)

where N2D = n × wqw is the 2D carrier density in a quantum well width of wqw,
εb is the static background dielectric constant in the area of quantum well; 1/mr =
1/me +1/mh, is the reduced effective mass of conduction band electrons and valence
band holes in directions parallel to the quantum well plane. The effective plasmon
frequency ωq is given in 2D case by:

ω2
q = ω2

pl(1 + q/κ2) + Cpl

4

(
~q2

2mr

)2

, (8.66)

where Cpl is a unitless constant typically in a range 1-4, while κ2 is the square of
inverse screening length for electrons and holes confined in the quantum well, which
can be derived as[42]:

κ2 = e2/(π~2εbε0)
∑
i,j

[mcjfe(Ecj)/dcj +mvifh(Evi)/dvi], (8.67)

Here, summation ∑i,j is over all sub-bands characterized by energies, parallel masses,
and a wave-function average width, Ecj, mej, dcj, and Evi, mvi, dvi for jth conduction
band and ith valence band.

dnk = π~/
√

2mnEnk, (8.68)

where index n= c or v for conduction and valence bands, respective.
Consider, first, the effect of carrier Coulomb interaction on the spectrum of e-h
inter-band recombination, often ascribed as bandgap-renormalization effect. It’s
physical meaning is "band-gap narrowing" effect, which can partially be explained by
the screening of conduction band electron-electron Coulomb repulsion by positively
charged valence band holes available near electrons at close proximity. This Coulomb
Hole (CH) contribution to the band-gap reduction is approximately given in 2D by:

∆ECH = −2E0a0κ× ln
[
1 +

√
32πN2D/Cplκ3a0

]
(8.69)
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where a0 is the Bohr radius of quantum well electron-hole exciton, given by:

a0 = 4π~2εbε0/e
2mrj (8.70)

and E0 is corresponding effective Rydberg energy:

E0 = ~2/(2mrja
2
0). (8.71)

Additional contribution to Coulomb hole band-gap renormalization is a self-energy
correction to e-h plasma due to exchange interaction, which also results in reduction
of band-gap energy as:

∆EgSX = −2E0a0

κ

∫ ∞

0
dkk

1 + Cplκa0k
2/32πN2D

1 + q/κ+ Cpla0k3/32πN2D

[fe(Ecjk) + fh(Evjk)] (8.72)

Therefore the net band-gap narrowing due to Coulomb-hole and exchange interaction
is:

∆Eg = ∆EgCH + ∆EgSX (8.73)
and the renormalized band-gap:

Eg ren = Eg + ∆Eg (8.74)

This effective band-gap energy reduction can be observed in a red shift of all re-
combination energy values Ecv(k) specified at a given parallel momentum k of jth-
conduction and ith-valence quantum well subbands, as:

Ecv(k) = Eg + ∆Eg + Ecjk + Evik (8.75)

where Ecjk and Evik are energies of electrons and holes from jth-subband of conduc-
tion and ith-subband of valence band quantum well in the active region.
The spectral wave function, g(Ecv) consists of a sum of gji(Ecv) contributions from
transitions between jth-subband electrons and ith-subband holes, given by [42]:

g0(Ecv) =
∑
j,i

gji(Ecv) = πe2~/(ε0c
3m2

0nav)
∑
j,i

(1/Ecv)|Mji(Ecv)|2ρr,ji

×[fe(Ecjk) + fh(Evjk) − 1], (8.76)

where |Mji(Ecv)|2 is the transition matrix element at transition energy Ecv , ρr,ji

is the reduced density of states between jth-conduction subband, and ith-valence
subband; nav is the background refractive index. In practice laser diode spectra are
broadened, primarily due to the strong carrier-carrier scattering and other intraband
scattering mechanisms, o as well as lattice disorder. Consequently, gain becomes a
convolution of an un-broaden gain function of Eq. (8.76) with a broadening function
L(x), as:

gB(~ω) =
∫ ∞

Eg0
g0(Ecv)L(~ω − Ecv)dEcv (8.77)



8.6 Local Gain and Optical Confinement 161

where Eg0 is an energy of the lowest e-h recombination transition between ground
levels of quantum well in conduction and valence band of active region. Typically, a
Lorentzian broadening function shape is assumed in L(x), given by:

L(~ω − Ecv) = (1/π)Γcv(~ω,Ecv)/[Γ2
cv(~ω,Ecv) + (~ω − Ecv)2], (8.78)

and parameterized by Lorentzian width, Γcv, which is related to scattering time by
Γcv = ~/τcv (note that some sources define Γcv as equal ~/2τcv). For simplicity,
we choose Γcv to be a constant parameter in our calculations (i.e., we neglect its
dependence upon ~ω and Ecv energies).
Finally, if Coulomb interaction is included in gain spectral function derivation, g(~ω)
of equation (8.77) becomes:

g(~ω) = Real

{∫ ∞

Eg0

g0(Ecv)
1 − q1(Ecv, ~ω)

[
1 − i

(Ecv − ~ω)
Γcv

]
L(~ω − Ecv)dEcv

}
(8.79)

where

q(Ecv, ~ω) = −ia0E0Ecv

πκ|Mji(Ecv)|∫ ∞

0
dk′k′ |Mji(Ecv′|

Ecv′
× fe(Ecjk′) + fh(Evik′) − 1

(Γcv + i(Ecv − ~ω)
× Θ(k,k′)(8.80)

and
Θ(k,k′) =

∫ 2π

0
dθ

1 + Cplκa0q
2/32πN2D

1 + q/κ+ Cplκa0qk3/32πN2D

, (8.81)

and
q2 = k2 + k′2 − 2kk′cosθ, (8.82)

and θ is the angle between in-plane vectors k and k’.
The Eq. (8.79) gives the final integral formula for Coulomb enhanced gain spec-
tral function, numerically calculated in Crosslight simulation software. User has an
option to include, band-gap renormalization effect as defined in Eq. (8.73) and in-
dependently Coulomb contribution as formulated in Eq.(8.79), along with a custom
definition of εb, Cpl, Γcv, and nav values as input parameters.

8.6 Local Gain and Optical Confinement

In previous sections, we assume a flat band situation with isolated quantum wells
and we assume the carrier spreads uniformly throughout the well, except with slight
tilting by the applied field. Similarly the local optical gain is assumed to be uniform
with slight modification by the Fermi levels deviating from equilibrium.
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The local optical gain is written in terms of the joint density of state

ρr = mr

πt~
(8.83)

times a Fermi function term which is causing the small change in the uniform gain.
Here mr is the reduced mass and t is the well thickness.
Without loss of generality, we consider only the z-dimension here. We define the
modal gain as an integral of the local gain as follows:

gm =
∫

QW g(z)w(z)2dz∫
w(z)2dz

(8.84)

Using a slow varying assumption, one can pull the g(z) out of the integrand and
define an optical confinement factor:

Γ =
∫

QW w(z)2dz∫
w(z)2dz

(8.85)

Please note that Crosslight simulator uses only the integral form in Eq. (8.84). The
Γ factor is NOT being used. It is printed only for comparison with other theories.
In a self-consistent simulation of optical transition within an arbitrary MQW region,
wells and barriers are not well defined and we can no longer decide a well thickness.
For example, if one wishes to grade the composition near the well, it is no longer
possible to draw a line between well and barrier and the use of QW thickness loses its
meaning. The optical gain written in a flat band model would have to be re-derived
using the overlap of wave functions.
According to the Fermi’s golden rule (see for example, [43]), we decide that the modal
optical gain is proportional to an integral involving the envelop functions, fc(z) and
fv(z), and the optical wave (treated as scalar here) w(z):

gm ∝ M2
b

{ ∫
fc(z)w(z)fv(z)dz

}2
(8.86)

The above equation is the most accurate definition of modal gain integral as far
as spatial overlap variation is concerned since it is derived from the first principle.
Please note that atomic part of the wave function has been included in the bulk
dipole moment M2

b . However, it is a common practice to use a separate the optical
field intensity w2(z) which can be measured in near field and far field. Also, it is
convenient to be able to isolate a local gain from the above integral so that we can
"see" how it varies with distance. We proceed as follows:
We assume that total electron or hole wave function (envelop times the atomic part)
is somehow localized and will be uncorrelated over a distance greater than the atomic
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size. For convenience of discussion, we replace the integral by a sum over a mesh
grid with grid spacing larger than the correlation length:

gm ∝
{
M2

b (zi)
∑

i

fc(zi)w(zi)fv(zi)∆zi

}2
(8.87)

We apply the square and let the cross terms cancel each other due to the random
phase of the total electron/hole wave function. Then, we are able to write (with
proper normalization):

gm ∝
∑

i

Mb(zi)2fc(zi)2w(zi)2fv(zi)2∆zi (8.88)

At this point, the modal gain comes out as a well defined quantity given the envelop
function and the optical wave function. However, in a drift-diffusion finite element
analysis, it is desirable to introduce a local gain since we wish to see a distribu-
tion of the local gain over a complex MQW so that stimulated recombination and
spontaneous radiative recombination can have a continuous distribution (instead of
appearing as a block box model). Comparison of Eqs. (8.84) and (8.88) leads to the
following local gain variation.

g(z) ∝ fc(z)2fv(z)2 (8.89)

This is a simple statement that the local optical gain is proportional to overlap
of electron/hole carrier densities. Therefore, it makes sense to define a position
dependent joint density of state (JDOS) as being proportional to such an overlap:

ρr(z) = < mr > H(z)
~π

(8.90)

where < mr > is the reduced mass averaged over the wave function overlaps:

< mr >=
∫
mr(z)H(z)dz (8.91)

and the weighting function is defined as

H(z) = f 2
c (z)f 2

v (z)/
∫
f 2

c (z)f 2
v (z)dz (8.92)

Compared with the conventional QW optical gain using 2D JDOS, the key difference
is now we replace 1/t (t=well thickness) by the weighting function H(z). Please note
that the weighting function has a unit of 1/length and may be regarded as a position
dependent effective well thickness. At the center of the well, we have a tightly
confined wave function and thus a thinner well thickness. Given the revised ρr(z)
above, we can define a position dependent local gain for all of the gain formulas
based on effective mass theory.
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For gain formula with valence mixing such as that in Eq. (8.49), the modification
is similar: we once again replace 1/t (t=well thickness) by H(z). We do not need
to use any averaged effective mass here since the gain integral for valence mixing
already includes the effect of spatial averaging by using a solution of the energy
band obtained over the whole potential profile.
Finally, we outline the actual implementation of optical gain model in a self-consistent
solution as follows. To make the modal optical gain to be as close to the rigorous def-
inition in Eq. 8.86, we first solve the envelop wave functions for electrons and holes
over the whole coupled MQW region. Then we compute the total modal gain dipole
moment by evaluating the wave function overlap before applying the square as in
Eq. 8.86. Finally, we use the weighting function H(z) to define a position dependent
JDOS in the local gain expression before performing the modal gain integral using
w(z)2. To be more specific, the self-consistent modal gain is written as

gm =
∫
g(z)w(z)2dz∫
w(z)2dz

(8.93)

The local gain is defined as

g(z) = g0H(z)AijM
2
bO

2
ij (8.94)

where g0 is a gain coefficient depending on modal index and wavelength, Mb is
the bulk dipole moment, Oij is the overlap integral between hole wave function
of level i and electron wave function of level j, and Aij is the corresponding QW
dipole moment enhancement factor. Compared with the original formula from the
Fermi-Golden rule, the only approximation we make is to use w(z)2 directly in the
modal gain integral instead of using w(z) before applying the square. We expect
the difference to be minor for slowly varying fields. Please note that using H(z) of
a different form has no consequence for the modal gain as long as it is normalized
to unity. The advantage of this separation of w(z)2 makes it easy to reduce to the
classical definition of modal gain and optical confinement factor in the limit of bulk
active layers.
The same weighting function H(z) has been used in the definition of local spontaneous
recombination which directly affect the radiative source profile within a complex
MQW system in a self-consistent solution.

8.7 Exciton Electro-absorption in Quantum Wells

8.7.1 Introduction

It is well known, from semiconductor physics, that an inter-band light absorption
is not a simple derivative of a free electron-hole (e-h) pair generation. Both e-h
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energy, as well as their motion are affected by mutual Coulomb attraction, and
some of those effects were already considered in a context of many-body Coulomb
correction to QW optical gain (Section 8.5 of this manual). In extreme case, strongly
correlated, hydrogen atom-like, bound electron-hole state, called exciton, can be
formed in semiconductors. It is characterized by a ground state binding energy, or
effective Rydberg :

R∗
y = mre

4

2(4πϵs~)2 , (8.95)

and a spacial average separation distance, or Bohr radius:

a∗
0 = 4πϵs(~)2

mre2 , (8.96)

where mr = memh/(me + mh) is the electron-hole reduced mass, ϵs is a substrate
static dielectric permittivity, (ϵs = κϵ0, with κ dielectric constant). Excitons can
be experimentally observed in a near band-gap absorption edge spectral region,
and their spectrum can be effectively varied in a controlled fashion (modulated)
by application of an external electrostatic field. This can be directly utilized in
electro-absorption modulators for fiber-optics application. In particular, an effective
modulator can be based on Quantum-Confined Stark Effect (QCSE)effect observed
in thin QW and MQW heterostructures. Due to dimensional confinement realized in
these structures, such an effect is quite pronounced, implying strong overlap of e-h
wave function and enhancement of the oscillator strength of interband transitions,
along with the rise in exciton binding energy. For example in case of GaAs/AlGaAs
QW structures excitonic absorbtion becomes an important distinct component of a
near band-edge absorption spectra at room temperature, while GaAs bulk excitons
are typically observed only at low temperatures.
At higher densities (strong excitation limit) attractive Coulomb force between electron-
hole pairs becomes screened by free carriers, and excitons ultimately decompose
into free electron-hole plasma and absorption saturates. Therefore, proper model of
screening in quasi 2D electron-hole plasmas, confined into semiconductor QW, and
MQW region, becomes important in electro-absorption modulator modeling espe-
cially at high excitation limit.

8.7.2 Screened Coulomb Potential in Quantum Wells

Many-body physics and their theoretical treatment of Coulomb interaction in quasi
2D QW electrons and hole systems is quite complex, and is usually treated within
reasonable approximations. A well known 3D screened Coulomb interaction poten-
tial, given by Yukawa potential with screening constant parameter, κ is as follow:

V 3d
s (r) = q2

4πϵs

exp(−κr)
r

(8.97)
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often becomes inadequate when applied to calculation of exciton binding energy
in 2D electron-hole heterostructure systems. In particular, 3D-Coulomb potential
overestimates long range screening effect, while a 2D-Screened Coulomb potential

V 2d
s (r) = q2

4πϵs

[
1
r

− κ
∫ ∞

0

dqJ0(qr)
(q + κ)

]
, (8.98)

underestimates it. Here, zero-order Bessel function, J0(qr), is used. It turns out that
for thin electron and hole layers as implemented in semiconductor inversion layers,
accumulation layers or MQW heterostructures, we need an intermediate potential
Vs(r) between V 2d

s (r) and V 3d
s (r), which we shall refer to as a quasi-2D screened

Coulomb potential. The electron and hole spatial density distribution across such
layers (in z-direction) is defined by density probability function, given by envelope
wave function square, as |ϕ(ze|2, and |ϕ(zh|2. First we shall use a single pole approx-
imation at low frequency limit to derive a screened Coulomb potential in momentum
space, which can be expressed as:

Vs(q) =
V 2d

q

ε(q)
F (q) (8.99)

where V 2d
q is an unscreened 2D Coulomb potential

V 2d
q = e2

2εbε0q
, (8.100)

F (q) is a form-factor, which represents the deviation of the Coulomb potential from a
perfect 2D case (of zero thickness layer limit). The form factor is usually expressed in
some forms of overlap integral of the quantum well wave functions. The mathematical
details of its evaluation are out of the scope of this document.
The dielectric function:

1
ϵ(q)

= 1 −
ω2

pl

ω2
q

, (8.101)

and plasma frequency

ω2
pl = e2

2εbε0
× qF (q)[

∑
i

nc,i

mc,i

+
∑

j

nv,j

mv,j

]. (8.102)

Again, similarly to Eq. (8.66) of Section 8.5, the effective plasmon frequency is given
by:

ω2
q = ω2

pl

(
1 + 1

κF (q)

)
+ Cpl

4

(
~q2

2mr

)2

, (8.103)

Subsequently, From Vs(q) of Eq. (8.99) we can find quasi-2D Coulomb potential in
a real space, using Fourier-Bessel transform of Vs(q), which gives:

Vs(r) =
∫ ∞

0
qVs(q)J0(qr)dq (8.104)
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The quasi-2D Coulomb potential, Vs(r) of Eq. (8.104), can be then employed to
obtain binding energy of exciton in QW and MQW, and seems the most appropriate
in use for this applications. Nevertheless we left to the user an option, to use in his
simulation exciton models using 3D and 2D Coulomb potentials as defined in Eqs.
(8.97), for comparative studies.

8.7.3 Exciton Binding Energy in Quantum Well

In our treatment, the confining potential along z-direction, along with wave-functions
and corresponding energy values QW sub-bands are based on self-consistent solution
of a Schrödinger and Poisson Equations. The solution is later applied to calculate
binding energy of exciton via the form-factor, and finally absorption spectrum of
excitons in MQW or QW can be calculated. At this time we limited our derivation
to the ground, 1s, excitonic states, but this can be easily extended into excited
exciton state as well as to excitons at higher QW levels, in the future.
Consider a wave function for a ground state exciton in a QW as:

Φ(ze, zh, r) = ϕ(ze)ϕ(zh)ϕexc(r), (8.105)

where ϕexc(r) is a chosen trial wave function for a 1s exciton in QW to be:

ϕexc(r) = ( 2
π

)1/2 1
λexc

exp(−r/λexc). (8.106)

Here λexc represents an in-plane exciton Bohr radius, while ϕ(ze),ϕ(zh) are ground
state electron and heavy or light hole envelope wave functions. Coulomb attraction
of e-h pairs is assumed to be week, compare to the effect of QW confinement in z-
direction. As a result, electron and hole wave functions are assumed to be unaffected
by long range Coulomb interaction, which only modifies their energy values(true in
the limit of 2D exciton Bohr radius, larger than the size o the z-confinement).
We choose to use Ritz variational method for binding energy estimate. The method
relies on minimization of the exciton energy upon the trial function parameter, λexc:

Eexc(λexc) = Eg + Ee0 + Eho − Eb,exc, (8.107)

which is equivalent to finding a maximum in exciton binding energy,Ebexc:

Eb,exc(λexc) = < Φ|Ĥ|Φ >

< Φ|Φ >
, (8.108)

where
Ĥ = − ~2

2mr

(▽2
r + ▽2

z) + VQW (z) + Vs(r), (8.109)
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and after partial integration:

Eb,exc(λexc) = ~2

2mrλ2
exc

+ < ϕexc(r)|Vs(r)|ϕexc(r) > (8.110)

with respect to the 2D Bohr radius λexc parameter of a trial function ϕexc(r) given
by Eq.(8.106).

8.7.4 Quantum Well Exciton Absorption

A general absorption coefficient formula can be applied to the exciton transition as
well, as given by:

α(~ω) = A0
∑

n

|φn(0)|2δ(En + Eg − ~ω)n, (8.111)

where
A0 = πe2|ê · pcv|2

nrcϵ0ωm2
0

(8.112)

pcv is an interband transition matrix element in QW, nr is a refractive index, c-
speed of light,ϕn(r) is a normalized wave function of exciton. Here, summation over
n extends to both bound and continuum state excitons. For QW bound exciton
states we have the oscillator strength given by :

ϕn(0) = 1
πa2

0(n− 1
2)3 , (8.113)

and
En = Ry

(n− 1
2)2 (8.114)

Initially, it is sufficient to include only ground state heavy and light hole excitons
(n=1), although in general case the bound exciton absorption coefficient becomes:

αB(~ω) = A0

∞∑
n=1

2
Rya2

0π(n− 1
2)3 × δ[ϵ+ 1

(n− 1
2)2 ], (8.115)

where ϵ = (E − Eg)/Ry.
The continuum-state exciton contribution to absorption is:

αC(~ω) = A0

∫ ∞

0
dE

S2D(E)
2πRya2

0
δ(E + EG − ~ω), (8.116)

where
S2D(ϵ) = 2

1 + exp(−2π/ϵ)
(8.117)
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is known as Sommerfeld enhancement factor.
The total absorption is equal αB(~ω) + αC(~ω):

αexc(~ω) = A0

2πRya2
0
[4 ×

∞∑
n=1

{ 1
(n− 1

2)3 δ(ϵ+ 1
(n− 1

2)2 )] + S2D(ϵ)} (8.118)

Finally, we include the finite line-width effect by introducing the Lorentzian broad-
ening function to obtain

αexc(~ω) = A0

2πRya2
0

4 ×
∞∑

n=1

1
π(n− 1

2)3
γ(

ϵ+ (n− 1
2)−2

)2
+ γ2

+
∫ ∞

0

dϵ′

π

γS2D(ϵ′)
(ϵ′ − ϵ)2 + γ2


(8.119)

8.8 Franz - Keldysh Effect

The Franz-Keldysh Effect (FKE) is a widely known phenomenon observed in the
inter-band absorption spectrum of bulk semiconductors. It is also known as photo-
assisted Zener tunneling. It only occurs in the presence of an external DC elec-
trostatic field F and is related to the bulk DC-Stark Effect. It is similar to the
Quantum-Confined Stark Effect (QCSE) observed in semiconductor Quantum Wells
(QW ).
FKE and QCSE both have their uses in modern electroabsorption modulators.

8.8.1 Solution of the Schrödinger Equation

Consider the case of a single non-interacting particle charge, q in a uniform external
dc-electrostatic field acting along z-direction, F = [0, 0, F ]. It can be described by
the Schrödinger Equation :

(
−~2

2mr

∇2 + qF · r
)

Φ(r) = EΦ(r), (8.120)

where mr = me ∗mh/(me +mh). is the reduced effective mass. One can search the
solution of Eq.(8.120) in the form of:

Φ(r) = eikx+iky

√
A

ΦEz(z), (8.121)

where the z-dependent part of the wave function Φ(z) obeys:
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(
−~2

2mr

d2

dz2 + qFz

)
Φ(z) = EzΦ(z), (8.122)

with a total energy relative to the bottom of the band given by:

E = −~2

2mr

(k2
x + k2

y) + Ez. (8.123)

The solution to the Eq. (8.122) can be expressed in terms of Airy Functions Ai(Z),
satisfying the proper normalization and boundary condition of exponential decay in
the limit z → +∞, where variable:

Z = 3

√
2mrqF

~2 ×
(
z − Ez

qF

)
(8.124)

Electron and hole states in an external electrostatic field F = ẑF can be characterized
by the the wave function for a given set of quantum numbers (kx, ky, Ez) satisfying
Eq. (8.121).

8.8.2 Absorption Spectrum

The inter-band absorption calculation can be obtained from a sum over all electron-
hole states:

α(~ω) = A0
∑

n

|φn(0)|2δ(En + Eg − ~ω), (8.125)

where
A0 = πq2|ê · pcv|2

nrcϵ0ωm2
0

(8.126)

Substituting the sum over all quantum number states by the integration over Ez

continuous spectrum in Eq. (8.121), one can obtain :

α(~ω) = A0 × 2
∑

kx,ky

∫ ∞

0
dEz|φ(0)|2δ

[
~2

2mr

(k2
x + k2

y) + Ez + Eg − ~ω
]
, (8.127)

For typical III-V compound semiconductor zincblende structure we can substitute
into Eq. (8.127) Et = ~2

2mr
[k2

x + k2
y] and use quasi-continuous integration over dEt

instead of sum
2
A

∑
kx,ky

= 2
∫ d2kt

(2π)2 = mr

π~2

∫
dEt (8.128)

One can obtain absorption coefficient from Eq. (8.127) as follows:

α(~ω) = A0

2π
mr

π~2

√
~θF

∫ ∞

η
dηAi2 = A0

2π
mr

π~2

√
~θF [−ηAi2(η) + Ai′2(η)], (8.129)
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conduction band

valence band

Photon

absorption

Figure 8.9: Concept of Franz-Keldysh effect of photo-assisted absorption in bulk
semiconductors in external electrostatic field. The electron and hole wave-functions
become Airy functions, which in external electrostatic field “tunnel" into the band-
gap region allowing for overlap of electron and hole wave-functions and absorption
of photons with energies below the band-gap energy.

where Ai′(η) is the derivative of Ai(η) over η, ~θF = 3
√

~2q2F 2

2mr
, and η = Eg−~ω

~θF

Fig. 8.9 illustrates the net result of applying an electrostatic field on inter-band ab-
sorption spectra. The apparent oscillations above the band-gap energy and enhanced
exponential decay in below-bandgap energy region are signature of the Franz-Keldysh
effect. Fig. 8.10 compares the absorption spectrum with and without the external
field as a result of the Franz-Keldysh effect.

8.9 Interband Optical Transition Model for Quan-
tum Dots

This section formulates the optical gain and spontaneous emission spectra for a
quantum dot device. We consider an ensemble of quantum dots (QDOT) within a
multiple quantum well system. For a self-assembled quantum dots device [44], the
dots are closely stacked up on top of each other and there may be strong quantum
mechanical coupling between the them. In the following formulation, we assume that
the optical spectrum theory for quantum well has been well established [33] and we
shall focus on quantum dots.
The formulas here are similar to those in [45]. In a quantum complex containing
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Figure 8.10: The associated absorption spectrum for finite field F ̸= 0 (solid curve).
The dashed line is the free electron and hole absorption spectrum without applied
electrostatic field.

both wells and dots, the total 2D area; carrier concentrations can be expressed as

n2d = nqw + nqd (8.130)

The QDOT electron concentration can be written as

nqd =
∑
i,s

2Nqd(s)fc(Ei,s) (8.131)

where the sum i is over all energy levels and s is over quantum dots of difference
sizes. Please note the factor of two taking into account spin degeneracy. Nqd(s) is
the areal density of quantum dots with size s. The Fermi function is given by

fc(Ei,s) = 1
1 + exp[(Ei,s − Efn)/kT ]

(8.132)

In general, analytical expression for energy level Ei,s is not available and one has
to solve a 3D numerical eigenvalue problem to find the confined energies and asso-
ciated wave functions ψis for a 3D dot embedded within a well [45]. The APSYS
software includes numerical solutions of quantum states for a general 3D quantum
dot structure.
Having solved the quantum states of the 3D dot/well complex, we proceed to for-
mulate the optical gain spectrum as follows:

gqd(E) =
∑

s

∑
i,j

πq2~M2
bNdq

Eε0c0m2
0nrtcmplx

| < ψis|ψjs > |2gcpGs(E − Eijs)(fc − fv) (8.133)
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where gcp is a multiple dot coupling factor which is used avoid double counting. It is
inversely proportional to the number of coupling dots. For example, if we have two
dots coupling to each other, the number of states will be doubled and we need to
divide by two to avoid double counting. Mb is the bulk matrix element and tcmplx is
the thickness of the well/dot complex. The sum is over all possible confined electron
and hole states and over all dot sizes. The last factor is the population inversion factor
determined by quasi-Fermi levels of electrons and holes. Other symbols have their
usual meanings. The function Gs is a Gaussian broadening function representing
intraband and inhomogeneous broadening defined as follows:

∆ = ~/τ

Gs(E) = 1
∆

√
2π
exp

[
−(E − Eijs)2

2∆2

]
(8.134)

The material gain of the active well/dot complex contains contribution from the
quantum well, i.e., from states above the quantum dot. Depending on the detailed
structure and film quality, the states of the quantum wells may not be perfectly
extended through the while well. One may regard some of the states from the
quantum wells or the wetting layers as being truncated by the quantum dots. Thus
it is convenient to introduce a factor to control or describe the contribution from the
wells as follows

g2d = rqwgqw + gqd (8.135)
where gqw and gqd are optical gain contribution from quantum wells and dots, re-
spectively. rqw is a factor between zero and unity related to the areal ratio of the
well area over that of the dots. The above optical gain formulas are important for
application involving laser diodes (LD) and vertical cavity surface emitting lasers
(VCSEL).
Having found the formula for the optical gain, we can express the spontaneous emis-
sion rate using the relation between optical gain and spontaneous emission [2]. The
spontaneous emission is given as follows:

rsp
qd(E) = q2nrEM

2
b

πε0m2
0~2c3

0
| < ψis|ψjs > |2gcpGs(E − Eijs)Nqd(s)/tcmplxfc(1 − fv) (8.136)

The total spontaneous emission rate should also include contribution from the quan-
tum wells in analogy with the optical gain:

rsp
2d(E) = rqwr

sp
qw(E) + rsp

qd(E) (8.137)

Integration of the above over all photon energies results in the total carrier radiative
recombination rate as a dominant recombination mechanism for many devices based
on forward biased p-n junctions:

Rsp =
∫
rsp

2d(E)dE (8.138)
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The spontaneous emission model is important for applications involving light emit-
ting diode (LED), LD and VCSEL. For LED, the EL spectrum comes from the
spontaneous emission rate in Eq. 8.137 directly while radiative recombination rate
in Eq. 8.138 determines the internal quantum efficiency (IQE). For LD and VCSEL,
the radiative recombination rate is often the dominant leakage mechanism upon
which the threshold behavior depends.
The software also offers a model for a quantum well to include a quantum dot-like
density of states (DOS). This may be used to account for high brightness LED from
InGaN-based MQW where a pure quantum well model can not explain the high
brightness which is thought to come from localized, dot-like states associated with
indium segregation.
The QDOT model in the software usually requires a separate calculation of 3D
quantum states with given shapes such as disk or sphere. The QDOT-like model
skips such details and makes it easier to manage: the model uses a DOS reduction
factor to represent 3D quantum confinements which result in lower DOS than pure
quantum well.
The DOS reduction factor is defined as the ratio of total number of quantum states
in a dot over that in the well. Such a factor many be estimated if shapes of the dots
are known. For a simple case, one may use states in a quantum box against those in
a quantum well.
To make analogy with reduced DOS in quantum well against those in the bulk,
the actual reduction ratio can be estimated if the potential profile of the well is
known. Polarization charge and self-consistent calculation may be enabled in such
QDOT-like states.



Chapter 9

IMPACT IONIZATION AND
TUNNELING

This chapter describes our model of impact ionization and quantum tunneling. We
will show that there is similarity between interband tunneling and impact ionization.
Both result in generation of electron and hole pairs from a reverse biased p-n junction.
Intraband tunneling involves only one type of carrier and the main issue is how to
reconcile the quantum nature of wave mechanics with the classical behavior of drift-
diffusion.

9.1 Impact Ionization Model

9.1.1 Introduction

Impact ionization is defined through the following expression for generation rate (see
Ref. [1]):

G = αnnvn + αppvp. (9.1)
where αn is the electron ionization rate defined as the number of electron-hole pairs
generated by an electron per unit distance traveled; αp is similarly defined for holes.
Both αn and αp are strongly dependent on the electric field.
Equation (9.1) is somewhat difficult to implement in a drift-diffusion model because
the model is not directly concerned with the velocity. Since impact ionization occurs
only in high field region where the drift terms dominates, Selberherr [46] suggested
the use of J/q in place of nv for ease of implementation:

G = αnJn/q + αpJp/q (9.2)

The issue remains how to choose values of αn and αp. Crosslight proposes different
models commonly found in the literature but it is expected that the user will choose
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the most appropriate model for a given situation and provide calibrated parameters
for that model. Some sample values for these parameters are provided below and
may help in the calibration process. The default model settings for the commands
which implement these models usually correspond to data for silicon.

9.1.2 Chynoweth model

A commonly used expression for αn was first proposed by Chynoweth [47]:

α = α∞
n e

− Fcn
F (9.3)

where Fcn is the critical field and α∞
n is the inverse of the mean free path between

impacts when F = ∞. A similar expression can be written for the holes.
This expression was later generalized by Selberherr [46]:

α = α∞
n e

−(Fcn
F )κn

(9.4)

Another improvement to the model was also added in the form of a temperature
dependence for both α∞

n and Fcn. This is expressed in the form a scaling factor γ:

γ =
tanh

(
hωop

2kT0

)
tanh

(
hωop

2kT

) (9.5)

where hωop is the energy of the optical phonon.
The parameters above are often fitted for a specific range of field values: multiple
ranges are often necessary to cover the entire region of interest in a simulation.

9.1.3 Baraff model

Another theory of impact ionization is Baraff’s three-parameter theory which takes
into account the temperature dependence. A convenient formula for Baraff’s theory
was given by Crowell and Sze [48]:

αλ = eg(r,x) (9.6)

g(r, x) = (11.5r2 − 1.17r + 3.9 × 10−4)x2

+ (46r2 − 11.9r + 1.75 × 10−2)x
+ (−757r2 + 75.5r − 1.92) (9.7)

(9.8)
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where
r =< Ep > /EI (9.9)

and
x = EI/qFλ (9.10)

In the above, < Ep > is the optical phonon energy and λ is the optical phonon
scattering mean free path. EI is the ionization energy for which the following formula
was suggested [48]:

EI = 3Eg/2 (9.11)

The temperature dependence of < Ep > and λ is given by

< Ep >= Eptanh
(
Ep

2kT

)
(9.12)

λ = λ0tanh
(
Ep

2kT

)
(9.13)

which follows the same behavior as the temperature scaling in the Chynoweth model.

9.1.4 Lackner model

The Lackner model[49] is a modification of the basic Chynoweth model defined above.
It introduces a correction term 1/Z where

Z = 1 + Fcn

F
e− Fcn

F + Fcp

F
e− Fcp

F (9.14)

As in the Chynoweth model, the temperature dependance of these terms is included
via the γ scaling factor.

9.1.5 Okuto-Crowell model

This model[50] takes into account band bending effects and temperature dependence
through the following empirical model:

α = a(T )F xe−(Fcn(T )
F )y

(9.15)

where both a(T ) and Fcn(T ) have a linear dependence on temperature. The field
exponential terms are usually set as x = 1 and y = 2.
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9.1.6 Dopant-dependant model

This model implements the basic Chynoweth model defined above for a single field
range. It also implements some empirical relations for the dependence of the critical
field on the doping concentration.
Baliga[51] describes this relationship as:

Fcn = F0(ND)x (9.16)

where ND is the donor concentration (in cm−3) and x = 1
8 is typically used.

Sze[1] proposes a different relationship:

Fcn = F0

1 − 1
3 log10

(
ND

1016

) (9.17)

where ND is the donor concentration in cm−3.
In both of these models, only the effects of donor concentration are considered at
this time. The critical field for holes is set to a constant value.

9.1.7 Mean free path model

This is an extremely simplified phenomenological version of the Chynoweth model.
Instead of defining the critical field as a fitting parameter, we define the mean free
path and calculate the critical field assuming the ionization energy is equal to the
bandgap:

Fcn = Eg

λ0
(9.18)

9.1.8 Some Useful Parameters for Impact Ionization Models

Semiconductors used for microelectronics

For Baraff’s model, the following parameters are taken from Sze [1]:
For the Chynoweth model, many possible fits are possible. Overstraeten and de
Man[52] produced one set of data while Grant[53] proposed another. Their results
are summarized in Tables 9.2 and 9.3.
It is clear that the results of the simulation will vary greatly depending on the
parameters that are used. For the sake of comparison, all three of the above models
for silicon are plotted in Fig. 9.1.
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Material Ep electrons (eV) λ0 electrons (Å) Ep holes (eV) λ0 holes (Å)
Si 0.063 76 0.063 55
Ge 0.037 105 0.037 105
GaAs 0.035 58 0.035 58

Table 9.1: Commonly used impact ionization parameters for Baraff’s model

Electrons
α∞

n (×108m−1) Fcn(×108V/m) Field range (×108V/m)
0.703 1.231 0.175 < F < 0.6
Holes
α∞

p (×108m−1) Fcp(×108V/m) Field range (×108V/m)
1.582 2.03 0.175 < F < 0.4
0.671 1.69 F > 0.4

Table 9.2: Overstraeten and de Man’s fit to the Chynoweth model for silicon

Semiconductors used for optoelectronics

The impact ionization coefficients for compound semiconductors used in optoelec-
tronics are less well known than those of silicon. When fitting the experimental data
published in Ref. [1] to the basic Chynoweth model, we obtain the results in Table
9.4.
For InGaAsP material lattice matched to InP, we can use linear interpolation of InP
and In(0.53)Ga(0.47)As.

9.2 Intraband Quantum Tunneling

9.2.1 Introduction

In highly doped heterojunction or Schottky contacts, an important current transport
mechanism is the quantum tunneling effect. In highly doped Schottky contacts
and heterojunctions, the quantum barriers are so thin that significant amount of
tunneling current goes through the barriers. It is also the key transport mechanism
in a realistic Ohmic contact which is essentially a highly doped Schottky contact.
We derived the formulas for tunneling current at the top of the barrier in subsection
9.2.2. The formulas are generalized to an arbitrary point in subsection 9.2.3. The
tunneling transparencies for a few important cases are given in subsection 9.2.4.
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Electrons
α∞

n (×108m−1) Fcn(×108V/m) Field range (×108V/m)
2.6 1.43 F < 0.24
0.62 1.08 0.24 < F < 0.53
0.5 0.99 F > 0.53
Holes
α∞

p (×108m−1) Fcp(×108V/m) Field range (×108V/m)
2.0 1.97 0.2 < F < 0.53
0.56 1.32 F > 0.53

Table 9.3: Grant’s fit to the Chynoweth model for silicon

Material α∞
n (×108m−1) Fcn(×108V/m) α∞

p (×108m−1) Fcp(×108V/m)
GaP 7.38 2.02 7.38 2.02
InP 8.36 1.55 1.57 0.994
In(0.53)Ga(0.47)As 34.4 0.833 125 1.02
GaAs(0.88)Sb(0.12) 0.0997 0.25 0.092 0.316

Table 9.4: Impact ionization rates for some compound semiconductors

Finally, we discuss the numerical treatment of quantum tunneling in drift-diffusion
model in subsection 9.2.5.
We use the standard WKB theory to give formulas for the transparency in subsection
9.2.3. Discussion of implementation of the tunneling current is given in subsection
9.2.4.

9.2.2 Tunneling current at top of barrier

Analytical formulas incorporating tunneling effects at the top of the potential barrier
were derived by Grinberg et. al. [54] whose approach we shall follow here. Similar to
[54] we assume that Boltzmann statistics can be used because the quasi-Fermi level
is usually much lower than the top of the barrier. We use the Schematic in Fig. 9.3
and consider the drift current on top of the barrier Xm

J = qvnm + qvnmαT (9.19)

where αT is the tunneling coefficient to be derived. The velocity v is dependent on
mobility or the thermionic emission properties at the top of the barrier.
Here the basic understanding is that the quasi-Fermi level is relatively flat around
the barrier such that the energy distribution of the carriers can be expressed by a
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Figure 9.1: Electron and hole impact ionization coefficients of silicon for different
models. Baraff is for Baraff’s three-parameter theory; OM is for the parameters
of Chynoweth’s formula from the work of Overstraeten and de Man; Grant is for
parameters of Chynoweth’s formula from the work of Grant. n and p are used to
denote parameters for electrons and holes, respectively.

simple Boltzmann function (or exponential function). We assume that the carriers
with energy between U0 and Um are capable of tunneling through the barrier and
appears at the other side of the it, giving rise to the additional term in Eq. (9.19).
For carriers with energy greater than Um, they are accounted for by the standard
drift-diffusion model.
We define an energy dependent carrier distribution nE such that

n =
∫
nEdE (9.20)

Using Boltzmann distribution

nE = g(E)exp
(
Um − E

kT

)
(9.21)

where g(E) is the density of states which is a much slower function of energy than
the exponential function. For numerical convenience, we ignore the slower energy
dependence and replace it by an average constant nEm so that Eqn. 9.20 still holds.
As we shall see later, our final results do not depend on the choice of constant nEm.
As we are able to express the energy distribution as follows

nE = nEmexp
(
Um − E

kT

)
(9.22)
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the tunneling current can be expressed as

Jtun =
∫ Um

U0
qvnEDT (E)dE (9.23)

= qvnEm

∫ Um

U0
exp

(
Um − E

kT

)
DT (E)dE (9.24)

where DT (E) is the energy dependent tunneling transparency. We note that the
carrier density at the top of the potential barrier can be expressed in term of nEm:

nm =
∫ ∞

Um

nEmexp
(
Um − E

kT

)
dE (9.25)

= nEmkT (9.26)

Therefore the tunneling current can be written as

Jtun = qvnm(kT )−1
∫ Um

U0
exp

(
Um − E

kT

)
DT (E)dE (9.27)

The tunneling coefficient αT m at the top of the barrier is given by

αT m = (kT )−1
∫ Um

E0
exp

(
Um − E

kT

)
DT (E)dE (9.28)

9.2.3 Tunneling current at an arbitrary point

In a 2D simulation, all physical quantities vary in space. We have to assume that
the tunneling current also varies in space to make the model compatible with the 2D
drift-diffusion model. In another word we have to decide what the tunneling effect
is on the current at an arbitrary point away from the top of the barrier. It would be
wrong to assume that the same tunneling current appears everywhere in the whole
device, although this is the simple case for many textbook tunneling examples.
We must point out that the treatment of tunneling mechanism we give here is of
semi-classical nature. The reason is that quantum tunneling assumes the carrier is
described by a wave function and can not be localized accurately, while the drift-
diffusion model assumes that the carriers are localized and have a definite spatial
distribution. Therefore, we should try to satisfy both requirements by choosing a
proper area for the tunneling model. If the area of consideration is too small, it
conflicts with the wave nature of the problem. If the area is too large, the model
contradicts with particle nature of drift-diffusion model. It is clear that the transport
mechanism at a point far from the quantum barrier is unrelated to the quantum
tunneling.
Again we assume that only those carriers with energy between U0 and Um contribute
to tunneling. We wish to relate the tunneling current at an arbitrary point to the
local current density.
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We give the distribution function at an arbitrary point x,

nE(x) = nExexp

(
U(x) − E

kT

)
(9.29)

The tunneling current can be expressed by

Jtun =
∫ Um

U0
qvnE(x)DT (E)dE (9.30)

= qvnEx

∫ Um

U0
exp

(
U(x) − E

kT

)
DT (E)dE (9.31)

Using the same derivation as in the previous subsection, we re-write the current as

Jtun = qvnEx

∫ Um

U0
exp

(
U(x) − E

kT

)
DT (E)dE (9.32)

= qvn(x)(kT )−1
∫ Um

U0
exp

(
U(x) − E

kT

)
DT (E)dE (9.33)

= qvn(x)(kT )−1exp

(
U(x) − Um

kT

)∫ Um

U0
exp

(
Um − E

kT

)
DT (E)dE(9.34)

= qvn(x)exp
(
U(x) − Um

kT

)
αT m (9.35)

The above formula suggest that all we need to do is to multiply the tunneling coeffi-
cient at the top of the barrier by a Boltzmann exponential factor exp

(
Um−E

kT

)
. This

is consistent with our common sense that in regions farther away from the barrier,
the tunneling effect is less pronounced.

9.2.4 Tunneling transparency

In the current version of the our simulation program, we have included the following
models for the tunneling transparency.

• 1. Transparency for a rectangular barrier. Following Ref. [55], for a rectangular
barrier of barrier height Um and thickness d0, we have the following exact
solution for the tunneling transparency:

D(E) =

1 +
sinh2

(√
2m∗(Um−E)

~2 a
)

4(E/Um)(1 − E/Um)


−1

(9.36)
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• 2. Abrupt heterojunction barrier. One side of the potential barrier has a
vertical wall and the other side has a profile described by a quadratic formula
[56]. The formula was worked out and is given as follows [54] [56] :

D(E) = exp
(

−Um

E00

[√
1 −Rx + 1

2
Rxln(Rx) −Rxln(1 +

√
1 −Rx)

])
(9.37)

E00 = ~q
2

√
| Nd −Na |

m∗ε
(9.38)

Rx = E/Um (9.39)

where Na and Nd are the doping concentrations for acceptors and donors,
respectively. Um and E are measured from the lowest point of the potential
profile on the side with a smooth profile.

• 3. Arbitrary barrier with smooth potential profile on both sides. The formula
derived from WKB theory can be found in Ref. [57].

D(E) = exp

(
−2
~

∫ b

a

√
2m∗[U(x) − E]dx

)
(9.40)

Please note that the requirement for the above formula is that the potential
profile must be smooth. Significant error may arise if this requirement is not
satisfied. For example, we compare the exact solution with the WKB theory
in Fig. 9.2 for a rectangular barrier with abrupt vertical wall on both sides.
We find that substantial error can result for such a case.

• 4. Propagation matrix method may be used to treat arbitrary barrier. This
method cuts up the potential barrier into piece-wise constant and find the
analytical solution in the form of propagation matrices. This method is rather
accurate but the computation time required is relatively long.

9.2.5 Numerical evaluation of tunneling current

In a 2D simulation of semiconductor, the evaluation of the tunneling current is not
simple since the formulas we developed are all one-dimensional. We suggest the
following steps for treating the tunneling current:

• 1)Identify a significant potential barrier. This usually occurs in Schottky con-
tacts, heterojunctions and between quantum wells. The user should mark
down a rectangular area with which the tunneling current distribution is to be
calculated.
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Figure 9.2: Comparison of the transparency from the WKB with the exact solution
for a rectangular potential barrier. The barrier thickness is 20 Åand the barrier
height is 0.2 eV. The relative effective mass of the carrier is assumed to be 0.2.

• 2)Select a one dimensional segment for the calculation. Since the potential dis-
tribution is 2D, selection of the 1D segment reduces the amount of calculation
involved.

• 3)A current enhancement factor 1 + αT is calculated along the selected 1D
segment.

• 4)Multiply current flow component along the 1D segment with 1 + αT dis-
tribution within the rectangular area. For a current flux between two nodes
in an arbitrary direction with an angle θT from the 1D segment, we multiply
1 + αT cos(θT ).

9.2.6 Coupled MQW and intraband tunneling

We wish to discuss the relation between coupled MQW and intraband tunneling.
The two models are closely related to each other. They both come from the solution
of the same quantum mechanical wave equation.
The quantum levels of a coupled MQW are solutions of confined states of the wave
equation whereas intraband tunneling deals with solution of unconfined states. The
carriers tunnel through the barriers of an MQW system via standing waves of con-
fined states while traveling waves are used to describe the intraband tunneling effects
in the above subsections.
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Figure 9.3: Schematic for the potential barrier

In the tunneling model, the carrier states are assumed to be unconfined on both
sides of the barrier. One must not use both models to describe the same quantum
state. For example, if confined states are already used to described a coupled MQW
system with standing waves distribution between the wells, one must not apply the
above tunneling model to treat carrier transport between the wells within the same
region.
Similarly in the case of quantum-MOS, the quantum states in the triangular well
under the gate have already been treated as confined (or partly confined if quantum
wave leakage to gate is considered) states. Since the penetration of the wave function
from the confined states into the oxide/gate has already been considered, there is
no need to apply tunneling model to these confined states. Alternatively, if direct
tunneling method is used to treat the current flow through the barrier between
confined states in the triangular well and the unconfined states at the gate of an
MOS, the the carriers penetrating the oxide must be removed from the transport
equations to avoid double counting the tunneling current.

9.2.7 High-resistance heterojunction and quantum tunnel-
ing

We consider a situation of current injection in the classical drift-diffusion model when
high doping is used around an abrupt heterojunction. The peak of the potential
barrier depletes the mobile carriers while ionized dopants generates a high internal
electric field layer. The high internal field creates a steep potential profile which
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Figure 9.4: Band diagram of a highly doped GaAs/InGaAlP junction in equilibrium.

pushes the barrier higher. Since all mobile carriers are depleted within the barrier,
the resistivity of this barrier layer is extremely high. A small current will create
a large voltage drop. Worse still, if the carriers flow from the abrupt side of the
barrier, the abrupt potential profile prevents any carriers to fill up depletion layer
from the abrupt side while the applied bias adds to the internal field and further
depletes the other side of the barrier and hence widens the depletion layer. As a
result, it becomes extremely difficult to inject any amount of current into the device
with even tens of volts.
To illustrate the above barrier-depletion/voltage-drop effect, we simulate (using drift-
diffusion model only) a highly n-doped junction of GaAs/InGaAlP with electrons
flowing from the side of GaAs (smaller bandgap). The ideal abrupt junction forms
a sharp barrier as shown in Fig. 9.4 in equilibrium. Fig. 9.5 illustrates the narrow
depletion layer in the plot of electron concentration. As voltage biased is used to
inject barriers from the side of GaAs, the carriers are unable to flow into the depletion
layer while the applied field adds to the internal field to create a wider depletion layer
as indicated in Fig. 9.6. The corresponding band diagram shows a large voltage drop
in the widened depletion layer (see Fig. 9.7).
In reality, a huge voltage drop is not observed in a highly doped heterojunction due
to the following reasons. First, the heterojunction is never ideally abrupt and we can
conclude that the high barrier in Fig. 9.4 is exaggerated. It can easily be shown in
a simulation that the barrier height is extremely sensitive to the abruptness of the
junction. Secondly, the quantum tunneling effect makes it easy for mobile carriers
to go over the barrier.



188 IMPACT IONIZATION AND TUNNELING

 15

 15.5

 16

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 0  0.05  0.1  0.15  0.2

Lo
g 

(E
le

c_
C

on
c/

cm
^3

)

Distance (micron)

File:tunnel.plt

Figure 9.5: Electron concentration distribution of the heterojunction in equilibrium.
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Figure 9.6: Electron concentration distribution of the heterojunction at a bias of five
volts.
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Figure 9.7: Band diagram of the heterojunction at a bias of five volts.

The analysis above lead us to propose the following approaches of modeling highly
doped abrupt junctions. If we really wish to have a realistic model of transport
through a highly doped junction, we should specify abruptness of the junction accu-
rately based on material interface quality analysis/experiment. Then we are ready
to apply the quantum tunneling model described in this section. We find that using
tunneling on ideally abrupt junction usually underestimates the amount of current
and still results in a voltage drop larger than that observed in experiment. We thus
conclude that ideally abrupt junction model is inherently flawed under high doping
condition.
On the other hand, if we wish to avoid dealing with the issues of deciding on the
abruptness and using tunneling altogether, we can artificially grade the junction over
a distance large enough to avoid forming a barrier but small enough not to disturb
other part of the device. For example, if the junction in the above example is far
away from the active region of a laser diode, it is safe to grade the junction over a
distance of 100 Åwithout upsetting the active region while avoiding the formation of
the barrier totally.

9.3 Interband Tunneling in Semiconductors

9.3.1 Theory

Consider the case of a direct tunneling between valence and conduction bands of
semiconductor in external applied electric field. A p-n junction designed for such
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Figure 9.8: Schematic illustrating the Zener tunneling process.

a purpose is commonly referred to as a tunnel junction (TJ) or an Esaki junction.
Such type of tunneling is also referred to as Zener tunneling as in a Zener tunneling
diode under reverse bias. We assume a direct gap semiconductor with a parabolic
band with a minimum or a maximum at a central Γ-point at ( k=0).
When strong external electric field is applied to a semiconductor, tunneling of elec-
trons between conduction and valence band can take place generating electron-hole
pairs. Newly created carriers will drift in a strong electric field and can result in
impact ionization. Thus both impact ionization and Zener tunneling electron-hole
generation rate should be included in drift-diffusion current solver together.
Similar to impact ionization, generation rate originating from Zener tunneling can
be treated in a local electric field approximation, which is a reasonable approxi-
mation considering the tunneling distance is typically less than 100 Angstrom for
a semiconductor of 1eV bandgap energy. Zener tunneling is usually observed for
semiconductors at a field greater than F=106 V/cm.
Consider the electron state of energy E, tunneling from the valence to the conduction
band as presented in Fig 9.8. Within the forbidden bandgap where E obeys Eg > E
> 0, we have decayed wave function with imaginary wave vector kx = iκ.
Neither the exact dependence of kx, nor the potential barrier that the tunneling elec-
tron experiences, upon distance, x, is known through the forbidden gap. Similarly the
effective mass remains an unknown and questionable parameter, while electron tun-
nels through the forbidden gap. Nevertheless, we can usually assume the tunneling
mass takes a value somewhere between the conduction band mass and valence band
mass. Following the derivation of band-to-band tunneling current in Refs. [58], [59]
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and [60], we will calculate the probability of tunneling within WKB approximation
as follows:

D = exp[−2J(E||)] (9.41)

where:
J(E||) =

∫ x2

x1
κ(x)dx. (9.42)

κ(x) is the decay constant of the tunneling electron wave function, given by:

~2κ2/2m∗ = |E|| − U |, (9.43)

where E||, and E⊥ are electron kinetic energies in directions along and perpendicular
to the tunneling direction, respectively.
After some derivation that are explained in Ref. [60], we can obtain the tunneling
probability as follows:

D = exp(−2J) = P0exp(−E⊥/E) (9.44)

where:
J(E||) =

∫ x2

x1

∣∣∣(2m∗/~2)[(Eg/2)2 − (εc)2]/Eg + E⊥

∣∣∣ 1
2 dx (9.45)

and

P0 = exp

πm∗ 1
2 (Eg)3/2

2(2) 1
2 qF~

 = exp
(

−Eg

4E

)
(9.46)

E = (2) 1
2 qF~

2πm∗ 1
2 (Eg) 1

2
(9.47)

P0 has a meaning of the tunneling probability with a zero perpendicular (to x-
direction) momentum. E is a measure of significance of perpendicular momentum
range in Eq. (9.45). In other words, if E is small, the only electrons that can tunnel
through the bandgap barrier are the electrons with perpendicular momentum near
zero. Typically E is in a range of 5-100 meV. The effective tunneling mass is defined
here, as in Ref. [60]:

m∗ = 2mcmv/(mc +mv) (9.48)

9.3.2 Application to reverse biased p-n junction diode

Next formula for band-to-band tunneling will be applied to calculations of a tunneling
current density for a reverse biased n+ p+ junction. Following derivations in [60],
consider the situation of a reverse biased p-n junction as in Fig. 9.9.
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Figure 9.9: Schematic of a reverse biased Zener diode.

Let dE be an energy increment corresponding to incremental dx, then: dE = qFdx.
If electron tunnels across the junction at energy E , the perpendicular motion kinetic
energy must obey E⊥ < E. The incident flux per unit volume with perpendicular
momentum ranging from k⊥ to (k⊥ +dk⊥) is:

Φ = (q2F/~)·(1/4π)3·(2πk⊥dk⊥)·fE(E) (9.49)

where fE(E) is a Fermi function. Using the relation E⊥=h2k⊥
2/2m∗ we can obtain:

Φ = q2Fm∗/(2π2~3)fE(E)dE⊥ (9.50)

The tunneling flux must include also the necessity of final electron state being unoc-
cupied, thus has to be multiplied by (1 - f’E(E)) factor. As a result, the differential
current density of a tunneling flow becomes:

dI/A = q2Fm∗/(2π2~3)P0exp(−E⊥/E)[fE(E) − f ′
E(E)]dE⊥dx, (9.51)

where dI/A = (incident flux) × (probability of tunneling ) × ( volume).
We can also modify the Eq. (9.51) using electrostatic force qF = dE/dx thus :

dI/A = qm∗/(2π2~3)P0exp(−E⊥/E)[fE(E) − f ′
E(E)]dE⊥dE (9.52)

This current needs to be integrated with respect to E⊥ in the limits of 0 < E⊥ <Emax:

Emax = min(Evp − E), (Ecn − E) (9.53)
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However, we simplify the integration of equation (9.52) by approximation of Emax to
become an infinity, which is justified as long as E>> E.
As typically E ≈ 5-50 meV, the contribution to the tunneling process of those elec-
trons with energy E ≈ E can be neglected due to the small magnitude of an electric
field near the edges of depletion layer of reverse biased p-n junction ( See Fig. 9.9).
Thus integration of equation (9.52) gives:

dI/A = qm∗/(2π2~3)P0E[fE(E) − f ′
E(E)]dE (9.54)

or using dE = qF dx,

dI/A = q2Fm∗/(2π2~3)P0E[fE(E) − f ′
E(E)]dx (9.55)

or approximately:
dI/A = q2Fm∗/(2π2~3)P0Edx (9.56)

where we used [fE(E) - f’E(E)] =1 for the range of reverse p-n junction.
Equation (9.56) can be rewritten in terms of e-h pair generation rate (in units:
m−3s−1):

GZen(F ) = dI/A/(qdx) = qFm∗/(2π2~3)P0E (9.57)

where

P0 = exp

πm∗ 1
2 (Eg)3/2

2(2) 1
2 qF~

 = exp
(

−Eg

4E

)
(9.58)

and

E = (2) 1
2 qF~

2πm∗ 1
2 (Eg) 1

2
(9.59)

This expression for a local field dependent generation rate can be subsequently sub-
stituted into the drift diffusion equation solver as a carrier generation term which
can be activated using the command zener.

9.3.3 Non-local model and forward biased tunnel junction

The model we developed in previous subsections expressed was converted into a vol-
ume integral over the whole junction area for each mesh point, making it a local
carrier generation term in the drift-diffusion equation. We find that such an im-
plementation may suffer from numerical non-convergence near zero bias since the
generation term does not have a zero-current offset mechanism. Basically, the high
field within the junction causes a high generation rate even at zero bias. With-
out current flow to balance out the carrier generation, the program may run into
convergence difficulties.
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We have developed an alternative and more stable implementation of the TJ model
based on a form of direct flow between two reference points on either side of the TJ.
These reference points must be closely spaced (∼10 nm) so that the quantum effects
are important but they must also be some distance away from the junction itself
so that the band profile is almost flat. This minimizes the effect of the junction on
the carrier densities used to compute the tunneling current. This model has been
implemented in the command tunnel_junc and can be activated by setting the
parameter use_physical_model.
The formulas for forward biased tunnel junction take the same form as those for
the reverse one except that the approximation we made in Eq. (9.52) for infinite
integration range for dE⊥ is no longer in use. Furthermore, the Fermi occupancy
factor [fE(E) − f ′

E(E)] is much smaller than unity and must be carefully evalu-
ated. The tunneling model for forward-biased junctions is also implemented using
tunnel_junc.
An application note on forward TJ is warranted here. We find that the forward
current behavior is strongly affected by the potential and current injection conditions
surrounding the TJ area. For many cases of non-linear injection condition, the
negative resistance (N-shape) expected for forward TJ does not appear. The reason is
that non-linear injection (such as through an n-i junction or a Schottky barrier) may
overshadow a narrow and weak N-shape peak. To produce the negative resistance
behavior from the software, we should first start with a pure TJ without perturbation
of external doping profile and contact effects. For example, we should start with a
TJ where the n-side and p-side are reasonably uniform in doping and with ohmic
contacts on both sides. Such ideal conditions almost always produce an N-shape in
forward I-V curve given sufficient carrier population inversion across the junction
and sufficiently small voltage bias steps. A more complete device can be built up
from this TJ one step at time, maintaining the N-shape at each step.

Other tunneling models

Other interband tunneling models (e.g. phonon-assisted tunneling) have been im-
plemented in the software; see tunnel_junc for a list of supported models. Trap-
assisted tunneling can also be defined with trap_assisted_tunneling.



Chapter 10

FINER POINTS ABOUT
QUANTUM WELLS

10.1 Band Offset In Strained Quantum Well

10.1.1 Bulk band alignment

Before discussing QW band offset, it is helpful to review how bulk band alignment
works in Crosslight device simulation. Simply put, for bulk layers the affinity state-
ment controls everything.

Vacuum

Ec1

Ev1

Ec2
Ec3

Ev2

Ev3

VMR ref.

VBO2

VBO1
strain

strain

Figure 10.1: Schematic illustrating the alignment of bulk bands in Crosslight. The
VMR line represents the energy reference value used in Ref. [61].

In Fig. 10.1 we show a schematic of the band alignment for 3 materials: materials
#1 and #2 are unstrained while material #3 is a strained version of material #2. In
the Crosslight system, the vacuum level is taken as an absolute energy reference and
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the position of any bulk conduction band is fixed once the affinity χ is defined. If a
bulk layer is strained, then it is the responsibility of the user to include the strain-
induced shift in the affinity declaration for that layer (i.e. χ3). It is important to
note that this rule applies to both passive and optically active bulk materials, even
if the latter uses an additional macro to define parameters needed for stand-alone
gain calculations.
Readers experienced in device modeling may have noticed that many references that
list semiconductor material parameters do not provide the affinity. This is the case
for the excellent review article by Vurgaftman, Meyer and Ram-Mohan [61] which
instead, defines the valence band offsets (VBO) for various unstrained materials.
As Fig. 10.1 makes clear, since both the vacuum level and this reference energy
are absolutes then conversion between the two conventions for any given group of
materials is straightforward once a single affinity value (e.g. that of the substrate)
has been fixed.
After the conduction band is set, Crosslight tools define the valence band position(s)
by adding the bandgap to the affinity value. For passive layers, a single hole band
with a reduced effective mass is used for the carriers. For bulk active layers, multiple
band valleys may be used if they are needed to compute the gain and spontaneous
emission spectra.
Note that if a bulk passive layer is strained, the strained bandgap may be required
to correctly position the valence band; this is not supported in all material systems.
See wurtzite_offset_model and zincblende_offset_model for more details.

10.1.2 Band offset in QW

How are band offsets used ?

Band offsets in quantum well regions are used in two ways. The first is for the
Schrödinger solver: under flat band conditions, the barrier heights (confining poten-
tials) for the electrons and holes are needed to solve the problem and the absolute
band positions do not matter. However, as part of the finite difference discretization,
a zero potential reference is defined at the first mesh point of the first quantum well
inside the quantum-confined region and the offset is applied to the leftmost barrier.
The second way in which band offset is used is when the QW region is added to the
full device simulation: in this case, the absolute position of the QW band edges is
needed in order to do the alignment with the other layers. For this step, Crosslight
tools use the relative barrier heights from this first stage and position the QW band
edges using the bulk band edges of the outer barrier. This “cut & paste” operation
preserves the barrier height from the Schrödinger solver in the full device simulation.
It is therefore convenient if the outer barrier of a MQW region is unstrained in
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order to correctly define the absolute band position of the MQW. Otherwise, a
strained bulk affinity should be used to correctly define both the barrier height
and the absolute position of the band edges. This situation is known to occur
in strain-balanced MQW regions (tensile barrier/compresive well) based on In(1-
x-y)Ga(x)Al(y)As .

How is the band offset defined ?

max

∆ Ec
u

∆ Ev
u

HH

LH

LH

HH

∆ E
v

Figure 10.2: Schematics illustrating the definition of band offset.

In a quantum well without strain in the well or the barrier, the band offset is easily
defined as the fraction of bandgap discontinuity in the conduction band:

Off = ∆Ec/(∆Ec + ∆Ev) (10.1)

However when there is strain in the quantum well and barrier, there are many ways
of defining the band offset. Three popular methods are explained below:

• 1) Use of unstrained bandgap discontinuity:

Off = ∆Eu
c

∆Eu
c + ∆Eu

v

(10.2)

where superscript u is used to denote unstrained quantities (see Fig. 10.2). This
convention is used by [15] and is most convenient for theoretical derivations,
since the valence band potential can be written as one minus band offset times
unstrained bandgap difference and then adding the additional strain terms.
This band offset definition is also the one which most closely relates to the
electron affinity of the material.

• 2) Use of HH valence band and the strained conduction band edge:

Off = ∆Emin
c

∆Emin
c + ∆EHH

v

(10.3)
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where ∆Emin
c is defined as (for zincblende):

∆Emin
c = Min(EΓ

cb, E
L,X
cb ) −Min(EΓ

c , E
L,X
c ) (10.4)

and the subscript b has been used to denote quantities in the barrier.
For zincblende, this secondary band valley (L or X) may be important at
high injection levels (inter-valley transfer). For wurtzite though, no additional
conduction band is considered.

• 3) Use of the highest valence band and the strained conduction band edge:

Off = ∆Emin
c

∆Emin
c + ∆Emax

v

(10.5)

where for zincblende materials:

∆Emax
v = Max(EHH

v , ELH
v ) −Max(EHH

vb , ELH
vb ) (10.6)

and for wurtzite materials:

∆Emax
v = Max(EHH

v , ELH
v , ECH

v ) −Max(EHH
vb , ELH

vb , ECH
vb ) (10.7)

Here again, the subscript b has been used to denote quantities in the barrier.

By default, Crosslight tools always use method #3. The advantage of using this
method is that the bands in question are the ones which contain most of the carriers;
it is therefore believed that this value will best reflect experimental estimates of band
offset. This default behavior can be changed with the wurtzite_offset_model
and zincblende_offset_model commands. However, the above commands only
change the bandgap value used to calculate the band offset: the strained conduction
band edge is still used. Put in other words, the band_offset value provided to the
simulation should already include any strain-induced shifts in the conduction band.
Users who prefer to use method #1 to define the band offset should explicitly define
the strained conduction band position (χ3) in the affinity statement as described
above. Thus, the affinity statement should define both the unstrained band offset
and the explicit shift in the conduction band. This strained conduction band position
can then be enforced in the MQW region by invoking use_bulk_affinity which
will override the band_offset statement.

How does band offset work in a complex well region ?

As shown in Fig. 8.1, the basic QW model consists of symmetric and isolated quan-
tum wells. In such a case, the band offset used on the left side is also applied on the
right.
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For a single complex well region (using material parameter macros labeled with a
“cx-” prefix) barrier symmetry is not guaranteed but we still use a single band offset
fraction for that well. The resulting band discontinuity may therefore be asymmetric
if the barrier bandgaps are different; this behavior can further be controlled by using
the band_discont and band_discont_right statements to directly specify the
band discontinuity on either side of the well.
If multiple wells are considered as part of the same quantum-confined region, the
default behavior of Crosslight tools is to assume that the MQW profile consists of a
barrier/well/barrier/well/...../barrier layout; that is, even-numbered layers are con-
sidered to be wells. The band offset rules for a single complex well are then applied
on each well in the complex, going from left to right; for each well, the band discon-
tinuity is calculated using the offset fraction for that well and the bandgap difference
between well and barrier. This is true even if the inner_bar_gain statement is
used: this statement only affects the gain profile and the partition of the carriers,
not the band alignment.
So in this complex MQW case, we start by defining the position of the first well (layer
#2) relative to position the first barrier (layer #1) and then the band discontinuity
on the right defines the position of the second barrier (layer #3). The second well
(layer #4) is then positioned relative to the previous barrier (layer #3) using the left
band discontinuity for that well; we then fix the next barrier’s position (layer #5)
using the right band discontinuity. This process continues until we reach the end of
the complex MQW.
The band offset/band discontinuity must therefore be defined in the macros for all
well layers; these same parameters are ignored in barrier layers. Odd/unexpected
profiles may therefore be created when mixing different materials or wells having dif-
ferent offset/discontinuity values; this system also creates complications when defin-
ing graded well profiles where “wells” are not in even-numbered positions.

How does band offset work in the SCXLIB system ?

As introduced in Sec. 3.5.1, the new simplified complex library system (SCXLIB)
provides an alternate method of defining complex MQW regions. In this system, all
of the layers tagged with model=quantum_well are considered to be wells and the
un-tagged layers on either side serve as the barrier materials.
Starting with v.2016, a new band alignment system has been designed for this system:
the position of the conduction band in each well is calculated using the band offset
coefficient for that well and the bandgap difference between that well and the first
barrier. Since all the inner layers of the MQW are considered wells in this system,
this positions all of the wells using a common reference.
The only layer which has an ambiguity is the right barrier. By default, this is left un-
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touched in the SCXLIB system and this layer is exempted from the “cut & paste” op-
eration we previously mentioned. However, this behavior can be changed by issuing
either the barrier_correction_by_qw_model or force_last_barrier_offset
statements. In that case, the right barrier is either offset by a set amount or simply
follows the same rules as for the other QW regions. Since the older macro syntax
for both complex wells and basic QWs previously overrode the right barrier position,
using one of these statements is recommended in most cases.
As always, users may also rely on the use_bulk_affinity statement to correctly
position all of the layers inside a MQW region; this statement applies to both the
old complex MQW macro syntax and the new library syntax.

10.1.3 Definition of strain terms

A full description of the strain-induced terms is beyond the scope of this section;
it can easily be found in the literature and the exact form depends on the crystal
structure (zincblende or wurtzite). Users who wish to read more on this topic are
invited to read the many papers by S.L. Chuang [15, 33, 62–66].
For now, it suffices to say in zincblende materials the strain is described by both
a hydrostatic term (δEhy) and a shear term (δEsh). The hydrostatic term is split
between the conduction and valence bands while the shear term splits the HH and
LH bands. This results in different bandgaps for the HH and LH valleys in strained
layers[33]:

EHH
g = Eu

g − δEhy + 1
2
δEsh, (10.8)

ELH
g = Eu

g − δEhy − 1
2
δEsh (10.9)

For band alignment purposes, the exact split of the hydrostatic term is needed. In
the software, this is set by a fraction which describes how much of the hydrostatic
shift should be applied in the valence band. By default, this value is set as av

a
= 1

3
but in reality, this ratio depends on the material system; it should adjusted in either
active_reg or set_active_reg for optimal simulation results.
In wurtzite materials the conduction and valence band deformation potentials are
explicitly defined in the material macro (e.g. ac_well, d1_well, etc...). This topic
shall be addressed in more detail in Chap. 13.
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10.2 Intraband Relaxation Times and Gain Broad-
ening

10.2.1 Introduction

The influence of line shape broadening on optical gain can be described by

G(~ω) =
∫ ∞

E′
g

g(Ecv)L(~ω − Ecv)dEcv (10.10)

here G(~ω) is the gain coefficient as a function of photon energy ~ω. L(~ω−Ecv) is
the lineshape broadening function characterized by the intraband relaxation. This
lineshape function is often represented as

L(~ω − Ecv) = 1
π

~/τin

(~ω − Ecv)2 + (~/τin)2 , (10.11)

where τin is called the intraband relaxation time, which is regarded as the reciprocal
intraband scattering probability, and ~/τin is the broadening factor we will study in
this section. Previously, we just assume τin to be a constant of the order of 10−13

seconds. The lack of accurate model for this parameter causes significant uncertainty
in the optical gain.
Our theory here is limited to the case of intraband relaxation due to carrier-carrier
and carrier-LO-phonon scattering in quantum wells. For details, please consult ref-
erences [67] and [68].
We consider optical transition between subband energy Evik∥ in the valence band
and Ecjk∥ in conduction band. The energy is expressed as

Ecik∥ = Eci + ~2k2
∥/2mc (10.12)

Evjk∥ = Evj + ~2k2
∥/2mv (10.13)

where the (Eci and Evj) are the quantized energy levels, mc and mv are the effective
masses. k∥ is the wave vector parallel to the well interface.
When discussing scattering mechanisms occurring in conduction band and valence
band, it is convenient to introduce broadening factors Γc and Γv, respectively. Ac-
cording to theory of Green’s function [67],[68], these are related to the decay rate of
amplitude of the wave function. For example, the expectation value of the amplitude
of the electron wave is approximated as ψc ∝ exp(−Γct/~) in the conduction band,
including thermal and quantum- mechanical statics. Thus, the number of electrons
at this energy level decays as exp(−2Γct/~). The decay rate in the valence band is
obtained similarly. Therefore, the broadening factors are related to the intraband
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relaxation times (a measure of particle decay probability) in the conduction and
valence bands (τc and τv) by

~/τc = 2Γc(Ecik∥) (10.14)
~/τv = 2Γv(Evjk∥) (10.15)

In optical transition, the dipole moment between electron and hole is proportional
to ψcψ

∗
v ∝ exp[−(Γc + Γv)t/~]. Thus, the intraband relaxation time determining the

spectral broadening, which is the relaxation time of the dipole moment is obtained
as

~/τin = Γv + Γc

= (~/τc + ~/τv)/2 (10.16)

In the following subsections, broadening factors ~/τc and ~/τv determined by carrier-
carrier and carrier-LO phonon scattering are calculated, which are dominant in
lightly-doped compound semiconductors.

10.2.2 Carrier-Carrier Scattering

The intraband relaxation time in the conduction band (τc) due to carrier-carrier
scattering is calculated from the imaginary part of self energy using the Green’s
function method[67]. In the present analysis, the calculation is based on second-
order self energy. Only the product between two matrix elements with the same the
momentum change is taken into account in various terms of the self energy.
In this treatment, ~/τc is calculated by Fermi’s Golden Rule and the spectral broad-
ening factor for scattering in conduction band is written as

~/τc = (2π)
∑
k′

∥p′
∥

∑
ij

| Vcn(k∥k
′
∥, ii

′jj′) |2 ·Ac(Bc + Cc) (10.17)

with

Ac = δ(Ecik∥ + Enjp∥ − Eci′k′
∥

− Enj′p′
∥
) (10.18)

Bc = fc(Eci′k′
∥
)fn(Enj′p′

∥
)
[
1 − fn(Enjp∥

]
(10.19)

Cc =
[
1 − fc(Eci′k′

∥
)
] [

1 − fn(Enj′p′
∥
)
]
fn(Enjp∥) (10.20)

where the suffix n refers to the conduction (n = c) or valence (n = v) band, i, i′, j,
and j′ are subband numbers, the δ-function represents the energy conservation, and
Vcn is the matrix element of the interaction given below.
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Figure 10.3: Schematic illustration of electron-electron scattering in the conduction
band. (a) Formation of a hole at energy Ecjk∥ under the optical transition is in-
tercepted due to collision of two electrons at Ecj′k′

∥
and Eci′p′

∥
, resulting in spectral

broadening. (b) Formation of an electron at energy Ecjk∥ under the optical transition
is scattered due to collision of two holes.

A simple illustration is possible for the above formula. The scattering processes are
schematically shown in Figs. 10.3(a) and 10.3(b), for n = c.
In Fig. 10.3(a), two electrons at Eci′p′

∥
and Ecj′k′

∥
collide with each other, and are

scattered into two holes at Ecip∥ and Ecjk∥ . Formation of a hole at Ecjk∥ during
optical transition is intercepted by this process, resulting in spectral broadening.
In Fig. 10.3(b), optical transition of an electron at Ecjk∥ is intercepted by the collision
of two holes at Ecj′k′

∥
and Eci′p′

∥
.

A process for n = v in Eq. (10.17) is similarly given. Electron-electron scattering and
electron-hole scattering correspond to n = c and n = v, respectively. However, the
formula for the spectral broadening factor caused by another scattering electron-LO
phonon (n = LO) is radically different, which we will discuss in the next subsection.
For the interaction matrix element Vcn in (2.16), we use the screened Coulomb po-
tential, which is the result of static and long wavelength limit of the many-body
interaction. Deviation from the exact calculation is discussed below

Vcn(k∥k
′
∥, ii

′jj′) =
∫ ∫

ψ∗
ci′k′

∥
(r1)ψ∗

nj′p′
∥
(r2)

e2 exp(−λsr)
4πϵr

·ψcik∥(r1)ψnjp∥(r2)dr1dr2 (10.21)

where e is the electron charge, ϵ is the static dielectric constant, r =| r1 − r2 |, and
λs is the inverse screening length given below; ψ’s are the electron wave functions,
which are approximated as follows in the well potential:

ψnjk∥(r) ≃ unk(r)Φnj(z) exp(ik∥ · r∥)/
√
S (10.22)
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with

Φnj(z) =
√

2/Lnj sin(jπz/Lnj) (10.23)

where the z axis is perpendicular to the well interface, S is the interface area of the
sample, u is the periodic part of the bulk Bloch function, k∥ and r∥ are the compo-
nents of the wave vector and position vector parallel to the interface, respectively,
and Lnj is the effective well width given by

Lnj = π/knj⊥

= π~/
√

2mnEnj (10.24)

where knj⊥ is the z component of the wave vector.

The inverse screening length λs is given as follows for the carrier injection case, where
electrons and holes simultaneously exist:

λ2
s = −e2

ϵ

{∫ ∞

Ec1

∂fc

∂Ec

gcdEc +
∫ ∞

Ev1

∂fv

∂Ev

gvdEv

}

= e2

π~2ϵ

∑
j

{mcfc(Ecj)/Lcj +mvfv(Evj)/Lvj} (10.25)

where gc and gv are the step-like density-of-states of the conduction and valence
bands, respectively. We sum over all the subbands and both heavy hole and light
hole.
Substituting Eq. (10.22) into Eq. (10.21) the matrix element is calculated as

Vcn(k∥k
′
∥, ii

′jj′) = e2

2ϵS
δ(k∥ − k′

∥, p
′
∥ − p∥)√

g2
∥ + λ2

s

·
∫ ∫

Φ∗
ci′(z1)Φci(z1)Φ∗

nj′(z2)Φnj(z2)

· exp(− | z1 − z2 |
√
g2

∥ + λ2
s)dz1dz2 (10.26)

where the δ-notation represents the momentum conservation within the plane parallel
to the interface, and g∥ = k∥ − k′

∥.
Generally, the possibility of scattering in the same subband is much higher than in
the different subbands, so we only consider one subband in either the conduction or
valence bands (i′ = i, j = j′). The absolute square of the matrix element is calculated
as

| Vcn(k∥k
′
∥, iij

′j′) |2 = (e2/2ϵSLe)2

·δ(k∥ − k′
∥, p

′
∥ − p∥)T (g∥, kci⊥, knj′⊥) (10.27)
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where Le is the minimum of the effective well widths of the four wave functions in
(10.26), and

T (g∥, kci⊥, knj′⊥) =
[

2
α

+ δ(kci⊥, knj′⊥)
α + 4k2

ci⊥
− 2
Le

√
α
At(Bt + Ct)

]2

(10.28)

with

At = 1 − exp(−Le

√
α) (10.29)

Bt = 1
α

+
α + 4kci⊥ + 4k2

nj′⊥

(α + 4k2
ci⊥)(α + 4k2

nj′⊥
) (10.30)

Ct =
Lekci⊥(Lekci⊥ − π)(α− 4k2

nj′⊥)
4(α + 4k2

ci⊥)(α + 4k2
nj′⊥) [exp(Le

√
α) − 1]

(10.31)

α = g2
∥ + λ2

s (10.32)

The first and second terms within the square bracket of Eq. (10.28) are essentially
the same as those in bulk semiconductors. These terms arise from the forward and
backward waves in the standing wave along the z axis given by Eq. (10.23), the third
term expressed by Eqs. (10.29)- (10.31), which approaches zero at the limit L → ∞,
is peculiar to the quantum-well structures, and results from the localization of the
wave function. Equation (10.28) coincides with that for the perfect two-dimensional
case at the limit L → 0 due to the existence of the third term.
Replacing the summation for k′

∥ and p′
∥ in with the integral for the wave vector

parallel to the well interface, the broadening factor ~/τcn is given as follows:

~/τcn = mce
4

8π5~2ϵ2 (mn

mc

)2
∫ 2π

0
dϕ
∫ ∞

0
dk′

∥

∫ ∞

0
duAτ (Bτ + Cτ ) (10.33)

with

Aτ = T (g∥, kci⊥, knj′⊥)(k2
ci⊥k

′
∥ | β | /g2

∥) (10.34)

Bτ = fc(Ecik′
∥
)fn(Enj′p′

∥
)
[
1 − fn(Enj′p∥)

]
(10.35)

Cτ =
[
1 − fc(Ecik′

∥
)
] [

(1 − fn(Enj′p′
∥
)
]
fn(Enj′p∥) (10.36)

and

g2
∥ = k2

∥ + k′2
∥ − 2k∥k

′
∥ cosϕ (10.37)

β = k′2
∥ − k′

∥k∥ cosϕ+ (mc/mn − 1)g2
∥/2 (10.38)

Ecik′
∥

= (~2/2mc)(k′2
∥ + k2

ci⊥) (10.39)

Enj′p′
∥

= (~2/2mn)[(mn/m
2
c(u2 + 1)

+g2
∥ − 2(mn/mc)β + k2

ci⊥] (10.40)
Enj′p∥ = Ecik′

∥
+ Enj′p′

∥
− Ecik∥ (10.41)
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where the parabolic band structure is assumed, and the summation with respect to
n corresponds to electron-electron scattering and electron-hole scattering for n = c
and n = v, respectively.
In the same manner, carrier-carrier scattering also occurs for holes in the valence
band, corresponding to the processes in the conduction band shown in Figure 10.3.
The spectral broadening factor for the valence band ~/τv is calculated by the same
procedure as above, and obtained by replacing the suffix c with v.

10.2.3 Carrier-Phonon Scattering

The spectral broadening factor in the conduction band due to carrier-LO phonon
scattering ~/τcLO is calculated in a manner similar to carrier-carrier scattering as

~/τcLO = (2π)
∑
k′

∥

∑
j′

| VcLO(k∥k
′
∥, jj

′) |2 (Aq +Bq) (10.42)

Aq = δ(Ecjk∥ − Ecj′k′
∥

± ~ωLO)fc(Ecj′k′
∥
) (10.43)

Bq = δ(Ecj′k′
∥

− Ecjk∥ ± ~ωLO)
[
1 − fc(Ecj′k′

∥
)
]

(10.44)

where ~ωLO is the phonon energy, +~ωLO and −~ωLO correspond to emission and
absorption of phonons, respectively, and VcLO is the matrix element of the carrier-LO
phonon scattering, and is given below.
The scattering processes given by (10.43) and (10.44) are schematically shown in
Figures 10.4(a) and 10.4(b), respectively.
Assuming the electron wave function of (10.22), the square of the matrix element
| VcLO(k∥k

′
∥, jj

′) |2 is given as follows, taking into account the screening effect:

| VcLO(k∥k
′
∥, jj

′) |2=
∑

q

(e2~ωLO/2V )(1/ϵ∞ − 1/ϵ)Cq ·Dq (10.45)

with

Cq =
[
q/(q2 + λ2

s)
]2 { nq + 1

nq

}
δ(k∥ − k′

∥, q∥) (10.46)

Dq = |
∫

Φ∗
cj(z)Φcj′(z)e−iq⊥zdz |2 (10.47)

where q, q∥, and q⊥ are the phonon wave vector and its components parallel and
perpendicular to the well interface, respectively. ϵ and ϵ∞ are the static and optical
dielectric constants, respectively, V is the volume of the system, and the factors
nq + 1 and nq correspond to the emission and absorption of phonons, respectively,
where nq is the phonon number per mode q given by

nq = 1/(exp(~ωLO/kT ) − 1. (10.48)
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Figure 10.4: Schematic illustration of electron-LO phonon scattering in the conduc-
tion band. (a) Formation of a hole at energy Ecjk∥ under the optical transition is
intercepted by an electron at Ecj′k′

∥
which emits or absorbs a phonon. (b) Formation

of an electron at energy Ecjk∥ under the optical transition is scattered by a hole Ecj′k′
∥

which emits or absorbs a phonon.

The intensity of the phonon mode confined in the well is assumed to be much smaller
than that of the bulk mode, and is neglected in (10.45)-(10.47).
Replacing the summation for k′

∥ and q in (10.42)-(10.47) with the integral for the
wave vector, ~/τcLO is calculated for one subband case (j = j′ = i) as

~/τcLO = (mce
2/2π2~2)(1/ϵ∞ − 1/ϵ)~ωLO(Ao +Bo) (10.49)

with

Ao =
[
nq + 1 − fc(Ecik∥ − ~ωLO)

]
·
∫ ϕmax

0

(I(a1) + I(a2))dϕ√
k2

∥ cos2 ϕ− 2mcωLO/~
(10.50)

Bo =
[
nq + fc(Ecik∥ + ~ωLO)

]
·
∫ π

0

I(a3)dϕ√
k2

∥ cos2 ϕ+ 2mcωLO/~
(10.51)
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and

ϕmax = cos−1(
√

2mcωLO/~k2
∥) (10.52)

I(a) =
∫ ∞

0

ab(b2x2 + a2) sin2 xdx

(b2x2 + a2 + 1)2x2(x2/π2 − 1)2 (10.53)

a1 = γ −
√
γ2 − δ2 (10.54)

a2 = γ +
√
γ2 − δ2 (10.55)

a3 = γ +
√
γ2 + δ2 (10.56)

b = (k∥/λs) cosϕ (10.57)

δ =
√

2mcωLO/~λ2
s (10.58)

The process of numerical calculation is similar to that for carrier-carrier scattering.
In the same manner, carrier-phonon scattering also occur for holes in the valence
band corresponding to the process in the conduction band shown in Figure 10.4.
The spectral broadening factor in the valence band caused by the hole-LO phonon
scattering is obtained by replacing the suffix c with v in the above equations. At the
same time, the subband suffix together with the suffix v should be j, other than i.
Equations (10.33) and (10.49) are two basic formulas for calculating the broadening
factors with respect to the carrier-carrier and carrier-phonon scattering, respectively.
Please note that two new parameters comes into the carrier-phonon scattering. One
is the optical dielectric constant ϵ∞ and the other is the longitudinal optical phonon
energy ~ω − LO. As an indication, we use ~ωLO = 34.E − 3 eV and ϵ∞ = 11.4 for
InGaAsP/InP system, and ~ωLO = 46.E − 3 eV and ϵ∞ = 10.4 for GaAs/AlGaAs
system. For accurate setting of these two parameters, please use the tau_model
statement.



10.2 Intraband Relaxation Times and Gain Broadening 209

10.2.4 Nomenclature

We list the symbol definitions separately here due to the large number of new symbols
in this section.
Dc(E), Dv(E) Energy spectra of electron and hole, which have

energy E.
Ecj, Evj Quantized energy levels in conduction and

valence bands.
Ecjk∥ , Evjk∥ Energies of electron and hole under the optical

transition at the subband j.
E,Ecv Photon energy and energy difference between

conduction and valence bands under the optical
transition.

Efc, Efv Quasi-Fermi levels of conduction and valence
bands.

Eg Bulk bandgap energy of semiconductor.
e Electronic charge.
ϵ, ϵ∞, ϵo Static dielectric constant and optical

dielectric constant and dielectric constant of
conductor in vacuum.

fc(), fv() Fermi distribution functions in conduction and
valence bands.

gc, gv, gcv Step-like-densities-of-states of electron (c)
and hole (v) and the step-like-density-of-states
electron-hole pair.

Γc,Γv,Γin Half broadening factors in conduction (c) and
valence (v) bands, and average broadening factor,
their relationship is Γin = Γc + Γv.

~ Plank constant.
k Boltzmann constant.
k∥, k⊥ Wave vectors parallel and perpendicular to the

well interface.
kf∥ Component of the Fermi wave vector parallel to

the well interface.
L() Lorentzian line shape function for optical gain

broadening.
Lw Well width.
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Lcj, Lvj, Le Effective well widths at the jth levels in
conduction (c) and valence (v) bands, and the
minimum of the four effective well widths.

λs Inverse screening length.
m0 Free electron mass.
mc,mv,mcv Effective masses of electron (c) and hole (v)

and reduced effective mass between electron
and hole, and their relationship is
1/mcv = 1/mc + 1/mv.

µo Permeability of semiconductor of the vacuum.
nr Refractive index of semiconductor.
N Injected electron density.
P Injected hole density.
ω, ωLO Angular frequencies of light wave and

longitudinal optical (LO) phonon wave.
ψ′s Electron wave functions.
Φ′s Complex amplitudes of the electron wave

functions.
r, r∥ Position vector and the element of position

vector parallel to well interface.
< R2

cv(Ecv) > Averaged square of electric dipole moment.
S Interface area of sample.
T Absolute temperature.
τc, τv, τin Intraband relaxation times in the conduction

(c) and valence (v) bands and the total
intraband relaxation time (in), and their
relationship is 2/τin = 1/τc + 1/τv.

~/τc, ~/τv, ~/τin Broadening factors caused by carrier-carrier
and carrier-LO phonon scattering in conduction
(c) and valence (v) bands, and the total broadening
factor including summation over the conduction and
the valence bands.

u Periodic part of the bulk Bloch function.
Vcn Matrix elements of the interaction in conduction

(n=c) and valence (n=v) bands.
Vin Injection potential. Obviously eVin is

injected carrier energy.



10.3 Quantum Well Capture and Escape Processes 211

J

confined
level

Fermi levels

esc1

cap1

esc2

cap2J J

J

Figure 10.5: Schematics of capture and escape currents in real coordinate space.

10.3 Quantum Well Capture and Escape Processes

10.3.1 Carrier Capture and Escape in Real Space

As described in previous sections, the carrier transport across a heterojunction is
via thermionic emission. For a quantum well, the carriers have to go across two
heterojunctions (or two interfaces) via the same thermionic emission mechanism.
Some researches prefer to describe carrier transport across a quantum well in terms
of “carrier capture” and “carrier escape” [69]. We shall also describe the carrier
transport across a quantum well in the same technical terms.
In schematic in Fig. 10.5, we describe the events in real space (or in spatial coordi-
nates). We denote the current components in term of capture and escape processes.
In thermionic theory, the capture components Icap1 and Icap2 do not experience any
scattering by the quantum well interfaces (in semi-classical approximation) and can
be written as

Jcap1 = γ12nv
therm
1n n1, (10.59)

Jcap2 = γ23nv
therm
3n n3, (10.60)

where vtherm
1n is the thermal velocity for carriers in region 1 (left barrier) and n1

is the carrier density there. γ12n is a correction factor due to the semi-classical
approximation (for neglecting quantum well potential scattering). Similar definition
applies to the right barrier.
The computation of escape components are less straight forward because the carriers
with energies less than the barrier are strongly reflected by the barrier. However,
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Figure 10.6: Schematics of capture and escape currents in energy-wave vector coor-
dinate space assuming elastic scattering.

we make the observation that the escape component must balance out the capture
component if Fermi levels on both sides are equal (such is the case in equilibrium).
Thus, the escape components can be written as:

Jesc1 = γ12nv
therm
1n n10, (10.61)

Jesc2 = γ23nv
therm
3n n30, (10.62)

where n10 is the carrier density on the left barrier with Fermi level set to equal to
that in the well (region 2). Similar arguments apply to Jesc2.

10.3.2 Carrier Capture and Escape in k-Space

The capture/escape event in the thermionic emission model above can also be de-
scribed in energy space. The explanation of thermionic emission capture/escape
model within the frame work of quasi-equilibrium ( i.e., use of quasi-Fermi levels)
is as follows. A carrier transfers with the same kinetic energy (elastic process) be-
tween confined and unconfined states with thermal velocity. After the transfer, it is
instantly thermalized with local temperature and becomes part of the local carrier
distribution described by the a quasi-Fermi level.
Similar to Ref. [69] we assume that transition of carriers between unconfined states
and confined states have the same initial and final energies (see Fig. 10.6). The
capture current can be written as follows in the notation of Ref [69].
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Jcap ∝
∫ ∞

Eb
c

ρu(E)f(E,Eu
fn)ρc(E)[1 − f(E,Ec

fn)]dE (10.63)

where u and c are for unconfined and confined states. Eb
c and Efn are the energy at

the barrier and Fermi level, respectively. ρ(E) is the density of states.
Usually, the Fermi level is below barrier and we can safely set

[1 − f(E,Ec
fn)] ≈ 1 (10.64)

We also know that 2D density of states ρc(E) is a constant in E. Thus the capture
current can be written as

Jcap ∝
∫ ∞

Eb
c

ρu(E)f(E,Eu
fn)dE = nu (10.65)

which is just the unconfined carrier density at the barrier. This is consistent with
Equations 10.59 and 10.60.
Once we have the expressions for the capture components, the escape components
can be obtained using the argument that the total current flow must be zero if Fermi
levels are flat.
In conclusion, the carrier capture/escape model in our simulator is that of elastic
carrier scattering process followed by instant local thermalization which has been
reported to agree with experiment (see Ref. [69]).

10.4 Dynamic Behavior of Quantum Capture and
Escape

It is generally believed that the dynamic behavior (i.e., high speed modulation char-
acteristics) of a laser diode depends on how fast carriers can be captured from uncon-
fined states into confined states of the quantum well [70]. In a microscopic theory of
quantum capture, energy distributions in both energy and space can be solved to give
a complete description of the capturing process due to carrier-phonon interactions.
The capturing process can be described by the following characteristic capture time
τcap [70]:

1
τcap

=
∫

Efinal

S3D,2D
g2D

Lnorm

dE2D (10.66)

where E2D is the 2D energy, Efinal the energy of the final states, S3D,2D the scattering
probability between 3D and 2D states, g2D the density of state in the well, and
Lnorm the normalization distance of the confined wave function. Detailed carrier-
photon interaction must be taken into account to evaluate S3D,2D above. Solving
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the microscopic energy-space equations also produce the spectral hole burning effect
which were thought to further limit the modulation band width.
We consider the dynamic effect associated with the quantum capture within the
thermionic capture/escape model. We show that it is possible to compare the phe-
nomenological carrier capturing theory in our simulation software with the more
complex microscopic energy-space equation model. We shall derive the characteris-
tic capturing time as follows.
Consider a simplified version of our carrier transport model for electrons in a quantum
well. The simplified continuity equation with thermionic emission can be written as

dNw

dt
= γ

v
(b)
th

dw

Nb − γ
v

(w)
th

dw

Nw − Nw

τa

(10.67)

where Nw and Nb are electron concentrations in the well and at the barrier, re-
spectively. dw is the quantum well width. v

(w)
th and v

(b)
th are the mass-dependent

thermionic velocities in the well and at the barrier, respectively. τa is the interband
recombination life time due to radiative, stimulated, SRH, and Auger recombina-
tion effects. γ is the heterojunction capture coefficient used to modify the thermal
velocity.
Suppose we apply a pulse to the injection current which causes the barrier concen-
tration Nb to behave like a step function. We wish to see how the quantum well
carriers respond. Solving Eqn. (10.67) shows that the carriers in the well undergo
the following transient behavior:

exp{−[γv(w)
th /dw + 1/τa]t} (10.68)

Since the 1/τa term is about five orders smaller and can be ignored, we find that the
characteristic capturing time in our simulator can be expressed simply as

1
τcap

= γv
(w)
th

dw

(10.69)

Comparison of Equations (10.69) and (10.66) leads us to conclude that the the het-
erojunction capture coefficient γ is proportional to the microscopic scattering proba-
bility between 3D and 2D states, and thus can be used as a convenient parameter to
measure the deviation of our thermionic model from the more complex microscopic
energy-space model. The theoretical analysis of hole capturing is completely similar
and shall be omitted here.
We consider a numerical example of idea thermionic emission with γ = 1. For a
GaAs quantum well of 100 Å, we find that the electron and hole capturing times
are 0.1 and 0.3 ps, respectively. These values seem to be reasonable compared to
other estimates (see for example, [70]). As we pointed out in the last subsection that
thermionic emission model involves the assumption of instant local thermalization,
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Figure 10.7: Numerical simulation of the modulation response of a 76 Åsingle QW
GaAs/AlGaAs laser diode. The capturing speed is reduced by a factor of 0.01 and
the non-linear gain constant is set to 5 × 10−23 m3.

it is no surprise that these values are on the fast side. The actual capturing process
should be smaller (with γ < 1).
Having resolved the carrier-capturing dynamics, we consider the spectral hole burn-
ing effect. In our simulator, this is expressed as a factor multiplied to the material
optical gain:

g(ω, S) = g0(ω)
1 + ϵnlS

(10.70)

where S is the bulk photon density and ϵnl is an empirical constant also called non-
linear gain saturation constant.
To show that both the capturing and spectral hole burning effects are important for
the modulation band width, we use the Fourier transform of a small-step transient
simulation to produce the modulation response in Figure 10.7. We find that spectral
hole burning has similar effect as a slower capturing time.

10.4.1 Direct Flying-over Transport Model

When quantum wells (QW) or quantum dots (QDOT) are much smaller than the
mean free path of the carriers (typically several nm), there is large chance the carriers
directly fly over the QW or QDOT before being thermalized with carriers inside them.
Given the mean free path λn for electron estimated from the conductivity (Drude
model) near the QW/QD, we can write the probability of flying-over the QW/QD
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Figure 10.8: Schematic of Quasi- and Non-equilibrium transport model

as exp(−Dqw/λn). This model may be enabled using the q_transport command.
Similar models can be enabled for holes.

10.4.2 Fractional Density Quantum Well/Dot Escape The-
ory

Crosslight also implements a new non-equilibrium carrier escape scheme to describe
the phenomenon that the injected carriers escape from the quantum dots (QDOTs)
or the quantum wells (QWs) before being thermalized with the local IMREF. A
fraction of total carrier density in QWs or QDOTs is used to represent the density
of hot carriers escaping from QWs or QDOTs. The theory is based on Ref.[71].
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Assuming that the carrier capture/escape processes in QWs or QDOTs can be de-
scribed by the following two-level quantum capture/escape model in the traditional
quasi-equilibrium transport theory as shown in Fig.10.8(a), where n1, n2 are the
density of carriers on the two levels. Jin, Jout are the injection and outflow density
of carriers. τcap, τesc, τinterb are the carrier lifetime of capture by the confined level,
escape and interband recombination from the confined level, respectively. Then, the
rate equation of carriers in QWs or QDOTs in the quasi-equilibrium transport model
is

dnt

dt
= − nt

τinterb

+ Jin + Jout (10.71)

where nt = n1 + n2. In our non-equilibrium carrier escape scheme, a fraction of the
confined carriers are free to go directly via average conductivity with average local
velocity: Vfesc. Then the carrier transport process can be shown as in Fig.10.8(b),
the rate equation of carriers in QWs or QDOTs is

dnt

dt
= − nt

τinterb

+ Jin + Jout − Jfesc (10.72)

where Jfesc is the carrier density escaping from wells or dots before being thermalized,
given by

Jfesc = FescntVfesc

d
(10.73)

where Fesc is the fraction of total carrier density escaping from the wells or dots. d
is the thickness of the wells or dots.
According to Ref.[72], the lifetime of carriers escaping before being thermalized can
be determined by a similar form:

τfesc = d

VfescFesc

(10.74)

where Vfesc = 2π~/dm∗ , m∗ is the effective mass. If Fesc = 0.1, d = 3nm, m∗ = 0.1,
then τfesc = 12fs, which is close to the quantum well tunneling escape time as shown
in Ref.[72]. This means that our fractional density escape scheme is equivalent to
the traditional time constant escape scheme.
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Chapter 11

THERMAL EFFECTS IN
SEMICONDUCTORS

This chapter deals with thermal effects in semiconductors. As we will show, there
are a variety of heating sources in semiconductors: it is critical that these sources
be accurately formulated when modeling devices where self-heating is important.
Examples of such devices are high power transistors and laser diodes.

11.1 Temperature dependent parameters

A successful thermal simulation requires accurate temperature-dependent parame-
ters. Typically, the most important parameters that need to vary with the temper-
ature are bandgap, mobility, recombination coefficients and refractive index.
However, the software makes no assumption as to which parameter should be affected
by the temperature. Instead, it allows all material parameters to be a function of
the temperature. To do so, the parameter definition in the material macro should
be a function of the reserved “temper” variable. This will tell the software to use
the local temperature at any given mesh point to evaluate the function and get the
parameter value.
Note that not all the macros in the database have thermal effects included. The
user is advised to review the material parameters he plans to use and modify them
as required. In particular, the refractive index is seldom defined as function of
temperature in the default macros and this effect may be important for thermal
lensing in lasers.
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11.2 Isothermal temperature variation

Crosslight software allows the user to vary the isothermal temperature of a simula-
tion. This is the temperature that is used during the initial equilibrium calculations
and during the rest of the simulation if self-heating is neglected. Note that even
with self-heating neglected, the material parameters will still be evaluated at the
local mesh temperature (which is the same as the isothermal temperature).

11.3 Heat flow and temperature distribution

11.3.1 Expression of heat flux

It is well known that the heating effect is very important for semiconductor lasers
in almost all applications. The heat generation often limits what a designer can do
with a passively cooled device and the maximum power that can be reached.
From the point of view of simulation and modeling, the concern is two-fold. First,
we must find out the temperature distribution from all possible heat sources. This
involves a much larger simulation area than the small region near the p-n junction.
We must consider how the heating power flows though the whole substrate as well
as from any wire bonds. Second, we must consider how the heating affects the laser
performance. This means we must accurately evaluate the degradation of power,
efficiency and other parameters due to the the non-uniform temperature distribution.
This is not a trivial task because virtually all variables and material parameters are
temperature dependent. Our goal is to provide a thermal modeling environment so
that all possible sources of temperature dependence can be taken into account.
We are concerned with the generation and flow of lattice heating power in a semi-
conductor. We first consider the heat flux and then the heat source. We introduce
the thermal conductivity such that the heating power flux (in Watt/m2) is given by:

Jh = −κ∇T (11.1)

Conservation of energy requires that the temperature distribution satisfy the follow-
ing basic thermal equation:

Cpρ
∂T

∂t
= −∇ · Jh +H (11.2)

or
Cpρ

∂T

∂t
= ∇ · κ∇T +H (11.3)

where Cp is the specific heat and ρ is the density of the material. H is the heat
source.
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11.3.2 Thermoelectric power and thermal current

The temperature gradient induces a current of the form [73] [74] [75]:

− qµnnPn∇T (11.4)

to the electron current and
− qµppPp∇T (11.5)

to the hole current.
The thermoelectric powers, Pn and Pp are given by:

Pn = kB

q

[
−5

2
− ν + ln

(
n

Nc

)]
(11.6)

and
Pp = kB

q

[
−5

2
− ν + ln

(
p

Nv

)]
(11.7)

where ν is the exponent used in the field-dependent relaxation time. For phonon
scattering [76], ν = −1/2

11.4 Heat sources

The heat source can be separated into contributions from Joule heat, generation/recombination
heat and Thomson/Peltier heat. Following the suggestion of Ref. [73] we discuss these
terms in more detail in the following subsections.

11.4.1 Joule/optical heat

There are two sources of Joule heating. One is from the steady state or low frequency
part of the electrical field:

HJoule−dc = J2
n

qµnn
+

J2
p

qµpp
(11.8)

The other part comes from the optical frequency (optical heat). When the optical
wave passes a lossy semiconductor, the wave is absorbed by the lossy material. The
absorbed energy can either generate electron hole pairs or be dissipated and become
Joule heat. We also refer to this type of heat source as the optical part of the Joule
heating.
The internal loss of a semiconductor laser is the cause of the optical part of the
Joule heating while the band to band absorption is the source for electron-hole pair
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generation in photo-detectors. A simple derivation of this term follows. The optical
power dissipated per unit volume can be expressed as:

power loss = σopF
2
op = ϵ2ϵ0ωF

2
op. (11.9)

where the optical field Fop is the root mean square of the oscillating field.
For convenience a constant γ is introduced such that the complex wave amplitude is
related to the electric field by:

| F |2= γ | W |2 . (11.10)

To determine γ we use the following basic relation:

S~ω =
∫
ϵ0ϵ1 | F |2 dv = ϵ0γ

∫
ϵ1 | W |2 dv = ϵ0γ < ϵ1 > . (11.11)

The power loss becomes:

power loss = S~ω2ϵ2 | W |2 / < ϵ1 > . (11.12)

or in terms of material internal loss and local index:

ϵ2 = n1αi/k0 (11.13)

HJoule−op = S~ω2n1αi | W |2 /(k0 < ϵ1 >). (11.14)

11.4.2 Recombination heat

When an electron-hole pair recombines, the energy either converts to a photon (ra-
diative) or turns into heat (non-radiative). For the purposes of determining the
locally generated heat, radiative recombinations are considered as a heat term but
are partially canceled out by other terms (see below).
For each electron-hole pair recombined, the heat released is the difference between
the quasi-Fermi levels:

Hrec = (Rtrap +RAug +Rspon +Rstim)(Efn − Efp) (11.15)

An additional term is also needed to account for recombination events above the
Fermi level. This contribution is related to the thermoelectric power by:

Hrec2 = qRtotalT (Pp − Pn) (11.16)

where Pp and Pn are thermoelectric power for hole and electrons, respectively.
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11.4.3 Radiative heat

Photons which escape the cavity remove heat from the device (radiative cooling);
this defines a negative radiative heat term:

Hrad = −(Rstim +Rspon)~ω (11.17)

In the above, it is assumed that all photons which are emitted at a specific mesh point
remove heat locally. This contribution is very close in magnitude to the radiative
recombination terms in the recombination heat above since Efn − Efp ≈ ~ω.
Photons which are trapped in the cavity leave their energy elsewhere in the device;
this is the optical heat term defined in previous sections. Therefore, the total amount
of radiative cooling is not equal to the optical output power of the device.
In most real devices, some photons emitted by spontaneous emission do not couple
into a mode but still manage to escape the cavity. This may be accounted for in
future versions of the software by a scaling factor to Rspon.

11.4.4 Thomson/Peltier heat

The Thomson and Peltier heat terms are related to the spatial variation in the
thermoelectric power:

HP t−T h = −T (Jn∇Pn + Jp∇Pp) (11.18)

This heat source can be divided into its individual components by isolating the
different contributions to the spatial gradient:

∇Pn = ∂Pn

∂T
∇T + ∂Pn

∂n
∇n (11.19)

with a similar equation for the hole thermoelectric power.
The Thomson effect is thus due to the change in local temperature while the Peltier
effect comes from the change in the local carrier concentration.1

11.5 Thermal boundary

We need to establish some realistic boundary conditions for the heat transport equa-
tion. In our simulator they are separately defined for electrical contacts and other
parts of device.

1Prior to v.2016, the Thomson heat source was not correctly calculated and reported values
that actually referred to Hrec2. Also prior to that version, the Peltier heat source referred to the
combined Peltier-Thomson term.
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For electrical contacts, they are defined in the contact statement:

• 1) Thermal contact type 1. The contact is a heat sink assumed to have a lattice
temperature given by the parameter lattice_temp.

• 2) Thermal contact type 2. The contact is assumed to have an out-going heat
power flow given by the parameter heat_flow. The lattice temperature of the
contact is unknown and is to be determined by the thermal equation solver.

• 3) Thermal contact type 3. The contact is assumed to be connected to a ther-
mal conductor with its conductance given by parameter thermal_cond. This
thermal conductor is connected to a heat sink with a fixed temperature given
by parameter extern_temp. Again the lattice temperature of the contact is
unknown and is to be determined by the thermal equation solver.
Please note that due to recent improvements in the external circuit model
(minipsice, self-heating due to contact resistance is no longer handled auto-
matically by the software. Instead, the heat flow due to the external resistor
should defined using the contact_heating command.

If the user used a .layer file to facilitate the input, then contact statements may have
been generated in the .mater file. As these default contacts will use a default bound-
ary condition of Type 1 and a 300K lattice temperature, it is strongly recommended
that all thermal simulations re-issue the contact declarations in the .sol to define the
correct thermal boundaries.
For other parts of a simulated device, the heat flow follows the same rules as the
current flow and no heat can flow across the mesh boundary. To override this and
define non-contact thermal boundaries, use the thermal_interf statement: the
same boundary types (1-3) apply.
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WAVEGUIDE OPTICAL MODES

12.1 Introduction

Many optoelectronic devices simulated by Crosslight software contain a waveguide.
It is thus necessary to solve the lateral optical modes of a waveguide. Since the optical
modes couple to the drift-diffusion model through carrier-dependent refractive index,
an efficient solution of the wave equations is critical.

12.2 Scalar Wave Equation For Lateral Modes

Our basic assumption in dealing with 2D simulation of optical wave is that it prop-
agates along the z dimension with a factor exp(jβz) = exp(jk2

0neffz) where neff is
the complex effective index. The wave equation can then be reduced in dimension
by variable separation.
When the waveguide dimension of an edge type of semiconductor laser is comparable
to or larger than the wavelength, the lateral optical modes can be described by the
scalar wave equation as follows:

∇2W (x, y) + k2
0(ε(x, y) − n2

eff )W (x, y) = 0 (12.1)

where ε(x, y) is the optical dielectric constant (not to be confused with the static
dielectric constant).
Our basic task is then to find the effective index and the related optical modeW (x, y).
There are several numerical methods we use to solve the optical modes:

• SOR iterative method. Convenient for simple single confined mode; useable
but somewhat outdated.
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• Effective index method (EIM): quasi-2D model which is effective for devices
with index varying slowly in one direction.

The EIM method solves a single mode 1D wave equation in the y-direction for
a serious of y-cuts. It then uses the eigenvalues from these y-cuts as the index
distribution along the x-direction and solves a multimode wave equations in
the x-direction.

• Enhanced effective index method (EEIM) which is an extension of EIM. It can
be used to model radiative boundary.

• Analytical approximation by Gaussian function.

• User defined data file.

• Arnoldi restarted method which is a highly sophisticated direction eigenvalue
solution method useful for multiple lateral modes.

12.2.1 Multi-lateral mode model

A semiconductor laser can be driven into multi-lateral mode operation at high cur-
rent injection levels if higher order lateral modes are supported by the waveguide
structure. The 2D module solves the wave equation for the lateral modes at every
current bias and solves, self-consistently, the photon densities of the modes. An ad-
ditional photon rate equation for each additional lateral mode is included. Note that
the lateral modes are coupled directly though the drift-diffusion equation via the
stimulated recombination term and through the nonlinear gain effect as described
later in this chapter.

12.3 Vectorial Helmholtz wave equation

12.3.1 Basic Vectorial Wave Equations

In this section, we derive the vectorial wave equation following Ref. [77]. For a
harmonic guided wave propagating in the positive z direction, we consider the vector
fields in the follow notation:

E(x, y, z, t) = (Ex, Ey, Ez)exp[j(ωt− βz)] (12.2)
H(x, y, z, t) = (Ex, Ey, Ez)exp[j(ωt− βz)] (12.3)

D = εE B = µH (12.4)
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From Maxwell’s equations for source-free regions:

∇ ·D = 0, ∇ ·B = 0 (12.5)
∇ × E = −∂B

∂t
= −jωµH (12.6)

∇ ×H = ∂D
∂t

= jωεE (12.7)

we obtain:
∇ × ∇ × E = ∇(∇ · E) − ∇2E = ω2µεE = k2E (12.8)

where k = 2πn/λ is the wave number.
Thus,

∇ ·D = 0 or ∇ · (k2E) = 0 (12.9)

E · ∇k2 + k2∇ · E = 0 (12.10)

∇ · E = −(1/k2)E · ∇k2 (12.11)

Using the Maxwell’s equations above, we obtain the vectorial Helmholtz wave equa-
tion:

∇2E + k2E + ∇
(
E · ∇k2

k2

)
= 0 (12.12)

Let us consider the transverse component of the above equation with the notation:

ET = (Ex, Ey, 0), ∇T =
(
∂

∂x
,
∂

∂y
, 0
)

(12.13)

We note that in most cases, it is reasonable to assume that ∂
∂z

(k2) = 0. We then
obtain:

∇2
TET + (k2 − β2)ET + ∇T

(
ET · ∇Tk

2

k2

)
= 0 (12.14)

which is the vectorial wave equation.
The x component of the above is as follows:

∂2Ex

∂x2 + ∂2Ex

∂y2 + (k2 − β2)Ex + ∂

∂x

(
Ex

k2
∂k2

∂x
+ Ey

k2
∂k2

∂y

)
= 0 (12.15)

∂

∂x

(
∂Ex

∂x
+ Ex

k2
∂k2

∂x

)
+ ∂2Ex

∂y2 + (k2 − β2)Ex + ∂

∂x

(
Ey

k2
∂k2

∂y

)
= 0 (12.16)

Our final expression for the x component of the wave equation is as follows:

∂

∂x

(
1
k2

∂

∂x
(k2Ex)

)
+ ∂2Ex

∂y2 + (k2 − β2)Ex + ∂

∂x

(
Ey

k2
∂k2

∂y

)
= 0 (12.17)
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Similarly, the y component can be written as follows:

∂2Ey

∂x2 + ∂

∂y

(
1
k2

∂

∂y
(k2Ey)

)
+ (k2 − β2)Ey + ∂

∂y

(
Ex

k2
∂k2

∂x

)
= 0 (12.18)

Once the transverse components are solved, we can obtain the z component from the
zero-divergence as follows:

Ez =
(

1
jβk2

)
∇T · (k2ET ) (12.19)

12.3.2 Interpretation of TE Vectorial Solutions

In this subsection, we attempt to provide a simple prediction or interpretation of the
vectorial wave solution in comparison with the scalar solution. We concentrate on
the TE mode ((Ex, 0, Ez)) which is used in most device designs.
We start by rewriting the vectorial wave equation equation (12.16) using Ey = 0 as
follows:

∂2Ex

∂x2 + ∂2Ex

∂y2 + (k2 − β2)Ex + ∂

∂x

[
Ex

k2
∂(k2)
∂x

]
= 0 (12.20)

We find that the vectorial wave equation can be written in the same form as the
scalar one if we introduce a “vectorial effective index” kve = 2πnve/λ.

∂2Ex

∂x2 + ∂2Ex

∂y2 + (k2
ve − β2)Ex = 0 (12.21)

k2
ve = k2 + 1

Ex

∂

∂x

[
Ex

k2
∂(k2)
∂x

]
(12.22)

Therefore, interpretation of the vectorial wave equation can be made using the scalar
equation and the “vectorial effective index”. Let us consider qualitatively the effect
of vectorial wave using the schematic in Fig. 12.1. We consider only the case of
continuous index profile because the physical conclusion is the same for abrupt index
profile.

Based on Fig. 12.1, we decide that ∂(k2)
∂x

is negative in positions with index change.
Since Ex(x) decays in the positive x-direction, we conclude that Eq. (12.22) yields
increased effective index in locations of index change. The increased effective index
in positions of index change can be used to interpret or predict the effect of vectorial
wave equations as compared with the scalar equation.
To demonstrate the effect of the increased index, we set up a series of scalar wave
simulations as shown in Fig. 12.2. We artificially put an increased index in three
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TE

Index

Wave

Scalar

Figure 12.1: Schematics of the right half of the optical mode along the lateral direc-
tion. The solid lines are the refractive index and the scalar mode. The dashed lines
are the “vectorial effective index” and the corresponding wave distribution.

different positions in the simulations. In a device with index change far from the
center of the mode, the increased index of the vectorial term causes the wave to
spread out more than scalar wave. If the index change is close to the mode center,
more optical confinement is provided by the use of the vectorial wave.
In most laser diode structures, the index change in the x-direction is usually located
far from the mode center. For example, a typical buried heterostructure laser may
uses a two micron wide active region width to provide the lateral electrical/optical
confinement so the index change is about one micron away from the mode center.
This means that the vectorial TE mode produces a mode which spreads out more in
the x direction than the scalar mode.
We may therefore use the scalar mode solver in most situations: common laser designs
operate in the TE mode and have a lateral index variation that is weak and/or far
away from the mode center.

12.3.3 Interpretation of TM Vectorial Solutions

A similar derivation may be done for the TM ((0, Ey, Ez)) vectorial mode by ex-
changing the x and y-axis. However, we must now consider the effect of index
discontinuities in the y direction relative to the peak of Ey.
In most device designs, the optical mode is centered on a quantum well region which
provides the optical gain: this means that the index discontinuity between the well
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Figure 12.2: A simple laser structure used to understand the increased index caused
by the vectorial term. The active layer is 0.05 µm GaAs. The wave guiding layer is
0.03 µm Al(0.2)Ga(0.8)As and the cladding layer is Al(0.8)Ga(0.1)As. The increased
index step is placed at various distances from the active layer to simulate the effect
of the vectorial term:a) 0.2 µm, b) 0.1 µm, c) 0.03 µm
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Figure 12.3: A simple laser structure used to demonstrate the effect of the index
discontinuity on the vectorial TM mode profile. The structure consists of a 7.6 nm
GaAs QW with graded (71% to 33%) AlGaAs barriers.

and barrier is only a few nanometers away from the mode peak. This further means
that the mode profile in Ey is discontinuous near the wave peak which produces a
significantly lower mode confinement factor compared to a scalar wave solution, as
can be seen in Fig. 12.3.
It is therefore recommended that all optical mode calculations for TM be done using
the vectorial mode solver rather than the default scalar wave model.
We note in passing that many authors calculate the TM mode by using equations
based on the magnetic field H. While this formulation produces a smooth wave
profile due to the continuity of Hx at the QW boundary, it produces a different
confinement factor and introduces additional terms in the calculations of the modal
gain. In our model, we thus make the choice of using the simpler formulation based
on E even though it produces discontinuous wave profiles for TM modes.
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Figure 12.4: Schematic representation of the far-field emission of a semiconductor
laser.

12.4 Far-field computation

After solving for the waveguide modes, it is straightforward to compute the far-
field emission pattern. The problem is basically that of diffraction: i.e., given the
distribution of a propagating beam at a 2D cross section, calculate the distribution
at a distance from this cross section. The formulation for this problem has been
well established in classical electrodynamics and the user is referred to standard
textbooks on the subject.
A semiconductor laser emits light in the form of a narrow spot of elliptical cross
section. The spatial intensity distribution of the emitted light near the laser facet is
known as the near-field. During its propagation, the spot grows in size due to beam
divergence.
The dimensions of the elliptical spot and its divergence angles are important beam
parameters associated with the laser mode. The far-field pattern is the angular
distribution of beam intensity far from the laser facet. It is an important factor in
the design of laser geometries since it directly affects the coupling of power from the
laser source to the object being illuminated (e.g. an optical fiber).
Fig. 12.4 gives a schematic representation of the far-field emission of a semiconductor
laser. The full angles at half power are θ⊥ and θ∥ in the directions perpendicular to
and along the laser junction plane, respectively. Typically, θ∥ is of the order of 10◦,
whereas θ⊥ is considerably larger (35 to 65◦), depending on the detailed near-field
distribution.
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Figure 12.5: An example of the far-field emission pattern from a non-planar ridge
waveguide GaAs/AlGaAs laser emitting at 0.78 µm.

The program solves the wave equation and the semiconductor equations self-consistently
and yields accurate near-field distribution as part of the output data. The far-field
model is given by an additional post-processing step by the software.
Refs. [1] and [34] give mathematical formulas for the far-field distribution based on
the solution to the wave equation in free space. Since these mathematical expressions
were derived for broad-area lasers only (i.e., assuming the x-dimension is infinite),
the program has extended their formulas to an arbitrary two-dimensional situation
using the same solution approach as suggested in [1] and [34].
As an example, we consider a ridge waveguide GaAs/AlGaAs laser emitting at about
0.78 µm. The far-field pattern is computed based on the near-field solution and is
presented in Fig. 12.5 as a contour plot of the far-field power. The contour lines are
evenly spaced in power level (at 10% power intervals). The angles θ⊥ and θ∥ can be
directly extracted from the contour plot.

12.5 Enhanced Effective Index Method

12.5.1 Introduction

In the standard effective index method (EIM), all boundaries are assumed to be zero
or decay exponentially. As a result, radiative modes are excluded. In this section,
we will describe an extension of the EIM which allows us to treat radiative modes
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Top boundary H=0

Boundary
Odd
Even/

Boundary
Radiative

Bottom boundary H=0

Figure 12.6: Boundary conditions and division of columns and rows in the enhanced
effective index method (EEIM)

as well as confined modes.
The standard set up is as illustrated in Fig. 12.6. We follow the solution approach
of Ref. [78] and assume the wave is TE-polarized. It is convenient to solve the H
field in this case. The mode is assumed to be confined in y-direction, i.e., the top
and bottom boundaries have zero field intensities. The left boundary is assumed to
be either even (with derivative zero) or odd (with field zero). This is most suitable
for device with symmetry axis place on the left of the simulation area.
The radiative boundary is assumed to be on the right side. This will be most
convenient for cases such as ARROW waveguide type of lasers and other antiguiding
lasers.

12.5.2 Rectangular model

For an arbitrary device structure, it is always possible to divide into columns and
rows. The more divisions, the higher the accuracy that can be achieved (at the
cost of computation time). The program is designed such that the user specifies the
columns and the program determines the rows automatically. Usually, it is efficient
to divide the structure into 2 or 3 columns according to the geometry of the device.
For example, a ridge waveguide laser is best divided into two columns with boundary
at the ridge wall.
According to Ref. [78], the basic wave equation for the TE mode can be represented
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by the following magnetic field equation:

∇2H(x, y) = k2
0(ε− ε)H(x, y) (12.23)

The horizontal boundary between row 1 and row 2 is:

H1 = H2;
∂H

∂y
|1=

∂H

∂y
|2 (12.24)

The vertical boundary between column 1 and column 2 is:

H1 = H2;
1
ε1

∂H

∂y
|1=

1
ε2

∂H

∂y
|2 (12.25)

In each vertical segment, only horizontal boundaries between dielectrics occur, and
ε is now a step function of y. We separate the variable so that H(x, y) = α(x)β(y).
The function β is a vertical eigenfunction for this vertical segment with eigenvalue δ
satisfying the equation:

d2β

dy2 = k2
0(δ − ε(y))β (12.26)

α satisfies a similar equation:

d2α

dx2 = k2
0(ε− δ)α (12.27)

Although there are, in general, an infinite number of eigenfunctions β for each ver-
tical segment, we include only some finite number N of these to construct a general
solution. The general solution in segment j can be written as:

Hj(x, y) =
N∑

i=1
[aiexp(k0

√
ε− δix) + biexp(−k0

√
ε− δix)]βi(y) (12.28)

Our task is to determine the eigenvalue δ and function β in the first step, and ε and
the coefficients of ai and bi in the second step.

12.5.3 Numerical approach

Our first step is to solve Eq. 12.26 within each column. The analytical expression
for β is expressed in term of unknown δ. Assuming there are M layers, we have
2M number of unknown coefficients in this expression. The horizontal boundary
condition gives a set of 2M equations that can be solved by setting the determinant
to be zero. The zeros of the determinant is used to find the roots of δ. A singular
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value decomposition (SVD) method is then used to determine the 2M coefficients.
We shall call this procedure “searching for roots in y-direction” (y-root).
Zero boundary on top and bottom will produce a complete set of eigenvectors that
can be used to construct any wave function. Thus, more β base functions result in
a higher accuracy of the constructed wave function. However, the use of more base
function in y-direction slows down the solution substantially. Here we will choose a
limited number of based functions (βi) where i = 1, 2, ..., N .
Once we have the β base functions, we can construct the final H-field as in Eq. 12.28.
For each column j, the H-field consists of 2N coefficients of ai and bi. The vertical
boundary conditions can be used to write down two equations for H-fields connecting
H-field in j column with that in the j + 1 column. The boundary condition on the
right boundary requires that traveling wave to the left be zero. This boundary
condition can be used to model both radiating wave to the right or for confined wave
with decaying wave.
If we multiply the two equations by βk(y) and integrate over y, we will get 2N
equations relating columns j and j + 1. Using this technique for all columns will
produce a sufficient number of equations to determine all the ai and bi coefficients
and the modal eigensolution for ε. We shall call this procedure “searching for modes
in x-direction (x-root)” . This step generates the final results for the optical modes.
The modal optical dielectric constant can be used to determine the modal optical
gain as follows:

geeim = −Im(ε)k0/neff (12.29)

where neff = Re(
√
ε) is the real part of modal effective index. We shall call this

EEIM modal gain to differentiate it with the usual modal gain (approximated by
averaging the local material gain with the weight of wave intensity). We shall refer
to the latter as averaging modal gain.
The use of averaging modal gain has great numerical advantage of being stable
against the Newton’s method used by the drift-diffusion equations. But the averaging
gain is inaccurate when there is radiative loss in the case of leaky modes. However,
direct use of the EEIM gain will cause numerical problems near lasing condition.
As a compromise, we estimate the radiation loss at transparent condition by setting
all imaginary parts of the dielectric constants to zeros and use the EEIM gain ob-
tained this way as the radiation loss. We will use this estimated radiation loss to
correct the averaging gain throughout the whole simulation.
In summary, we have been able to used the EEIM to estimate the radiation loss and
use it to correct the averaging modal gain.
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12.5.4 Estimate of radiative loss

Using the EEIM module, we are able to find the radiative modes and the effective
index (or eigenvalue of the wave equation) associated with it. The modal loss/gain
is represented by the imaginary part of the eigenvalue.
In many cases, we need to discuss device performance in terms of radiative loss and
material loss separately. The issue here is how we can separate the radiative loss
from the material loss since the imaginary part of the eigenvalue of the wave equation
comes from both material and radiative losses.
We recall how we calculate the modal gain/loss in the absence of radiative loss.
To a good approximation, we calculate the modal gain/loss by averaging the local
material gain/loss using the wave intensity as the weight function. This approach
simplifies and stabilizes the numerical procedures. Such method of wave intensity
averaging cannot be extended to the case when there is radiative loss. The reason is
that the wave extends to infinity where there is radiative loss.
In our simulator, we separate the radiative loss as the different between the total
gain/loss and the material gain/loss from averaged local material gain/loss.
We use two methods to estimate the radiative loss. The first method of estimate is
to set all material to be lossless (by setting imaginary part of indices to be zero). We
then apply the EEIM method to compute the total loss with is just the imaginary
part of the eigenvalue of wave solution. Since the material loss is artificially set to
zero, the total loss from the EEIM is the radiative loss we needed. We refer to such
a method of estimate as the “pure index estimate” since purely real indexes are used
in the calculation.
An alternative method of radiative loss estimate is to compute at every bias both the
total gain/loss from the EEIM and also the averaged local gain/loss. The difference
between the two is the bias dependent radiative loss. Since the local complex index
varies as a function of bias, the radiative loss also changes with bias. We shall refer
to this method of estimate as the “bias-dependent estimate”.
The “pure index estimate” is most convenient since we only get one value for each
device. In most cases, it gives a good representation of the radiative losses in the
same device when there are material losses.
The “bias-dependent estimate” is more realistic since the radiative loss depends also
on local material gain/loss. Since the numerical fluctuation of EEIM as a function
of bias can be quit large, the relative error from this method may also be substantial
as compared with the pure index estimate.
To maintain numerical stability, we still use the method of averaging the local gain
to obtain the modal material gain/loss. Then the radiative loss from either of the
above estimate methods is subtracted from the material modal gain/loss to obtain
the total modal gain/loss which is needed to compute the lasing characteristics.
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We use the pure index method as our default setting the simulator. It is the most
stable since we only have one number to subtract from the material gain. The numer-
ical fluctuation of the bias-dependent method may be a problem when calculating
the light vs. current characteristics so we freeze the value of the radiative loss when
the total gain near threshold. In both methods, we freeze the optical wave function
from the EEIM when the device is biased near the threshold to ensure a smooth light
intensity as a function of bias.

12.5.5 Substrate radiative loss

A common simulation issue is to study the radiative loss caused by high refractive
index substrate. So the direction of radiative wave is downwards in -y direction.
Since our EEIM model assumes confined y-modes and radiative x-modes, we must
first rotate our device counter-clockwise by 90 degrees. This may be achieved by use
of GeoEditor GUI program or in the layer file.

12.5.6 Choice of optical window in y-direction

If the material high index in y-direction is always well centered, it does not matter
what size of solution region you choose in y-direction (optical boundary in init_wave
statement). However, there are cases where some columns have no optical confine-
ments in y-direction at all.
For example, a ridge waveguide laser rotated by -90 degrees will have the substrate
region with no optical confinement. In such as case, the base modes in y-direction
depends very much on the choice of optical window. If the window size in y is too
small, it obviously will affect the y-modes. If the size is too large, many y-modes will
be needed to match the base modes from other columns with optical confinements in
y. With a proper choice of optical window in y-direction, it is possible get reasonable
modal solutions using only 3-5 y-base modes.

12.5.7 Run-time messages

The EEIM model is invoked at every bias step to ensure the variation of modes
as a function of bias is taken into account. When using the EEIM model, the
simulator prints out messages stating the status of the execution of the EEIM model
procedures. Here we list the Run-time messages when EEIM is invoked for the first
time as lines with > sign. Our comments are also given in the listing:

> -------Start EEIM Model--------
> With initial root search (this may take a while).
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Without any previous knowledge of the roots (or modes), we have
to search the complex delta (for y-modes) and epsilon (for x-modes)
using a point by point approach. This may take a while.

> ---Estimate of radiation loss (pure index)---

As a first time use of EEIM in the program, we estimate
the radiation loss. This is done by setting all imaginary parts
of the local index to zero. The imaginary part of
epsilon (eigenvalue) is used to estimate the radiation modal
loss.

> Save base in "tmpb101.dat"
> Save base in "tmpb102.dat"
> Save base in "tmpb103.dat"
> Save base in "tmpb201.dat"
> Save base in "tmpb202.dat"
> Save base in "tmpb203.dat"
...
> Save base in "tmpb701.dat"
> Save base in "tmpb702.dat"
> Save base in "tmpb703.dat"

The y-base modes are computed and stored in "tmpbijk.dat", where
i, j, k are integers for ith column and y-base mode number jk. You may
use the following gnuplot command to view the y-mode:
plot "tmpbijk.dat" w l.

Start to search for roots for the final optical field.

> Initial x-search found roots= 5

Found 5 possible roots for x-direction.

> Solve wave in x direction.
> Find the following possible roots.
>No./Iter/Error= 1 80 0.7779E-02
> root= (10.2363356873790,1.027566003195660E-003)
> EEIM gain[1/m]= -2374.09673169544
> Save wave in "tmploss01.dat"
>No./Iter/Error= 2 80 0.6136E-03
> root= (10.2118941158888,1.060170706117816E-003)
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> EEIM gain[1/m]= -2452.35642688367
> Save wave in "tmploss02.dat"
>No./Iter/Error= 3 80 0.1955E-04
> root= (10.1705711295711,1.119772469334270E-003)
> EEIM gain[1/m]= -2595.48221708482
> Save wave in "tmploss03.dat"

We have found the above 3 modes which are saved in "tmplossij.dat".
You may use the following gnuplot commands to plot modes
to see if these are physical:

set parametric
splot "tmplossij.dat" w l.

> Radiation loss for pure index model:
> Mode Loss(1/m)
> 1 2374.09673169544

We estimate the radiation loss for the requested first mode as above.
This loss will be used to correct the material gain
to get the actual total modal gain.

> ---End of estimate of radiation loss---

Once we finished the "pure index estimate", we proceed to
use EEIM model for optical modes are each bias with run-time
message similar to the above.

> Save base in "tmpb101.dat"
> Save base in "tmpb102.dat"
> Save base in "tmpb103.dat"
...

> -------End of EEIM Model--------

When the EEIM model is invoked in the next bias step, the roots found in the
previous bias are used as initial guess. If the initial guess does not produce stable
solution, the program will re-invoke the EEIM model again with initial root search.
The initial root search usually takes up most of the time.
Please note that our simulator always gives the pure index estimate the first time
EEIM is invoked. Then, the modes are solved at every bias steps. If pure index
estimate is not used, radiative loss at each bias step is calculated and printed at
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different bias steps.

12.6 Perfectly Matched Layer Boundary

The finite element (FEM) discretization of the wave equation results in an eigenvalue
matrix problem of the order of the number of mesh points (for scalar equations). The
matrix problem can easily be set up if the modes are well confined within a finite
region and their intensities decay as a function of distance from the mode centers. We
can obtain a well defined eigenmatrix by deleting the nodes of the boundary assuming
zero wave intensities there. The situation for leaky modes is more complicated for
finite element analysis: there is no simple way to truncate the mesh to establish a
well defined eigenmatrix.
The idea of perfectly match layer (PML) is to create an artificial layer to absorb the
radiating wave without reflecting it back. Since the wave decays to zero intensity
within the PML, we have converted the problem into one of confined modes if our
mesh extends to the outer boundary of the PML.
We have implemented a model of anisotropic PML due to Sacks and others [79]. In
this model, the artificial PML region has a complex anisotropic dielectric constant.
If this constant is chosen properly, the PML method should enable us to apply FEM
to radiative mode solutions which are more accurate and powerful than EEIM.
We define an artificial layer with an anisotropic medium tensor as follows:

[ε]
ε

= [µ]
µ

= [Λ] =

a 0 0
0 b 0
0 0 c

 (12.30)

where ε and µ are permittivities of the isotropic medium to be matched.
Without loss of generality, we consider the situation as indicated in Fig. 12.7. As
proved by Sacks et. al., the reflection from the PML may be eliminated if the
permittivity tensor components follow the relationship c = b = 1/a.
As we show in Appendix A, the wave equation in the PML can be written as follows:(

1
c2

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
−→
E + k2−→E = 0 (12.31)

Consider a scalar field being having the components:

E(x, y, z) = W (x, y)exp(jβz) (12.32)

(
1
c2

∂2

∂x2 + ∂2

∂y2

)
W (x, y) + (k2 − β2)W (x, y) = 0 (12.33)
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Figure 12.7: Schematics of the perfectly matched layer the decay of the wave within
it.

Let us study the asymptotic behavior of the wave in the PML. Usually, the radiative
wave occurs when the index near the PML is higher than the effective index, or
:Re(k2 − β2) > 0. The wave behaves as:

W ∼ exp(jc
√
k2 − β2) (12.34)

Thus, the imaginary part of c will cause the wave to decay within the PML so that
we can truncate our eigenmatrix on the outer boundary of the PML.
The criteria for setting the permittivity parameter c is to attenuate the wave with-
out causing reflection. Theoretically, any value of c can be used without causing
reflection. However in a numerical simulation, realization of a theory can only be
approximate because of discretization using finite number of mesh points. Thus, to
minimize reflection, we recommend using unity as the real value of c (i.e. the same
real reflective index in the PML as in the isotropic medium).
When choosing the imaginary part of c, please note the two extremes. If Im(c) is
too large, the substantial difference between the index of the isotropic medium and
the PML may cause significant reflection and you may observe standing wave ripples
in the isotropic medium near the PML. On the other hand, if Im(c) is too small,
the attenuation of the wave within the PML is so weak that it requires a thick PML
layer and many mesh points within the PML. If the thickness of the PML is not
large enough, the truncation of the eigenmatrix within the PML will cause reflection
within the PML which may propagate all the way back to the isotropic medium.
Again, we may observe standing wave ripples in the isotropic medium. Therefore
the PML should be adjusted in such a way that standing wave ripples do not appear
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in the isotropic medium.
Based on some of our initial tests, a value of 0.02 for the imaginary part of c goes
well with a PML layer thickness of 5 microns. 50 mesh points may be allocated for
such a PML layer.

12.7 Optical Pumping and Incident Light

The program allows the use of an external light input to the device. It will be treated
as a bias component in the same way as electrode bias. For APSYS, this is a crucial
part of modeling photodetectors and solar cells while PICS3D uses the same idea to
model SOAs and modulators.
When the device being modeled has an active region, there will be two different
wavelengths involved in the simulation: a shorter wavelength controlling the optical
generation (i.e. the optical pump) and a longer wavelength resulting from the radia-
tive/stimulated emission. In LASTIP and PICS3D, this is used for optically pumped
lasers; similarly, APSYS can model optically pumped LEDs.
Fig. 12.8 shows that for a typical active region under a specific carrier injection
condition, it is possible for the material to exhibit interband absorption (or negative
gain, thus e-h pair generation) at shorter wavelength while yielding optical gain at
the peak gain wavelength. Our accurate optical gain spectrum model is evaluated
at every mesh point using an active macro (not just the active region) and will
thus respond to different wavelengths by providing either gain or absorption. The
transmission of the light through a multi-layer device is modeled using a plane wave
transfer matrix approach. The local absorption of the pump generates carriers which,
in turn, may generate light at a different wavelength.
The optical pump may be defined as a single wavelength (i.e. pumping by an external
laser source) or by using an input spectrum (i.e. a flash lamp or solar spectrum
illumination). If a spectrum is provided, then the transfer matrix is calculated for
each individual wavelength and the optical generation term is integrated over the
whole spectrum.
As in the key emission wavelength, the incident wave can be also be treated as a
guided wave and thus all previous discussion of lateral optical mode may be applied
without modification.
For more information about how to define an incident light source, refer to the
reference section and the light_power statement.
To control the input light in the simulation, the user should remember that the
equilibrium calculations define an initial state without any external bias. As the
input light is one kind of bias, it needs to be “turned on” with the scan statement.
The scan variable “light” starts off with a value of zero and is used as a multiplier
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Figure 12.8: Optical gain spectrum and indication of pumping and lasing wave-
lengths.

to the input light defined in light_power. Setting the value to 1 in a scan fully
turns on the input light but larger values can be used; for example, one may wish to
multiply an input light spectrum for a multi-sun solar cell simulation.



Chapter 13

WURTZITE STRAINED MQW

13.1 Introduction

Recently, wurtzite strained quantum wells have been studied intensively because
of applications in GaN blue green lasers and LEDs. However, the previous band
structure models are only applicable for zincblende compounds. In this section, we
will describe the MQW band structure and optical transition models for wurtzite
crystals. We follow the work of S.L. Chuang [62] closely here.
We must point out a couple of major differences between zincblende and wurtzite
crystals. The first issue is the base lattice. For zincblende material system, the
basic lattice constant is usually well-known (e.g. GaAs or InP) and the strain is well
defined in each layer once we know the substrate lattice. In the wurtzite system, a
bulk GaN-based material layer is sometimes grown on a thick buffer layer. Through
dislocations and defects, the buffer layer may relax and it is not clear what the base
lattice constant of the MQW should be.
Although the default lattice base constant in our software is that of GaN, it may not
be true for many systems. For example, if a thick bulk layer of AlGaN is grown on a
sapphire substrate before the MQW is placed on top, the base lattice constant should
be that of bulk AlGaN instead of GaN. For this reason, our active layer macros for
wurtzite MQW provide a statement to describe the base lattice so that the users can
adjust it according to individual material systems.
Another important issue is material parameters. As we will see below, there are
many times more band structure and strain parameters for wurtzite than for the
zincblende material system. Since wurtzite semiconductor band structures and op-
tical properties are less understood and many bandŋstructure parameters are not
available, our expectation of the accuracy of the simulation should be lower than
that for zincblende material system.
On a final note, other wurtzite compounds such as ZnO have become a popular field
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of study in recent years. Most of the discussions from this chapter will apply but
care must be taken to use the correct material parameters and base lattices since
strain terms will differ.

13.2 Bulk Band Structure

Consider a strained wurtzite crystal pseudomorphically grown along the c-axis (z
axis) on another thick wurtzite layer. The base lattice constant is a0 and the original
lattice constant of the layer under consideration is a. The strain tensor in the well
region has the following elements:

εxx = εyy = a0 − a

a

εzz = −2C13

C33
εxx

εxy = εyz = εzx (13.1)

The conduction bands can be characterized by a parabolicŋband model with differ-
ent electron effective masses mt

e and mz
e perpendicular and parallel to the c-growth

direction, respectively. The hydrostatic energy shift in the conduction band can be
written as:

Pce = aczεzz + actεxx + εyy (13.2)

The band structure for the valence band is more complicated. Using the k.p method
Chuang and Chang [63] have derived a 6 by 6 Hamiltonian which has been blockŋ-
diagonalized into the following upper and lower Hamiltonians:

Hv
6×6(k) =

[
HU

3×3(k) 0
0 HL

3×3(k)

]
(13.3)

where:

HU =

 F Kt −iHt

Kt G ∆ − iHt

iHt ∆ + iHt λ

 (13.4)

HL =

 F Kt iHt

Kt G ∆ + iHt

−iHt ∆ − iHt λ


When there is strain, the energy bands of shift in a complicated manner. We need to
use a common reference energy level when writing down the Hamiltonian. However,
we wish to stress that this reference is only for the purposes of solving the Hamil-
tonian and obtain the bandgap, energy dispersion curves, etc...: in a full device
simulation, band alignment follows the rules set out in Sec. 10.1.
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Following the above convention for the wurtzite structure, if E0
c is the unstrained

conduction band edge, the reference valence band level is as follows:

E0
v = E0

c − (Eg + ∆1 + ∆2) (13.5)

When there is strain, the conduction band is shifted by an amount Pce and the new
reference level is:

E0
v = Ec − (Eg + ∆1 + ∆2 + Pce) (13.6)

Using the above reference energy, the matrix elements are defined as follows:

F = ∆1 + ∆2 + λ+ θ

G = ∆1 − ∆2 + λ+ θ

λ = λk + λε

λk = ~2

2m0
(A1k

2
z + A2k

2
t )

λε = D1εzz +D2(εxx + εyy)
θ = θk + θε

θk = ~2

2m0
(A3k

2
z + A4k

2
t )

θε = D3εzz +D4(εxx + εyy)

Kt = ~2

2m0
A5k

2
t

Ht = ~2

2m0
A6ktkz

∆ =
√

2∆3 (13.7)

Please note that the base vectors |1 > to |6 > of the above can be expressed by
spherical harmonics Ylm(l = 1) [62]. For the upper Hamiltonian, |1 >, |2 >, |3 >
corresponds to heavy hole (HH), light hole (LH) and crystal field split hole (CH),
respectively. At the zone center (k=0), the HH subbands are decoupled from the LH
and CH subbands while there is always a coupling between the LH and CH bands.
In our simulation software, the above Hamiltonian is solved to generate the bulk
band structure from which the density of states are evaluated for bulk macros. To
achieve maximum efficiency, the bulk valence band structure is fitted to a parabolic
band for each of HH, LH and CH bands under any strain condition. Such fitted
parabolic bands are used for modeling the non-active bulk regions. For MQW active
region, a more rigorous approach is used which we shall describe below.
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13.2.1 MQW Model - Effective Mass Approximation

In general, the dispersion of bulk valence bands is non-parabolic and anisotropic with
strong mixing or anti-crossing behavior in the direction perpendicular (or transverse)
to the c-axis. We need an effective mass model for the computation of density of
states and for a simplified MQW model.
An efficient approximation is to take the effective masses fitted from the bulk band
structure. This approach takes into account the anti-crossing behavior but the qual-
ity of the fit can be poor near some range for the transverse direction (see Fig. 13.1
and Fig. 13.2).
Based on Ref. [63], we have also implemented the following analytical effective mass
model for the valence band:

• 1) Within a range of small k (a situation when the valence band is lightly
populated by holes), the following effective masses hold:

m0/mz
hh = −(A1 + A3)

m0/mz
lh = −

[
A1 +

(
E0

2 − λe

E0
2 − E0

3

)
A3

]

m0/mz
ch = −

[
A1 +

(
E0

3 − λe

E0
3 − E0

2

)
A3

]
(13.8)

m0/mt
hh = −(A2 + A4)

m0/mt
lh = −

[
A2 +

(
E0

2 − λe

E0
2 − E0

3

)
A4

]

m0/mt
ch = −

[
A2 +

(
E0

3 − λe

E0
3 − E0

2

)
A4

]
(13.9)

where E0
i (i = 1, 2, 3) are the valence band edges at k=0. The parabolic bands

of this model are shown in Figs. 13.3 and 13.4.

• 2) For a large range of k (a situation when the valence band is heavily populated
by holes), the following effective masses formulas are valid:

m0/mz
hh = −(A1 + A3)

m0/mz
lh = −(A1 + A3)

m0/mz
ch = −A1 (13.10)

m0/mt
hh = −(A2 + A4 − A5)

m0/mt
lh = −(A2 + A4 + A5)

m0/mt
ch = −A2 (13.11)
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Figure 13.1: Transverse valence bands (points) fitted to effective mass model.

The parabolic bands of this model are shown in Figs. 13.5 and 13.6.

• 3) A compromise of the above two models is to average them. The parabolic
bands with average masses are shown in Figs. 13.7 and 13.8.

The default setting in Crosslight software is 3) above. The user may adjust the
setting of the effective mass model through the statement modify_wurtzite. The
choice of model is based on how heavily the valence bands are populated by holes
(i.e. hole carrier density).

13.3 Wurtzite dipole moments

Since the crystal symmetry of wurtzite is different from that of zincblende, the dipole
moment in effective mass approximation for zincblende can not be used here and we
need to use more accurate models (e.g. k.p theory) to compute the dipole moment
for optical transitions. However, study of results in k-dependent dipole moment
from k.p theory for a large number of structures leads us to propose the following
simplified dipole moment enhancement factors:

Ahh = 3/2

Alh = 3cos2(θe)
2

Ach = 0 (13.12)
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Figure 13.2: Valence bands along c-axis (points) fitted to effective mass model.
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Figure 13.3: Transverse valence bands (points) as compared with analytical effective
mass model of small k-range.
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Figure 13.4: c-axis valence bands (points) as compared with analytical effective
mass model of small k-range.
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Figure 13.5: Transverse valence bands (points) as compared with analytical effective
mass model of large k-range.
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Figure 13.6: c-axis valence bands (points) as compared with analytical effective mass
model of large k-range.
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Figure 13.7: Transverse valence bands (points) as compared with analytical effective
mass model of averaged masses.
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Figure 13.8: c-axis valence bands (points) as compared with analytical effective mass
model of averaged masses.

for TE and

Ahh = 0
Alh = 3 − 3cos2(θe)
Ach = 3 (13.13)

for TM.
The cos2(θe) term above is defined in the same way as in zincblende. Please note
that we formulate the above factors in such a way that the following conservation
rule is obeyed:

2 × AT E
h + AT M

h = 3, (h = hh, lh, or ch) (13.14)

The dipole moment is expressed as:

Mhh = AhhOijMb

Mlh = AlhOijMb

Mch = AchOijMb (13.15)

where Oij is wave function overlap integral and Mb is bulk dipole moment given by
[62] as follows:

MT M
b = m0

6
Epz

Epz =
(

1
mz

e

− 1
)

(Eg + ∆1 + ∆2)(Eg + 2∆2) − 2∆2
3

Eg + 2∆2
(13.16)
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MT E
b = m0

6
Epx

Epx =
(

1
mt

e

− 1
)
Eg[(Eg + ∆1 + ∆2)(Eg + 2∆2) − 2∆2

3]
(Eg + ∆1 + ∆2)(Eg + ∆2) − ∆2

3
(13.17)

13.4 MQW Model – Valence Mixing

As in zincblende, off-diagonal elements in the Hamiltonian imply mixing of the va-
lence band states. Within the envelope function approximation, we write the wave
function as follows:

ΨU
m(z; kt) = eikt·rt

√
A

(
g(1)

m (z; kt)|1 > +g(2)
m (z; kt)|2 > +g(3)

m (z; kt)|3 >
)

(13.18)

ΨL
m(z; kt) = eikt·rt

√
A

(
g(

m4)(z; kt)|4 > +g(5)
m (z; kt)|5 > +g(6)

m (z; kt)|6 >
)

(13.19)

The valence subbands are determined by the following coupled differential equations:

3∑
j=1

(
HU

ij

(
kz = −i ∂

∂z

)
+ δijE

0
v(z)

)
g(j)

m (z; kt) = EU
m(kt)g(i)

m (z; kt) (13.20)

The valence band discontinuity is represented by discontinuity in E0
v(z) (the reference

energy). Similar equations can be written down for the lower Hamiltonian. It can be
shown that MQW with reflection symmetry E0

v(z) = E0
v(−z), the upper and lower

Hamiltonians have the same band structures. In the software, we use finite difference
method to solve the coupled differential equations. This gives us the valence mixing
subbands.
The dipole moments, taking into account the upper and lower Hamiltonian degen-
eracy, are given as follows:

MT E
nm = Mb

3
4
[
< ϕn|g(1)

m >2 + < ϕn|g(2)
m >2

]
(13.21)

MT M
nm = Mb

3
2
< ϕn|g(3)

m >2 (13.22)

13.5 Polarization and interface charges

One of the most troublesome properties of the wurtzite material system is that its
most common compounds have spontaneous and strain-induced polarization terms.
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This manifests itself as a fixed interface charges at heterojunction interfaces. In quan-
tum wells, these charges create a local field which separates carriers (i.e. Quantum-
Confined Stark Effect). This affects the wave functions and the resulting gain calcu-
lations.
To model this effect properly, the user must use the self_consistent statement:
this will force the solver to iterate between the Poisson/drift-diffusion equations and
the Schrōdinger solver so a self-consistent solution can be found. Without this, the
Schrōdinger solver will assume a flat band profile.
Since the local field can be different from well to well in a MQW region, it is rec-
ommended that the calculations for each well be done independently. To do this, a
different material number must be assigned to each well: the independent_mqw
statement in the layer file can automate this. If the same material number is used
for multiple wells, the Schrōdinger and gain calculations will only be done once.
Interface charges can be defined manually with the interface statement. For the
InGaN and AlGaN material system, this process has been automated in the layer
file with the set_polarization statement.

13.6 Non-Polar and Semi-Polar materials

The polarization effects discussed in the previous section occur along the most natural
growth orientation of wurtzite crystals: c-plane. However, it is possible to grow the
material in other orientations where these effects can be reduced or even eliminated
[65].
In this case, a full 6x6 k.p method must be used to find the correct masses for this
orientation. This is done with the modify_wurtzite and modify_qw statements.
The gain and spontaneous emission integrals must also be done differently in this
situation and an explicit averaging of the results over the direction of the in-plane
wave vector must be used. This can be time consuming so it is recommended to
run the gain calculations separately and use tabulated values in the main device
simulation.
Crystal plane orientations are given using the Bravais-Miller indices (hkil) where
i = −h − k: the redundant index is useful in highlighting equivalent symmetric
directions. The plane normal vector is specified using the rotation (x → x′) angles
ϕ and θ. To take into account the anisotropic refractive index in mode calculations,
the direction of TE mode (x′′) or the waveguide propagation direction (y′′) must also
be specified with the in-plane angle ψ. These angles are illustrated in Fig. 13.9.
Some common plane orientations are shown in Table 13.1. Note that because of
rotational symmetry, multiple ϕ values can be used for the same plane orientation.
However, the in-plane waveguide direction may need to be adjusted.
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Figure 13.9: Rotation angles for non-polar and semi-polar wurtzite plane orienta-
tions.

Orientation Bravais-Miller
Indices

Classification ϕ θ

c-plane (0001) polar 0 0
m-plane

(
11̄00

)
non-polar 0 90

a-plane
(
112̄0

)
non-polar 30 90

r-plane
(
11̄02

)
semi-polar 0 atan

(
c

2a

)
?

(
101̄1

)
semi-polar 0 atan

(
c
a

)
?

(
112̄2

)
semi-polar 30 atan

(
c

2a

)
Table 13.1: Common plane orientations in wurtzite crystals .

13.7 Nomenclature

We list some critical symbol definitions here because these are specific to wurtzite
band structure.
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a, c Lattice constants of Hexagonal structure.
Eg Bandgap.
Eg Bandgap.
∆1,∆2,∆3 Energy parameters.
∆so Spin-orbit coupling energy.
mz

e,m
t
e Conduction band effective masses along c-axis (z)

and transverse (x-y) direction, respective.
Ai, (i = 1, ..., 6) Valence band effective mass parameters.
ah, ac, av Hydrostatic deformation potentials of

total, conduction, and valence parts, respectively.
Di, (i = 1, ..., 4) Valence band shear deformation potentials.
C13, C33 Elastic stiffness constants.
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Chapter 14

APSYS SPECIFIC MODELS

14.1 Time-Dependent Traveling Wave Equations

As of the 2012 version of APSYS, this model is considered obsolete: please use
PICS3D to model optical amplifiers (SOA), modulators (EAM) and superluminescent
diodes (SLED). The new model is superior in a number of ways, including a full 3D
model that couples longitudinal (wave propagation) and lateral effects in the same
sparse solver.

14.2 Theories of Light Emitting Diodes

14.2.1 Introduction

A light emitting diode (LED) is different from a laser diode (LD) and deserves special
treatment for the following reasons:

• 1) LED operates well below lasing threshold while theories of lasers almost
always assumes lasing condition

• 2) Absence of simulated recombination in LED

• 3) Continuous emission spectrum must be considered for LED while longitudi-
nal modes of laser only requires a limited number of lasing wavelengths

• 4) The randomness of spontaneous recombination in LED in contrast to the
coherence of laser modes which affects the near and far-field models.

In this section, we attempt to establish the basic theories for LED emission in one
direction: perpendicular to the semiconductor surface). This allows us to use a
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simple 1D model to formulate our theory; once the basic formulas are established,
we will extend it to emission in other directions.
Many of the theories here were initially formulated by Henry for laser diodes and
semiconductor optical amplifiers. We find that the same theories are also applicable
for LEDs. Interested readers are encouraged to consult Ref. [80].
The model described here is implemented in the led_control statement. A sim-
plified version of the model is available through the led_simple statement: this is
useful when used in conjunction with the ray tracing model of Section 14.5.

14.2.2 Fabry-Perot Cavity and LED

A LED may be regarded as a special case of a Fabry-Perot laser. Without loss
of generality, we consider the following device configuration: the z-direction has
a waveguiding structure which supports confined lateral/traverse modes. We later
relax this condition to include the case with no optical confinement. Please note that
in LED, we must treat as many modes as possible since they all contribute to the
emission power because of the non-coherent nature of spontaneous emission. In the
case of a LD, only a limited number of highly coherent and highly powered modes
are considered. For simplicity, we assume throughout this section that the LED does
not have any optical coatings so that light emits directly from the semiconductor to
the air.
The theoretical bases regarding the wave function, the Wronskian and the “Diffusion”
coefficient and its relation to semiconductor spontaneous recombination are covered
in Appendix D. We shall only use the results here.
We will consider a waveguide with well confined lateral/transverse modes (xy-mode
model). Later, we will relax this constrain and consider a case only confined trans-
verse modes in y direction exist (we call it y-mode model). Finally, we consider a
case where there are no confined modes (we call it uniform model).
For a Fabry-Perot cavity from 0 to L, the two basic wave functions Z1 and Z2 are as
follows:

Z1(z) = r1exp(jkz) + exp(−jkz) (14.1)

Z2(z) = exp(jkz) + r2exp(2jkL− jkz)] (14.2)
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We construct the following Wronskian:

W = Z1(z)Z ′
2(z) − Z2(z)Z ′

1(z)
= [r1exp(jkz) + exp(−jkz)]

× [jkexp(jkz) − jkr2exp(2jkL− jkz)]
− [exp(jkz) + r2exp(2jkL− jkz)]
× [jkr1exp(jkz) − jkexp(−jkz)]

= −r1exp(jkz)jkr2exp(2jkL− jkz)
+ exp(−jkz)]jkr1exp(jkz)
+ r1exp(jkz)jkexp(−jkz)
− r2exp(2jkL− jkz)jkr1exp(jkz)

= 2jk[1 − r1r2exp(2jkL)]

(14.3)

Consider the solution of the field in terms of the Green’s function:

g(z, zs)Wn = Z1(z)Z2(zs)θ(zs − z) + Z2(z)Z1(zs)θ(z − zs) (14.4)

E(z)Wn =
∫
dzsf(zs)[Z1(z)Z2(zs)θ(zs − z) + Z2(z)Z1(zs)θ(z − zs)]

= Z1(z)
∫ L

z
Z2(zs)dzsf(zs) + Z2(z)

∫ z

0
Z1(zs)dzsf(zs)

(14.5)

where f(zs) is the noise term due to spontaneous emission the details of which can
be found in Appendix D.
Consider the squared ensemble average

< |E(z)Wn|2 > = < [Z1(z)
∫ L

z
Z2(zs)dzsf(zs)

+ Z2(z)
∫ z

0
Z1(zs)dzsf(zs)]

[Z∗
1(z)

∫ L

z
Z∗

2(zt)dztf
∗(zt)

+ Z∗
2(z)

∫ z

0
Z∗

1(zt)dztf
∗(zt)] > (14.6)

We note that the cross terms of the above four terms are zero since noise sources are
uncorrelated:

< |E(z)Wn|2 > = |Z1(z)|2
∫ L

z
|Z2(zs)|2dzsf0(zs)

+ |Z2(z)|2
∫ z

0
|Z1(zs)|2dzsf0(zs)

= |Z1(z)|2
∫ L

z
|Z2(zs)|2dzs2DF F (zs)

+ |Z2(z)|2
∫ z

0
|Z1(zs)|2dzs2DF F (zs) (14.7)
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As usual, we ignore the interference terms when we consider energy flow so that

|Z1(z)|2 ≈ r2
1exp(−2k′′z) + exp(2k′′z) (14.8)

|Z2(z)|2 ≈ exp(−2k′′z) + r2
2exp(−2k′′(2L− z)] (14.9)

We note that |Wn|2 varies between 4k2(1 − r1r2)2 and 4k2(1 + r1r2)2 rapidly. To a
good approximation, we take |Wn|2 = 4k2 to simplify matters.
The linear photon density (in units of 1/m) is given by

S(z)~ω∆ω =
∑

n

2ε0nng < |E(z)|2 > (14.10)

where the summation n is over different lateral modes.
The power emission spectrum may be calculated from left and right facets as follows:

PL(ω)Deltaω = 1 − r2
1

1 + r2
1

∑
n

vg2ε0nng < |E(0)|2 > (14.11)

where vg and ng are the group velocity and group index, respectively.
At the left facet:

< |E(0)|2 >= |Z1(0)|2/|Wn|2
∫ L

0
|Z2(zs)|2dzs2DF F (zs) (14.12)

PL(ω) = 1 − r2
1

1 + r2
1
vg2ε0nng

(1 + r2
1)

4k2

∫ L

0
|Z2(zs)|2dzs2DF F (zs) (14.13)

As we derived in Appendix D that the diffusion coefficient

2DF F = π~
ε0vgn2~ω < n|rsp(ω)|n > . (14.14)

where rsp is the spontaneous emission rate at a photon frequency. |n > is used to
denote the wave function integral for the nth lateral mode.

PL(ω) =
∑

n

1 − r2
1

1 + r2
1
vg2ε0nng

(1 + r2
1)

4k2
π~

ε0vgn2

∫ L

0
|Z2(zs)|2dzs~ω < n|rsp(ω)|n > .

(14.15)
Our key result for spontaneous emission power for an ω interval is as follows:

PL(ω)∆ω =
∑

n

(1 − r2
1)2ngπ

n

1
4k2

∫ L

0
|Z2(zs)|2dzs(~ω) < n|rsp(E)|n > ∆E. (14.16)



14.2 Theories of Light Emitting Diodes 265

The above formula is applicable for a waveguide with a limited number of lateral /
transverse modes (the xy-mode model). It can be adapted for different circumstances
as follows.
We consider a device cross section with active region large enough to accommodate
many different lateral modes in both x and y direction (the plane wave model or
uniform model). Let us now count the number of allowable lateral modes at frequency
ω.
If we assume a large rectangular device active cross section:

(ω/c)2 = k2
z + k2

x + k2
y (14.17)

At a fixed emission frequency, if we consider all emissions in ±z direction, the allow-
able lateral states are confined within a circle of

k2
x + k2

y < (ωn/c)2 (14.18)

Thus, ∑
n

= Aπk2/(4π2) = Ak2/(4π) (14.19)

where A is the active region cross section. We assume all the modes overlaps with a
uniform active region perfectly (uniform model) so that < n|n >= 1.
So far, all of our models based on the Green’s function are one-dimensional. Thus
the wave number k should be understood as kz if the actual propagation direction
is not in z-direction. We make a further approximation to replace kz by a certain
average < kz > and remove the summation altogether:

PL(ω)∆ω = (1 − r2
1)ng

2n
k2

4 < kz >2A
∫ L

0
|Z2(zs)|2dzs(~ω)rsp(E)∆E. (14.20)

The internal emission power from spontaneous emission is

Pspon(ω)∆ω = A
∫ L

0
dzs(~ωrsp(E))∆E. (14.21)

The ratio of ζext = PL/Pspon gives us the LED external efficiency at a frequency in
the left direction for such a highly multimode device.
If we assume that rsp is reasonably uniform in z-direction, the external efficiency in
one direction can be written as:

ζext = (1 − r2
1)ng

2n
k2

4 < kz >2

∫ L

0
|Z2(zs)|2dzs/L (14.22)

We choose k2/ < kz >2= 4/3 so that in the limit of zero facet reflectivity and
transparent material, the external efficiency for one facet is 1/6, as it should be if
the device is in a cubic shape.
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Figure 14.1: External efficiency versus relative gain (gL) of an LED with large active
region cross section supporting many lateral modes.

Thus:
PL(ω)∆ω = (1 − r2

1)ng

6n
A
∫ L

0
|Z2(zs)|2dzs(~ω)rsp(E)∆E. (14.23)

and the external efficiency for a case of uniform spontaneous emission medium is:

ζext = (1 − r2
1)ng

6n

∫ L

0
|Z2(zs)|2dzs/L (14.24)

The integral is evaluated as follows:
∫ L

0
|Z2(z)|2dz/L =

∫ L

0
dz/L[exp(−2k′′z) + r2

2exp(−2k′′(2L− z)]

= 1
2k′′L

[1 − exp(−2k′′L)]

− 1
2k′′L

r2
2exp(−4k′′L)[1 − exp(2k′′L)] (14.25)

To gain some insight into how the external efficiency of a LED depends on the
gain/loss of the material, we plot the single facet external efficiency of an LED with
large active region cross section supporting many lateral modes (uniform model).
Parameters are chosen as follows: r12 = r2

2 = 0.3, n = ng = 3.4. The result
is shown in Fig. 14.1. As expected, the efficiency goes up as gain is increased. At
transparency, the external efficiency amounts to 1/6 for a single facet which accounts
for 100 percent of light emission in one direction.
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Similar expression can be written for traveling waves in other directions. For exam-
ple:

PR(ω)∆ω =
∑

n

(1−r2
1)/(1+r2

2)2ngπ

n

1
4k2Z2(L)

∫ L

0
|Z1(zs)|2dzs(~ω) < n|rsp(E)|n > ∆E.

(14.26)
The integral is evaluated as follows:

∫ L

0
|Z1(z)|2dz/L =

∫ L

0
dz/L[r2

1exp(−2k′′z) + exp(2k′′z)]

= 1
2k′′L

r2
1[1 − exp(−2k′′L)]

− 1
2k′′L

[1 − exp(2k′′L)] (14.27)

PR(ω)∆ω =
∑

n

(1−r2
2)2ngπ

n

1
4k2 exp(−2k′′L)

∫ L

0
|Z1(zs)|2dzs(~ω) < n|rsp(E)|n > ∆E.

(14.28)

exp(−2k′′L)
∫ L

0
|Z1(z)|2dz/L = 1

2k′′L
r2

1exp(−2k′′L)[1 − exp(−2k′′L)]

+ 1
2k′′L

[1 − exp(−2k′′L)]

= 1
2k′′L

[1 − exp(−2k′′L)]

− 1
2k′′L

r2
1exp(−4k′′L)[1 − exp(2k′′L)] (14.29)

which is completely consistent with our result for the left facet. Thus we will only
consider emission in one direction without loss of generality.

14.2.3 Internal reflection and LED emission power

The result in Eq. 14.23 is obtained under rather ideal condition and assumes that all
emission in ±z can escape from the LED. The result is useful for qualitative analysis
regarding the dependence of gain/loss. However, the efficiency from this result is
overestimated because in reality, only a small fraction of the light in ±z can escape
from the LED simply because of the internal total reflection angle is much smaller
than 90 degrees. For a more accurate theory, we will re-evaluate Eq. 14.16 taking
into account the internal reflection angle.
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Figure 14.2: Schematics showing the angle of refraction for an LED.

If the effective refractive index of the material is ne1, the maximum internal reflection
angle θmax (see also Fig. 14.2) is:

sinθmax = 1/ne1 (14.30)

For the uniform model, we should only consider the wave vectors within this angle:

∑
n

=
∫ k/ne1

0
Adk2

r/(4π) (14.31)

where
k2

r = k2
x + k2

y (14.32)

Please note that the wave number in Eq. 14.16 is to be understood as kz. We need
to evaluate the numerical factor as follows:

fcone =

= 1
8

∫ k/ne1

0
dk2

r/(k2 − k2
z)

= 1
8
ln

(
n2

e1
n2

e1 − 1

)
(14.33)

The power emission from facet 1 (left) is

PL(ω)∆ω = (1 − r2
1)Ang

8n
ln

(
n2

e1
n2

e1 − 1

)∫ L

0
|Z2(zs)|2dzs(~ω)rsp(E)∆E. (14.34)
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Please note that the above emission power is much smaller than the ideal case in Eq.
14.23 because the new numerical factor is much smaller:

1
8
ln

(
n2

e1
n2

e1 − 1

)
< 1/6 (14.35)

It is clear that for an LED with simple configuration, the main power limitation is
set by the internal reflection angle. Most of the emission power is lost due to internal
facet reflection and absorption. Only a small fraction (around 10 percent) escapes
through a small cone vertical to the LED surface.
The reduction factor in Eq. (14.33) has a problem of consistency with the factor of
1/6 because the former does not reduce to the latter if the index of refraction tends
to unity. Therefore, we should use the same approximation of < k2

z > /k2 = 3/4 and
obtain:

fcone =

= 1
8 < k2

z >

∫ k/ne1

0
dk2

r

= 1
6n2

e1
(14.36)

The above formula of cone reduction factor is preferred because it reduces to the
ideal case of no internal reflection if the index tends to unity. For most applications
in LED emission to the top surface, the size of the active region facing the top is
large enough to use the uniform model and thus Eq. 14.36 is our model of choice.
The simulation program has a switch to allow the user to include or exclude the
effect of total internal reflection.
By default, the idea case of no internal reflection is used so that the power emission
is calculated by setting index to unity in Eq. 14.36. This represents an overestimate
of emission in one direction. On the other hand, use of total reflection to assume
that all lights being totally reflected are lost is an under-estimate because modern
LED’s often have special geometric design to enable the lights being totally reflected
to change directions and to escape the device.
In some cases, such as emitting from the sides of a thin device with single mode
confining waveguide, it is useful to consider a case where only one direction (say
y-direction) has confined modes (y-mode model) while the x-direction is unconfined
with a large device dimension Lx. We can simplify mode summation in the x-
direction as follows.
Recall our basic result:

PL(ω)∆ω =
∑
nx

∑
ny

(1 − r2
1)2ngπ

n

1
4k2

∫ L

0
|Z2(zs)|2dzs(~ω) < n|rsp(E)|n > ∆E.

(14.37)
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The number of available modes in the x-direction is simply:

∑
nx

=
∫ k/ne1

0
Lxdkr/(2π) (14.38)

Thus, we need to evaluate the integral:

gl = 1
4

∫ k/ne1

0
dkr/(k2 − k2

r) (14.39)

= 1
8
ln
(
ne1 + 1
ne1 − 1

)

We then obtain our result for y-mode model:

PL(ω)∆ω =
∑
ny

(1 − r2
1)ng

n

Lxgl

k

∫ L

0
|Z2(zs)|2dzs(~ω) < n|rsp(E)|n > ∆E. (14.40)

14.2.4 Far field distribution

We use a rather simple model to evaluate the far field distribution. We consider
three effects:

• 1.) The optical path is different (longer) when the emission angle is not vertical.
The longer the optical path, the more power absorption occurs.

• 2.) The power reflection r2
1 is a function of the emission angle.

• 3.) Light direction change due to refraction causes a solid angle within the
semiconductor to be magnified upon refraction. More details are discussed as
follows.

It is reasonable to assume that the spontaneous emission is random and has uniform
intensity in all directions within the semiconductor. Consider emission within a
solid angle ∆θ∆ϕ. The θ angle is determined by the following equation (see also Fig.
14.2):

ne1cosθ∆θ = cosθ2∆θ2 (14.41)

Thus the solid angle is amplified and the light intensity is reduced by a factor(
cosθ2

ne1cosθ

)(
sinθ

sinθ2

)
(14.42)

where the 2nd factor is due to angular integration in ∆ϕ.
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14.3 Resonant Cavity Light Emitting Diode Model

The models in Section 14.2 were based on the Green’s function approach and much
effort was put into deriving a total power extraction formula that sums over all
possible modes and over all wavelengths. In this section, we briefly outline the theory
we use for the resonant cavity light emitting diode (RCLED). Instead of ignoring the
interference or resonance effects of the optical waves, we explicitly consider them.
This model is turned on with the rcled_model statement.
The task is to start from a continuous dipole source as a function of wavelength and
find the emission power spectrum at different angles. If we ignore the micro cavity
interference effects, the results should reduce to those in Section 14.2. Since the basic
theories have been detailed in Appendix D, we will only highlight a few key points.
RCLED power emission strongly depends on the overlap of the optical field with the
dipole source. Existence of the dipole source does not necessarily mean radiative
recombination will occur. For example, the simple term Bn2 only means that if
carriers exist in the active layer of a device, a dipole source is available there. It
does not guarantee the generation of electron-hole pairs. For that to happen, the
optical field should exist so that the dipole moment (displacement times the field)
can be formed to complete the energy conversion from current to photon. There-
fore, in RCLED model, the simple term Bn2 (and other form of QW recombination
source) must be scaled by an interference enhancement factor (or the g-factor as
referred in the simulator print out). In locations of constructive interference, the
radiative recombination is enhanced. The opposite holds for locations of destructive
interference.
It is interesting to note that the Green’s function theory itself is fully consistent with
the above view of power emission dependence on location of the dipole source. The
Green’s function theory states that a point dipole source can cause a field profile
(definition of Green’s function). However, one can show that the intensity of the
field (and thus the emission power) strongly depends on whether the point source is
placed at location of constructive or destructive interference. When using APSYS
to simulate RCLED, such dipole source and power relation should be kept in mind.
To check whether the active region will be subject to constructive or destructive
interference, the simulator will print out a .stw file during the equilibrium calcula-
tions. This a text file containing the index profile and standing wave pattern: they
can easily be plotted with Gnuplot or other tools.
Another important point to note is that photon recycling effect is automatically
taken into account. In the RCLED model, the active layers are responsive to light
generated by the dipole source within the same device as well as to external incident
light. Due to the photon recycling effect, the total spontaneous emission rate can
greatly exceed the electrical pumping rate. The reason is that photons emitted get
reflected back to the cavity and cause self optical pumping. Therefore, the correct



272 APSYS SPECIFIC MODELS

way to compute the IQE is to subtract the photon absorption rate from the total
spontaneous emission rate before dividing the injection current. This has been done
when we plot the IQE for the RCLED model.

14.4 2D Photonic Crystal Power Extraction Model

Our purpose here is to derive the total emission power from a photonic crystal LED.
For simplicity, we assume the following general purpose configurations: a 2D photonic
crystal (PhC) consisting of holes of low index (such as air) are on top of an LED
which we consider as a waveguide with a cross section on the xy-plane.
The basic idea is to regard a 2D photonic crystal (PhC) as a 2nd order DFB grating
for which the first order radiative loss has been well understood and formulated [81].
There are major differences between a 2D PhC and a DFB grating which we will
identify and handle accordingly.
Without loss of generality, we assume the 2D PhC orientation is arranged such that
the shortest period appears in the z-direction. Later on, we shall sum up power
emission in other directions. In other words, we only consider power coupling due to
the shortest periods in such a structure.
As a reference model, we use the Green’s function method to compute the optical
power from such a structure. We first cut up the structure into vertical divisions so
that emission power can be calculated as a function of such divisions, or a function
of position x. Within each division, the problem is simplified into a 1D Green’s
function in y.

PG(y) =
∫
G(y, y1)rsp(y1)dy1 (14.43)

where G() is a Green’s function which is constructed from the products of the optical
wave functions (to get the power from wave amplitude). For more details on Green’s
function approach, please see Appendix D.
It is clear from the form of the Green’s function that the amount of power carried
by an optical mode is proportional to the overlap between the mode intensity and
the spontaneous dipole source profile. A dipole source will not emit power unless
the optical mode already existed there (recall dipole moment is product of field and
charge displacement). Therefore, we obtain the power distribution fraction for each
mode (normalized):

Pr(j) = Γqw(j)/sumj[Γqw(j)] (14.44)

In the following discussion, we‘give the formulas for the power coupling, or power
emission coefficient for each confined waveguide mode. Detailed derivations may be
found in the section on second order grating for PICS3D and also in Ref. [81].



14.4 2D Photonic Crystal Power Extraction Model 273

In the major PhC periodic direction, we expand the refractive index in the following
form:

n(z) = a0 + a1cos(kbz) + b1sin(kbz) + a2cos(2kbz) + b2sin(2kbz) (14.45)

where kb = 2π/Lb and Lb is the period of the major lattice constant of the PhC.
The fraction of surface power emission is given by

Fsurf = π2∆εζ2Qf

n2
modeλ0

(14.46)

where nmode is the modal effective index within the semiconductor wave guide.
Other terms are defined as follows:

ζ =

√
a2

1 + b2
1

2
(14.47)

Qf = |
∫

P hC w(y)exp[−jky(y − yc)]dy|2∫
w(y)2dy

(14.48)

where
∫

P hC means integration over the PhC air hole layer. yc is the center point of
the air hole layer.

ky = k0ny (14.49)
ny = ninsulfinsul + nmode(1 − finsul) (14.50)

where ninsul is the index of the insulator (air hole) and finsul is the area fraction of
the air hole.

∆ε = 4(∆n2
r + ∆n2

i )n2
mode (14.51)

∆nr and ∆ni are the real and imaginary index differences between the semiconductor
and the insulating air hole.
Finally, the difference between a 2nd order DFB grating and a 2D PhC is that the
latter has than one major scattering direction. Also, the air hole has a limited width.
For these two factors we introduce an optical confinement factor:

Γϕ = MdirWinsul/Wcell (14.52)

where Mdir is the number of major scattering directions. For square lattice it takes
2, and for triangle lattice a value of 3 is used. Winsul is the width of the insulating air
hole (diameter) and Wcell is the cell size which we take as the wavelength of interests
in the semiconductor medium.
The final emission power for a particular lateral mode j of the LED waveguide is
obtained from the power emission from the Green’s function method in Equation
(14.43) times the modal power fraction in Equation (14.44) times the surface power
coupling fraction in Equation (14.46) and times the angular optical confinement
factor in Equation (14.52) as follows:

PP hC,j = PG × Pr(j) × Fsurf × Γϕ (14.53)
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14.5 Ray Tracing Simulation

14.5.1 Introduction

Ray tracing (RT) is a modeling technique based on treating light waves as an ensem-
ble of geometrical rays reflected and refracted off material boundaries. This technique
is most suitable for optical systems where geometrical nature of the optics is more
important than the wave nature. A good example is light emitting diode where the
light source is spontaneous emission with randomized phase information while the
coherent effect is not significant since the dimension of the cavity is much larger than
the wavelength. In this section, we shall describe the theoretical backgrounds of the
RT technique in the APSYS software.
A unique feature of our ray tracing technique is the geometrical treatment combined
with a wave optics approach, taking into account refraction, reflection, absorption
and interference effects. Our model is able to simulate in 2/3 dimensions the angular
distribution of the transmitted power of an LED.

14.5.2 Basic ideas

The basic assumption in RT is that a ray of light travels in a straight line within a
uniform medium. For simplicity, consider a simple cubic crystal. Let us put in the
center a point source of light which emits rays of light in the form of many straight
lines. The following can happen to a ray:

• It returns back into crystal completely due to total internal reflection and no
fraction of light power goes outside.

• It splits into reflected and transmitted rays.

• It transmits to the outside completely.

Depending on which of these outcomes occurs, there may be a reflected ray and/or
a refracted ray which needs to be dealt with (Fig. 14.3). The RT method is based
on following the reflected ray until it decays down to a certain numerical precision
or escapes from the device completely. Every time a secondary refracted ray is
generated, it is put inside a queue for later processing and the program continues
until the queue is empty or a maximum number of secondary rays has been generated.
The generation (or not) of a secondary ray is based on the incident angle of the ray,
the refractive index on both sides of the interface as well as the particular nature of
the material interface. Also, due to the wave nature of light there is a dependence
on polarization of the electric and magnetic field vectors with respect to the plane
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Figure 14.3: Ray tracing in simple cubic crystal

of incidence. If the electric field vector is normal to the plane of incidence, the ray is
said to have transverse electric (TE) polarization. On the other hand, if the magnetic
field vector is normal to the plane of incidence, the ray is said to have transverse
magnetic (TM) polarization.
For example, if our crystal has a refractive index of 3.5 (typical for GaAs), the reflec-
tion coefficient (amplitude ratio) of the TE- and TM- polarized light as a function
of the angle of incidence can be plotted as Figure 14.4. As you can see if light im-
pinges a surface at an angle greater then around 16.5 degrees in our case, it is totally
reflected back. Such an angle is called critical or total internal reflection angle and
often limits the amount of light that can be extracted from LEDs.
For a light source from spontaneous emission (as is the case in an LED), the light
wave does not have a definite polarization: a ray emitted from such a source should be
regarded as having random polarization. To simulate such a source, two approaches
can the used: the first is to treat a ray as having random polarization, the second is
to treat it as having a 50% TE-portion and a 50% TM-portion. The latter approach
was implemented because both of them produce the same results.

14.5.3 Ray tracing geometry

Recall that we started with the idea of a single cubic crystal. Real optoelectronic
devices are far more complex and usually consist of many layers and columns. The
ray tracing code handles this by defining of the concept of a “box”: the single crystal
is the simplest cubic box we can make.
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Figure 14.4: The reflection coefficient (amplitude ratio) TE- and TM- polarized
light as a function of angle of incidence

APSYS will build boxes for the RT program based on the polygons defined in the
.layer and .geo files. If this is a 3D simulation, then these polygons will already have
depth information to form 3D boxes. If not, then the 2D polygons can be extruded
to a fictitious depth of 1 µm to form 3D objects: some care will have to be taken
to respect the original 2D nature of the problem even though we operate inside a
3D volume. Within each box, material properties are averaged to form a uniform
propagation medium.
It is difficult to even imagine how a single ray of light undergoes multiple reflection
and refraction in a multi-box structure. The situation is more complicated if multiple
rays from multiple source points (see Figure 14.5) must be considered. The RT
model tracks down all those rays within the multi-box structure until they are either
absorbed by the material (down to numerical precision) or emitted outside of the
device.

14.5.4 Coherent and incoherent light

As explained in the last section, the ray tracing approach is based on geometric optics
and usually ignores coherence and interference effects. However in some situations,
this approximation is not valid: we need to identify these situations in order to
correct the model and know when it is safe to use it.
We shall start with some discussion about the coherence of light. Based on Fourier
transform theories in the analysis related to the WienerŰKhinchin theorem[82], we
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Figure 14.5: The rays undergo multiple reflections/refractions within a device until
some of them will are absorbed and others emitted outside.

can express the coherence length of the wave as follows:

L = c

∆f
= − λ2

∆λ
(14.54)

where ∆f (and thus ∆λ) is the spectral line-width of the quasi-monochromatic ra-
diation. The coherence length may be used to judge the suitability of geometric or
wave approaches of the simulation.
Take the example of a GaAs LED emitting at 0.85 µm. A typical line-width of the
spontaneous emission of the LED is 0.05 µm. The coherence length using the above
formula works out to be about 14 µm, which is smaller than the dimension of a
typical LED. We thus conclude that geometrical optics approach treating rays as
independent and non-interfering waves is valid.
For smaller device features, we need to take into account the polarization of the input
field (TE/TM) and the phase effects due to propagation in thin layers. In order to
combine this with the geometric approach, such features are implemented as special
boundary conditions to boxes. The resultant amplitudes of transmitted waves are
converted back into units of power [83] and used for new geometric rays.
For uniform thin film layers, we use a transfer matrix approach for monochromatic
plane waves (Ref. [82]) to get an effective reflection and transmission coefficient: this
is used to define optical coatings (which are often ≈λ

4 ) as well as semi-transparent
contacts.
For textured interfaces with large features, we can adjust the geometry of the boxes
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N2 = n2 - ik2

N1 = n1 - ik1

Figure 14.6: Propagation of a light ray from a dense to a rarer medium (n1 > n2)

to have the correct shape and work within the geometric optics approximation. How-
ever, when the texture is much smaller, we need to rely on other approaches such as
FDTD or on experimental scattering results. The effective reflection and transmis-
sion coefficient of the interface can then be imported to the ray tracing simulations.

14.5.5 Optical absorption

The optical power carried by a ray traveling in a semiconductor decays due to the
absorption by the material. In a thick box, its intensity can be written as a function
of distance Z as follows:

I = I0 exp(−4πkZ/λ) (14.55)

where I0 is the wave intensity of the light source, k is the extinction coefficient
(imaginary part of the complex refractive index) and λ is the wavelength of the light
in free space.

14.5.6 Reflection and refraction

Let us consider simple dielectric boundary (Figure 14.6):
The following is Fresnel amplitude reflection and transmission coefficient at oblique
incidence for TE-polarized wave [83]:
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re = N1 cosα−N2 cos β
N1 cosα +N2cosβ

(14.56)

te = 2N1 cosα
N1 cosα +N2cosβ

(14.57)

for TM-polarized wave:

rm = N1 cos β −N2 cosα
N1 cos β +N2cosα

(14.58)

tm = 2N1 cos β
N1 cos β +N2cosα

(14.59)

The resultant amplitude transmission and reflection coefficient t and r are converted
into transmittance and reflectance using the expressions:

Re = Rm = rr∗ (14.60)

Te = tt∗Re(N2) cos β
N∗

1 cosα
(14.61)

Tm = tt∗Re(N2) cosα
N∗

1 cos β
(14.62)

where ∗ denotes complex conjugate, Re - real part of complex numbers. The above
power transmittance and reflectance here are used in both approaches mentioned
above.

14.5.7 Emission models

A key point to modeling the emission in a LED is that the spontaneous emission is
assumed to be isotropic: this means that every emission point must use many rays
at various different angles in order to approximate this effect. Every ray is assumed
set up to carry a portion of the emission power from the emission point and the rays
are divided into equal solid angle regions.
However, the emission is also spread out all over the active region. The most accurate
model would be for every point in the active region to emit light in all directions.
However, having too many emission points with too many emission rays would pose
a great computational burden for the RT program.
As a compromise, the user can either limit the number or rays per emission point or
use an emission model that concentrates the emission power into fewer points. These
models are detailed in the reference section for do_raytrace_3d.
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14.5.8 Application to detectors

In previous subsections, we have assumed that the RT method is used to model a
LED. However, the model works just the same for solar cells and detectors: the only
difference is that original source ray is outside the device rather than inside. This
means that in addition to power being lost and transmitted through the device, some
it is also reflected from the top surface.

14.5.9 Limitations of the ray tracing method

As mentioned before, using the geometric/ray optics is only adequate where the
wave or quantum nature of light can be neglected. Smaller features require some
simplifying assumptions or input from other modeling methods.
In the RT method, we also assume that the optical properties are mostly controlled
by a single wavelength: the default is to use the peak wavelength of the spontaneous
emission spectrum in a LED. Multiple-wavelength simulation can be done by looping
over all wavelengths of the spectrum but is very time-consuming.
A second problem occurs when the absorption is too small. Since we follow the
reflected ray until it decays to a certain level, this can generate a huge number of
secondary rays: unless the reflection coefficient cuts down on the power sufficiently,
the reflected ray can keep bouncing around in its box almost indefinitely. To solve
this, we do two things:

• A small minimum absorption coefficient is introduced to force rays to decay
more quickly in transparent boxes.

• We put a limit on the number of secondary rays that can be generated.

Any power that is lost either to the minimum absorption or by giving up on a ray
before it decays is assumed to be “numerically” lost. This kind of artificial loss can
also occur due to numerical precision at the interfaces. To correct for this numerical
loss, we re-scale all transmitted and absorbed power in the device so that they sum
up to 100% of the original source power. If the numerical loss is small, then we can
consider the other loss terms to be representative of the physical mechanisms in the
device. Please keep this in mind since the re-scaling may be inappropriate if the
numerical loss term is large.
Because of this re-scaling process, the RT method cannot be used in devices where
there is optical gain: it would violate a key assumption that the transmitted and
absorbed power sums up to 100% of the original source term. Attempting to do
so would result in various oddities such as a negative % of light absorption in the
semiconductor.
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The RT code also includes the ability to model encapsulation in a plastic dome (i.e.
a cylinder with a hemispherical cap). This is often done to maximize the amount of
light that can be extracted by using a material with a refractive index that minimizes
the reflection coefficient at the air-dome and semiconductor-dome interfaces. The
geometry can also be useful to direct the light emission in a certain direction.
However, this model also suffers from a simple limitation: rays that exit the LED
and enter the dome are assumed to stay within the dome and never enter the LED
region again. Since the dome is usually much bigger than the LED, this is simply
an approximation to save time: it can be time-consuming to see if a ray intercepts
any of the LED facets every time there is a reflected ray within the dome.

14.5.10 Conclusions

The ray tracing method is the best way to estimate the extraction efficiency of a LED
and its emission pattern, especially for complicated structures that do not behave
like a waveguide (as in previous sections). It is best used to:

• Design the LED structures with a certain angular distribution of the emitting
power

• Optimize structures to get the most efficient output of the emitting power for
LEDs

• Get the most sensitive photodetectors

• Obtain accurate results for structures with complicated geometry

• Discover important physical properties of the optoelectronic devices

• Investigate new optoelectronic devices

14.6 Strained Si or Si/SiGe Quantum Well Model

14.6.1 Introduction

MOSFET designs based on strained Si or Si/SiGe quantum well in the conduction
channel have been demonstrated to provide enhanced mobility and thus extend the
performance of existing MOS technology[84]. The silicon channel may be strained
using a relaxed SiGe material or through stress induced by thin films deposited on
the MOS device. The mobility of the strained MOS has been found to depend on the
orientation of the strain tensor[85][86]. It is thus necessary to establish a detailed
anisotropic band structure model and associate it to the mobility enhancement effect.
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This section is dedicated to the discussion of how Crosslight’s simulator takes into
account the strain dependence in the band structure and mobility of a quantum MOS
device.

14.6.2 Band structure and strain orientation

Let us consider the symmetry of silicon crystal when under stress. A common con-
figuration of strained silicon is to use lattice constant difference between SiGe and
Si to apply biaxial tensile stress in the plane of < 001 > (x-y plane in real space).
This will cause the lower and upper conduction band valleys to split from the other
four valleys. We shall label these two valleys as ∆2 and other four as ∆4 with the
subscript denoting the degeneracy. Such a situation is represented by Fig. 14.7.
It is also common to apply uniaxial stress in the plane of MOS interface grown in
(001) direction. Then, the two valleys along the direction of the strain will have
different energy than the others and we shall label these two valleys as ∆2. The
other four valleys lying on a plane perpendicular to the direction of uniaxial stress
are labeled ∆4 (see Fig. 14.8).
In the linear approximation, a biaxial strain induces an uniaxial strain of opposite
sign and vice versa[87][88]. For uniaxial in the (001) direction, the relationship is:

eb = −D001eu;D001 = 0.771 (14.63)

Therefore, if data are available for biaxial strain, it can be converted to those for
uniaxial strain.
If the silicon crystal is not gown in (001) direction or if the uniaxial strain is not
applied to directions of high symmetry, the six valleys may split into more than two
energies. Crosslight’s simulator allows a maximum of three different valleys for the
conduction band.
The strained band structure parameters and mobilities are less well known for the
valence band. In general, the valence band under strain is highly non-parabolic and
this prevents a simple definition of curvature mass[87]. Based on a recent theory,
the valence band is also anisotropic[89]. It was found that the higher valence band
in (001) direction is light hole while the effective mass appeared to be larger in
other directions. There was confusion in the literature whether the higher valence
band under tensile biaxial strain should be light hole (LH) or heavy hole (HH). For
example Richard [89] and Fischetti and Laux [87] labeled the upper valence band as
LH while other papers did it otherwise (see for example, [90] and [91]).
At this time, we prefer to treat the strain dependence of the valence band mass as
a fitting parameter so that the hole mobility behavior can be understand within the
frame work of our mobility model as detailed in later subsections.
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Figure 14.7: Schematics of conduction band valleys of silicon under biaxial in-plane
stress.
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Figure 14.8: Schematics of conduction band valleys of silicon under uniaxial in-plane
stress.
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Figure 14.9: Lower bandgap parameterized over a full range of composition for Si(1-
x)Ge(x)/relaxed-Si(1-y)Ge(y).

14.6.3 Band structure parameterization

As compared with its strained counterparts in zincblende and wurtzite crystals, the
band structure of strained silicon is more difficult to model within the k.p theory[89].
Therefore, we rely on band theories described in the literature and parameterize the
band structure as a function of strain or composition over a large range.
A special type of material macro, called the general complex strain macro, or gen-
eral_cx_strain macro has been created to provide a tool to describe the strained
silicon bands within the effective mass theory. The strained silicon macro allows the
specification of up to three conduction band and valence band valleys with anisotropic
effective masses.
For strained silicon grown on unstrained SiGe, we mostly depend on the work of
Rieger and Vogl [92] for band edges and electron effective masses. Ref. [92] had
already parameterize its results using second order polynomial which can easily be
incorporated into our macros. The lower and higher bandgaps based on parameter-
ization by Rieger and Vogl[92] are plotted in Figs. 14.10 and 14.10 over a full range
of composition of SiGe/relaxed-SiGe. Thus the current model for Si/relaxed-SiGe is
just a special case and can easily be extended to research on strained SiGe/relaxed-
SiGe. For silicon under uniaxial strain, we mostly rely on theoretical calculation of
Fischetti and Laux [87].
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Figure 14.10: Lower bandgap parameterized over a full range of composition for
Si(1-x)Ge(x)/relaxed-Si(1-y)Ge(y).

14.6.4 Mobility enhancement

Interest in mobility enhancement by strain has been the driving force behind research
in strained silicon. However, the mobility model is also the most complex especially
when quantum confinement effect is taken into account. It has been found that for
electron mobility in a quantum well (as formed by the potential of the inversion
layer in MOS), the mobility can be separated into two parts, one due to intra-
valley acoustic phonon scattering and the other due to inter-valley optical phonon
scattering[93]. Both parts are complicated functions of subband levels and energy
split of the valleys. The complexity of a rigorous theoretical model makes it difficult
for experimental data analysis and for CAD purposes.
To reduce the complexity but still maintain the physical intuition needed for under-
standing mobility enhancement, we propose the following phenomenological model.
We start with bulk silicon mobility due to acoustic intra-valley acoustic phonon
scattering:

µac = 23/2√π~4ρω2
s

3m∗5/2D2
ac(kBT )3/2 (14.64)

and that due to inter-valley optical phonon scattering:

µop = 4
√

2πe~2ρsqrt~ω0

3m∗3/2
d m∗D2

op

F (x0) (14.65)
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where Dac and Dop are acoustic and optical phonon deformation potentials, respec-
tively. ρ is crystal density and ωs and ω0 are phonon frequencies. F() represents a
numerical integral. md is the density of state mass and m∗ is the conduction mass.
For background materials related to the above formulas, please refer to Refs. [94] to
[95].
The scattering time constant can be expressed as two terms due to acoustic and
optical phonons:

1/τ = 1/τac + 1/τop (14.66)
and the mobility can be written using the Drude model[96]:

µ = qτ/m∗ (14.67)

It is important to notice that the acoustic term and optical term have different
dependence on conduction mass. It is commonly believed that mobility enhancement
comes from change of conduction mass and suppression of inter-valley optical phonon
scattering due to split of valley energies. From energy conservation point of view,
carrier transition from one valley to the other via optical phonon scattering will
be more difficult as energy difference between valleys are increased. Therefore, we
propose the following valley dependent mobility model:

1/µk = Aacm
∗2.5
k +Bopm

∗
kexp(−γEspt) (14.68)

where k is the valley index (denoting one of the six valleys or the HH or LH valleys).
Aac, Bop and γ are valley independent fitting parameters assume to be independent
of the strain. Espt is the valley split between the first and second valleys.
The above formula states that mobility enhancement due to strain comes from two
terms: an acoustic term depending on conduction effective mass only and another
term depending on effective mass and valley splitting. We shall refer to the above
phenomenological model as Crosslight’s 3-parameter mobility model.
The 3-parameter model in Eq. (14.68) can be conveniently written as:

1/µk = Aac[m∗2.5
k + rbam

∗
kexp(−γEspt)] (14.69)

where rba = Bop/Aac is a ratio representing the relative importance of acoustic and
optical terms in the silicon system.
Using our quantum-MOS model, we solve for the distribution of carriers in each valley
k as nk (or pk for holes) and the total mobility can be expressed as the following:

µ =
∑

k nkµk∑
k nk

(14.70)

To set up the 3-parameter model in a simulation, we need to calibrate the fitting
parameters using the following procedure:
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• 1) Start with a guess of rba and γ (both of the order 1).

• 2) Set up an unstrained quantum well subband structure preview (quick simu-
lation requiring no mesh) simulation assuming a typical quantum well carrier
concentration (say 1 × 1018cm−3).

• 3) Compute the valley occupancy and use formula Eq. (14.69) to determine
Aac

• 4) Compare with experimental strain dependence of mobility.

• 5) Repeat 1) to 4) until good agreement with experiment.

For hole mobility, until a reliable anisotropic effective mass parameterization is
achieved, we need to calibrate the mass-strain dependence in addition to the above
procedure.
Such a procedure has been demonstrated and documented in the example chapter
related to strained silicon. The calculated mobility enhancement as a function strain
shows good agreement with experiment without much fitting effort (see Figs. 14.11
and 14.12). Experimental data here are based on Refs. [97] and [84].
Once a reasonable set of parameters are established for strained silicon, the 3-
parameter model can easily be extended to include temperature dependence effect
since acoustic and optical phonon terms have different temperature behaviors. Also,
as more sophisticated mobility models are available, the simple model can be ex-
tended to include subband dependence, say between the first two subbands which
are more populated than higher subbands.

14.7 Conduction and Recombination in OLED

A detailed description of conduction carriers in organic semiconductor requires the
knowledge of molecular orbitals which can be difficult due to the complexity of the
atomic configurations of large organic molecules. However, it is possible to use a
simplified energy picture to consider only the highest occupied molecular orbitals
(HOMO) describing the electron carriers and the lowest unoccupied molecular or-
bitals (LUMO) describing the hole carriers.
Similarly, we can introduce the concept of density of states for the HOMO and LUMO
so that quasi-Fermi levels and Fermi statistics can be used. Having introduced quasi-
Fermi levels, the drift-diffusion equation can be established in a similar way as for
conventional semiconductors.
The mechanism of carrier conduction is different than in conventional semiconductor
in that conduction is based on a hopping model. In spite of this difference, we can
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Figure 14.11: Comparison with experiment for Crosslight’s 3-parameter mobility
model averaged over valley densities in a typical n-MOSFET quantum well.
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Figure 14.12: Comparison with experiment for Crosslight’s 3-parameter mobility
model averaged over valley densities in a typical p-MOSFET quantum well.
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still approximate the transport using the drift-diffusion equation if we choose a low
value for the mobility. In many cases, the carriers may have to go over a high
potential barrier and quantum tunneling must be used.
Since the transport is activated by electrical field in a hopping-like model, we use a
Poole-Frenkel-like field dependent mobility based on Ref.[98]:

µ = µ0exp(
√
F/Fpf ) (14.71)

where Fpf is an activation field.
The main mechanism of recombination is that electron and holes are attracted to each
other via Coulombic forces while the carrier mobility determines the rate at each the
recombination occurs. The model is based on the model of Langevin Recombination
of carriers (Ref. [99]).
Carriers are statistically independent so the e-h recombination is a random process
and kinetically bimolecular. The model considers total current attracted by a charge
into a certain volume by Coulombic forces. The bimolecular recombination coefficient
depends on the mobility as follows:

B = q

ε
(µn + µp) (14.72)

For more details, we refer to Ref. [98].

14.8 Organic Semiconductor Emission Spectrum
Model

14.8.1 Introduction

Organic semiconductor emits light via Frenkel exciton recombination and the mech-
anism for absorbing and emitting light is different than conventional semiconductor
theories based on free-carrier/many-body interband transition. Optical spectrum
theory for organic material is generally rather complicated due to the complexity in
molecular structure and the advance physical models involved. However from the
view point of engineering design, one does not have to understand all the details
related to Frenkel exciton to be able to alter and optimize the spectrum. Simpli-
fied exciton models with few adjustable parameters correlating to molecular-crystal
structure will enable design engineers to achieve such objectives.
We find that the simplified exciton model based on the Holstein model (see Refs.
[100–105]) is suitable for such purposes. The Holstein model assumes a one-dimensional
molecular chain with electronic and vibronic interactions between a limited number
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of nearest neighbors. The advantage of this model is that one may easily alter the
optical spectrum by tuning the few physical parameters. For example if we find
increasing the interaction parameter between neighbors alters the optical spectrum
in a desirable manner, we may be motivated to alter the real organic material to
increase the number of neighboring molecules.

14.8.2 The Model

Following Refs. [100–105], we have established optical spectrum model based on
exciton-phonon interaction within an organic crystal. A Holstein Hamiltonian is es-
tablished to include intra-molecular and inter-molecular electronic and vibronic in-
teractions. A phonon cloud of several unit cells is used to represent exciton-phonon
interaction. All excited states of the molecular crystal are solved and optical transi-
tion dipole moments computed between all states. Please refer to the above references
for details.
Although mechanisms involved in the Hamiltonian are complex, input parameters are
few and fitting to experimental spectrum is easy. Typical input/adjustable param-
eters: exciton bandgap, molecular vibronic quanta, intra-molecular exciton-phonon
interaction constant, and inter-molecular hopping parameter. Doped organic semi-
conductor may easily be modeled as combination of emission from the host and the
dopant separately.

14.8.3 Tuning the spectrum

The implementation of the spectrum model is numerically efficient: several minutes
per spectrum. We have integrated the spectrum model into APSYS-OLED option so
that optical extraction may be calculated based on the spectrum. Bias and current
injection dependent spectrum may be simulated to fine tune the color of the OLED.
We use a simple example to provide some insight and a guideline on how to alter the
shape of the spectrum. Consider the absorption and EL spectra of Alq3 in Figures
14.13 and 14.14 which were obtained by fitting the EL spectrum to experiments.
The smooth and broadened shape corresponds is the results of broadening of tens of
spectrum lines as a solution of the Hamiltonian equation. Since the EL spectrum is
related to the absorption spectrum, we limit our discussion here to the absorption
spectrum which is more simple and it directly correlates to the basic solutions of the
Hamiltonian.
To view the actual spectrum lines before broadening, we reduce the Gaussian broad-
ening width (using parameter ox_gaussian_sd1) and obtain the spectrum in Figure
14.15. We see several major lines due to the intra-molecular vibrational excitations.
These lines correspond to the major absorption spectrum lines when the unit cell
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Figure 14.13: Absorption spectrum of Alq3, obtained by fitting exciton parameters
with EL spectrum.
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Figure 14.14: EL spectrum of Alq3, obtained by fitting exciton parameters with
experimental EL spectrum. Different curves correspond to different carrier injection
levels, ranging from 5.E23 to 5.E24 1/m3.
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Figure 14.15: Absorption spectrum with reduced Gaussian broadening.

is isolated. We see many lower intensity lines (there are tens of those) arising from
electron-electron and electron-phonon interactions within the same unit cell and be-
tween the cells.
One way to alter the spectrum is the change the electron-phonon interaction constant
(parameter ox_xp_coupling). If we increase the electron-phonon interaction, the
spectrum tends to peak in longer wave lengths (see Figure 14.16). The interpretation
of such a change in shape is that the vibrational energy is much smaller than the
electronic energy and a stronger coupling with phonons pulls down the overall energy
of the excitations. To achieve such type of tuning, we may be motivated to alter the
Franck-Condon energy of the organic material.
Another way to alter the spectrum is to change the inter-molecule interaction. This
can be done by either changing electronic hopping energy (parameter ox_hopping_energy)
or by varying the number of interacting nearest neighbors (parameter ox_phonon_cloud).
We increase the hopping energy to find that the spectrum tends to peak at higher
energies (Figure 14.17).
This can be understood as follows: in the limit of zero inter-molecule interaction,
the systems prefers to stay at its lowest vibrational state. Higher inter-molecule
interaction simply causes a mixture of all the vibrational states and thus tend to
equalize the density of states. For such type of tuning, we may be motivated to alter
the real organic material to increase the number of neighboring molecules.
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Figure 14.16: Absorption spectrum with increased electron-phonon interaction,
showing shift of absorption peak to longer wavelengths.
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Figure 14.17: Absorption spectrum with increased inter-molecule interaction, show-
ing shift of absorption peak to shorter wavelengths.
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14.9 Diffusion of Excitons in Organic Semicon-
ductor

Electron-hole pairs in organic semiconductor form singlet (25%) and triplet excitons
(75%). Both exciton types may diffuse over a certain distance before being converted
into photons or being quenched via non-radiative means.
We solve the following exciton diffusion equation:

dS

dt
= Rrad +Ds∇2S − S/τem − S/τq (14.73)

where S is the singlet or triplet exciton density, Rrad is the radiative recombination
term from the carrier drift-diffusion equation. S/τem is photon emission term related
to exciton lifetime and S/τq is the exciton quenching term. τq itself may be a function
of S (bi-exciton quenching) and/or the free carrier densities.
The significance of this exciton diffusion model is that OLED do not emit directly
from Rrad term but through the S/τx term above. This means deviation in both
magnitude and profile from the bi-molecular recombination term of Rrad in the drift-
diffusion equation.
Using the RCLED model, the S(x, y, z)/τx term acts as a continuous dipole source
within the Green’s function theory. The dipole source may be enhanced by optical
interference effects to optimize the power emission characteristics of the OLED.

14.9.1 Optical Generation of Excitons

Since light emission in organic semiconductors comes from the excitons rather than
the free carriers it stands to reason that optical pumping should not directly pro-
duce free carriers either. Instead, the optical generation rate should be added
to Eq. (14.73). This can be specified with the ox_pump_only parameter in the
light_power statement.

14.10 Nomenclature

Symbol Definition

Ax Coefficient for band-gap narrowing effects.
a0, a Lattice constants of GaAs (a0) and InGaAs (a).
B Radiative recombination coefficient.
B1,B2,Bz Complex wave amplitudes of the optical wave propagating from

right to left in a laser.
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Bk Constant used in mathematical fittings.
b Shear deformation potential.
Cn, Cp Auger recombination coefficients, for electrons (n) and holes (p).
cnj, cpj Electron (n), hole (p) capture coefficients of the j th deep trap.
c Velocity of light in vacuum.
c11, c12 Elastic constants.
Dc, Dv Density of states of the conduction and valence band.
ED, EA Shallow donor (D) and acceptor (A) levels.
E0

i , E0
j , E0

ij Energy minimums of the i th and the j th levels, and the difference
between them, . The i refers to the valence band sub-band levels
and j refers to the conduction band sub-band levels.

E,Eij Photon energy and energy difference between the i th and j th levels.
Efn, Efp Quasi-Fermi energies of electrons (n) and holes (p).
Eg Bandgap.
Eg0 Unstrained bandgap.
∆EP F Shift in ionization energy of a dopant due to Poole-Frenkel effect.
δEhy Hydrostatic strain energy.
δEsh Energy associated with shear strain.
F Electric field intensity.
Fl Lorentzian shape function.
F0n,F0p Threshold electric field used in the electron (n) and hole (p) mobility

models.
F1/2 Fermi integral of order one-half.
fD, fA Occupancy of the donor (D) and acceptor (A) levels.
ftj Occupancy of the j th deep trap level.
fi, fj Fermi functions for the i th and the j th level.
f ′

i , f ′
j Integrated Fermi functions for the i th and the j th levels.

g Interband local gain.
gij, g Local gain due to transition between the i th and the j th levels,

and the local gain of the material.
gd, ga Degeneracies of the shallow donor (d) and acceptor (a).
Hij Hamiltonian matrix element between the i th and the j th states.
h(x) step function of variable x.
h,~ Plank’s constants.
I1, I2 The integrals needed to evaluate the quantum well gain and spon-

taneous emission rate.
Jn, Jp Electron (n) and hole (p) current flux densities.
Jsn, Jsp Electron (n) and hole (p) current flux densities on the surface.
Jhn, Jhp Electron (n) and hole (p) current flux densities across the hetero-

junction.
Jsource Current flux source.
k Boltzmann constant.
L Laser cavity length.
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L() Lines shape function for gain broadening.
m0 Electron mass
mi, mj, mij Relative effective masses of the i th and the j th level and the reduced

effective mass between the i th and the j th level. Their relation
is defined by 1/mij = 1/mi + 1/mj. Indices i and j refer here to
quantum well sub-bands.

mn,mp Bulk effective masses for electrons (n) and holes (p).
me,mh The same as mn and mp, respectively.
mbn,mbp Bulk effective masses for electrons (n) and holes (p) on the barrier

side of the heterojunction.
mzl Relative effective mass of the L-band used in the quantum level

calculation.
mvx, mvy, mvz Effective hole masses in the x, y and z direction.
M0, Mij, Mlh, Mhh Momentum matrix elements for bulk material, between the i th and

the j th states, involving light- and heavy-hole transitions, respec-
tively.

N Total number of grid points in the simulation space. Also used for
the total number of longitudinal layers.

Nb Number of grid points associated with a boundary of interest.
ND, NA Doping density of shallow donors (D) and shallow acceptors (A).
Ntj Density of the j th deep trap.
n Electron concentration or density.
nb Electron concentration or density on the barrier side of the hetero-

junction.
nb0 Electron concentration or density on the barrier side of the hetero-

junction when its quasi-Fermi level coincides with that on the other
side.

ns Electron concentration or density on the surface.
n Real part of refractive index.
ni Intrinsic carrier density.
n2D The surface concentration of a quantum well, equal to the bulk

density times the layer thickness.
Nrn, Nrp Reference doping density in electron (n) and hole (p) mobility equa-

tions.
Pij Probability of a transition from the i th to the j th level.
p Hole concentration or density.
pb Hole concentration or density on the barrier side of the heterojunc-

tion.
pb0 Hole concentration or density on the barrier side of the heterojunc-

tion when its quasi-Fermi level coincides with that on the other
side.

ps Hole concentration or density on the surface.
Qj

em Energy density of the jth emitted longitudinal mode.
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Qj
cav Energy density of the jth longitudinal mode within the laser cavity.

q Electronic charge.
Rtj

n , Rtj
p Electron (n) and hole (p) recombination rates per unit volume

through the j th deep trap.
Rsp, Rb

sp, Rqw
sp Spontaneous recombination rate per unit volume, also called the

radiative recombination rate, and the same quantity in bulk (b)
and in the quantum well (qw).

rqw
sp Frequency dependent spontaneous recombination rate for the quan-

tum well.
Rs Resistance associated with a boundary condition.
Rst Stimulated recombination rate per unit volume.
Rau Auger recombination rate per unit volume.
rm,reff

m Single facet reflectivity and effective reflectivity of a laser.
T Absolute temperature.
Tscat The scattering kernel for carrier-carrier scattering.
t Thickness of the quantum well.
V Electrical potential.
Vs Electrical potential on the surface.
Vapplied Applied electrical potential.
v Volume.
vn, vp Average thermal velocity of electrons (n) and holes (p). The average

is taken over all three dimensions.
vtherm

n , vtherm
p Average thermal velocity of electrons (n) and holes (p). The average

is taken only over the dimensional of interest.
vtherm

bn , vtherm
bp Average thermal velocity of electrons (n) and holes (p) located on

the barrier side of the heterojunction. The average is taken only
over the dimensional of interest.

vsn,vsp Saturation velocity for electrons (n) and holes (p).
W Carrier energy.
Wn Electron energy.
Wn Hole energy.
W e

j , W h
i Effective width of the wave functions for electron and hole in the

jth and ith subbands, respectively.
x, y Spatial coordinates used in the model. The x-axis is parallel to the

quantum well. x is also used elsewhere as the Al composition in
AlGaAs or the In composition in InGaAs.

α αqw Local loss coefficient due to loss other than interband recombina-
tion, and local loss in the quantum well.

αint Internal loss defined as the weighted average of the local loss α.
αn, αp Constants used in doping dependent mobility functions for electrons

(n) and holes (p).
αfn, αfp Coefficients of the free carrier absorption for electrons (n) and holes

(p) in the quantum well.
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α0 Absorption coefficient for regions outside the quantum well.
β, β1, β2 Complex eigenvalues of the wave equation and its real (1) and imag-

inary (2) parts. They are also considered effective indices.
αem Optical loss coefficient due to emission of light in the lasing mode.
αemj Optical loss coefficient due to emission of light in the jth longitudinal

mode.
βp Constant used in the hole mobility equation.
∆ Spin-orbit splitting of the valence band energy.
∆a

ij Transition energy shift term in the Asada broadening model.
δ Constant. Value is 1 for deep donors and 0 for deep acceptors when

used to represent electrical charge. Also used as a δ-function.
ϵ0 Dielectric constant of vacuum.
ϵdc Relative DC or low frequency dielectric constant.
ϵ, ϵ1, ϵ2 Complex optical dielectric constant and its real (1) and imaginary

(2) parts. ϵ is also used, under a completely context, for non-linear
gain coefficient.

ϵg
2, ϵα

2 Imaginary parts of the dielectric constant corresponding to gain due
to interband transition and loss due to other mechanisms, respec-
tively.

ε Strain.
Γ Energy level broadening parameter, or the half width of the

Lorentzian broadening function.
Γ0 The maximum energy level broadening parameter, or the half width

of the Lorentzian broadening function.
Γa The energy level broadening parameter, or the half width of the

Lorentzian broadening function, as used in the Asada’s broadening
model.

γ1, γ2, γ3 Luttinger numbers.
γ Constant relating the optical wave amplitude to electric field.
γn,γp Adjustable constants for the electron (n) and hole (p) thermionic

emission model, used to account for tunneling and other effects.
γhn,γhp Adjustable constants for the electron (n) and hole (p) thermionic

emission model for heterojunctions, used to account for tunneling
and other effects.

χ Affinity.
χ Affinity of a reference material.
λ Optical wavelength.
λj Optical wavelength of the jth longitudinal mode.
µn, µp Mobility of electrons (n) and holes (p).
µ0n, µ0p Low field electron (n) and hole (p) mobilities.
µ1n, µ1p Minimum electron (n) and hole (p) mobilities.
µ2n, µ2p Maximum electron (n) and hole (p) mobilities.
ν Function used in the Fermi-Direct statistics.



14.10 Nomenclature 299

ρi, ρj, ρij Density of states for the i th and the j th levels, and the reduced
density of states for transition between the j th and the i th levels.

ϕn,ϕp Quasi-Fermi potential for electrons (n) and holes (p).
ϕb Schottky barrier height.
ρ0

i , ρ0
j , ρ0

ij Constants for the two-dimensional density of states for the i th and
the j th levels, and reduced density of states for transition between
the i th and the j th levels. For example ρ0

i = mi/π~2t .
σnj, σpj Electron (n) and hole (p) capture cross sections of the j th deep

trap.
τ Intra-band scattering lifetime.
τnj,τpj Electron (n) and hole (p) life time due to the jth trap.
τh, τv Hole-hole scattering life time for the Asada gain broadening model.

τh = 2τv.
ω Angular frequency of the optical wave.
ωa,ωβ SOR parameters used for the wave equation.
ξ Function used in the Fermi-Dirac statistics.
ζ, ζn, ζp Variable related to the effective masses. ζ is also used for half the

shear strain energy for a different context.
< > Average with | W |2 as weight.



300 APSYS SPECIFIC MODELS



Chapter 15

LASTIP SPECIFIC MODELS

15.1 Stimulated Emission and Rate Equation

The stimulated emission rate, Rst is defined as the rate of photon emission per unit
volume as a result of material gain experienced by the traveling light wave. By
energy conservation, the emitted photon must cause an increase in the power (P ) of
the traveling wave by the same amount:

dP = dz(~ω)
∫
Rstdxdy (15.1)

Since modal gain gm relates to the power increase by the following relation:

gm = 1
P

dP

dz
(15.2)

we obtain the following expression:

gmP = (~ω)
∫
Rstdxdy (15.3)

Using group velocity (vg =
(

∂k
∂ω

)−1
) as the traveling speed of the optical power, we

obtain:
P = ~ωvgS (15.4)

where S is the linear photon density (i.e. number of photons in the 2D plane) such
that

∫
S(z)dz is the total number of photons in the laser cavity.

We introduce the normalized 2D optical wave function W so that:∫
| W |2 dxdy = 1 (15.5)

and
gm =

∫
g(x, y) | W |2 dxdy (15.6)
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Note that the wave function W has been normalized such that the above integral
yields the confinement factor Γ if the local gain is uniform in the active region.
From Eqs (15.3) to (15.6), we obtain:∫

Rstdxdy =
∫
vgg(x, y)S | W |2 dxdy (15.7)

which implies our result:
Rst = vgg(x, y)S | W |2 (15.8)

or, using the local photon density s(x, y):

Rst = vgg(x, y)s(x, y) (15.9)

In most textbooks, the common formulation is that of Equation (15.8). However,
Equation (15.9) is also useful to model multimode behavior : in that case, the local
photon density is calculated by summing up the contribution from each mode.
The rate equation for the linear photon density S in the laser cavity may be viewed
as a statement of conservation of energy:

stimulated emission − internal loss − emitted power

+spontaneous emission = power increase (15.10)

The “power increase” in the above equation is the rate of linear photon density
(∂S/∂t). Equation (15.10) can be detailed as

stimulated emission =
∫
Rstdxdy = vggmS (15.11)

Internal loss is defined as the modal loss experienced by the mode of the travel-
ing wave. This loss term is usually denoted by αi and it can often be determined
experimentally. Similar to modal gain, the internal loss can be written as:

αint ≈
∫

| W |2 αdxdy (15.12)

Defining an effective loss coefficient αem due to emitted power loss from the device,
the emitted power in Equation (15.10) can be written in the same form as Equation
(15.11):

emitted power = vgαemS (15.13)

In the special case of a Fabry-Perot cavity, the emitted power loss equals the facet
mirror loss and we obtain the following familiar formula:

emitted power = vgS
1

2L
ln
( 1
rm1rm2

)
. (15.14)
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where rm1 and rm2 are the power reflectivities of the two facets.
The power due to spontaneous emission is simply the integration of the spontaneous
emission rate over the cavity:

spontaneous emission = cm

∫
Rspdxdy, (15.15)

where cm is the fraction of spontaneous emission coupled into the lasing mode.
Summation of the above terms yields the familiar rate equation:

vg(gm − αint − αem)S + cm

∫
Rspdxdy = ∂S/∂t (15.16)

The derivation given above makes it clear that LASTIP is only concerned with
the total number of photons in the cavity so that it can compute the stimulated
recombination rate used in the basic equations. The rate equation averages out most
details of longitudinal distribution of the optical fields. Therefore the rate equation
is expected to be accurate if the z-dimension is uniform.
In cases where strong variation of physical variable along the z-direction, such as DFB
and DBR lasers, the rate equation will be inaccurate for a complete description of the
laser cavity. However, the 2D rate equation may still be used as a phenomenological
model if proper values of effective mirror reflectivity can be chosen. For example, if
the mirror reflectivity of the DBR mirror is known, the rate equation in this section,
thus the LASTIP software, can still be used.
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Chapter 16

PICS3D-SPECIFIC MODELS I:
Longitudinal Modeling

16.1 Introduction

In PICS3D, we consider a 3D model for light-emitting devices. We already discussed
3D electrical modeling in Sec. 6.3 so this chapter will touch on the optical modeling
only.

16.2 Basic Equations

Let us start with an edge-emitting wave-guiding structure and define the z axis as the
direction of propagation. The basic equation of concern is, of course, the Maxwell
equation. However, we would like to go further and obtain a set of equations directly
usable in solving the system.
Under the scalar wave assumption, the wave equation can be solved with the tech-
nique of variable separation: we assume that the solution to the wave equation can
be written as the product:

Eω(x, y, z) = Eω(z)ϕ0(x, y) (16.1)
where ω is the optical frequency and z is the direction of the waveguide.
For the moment, let us assume that the laser is operating in a single transverse mode.
The modal distribution ϕ0(x, y) can be left out of the formulation and calculated by
other means such as the effective index method or the beam propagation method.
The z-dependent part of the electric field Eω(z) satisfies the equation:[

∂2

∂z2 + k2(z)
]
Eω(z) = fω(z) (16.2)
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where fω(z) is the Langevin noise function due to spontaneous emission. Eq. 16.2 is
the basic equation which will be used for the optical wave in the PICS3D package.
We note that the noise function is extremely important for a laser device since it is a
driving force for the solution. For an isolated semiconductor laser, the physical solu-
tion for Eq. 16.2 would be zero if the spontaneous noise term was absent. A simple
physical explanation is that the spontaneous emission noise generates or excites the
photons, which are then amplified by the presence of the optical gain. Therefore, the
optical power at any bias condition is determined both by the spontaneous emission
and the optical gain.
The complex propagation constant k(z) contains information about the solution of
the transverse and lateral dimensions. In other words, it is calculated from the
effective index by using x-y cross sections at given z positions. The effective index
and k(z) both depend on:

• the optical wavelength/frequency

• material properties and device geometry

• bias value and photon density (due to non-linear gain suppression)

In PICS3D, Eq. 16.2 is solved to find the longitudinal modes of the device. The basic
solution method will be outlined in this chapter but the numerical implementation
in PICS3D uses an alternate derivation shown in Sec. 18.4.

16.3 The Green’s Function Method

Using Green’s function in the analysis of DFB lasers was first proposed by C.H.
Henry [80] and later extensively used by Tromborg et.al. [106] in deriving analytical
formulas for DFB lasers. PICS3D has used the Green’s function method because of
its accuracy in treating spontaneous emission, its conceptual simplicity and suitabil-
ity for numerical implementation.
The Green’s function method starts with the wave equation, (16.2). The objective
is to obtain a compact expression for the solution to the noise-driven wave equation.
In the Green’s functions method, the solution to Eq. 16.2 can be written as:

Eω(z) =
∫ l

0 g(z, z′)fω(z′)dz′

W
(16.3)

where fω(z) is the local Langevin force, g(z, z′) the Green’s function, and W the
Wronskian of the wave equation. The integration is over the diode cavity length l.
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The Wronskian W is a functional of the distribution of the wavenumber [k(ω, z)] in
general.
The interpretation of Eq. 16.3 is very simple. According to the basic principle of
the Green’s function method, any linear differential equation with a driving source
term, has a solution that can be found by decomposing the source into many smaller
pieces in space. The final solution is the sum (or integration) of the solutions due
to the smaller source terms. In our case, the driving source is the spontaneous noise
term and the electric field solution at location z is a sum (or integration) of solutions
due to the spontaneous emission of a single photon at location z′. A more detailed
discussion of the Green’s function method the the treatment of spontaneous emission
is outlined in App. D.
The expressions for both the Green’s functions and the Wronskian can be written
in terms of the solution for the homogeneous wave equation, i.e., the solution to
Eq. 16.2 without the spontaneous noise terms. The Green’s function can be written
as [80][106]:

g(z, z′) = ZR(z)ZL(z′)Θ(z − z′) + ZR(z′)ZL(z)Θ(z′ − z) . (16.4)

Here Θ(z) is the Heaviside step function.. ZL(z) is the solution to the homoge-
neous wave equation which satisfies the boundary condition at the left laser facet
and internal interfaces (for multi-section lasers) but may not satisfy the boundary
condition at the right laser facet. ZR(z) is the corresponding solution which satisfies
the boundary condition at the right facet and the internal interfaces.
The Wronskian can be written as [80][106]:

W = ZL(z) d
dz
ZR(z) − ZR(z) d

dz
ZL(z) (16.5)

Since ZL and ZR are solutions to the homogeneous wave equation, it follows from
simple algebra that dW/dz = 0 in each waveguide section. This means that W is
position independent. Therefore, under a particular bias condition, the Wronskian
is only a function of the frequency or wavelength. This conclusion is very important
and it is the basis for the remaining discussion of modeling techniques.

16.4 Longitudinal Modes and Complex Frequen-
cies

The Green’s function method gives a clear definition of a longitudinal mode: a longi-
tudinal mode corresponds to a maximum of the emission spectrum which corresponds
to a minimum value of | W |. Since the solution must be finite we note that for the
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homogeneous wave equation, the Wronskian is exactly zero on a mode peak. In the
more general case where the diving force is present, modes are instead found at local
minima of the Wronskian. Since we have determined that the Wronskian is only a
function of the frequency, the search for longitudinal modes is simplified to a search
of the local minima of W (ω)
To evaluate this, we make use of an observation by Tromborg et.al. [106] that, with
the proper choice of normalization:

W (ω) = 1 −Rg (16.6)

where Rg is the complex round trip gain (i.e. phase and amplitude).
In a real cavity, the spontaneous emission driving force is always present. This means
that the Wronskian can never be exactly zero and the round-trip gain is always less
than one. This can be understood by realizing that spontaneous emission always
contributes an additive term to the optical propagation of a wave and that the optical
gain is not the only contribution to the laser output. Despite this, the contribution
of the spontaneous emission is quite small above threshold and W = 0 is usually a
good approximation for single-mode lasing behavior. However, multi-mode analysis
requires inclusion of the spontaneous emission since in general, side modes are below
threshold. We will come back to this point in Sec. 18.2.
Luckily, we can reformulate the problem by treating the additive contribution of
the spontaneous emission as an equivalent gain source. Our interpretation here is
based on the argument of Henry and Kazarinov [107]. Let us use the convention
of exp(jωt) and express the contribution of the spontaneous emission as a complex
frequency terms. We define this contribution such that when this term is included,
the round-trip gain is exactly one. That is, we assert by definition that W = 0 on
the complex frequency plane for longitudinal mode solutions.
If we consider a simple Fabry-Perot laser of cavity length L, we get:

R1R2exp[(g − αi)L− 2jωneffL/c0] = 1. (16.7)

Since the frequency is now complex, the imaginary part of the frequency is equivalent
to an additional gain term of:

∆g = 2ωimneff/c0 (16.8)

The same argument can be applied to a DFB or any other type of laser structure
because we can always divide an arbitrary structure into small sections (∆Lk) with
uniform material variation. We then use transfer matrix techniques to express the
round trip gain in terms of the factor exp[(g−αi)∆L/2+ jωneff∆L/c0]. By arguing
that the round trip gain must remain unity at all times, we reach the same result as
in Eq. (16.8).
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We quickly note that the addition of this complex frequency also has numerical
benefits since it is much easier to search for the zeros of a function than to search
for its local minima.

16.5 Coupled Wave Equations

As previously discussed, the wave number k = k(ω, z) may depend directly on z
due to the grating structure or variation in the material composition and indirectly
through the carrier density and photon density variations along the waveguide (lon-
gitudinal spatial hole burning).
In DFB and DBR lasers, corrugations are made along the waveguides which introduce
coupling between the forward and backward waves (also referred to as right going
and left going waves). The purpose of this is to perturb the propagation constant
k(z) to achieve desirable scattering effects of the propagating waves.
In a laser with a grating of period Lg, the effective refractive index can be written
as:

n = ñ+ 2(∆n)cos
(

2π
Lg(z)

z + Ω
)

(16.9)

where we consider the general case that the grating period may vary as a function of
position. ñ denotes the slowly varying part of the complex index and 2(∆n) is the
magnitude of the index variation (also a complex quantity).
We define a reference wave number β0 such that

β0 = π

< Lg >
(16.10)

where <> is used to denote the average grating period. β0 is a constant independent
of the frequency and injection condition and is usually set to the Bragg wave number
in simple grating structures at threshold condition.
In general, we can assume that the change in the grating period is smooth and write
the following expansion:

π

Lg

= β0 + ∆βch(z) (16.11)

where ∆βch(z) is caused by some form of chirp grating (variation of grating period).
Based on Eq. (16.9), we re-write the wave number as

k = β0 + ∆k̃ + 2κcos[2(β0 + ∆βch)z + jΩ] (16.12)
= β0 + ∆k̃ + κe2j(β0+∆βch)z+jΩ + κe−2j(β0+∆βch)z−jΩ (16.13)
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where
∆k̃ = ñ

ω

c0
− β0 (16.14)

and
κ = ∆n ω

c0
(16.15)

Since only the optical frequencies close to the Bragg condition are considered, the
second term in Eq. (16.13) is small compared with β0. Similarly, we assume that the
coupling coefficient κ is much smaller than β0. In the following derivation, we will
neglect higher order terms of ∆k̃ and κ.
We propose a trial solution of the form:

Ez = R(z)e−jβ0z + L(z)ejβ0z (16.16)

where L(z) and R(z) are used to denote the slow varying amplitudes of waves going
left and right.
We substitute it into the wave equation to get the following algebra:

−β2
0

[
R(z)e−jβ0z + L(z)ejβ0z

]
−2jβ0

[(
∂R(z)
∂z

)
e−jβ0z −

(
∂L(z)
∂z

)
ejβ0z

]

+
(
∂2R(z)
∂z2

)
e−jβ0z +

(
∂2L(z)
∂z2

)
ejβ0z

+k2
(
R(z)e−jβ0z + L(z)ejβ0z

)
= 0 (16.17)

Treating ∆k̃ and κ as small quantities, we expand the wave number k2 as follows.

k2 = β2
0 + 2β0

(
∆k̃ + κe2j(β0+∆βch)z+jΩ + κe−2j(β0+∆βch)z−jΩ

)
+higher order terms. (16.18)

which is then substituted into Eq. (16.17).
To simplify the notation, we introduce a slow varying function:

Ωg(z) = 2∆βch(z)z + Ω (16.19)

We further assume that the wave amplitude is a slow varying function of z and
neglect the second derivatives involving:

(
∂2R(z)

∂2z

)
and

(
∂2L(z)

∂2z

)
.

After the terms involving β2
0 are canceled, we are left with the following equation:

−2jβ0

[(
∂R(z)
∂z

)
e−jβ0z −

(
∂2R(z)
∂2z

)
ejβ0z

]
+2β0

(
∆k̃ + κe2jβ0z+jΩg + κe−2jβ0z−jΩg

) (
R(z)e−jβ0z + L(z)ejβ0z

)
= 0. (16.20)
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Since R(z) and L(z) are independent functions, this equation makes sense only when
terms with the same propagation factor sum up to zero. In other words, the terms
with e−jβ0z and ejβ0z must sum up zero, respectively. Collecting these terms, we find:

−2jβ0

(
∂R(z)
∂z

)
+ 2β0∆k̃R(z) + 2β0κe

−jΩgL(z) = 0 (16.21)

2jβ0

(
∂L(z)
∂z

)
+ 2β0∆k̃L(z) + 2β0κe

jΩgR(z) = 0 (16.22)

which can be re-written in the familiar form:

∂

∂z
R(z) + j(∆k̃)R(z) = −jκe−jΩgL(z) (16.23)

∂

∂z
L(z) − j(∆k̃)L(z) = jκejΩgR(z) (16.24)

or in matrix notation:

∂

∂z

(
R(z)
L(z)

)
=
(

−j(∆k̃) −jκe−jΩg

jκejΩg j(∆k̃)

)(
R(z)
L(z)

)
(16.25)

16.6 Transfer Matrix Formulas

In this section, the technique developed by McCall and Platzman [108] is used to
solve the coupled wave equations.
The complex phase factor ejΩg is separated into real and imaginary parts and the
wave equation rewritten as:

∂

∂z
R(z) = −j(∆k̃)R(z) + [−jκcos(Ωg) − κsin(Ωg)]L(z) (16.26)

∂

∂z
L(z) = [jκcos(Ωg) − κsin(Ωg)]R(z) + j(∆k̃)L(z) (16.27)

We introduce the Pauli matrices :

σ1 =
(

0 1
1 0

)
(16.28)

σ2 =
(

0 −j
j 0

)
(16.29)

σ3 =
(

1 0
0 −1

)
(16.30)
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and express the equation in terms of a spinor:

ψ =
(
R(z)
L(z)

)
(16.31)

We obtain:
∂

∂z
ψ = [−κsin(Ωg)σ1 + κcos(Ωg)σ2 − j(∆k̃)σ3]ψ (16.32)

= Hψ (16.33)
= µ · σψ (16.34)

where boldface is used to denote a three component vector.
More specifically, in three component notation:

µ =
[
−κsin(Ωg) κcos(Ωg) −j(∆k̃)

]
(16.35)

and

σ =

σ1
σ2
σ3

 (16.36)

An arbitrary function f of the scalar a + b · σ, linear in the Pauli matrices, can be
reduced to another linear function[109]:

f(a+ b · σ) = A+ B · σ (16.37)

where

A = 1
2

[f(a+ b) + f(a− b)]; (16.38)

B = b

2b
[f(a+ b) − f(a− b)]; (16.39)

This allows us to expand the solution to Eq. (16.34) which can be written as:

ψ(z) = cosh[µ(z − z0)] + µ · σ

µ
sinh[µ(z − z0)] (16.40)

where µ is the complex square root of µ · µ.

µ2 = κ2 − (∆k̃)2 (16.41)

We note that it makes no difference which sign the complex µ takes.
The transfer matrix that maps ψ from one location to another is given by:

ψ(z) =
(
T11 T12
T21 T22

)
ψ(z0) (16.42)
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where

T11 = cosh[µ(z − z0)] − j(∆k̃)sinh[µ(z − z0)]/µ (16.43)
T12 = −jκe−jΩgsinh[µ(z − z0)]/µ (16.44)
T21 = jκejΩgsinh[µ(z − z0)]/µ (16.45)
T22 = cosh[µ(z − z0)] + j(∆k̃)sinh[µ(z − z0)]/µ (16.46)

and
Ωg(z) = 2∆βch(z)z + Ω (16.47)

16.7 Bragg wavelength and related reference pa-
rameters

Grating and reference wavelength

In this section, we discuss several important parameters used in simulation of waveg-
uiding structures involving DFB/DBR gratings. In a realistic device involving cor-
rugation gratings, the Bragg wavelength in vacuum is generally not well defined:
the spacing or the pitch of the grating is fixed by the fabrication procedure but the
modal index of the structure varies with bias and is not known before the simulation
We have chosen to fix the parameter of expansion β0 as a constant at all times for
a particular device in the simulator. This parameter is given by the average grating
period Lg as:

β0 = π

< Lg >
(16.48)

Thus in theory, β0 is well defined once the grating structure is known.
However, we often need to calculate parameters in the wavelength or frequency do-
main so we introduce a reference wavelength:

λref = 2πnref

β0
= 2nref < Lg > (16.49)

where nref is a fixed reference index which is normally chosen to be close to the
modal index at threshold. In current versions of PICS3D, nref is the effective index
at equilibrium so that λref is always independent of the applied bias.
This reference wavelength is different from the Bragg wavelength:

λBr = 2neff < Lg > (16.50)

where neff is the effective index at the current bias value.
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Propagation constant

The fundamental assumption in the software for index change is that the real_index
value in the macro library corresponds to the index at thermal equilibrium. When
the device is biased, the index changes due to various effects such as interband
transitions. This can be controlled by the index_model statement although the
most common effects are included by default.
As a result, the propagation constant in the coupled-mode theory is evaluated by:

β − β0 = (ω − ωref )neff/c+ ωref (neff − nref )/c (16.51)

where ωref is the frequency at λref . This is only used in edge-emitting devices since
propagation in VCSELs is not based on coupled-mode theory.
Note that during the preview of the round-trip gain provided by rtgain_phase,
tabulated index change values are used to evaluate the propagation constant. This
may differ from results in the main simulation.

Setting the reference wavelength

When setting up a device simulation, there are two ways of defining the reference
wavelength in the longitudinal statement:

1. Set ref_wavel to the value of λref

2. Set ref_index to the value of nref and ref_pitch to the value of Lg.

The first method is the easiest and ignores the details of the fabrication process. The
second method is more accurate but requires knowledge of the reference pitch of the
grating. However, nref must be as close as possible to neff at threshold in order for
the longitudinal modes to be in the right place.
From a device design point of view, the question is often reversed: given a Bragg
wavelength, what value of Lg should be used ? To answer this question, an accurate
estimate of neff is needed: it can be obtained from the simulation itself through the
2D mode solver results at various bias points. This will be an iterative process as
changing the reference wavelength can alter the threshold value as well as the gain
and index profiles.
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16.8 Coupled Wave Equations For Second Order
Grating

16.8.1 Introduction

When the grating period of the structure is 1/2 of the wavelength, we have a first
order grating structure which is commonly used for DFB and DBR lasers. In a first
order grating structure, the forward wave will only couple with the backward wave:
there are 180 degrees between the two.
A grating structure with a period that equals the wavelength is a second order
grating. The forward wave will experience a first order diffraction in 90 degrees
which causes radiation loss and a second order diffraction in 180 degrees (or the
backward wave). Therefore, we must modify the coupled wave equation to have a
term to account for the radiation loss. In subsection 16.8.2, we derive the coupled
wave equations here based on Ref. [81]. Subsection 16.8.3 is used to formulate the
radiating waves. Subsection 16.8.4 derives the formulas for a commonly used grating
structure and compare the results with those in Ref. [81].

16.8.2 Coupling coefficients

To be consistent with our convention for propagating waves, we assume a time de-
pendence of exp(jωt) so that the forward wave has a factor exp(−jkzz).
We choose a reference wave number β0 such that the grating property can be ex-
panded in term of it. The dielectric function at the optical frequency can be written
as:

ε(y, z) = ε0(y) + ∆ε(y, z) (16.52)

where ∆ε(y, z) is non zero only in the grating layers:

∆ε(y, z) = ∆ε[ζ+1(y)exp(−jβ0z) + ζ−1(y)exp(+jβ0z)
+ ζ+2(y)exp(−j2β0z) + ζ−2(y)exp(+j2β0z)] (16.53)

Our starting point is the following wave equation in three dimensions: ∂2

∂y2 + ∂2

∂z2 + ω2

c2
0
ε(y, z)

E(y, z) = 0. (16.54)

where c0 is the speed of light.
We consider a propagating field of the following form:

E(y, z) = [R(z)exp(−jβ0z) + L(z)exp(jβ0z)]ϕ(y) + ∆E(y, z) (16.55)
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where ∆E(y, z) is the radiating wave.
The wave equation becomes: ∂2

∂y2 + ∂2

∂z2 + ω2

c2
0
ε0(y)

+ω
2

c2
0

∆εζ+1(y)exp(−jβ0z) + ω2

c2
0

∆εζ−1(y)exp(+jβ0z)

+ω
2

c2
0

∆εζ+2(y)exp(−j2β0z) + ω2

c2
0

∆εζ−2(y)exp(+j2β0z)

E(y, z) = 0.(16.56)

Let us substitute the expression for E(y,z) and work out all the terms as follows: ∂2

∂y2 + ∂2

∂z2 + ω2

c2
0
ε0(y)

+ω
2

c2
0

∆εζ+1(y)exp(−jβ0z) + ω2

c2
0

∆εζ−1(y)exp(+jβ0z)

+ω
2

c2
0

∆εζ+2(y)exp(−j2β0z) + ω2

c2
0

∆εζ−2(y)exp(+j2β0z)


[R(z)exp(−jβ0z)ϕ(y) + L(z)exp(jβ0z)ϕ(y) + ∆E(y, z)] = 0. (16.57)

If we collect terms of different exponential factors, we obtain the following equations
for terms with no exponential wave factor:[

∂2

∂y2 + ∂2

∂z2 + ω2

c2
0
ε0(y)

]
∆E(y, z) = −ω2

c2
0

∆ε[ζ+1(y)L(z) + ζ−1(y)R(z)]ϕ(y) (16.58)

and for terms with exp(−jβ0z):[
∂2

∂y2 + ∂2

∂z2 + ω2

c2
0
ε0(y)

]
R(z)exp(−jβ0z)ϕ(y)

= −ω2

c2
0

∆ε [ζ+1(y)∆E(y, z) + ζ+2(y)L(z)ϕ(y)] exp(−jβ0z) (16.59)

We drop the terms with ∂2R
∂z2 and ∂2L

∂z2 :[
∂2

∂y2 − 2jβ0
∂

∂z
− β2

0 + ω2

c2
0
ε0(y)

]
R(z)ϕ(y)

= −ω2

c2
0

∆ε[ζ+1(y)∆E(y, z) + ζ+2(y)L(z)ϕ(y)] (16.60)
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Similarly for terms with exp(jβ0z):[
∂2

∂y2 + ∂2

∂z2 + ω2

c2
0
ε0(y)

]
L(z)exp(jβ0z)ϕ(y)

= −ω2

c2
0

∆ε[ζ−1(y)∆E(y, z) + ζ−2(y)R(z)ϕ(y)]exp(jβ0z) (16.61)

or [
∂2

∂y2 + 2jβ0
∂

∂z
− β2

0 + ω2

c2
0
ε0(y)

]
L(z)ϕ(y)

= −ω2

c2
0

∆ε[ζ−1(y)∆E(y, z) + ζ−2(y)R(z)ϕ(y)] (16.62)

The left hand side of equation Eq. (16.58) is very familiar to us. Assuming a fast
varying factor exp(±jβ0z) for ∆E(y, z), we solve the following Green’s function for
it y-dependence:

[ ∂
2

∂y2 − β2
0 + ω2

c2
0
ε0(y)]G(y, y1) = δ(y − y1) (16.63)

∆E(y, z) = −ω2

c2
0

∆ε
∫
G(y, y1)[ζ+1(y1)L(z) + ζ−1(y1)R(z)]ϕ(y1)dy1 (16.64)

∆E(y, z) = −ω2

c2
0

∆ε
∫
G(y, y1)ζ+1(y1)ϕ(y1)]dy1L(z)

− ω2

c2
0

∆ε
∫
G(y, y1)ζ−1(y1)ϕ(y1)dy1R(z) (16.65)

We note that ϕ(y) satisfies the following equation for a single transverse mode:[
∂2

∂y2 − β2
0 + ω2

0
c2

0
Re[ε0(y)]

]
ϕ(y) = 0 (16.66)

This allows us to re-write Eq. (16.60) as follows:[
ω2

c2
0
ε0(y) − ω2

0
c2

0
ε0(y) + ω2

c2
0
Im[ε0(y)] − 2jβ0

∂

∂z

]
R(z)ϕ(y)

= −ω2

c2
0

∆εζ+1(y)

ω2

c2
0

∆ε
∫
G(y, y1)ζ+1(y)ϕ(y1)]dy1L(z)

− ω2

c2
0

∆ε
∫
G(y, y1)ζ−1(y)ϕ(y1)dy1R(z)


− ω2

c2
0

∆εζ+2(y)L(z)ϕ(y) (16.67)
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We multiply the above with ϕ(y) and integrate over y:{
β2 − β2

0 + j
ω2

0
c2

0

∫
ϕ(y)Im[ε0(y)]ϕ(y)dy − 2jβ0

∂

∂z

}
R(z)

= −
(
ω2

c2
0

∆ε
)2 ∫ ∫

ϕ(y)ζ+1(y)G(y, y1)ζ+1(y1)ϕ(y1)dydy1L(z)

−
(
ω2

c2
0

∆ε
)2 ∫ ∫

ϕ(y)ζ+1(y)G(y, y1)ζ−1(y1)ϕ(y1)dydy1R(z)

− ω2

c2
0

∆ε
∫
ζ+2(y)ϕ(y)2dyL(z) (16.68)

where

β2 − β2
0 = 2β0

∂β

∂ω
∆ω

= 2β0
∆ω
vg

(16.69)

We also note that we can use modal gain and internal loss to express the following
integral: ∫

ϕ(y)Im[ε0(y)]ϕ(y)dy = n′c0

ω0
(g − αi) (16.70)

Then: 2β0
∆ω
vg

+ jβ0(g − αi) − 2jβ0
∂

∂z

+
(
ω2

c2
0

∆ε
)2 ∫ ∫

ϕ(y)ζ+1(y)G(y, y1)ζ−1(y1)ϕ(y1)dydy1

R(z)

= −
(
ω2

c2
0

∆ε
)2 ∫ ∫

ϕ(y)ζ+1(y)G(y, y1)ζ+1(y1)ϕ(y1)dydy1L(z)

− ω2

c2
0

∆ε
∫
ζ+2(y)ϕ(y)2dyL(z) (16.71)

A similar derivation can be made for Eq. (16.62):[
ω2

c2
0
ε0(y) − ω2

0
c2

0
ε0(y) + 2jβ0

∂

∂z
+ j

ω2

c2
0
Im[ε0(y)]

]
L(z)ϕ(y)

= −ω2

c2
0

∆εζ−1(y)∆E(y, z)

− ω2

c2
0

∆εζ−2(y)R(z)ϕ(y) (16.72)
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[
ω2

c2
0
ε0(y) − ω2

0
c2

0
ε0(y) + 2jβ0

∂

∂z
+ j

ω2

c2
0
Im[ε0(y)]

]
L(z)ϕ(y)

= −
(
ω2

c2
0

∆ε
)2 ∫

ζ−1(y)G(y, y1)ζ+1(y1)ϕ(y1)dy1L(z)

−
(
ω2

c2
0

∆ε
)2 ∫

ζ−1(y)G(y, y1)ζ−1(y1)ϕ(y1)dy1R(z)

− ω2

c2
0

∆εζ−2R(z)ϕ(y) (16.73)

We multiply ϕ(y) and integrate over y:

[
β2 − β2

0 + 2jβ0
∂

∂z
+ j

ω2

c2
0

∫
ϕ(y)Im[ε0(y)]ϕ(y)dy

]
L(z)

= −
(
ω2

c2
0

∆ε
)2 ∫ ∫

ϕ(y)ζ−1(y)G(y, y1)ζ+1(y1)ϕ(y1)dydy1L(z)

−
(
ω2

c2
0

∆ε
)2 ∫ ∫

ϕ(y)ζ−1(y)G(y, y1)ζ−1(y1)ϕ(y1)dydy1R(z)

− ω2

c2
0

∆ε
∫
ζ−2(y)ϕ(y)2dyR(z) (16.74)

2β0
∆ω
vg

+ 2jβ0
∂

∂z
+ j

ω

c0
n′(g − αi)

+ [ω
2

c2
0

∆ε]2
∫ ∫

ϕ(y)ζ−1(y)G(y, y1)ζ+1(y1)ϕ(y1)dydy1

L(z)

= −
(
ω2

c2
0

∆ε
)2 ∫ ∫

ϕ(y)ζ−1(y)G(y, y1)ζ−1(y1)ϕ(y1)dydy1R(z)

− ω2

c2
0

∆ε
∫
ζ−2(y)ϕ(y)2dyR(z) (16.75)
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Our key results are of the following form:∆ω
vg

+ j
g − αi

2
− j

∂

∂z

+
(
ω2

c2
0

∆ε
)2 1

2β0

∫ ∫
ϕ(y)ζ+1(y)G(y, y1)ζ−1(y1)ϕ(y1)dydy1

R(z)

+
(
ω2

c2
0

∆ε
)2 1

2β0

∫ ∫
ϕ(y)ζ+1(y)G(y, y1)ζ+1(y1)ϕ(y1)dydy1L(z)

+ ω2

c2
0

∆ε 1
2β0

∫
ζ+2ϕ(y)2dyL(z)

= 0 (16.76)

∆ω
vg

+ j
∂

∂z
+ j

g − αi

2

+
(
ω2

c2
0

∆ε
)2 1

2β0

∫ ∫
ϕ(y)ζ−1(y)G(y, y1)ζ+1(y1)ϕ(y1)dydy1

L(z)

+
(
ω2

c2
0

∆ε
)2 1

2β0

∫ ∫
ϕ(y)ζ−1(y)G(y, y1)ζ−1(y1)ϕ(y1)dydy1R(z)

+ ω2

c2
0

∆ε 1
2β0

∫
ζ−2(y)ϕ(y)2dyR(z)

= 0 (16.77)

These are rewritten as{
∂

∂z
+ j

∆ω
vg

− g − αi

2
+ h1a

}
R(z) + h1bL(z) + jh2bL(z) = 0 (16.78)

{
∂

∂z
− j

∆ω
vg

+ g − αi

2
− h1a

}
L(z) − h1cR(z) − jh2aR(z) = 0 (16.79)

h1a = −j
(
ω2

c2
0

∆ε
)2 1

2β0

∫ ∫
ϕ(y)ζ+1(y)G(y, y1)ζ−1(y1)ϕ(y1)dydy1 (16.80)

h1b = −j
(
ω2

c2
0

∆ε
)2 1

2β0

∫ ∫
ϕ(y)ζ+1(y)G(y, y1)ζ+1(y1)ϕ(y1)dydy1 (16.81)

h1c = −j
(
ω2

c2
0

∆ε
)2 1

2β0

∫ ∫
ϕ(y)ζ−1(y)G(y, y1)ζ−1(y1)ϕ(y1)dydy1 (16.82)
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h2a = ω2

c2
0

∆ε 1
2β0

∫
ζ−2(y)ϕ(y)2dy (16.83)

h2b = ω2

c2
0

∆ε 1
2β0

∫
ζ+2(y)ϕ(y)2dy (16.84)

The Green’s function can be written in terms of the solutions of the defining equation
with the right hand side equal to zero. These solutions are written as ϕ(y)+ and
ϕ(y)−, which are the radiating waves to the positive and negative direction of y,
respectively:

G(y, y1) = 1
W

ϕ(y)+ϕ(y1)− y > y1

ϕ(y)−ϕ(y1)+ y < y1
(16.85)

where the Wronskian is given by:

W = dϕ(y)+

dy
ϕ(y)− − dϕ(y)−

dy
ϕ(y)+ (16.86)

For simplicity, we assume the radiating waves are plane waves in y direction with
dependence exp(±jkyy). Then,

W = −2jky (16.87)

G(y, y1) = 1
W

exp[−jky(y − y1)] y > y1

exp[−jky(y1 − y)] y < y1
(16.88)

or

G(y, y1) = − 1
2jky

cos[−ky(y − y1)] + jsin[−ky(y − y1)] y > y1

cos[−ky(y1 − y)] + jsin[−ky(y1 − y)] y < y1
(16.89)

For simplicity, we only consider the case of symmetric grating with ζ+m = ζ−m. Then
h1a = h1b = h1c = h1 and h2a = h2b = h2.



322 PICS3D-SPECIFIC MODELS I: Longitudinal Modeling

We consider the following integral:

h14β0ky

(
ω2

c2
0

∆ε
)−2

=
∫

y>y1

∫
ϕ(y)ζ1(y){cos[−ky(y − y1)] + jsin[−ky(y − y1)]}ζ1(y1)ϕ(y1)dydy1

+
∫

y<y1

∫
ϕ(y)ζ1(y){cos[−ky(y1 − y)] + jsin[−ky(y1 − y)]}ζ1(y1)ϕ(y1)dydy1

=
∫

y>y1

∫
ϕ(y)ζ1(y){cos[−ky(y − y1)] + jsin[−ky(y − y1)]}ζ1(y1)ϕ(y1)dydy1

+
∫

y<y1

∫
ϕ(y)ζ1(y){cos[−ky(y1 − y)] + jsin[−ky(y − y1)]}ζ1(y1)ϕ(y1)dydy1

+
∫

y<y1

∫
ϕ(y)ζ1(y){−jsin[−ky(y − y1)] + jsin[−ky(y1 − y)]}ζ1(y1)ϕ(y1)dydy1

=
∫ ∫

ϕ(y)ζ1(y)exp[−jky(y − y1)]ζ1(y1)ϕ(y1)dydy1

− 2j
∫

y1>y

∫
ϕ(y)ζ1(y)sin[ky(y1 − y)]ζ1(y1)ϕ(y1)dydy1

=
∣∣∣∣∫ ϕ(y)ζ1(y)exp[−jkyy]

∣∣∣∣2 dy
− 2j

∫
y1>y

∫
ϕ(y)ζ1(y)sin[ky(y1 − y)]ζ1(y1)ϕ(y1)dydy1 (16.90)

In many cases, the grating layer thickness is much smaller than the wavelength. As
a result, the ζ(y) function is much like a delta-function in y. Therefore, the 2nd term
in the above equation is negligible and we obtain the following:

h1 =
(
ω2

c2
0

∆ε
)2 1

4β0ky

|
∫
ϕ(y)ζ1(y)exp(−jkyy)dy |2 (16.91)

h2 = ω2

c2
0

∆ε 1
2β0

∫
ζ2(y)ϕ(y)2dy (16.92)

The above equations can be further simplified assuming β0 = ky = nω
c

= 2πn
λ

∆ε =
2n∆n.
The factor for h1 becomes:(

ω2

c2
0

∆ε
)2 1

4β0ky

= ω2

c2
0

(∆ε)2 1
4n2 =

(2π
λ

)2
(∆n)2 (16.93)

The factor for h2 becomes

ω2

c2
0

∆ε 1
2β0

= ω

c0
2n∆n 1

2n
= 2π

λ
∆n (16.94)
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Our final results are as follows:

h1 =
(2π
λ

)2
(∆n)2 |

∫
ϕ(y)ζ1(y)exp(−jkyy)dy |2 (16.95)

h2 = 2π
λ

∆n
∫
ζ2(y)ϕ(y)2dy (16.96)

For a symmetric grating structure, the coupled wave equations are as follows:
{
∂

∂z
+ j

∆ω
vg

− g − αi

2
+ h1

}
R(z) + h1L(z) + jh2L(z) = 0 (16.97)

{
∂

∂z
− j

∆ω
vg

+ g − αi

2
− h1

}
L(z) − h1R(z) − jh2R(z) = 0 (16.98)

For a real index 2nd order grating, h1 is real and positive. The effect of the first
order diffraction (at 90 degrees) is to introduce an additional loss term of 2h1 to the
internal loss and an imaginary coupling term of −h1 to the conventional coupling
coefficient h2 or (κ). Therefore the effect is not only to make the laser lossy but
also to introduce a lossy coupling term which may affect the longitudinal modes
significantly.
For a complex index 2nd order grating, the imaginary part of h1 adds a term Im(h1)
to the frequency deviation ∆ω

vg
. It also adds a term Im(h1) to the real part of κ.

Therefore a loss or gain coupled 2nd order grating can also enhance the real kappa
and shift the emission frequency.

16.8.3 Radiating Waves

In many applications, it is desirable to calculate the radiating wave. We recall from
previous subsection that the radiating field can be written as follows,:

∆E(y, z) = −ω2

c2
0

∆ε
∫
G(y, y1)[ζ+1(y1)L(z) + ζ−1(y1)R(z)]ϕ(y1)dy1 (16.99)

where

G(y, y1) = − 1
2jky

exp[−jky(y − y1)] y > y1

exp[−jky(y1 − y)] y < y1
(16.100)
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We obtain:

∆E(y, z) = −ω2

c2
0

∆ε
∫
G(y, y1)ζ+1(y1)[L(z) +R(z)]ϕ(y1)dy1

= −ω2

c2
0

∆ε
∫

y>y1
G(y, y1)ζ+1(y1)[L(z) +R(z)]ϕ(y1)dy1

− ω2

c2
0

∆ε
∫

y<y1
G(y, y1)ζ+1(y1)[L(z) +R(z)]ϕ(y1)dy1

= ω2

c2
0

∆ε 1
2jky

∫
y>y1

exp[−jky(y − y1)]ζ+1(y1)[L(z) +R(z)]ϕ(y1)dy1

+ ω2

c2
0

∆ε 1
2jky

∫
y<y1

exp[−jky(y1 − y)]ζ+1(y1)[L(z) +R(z)]ϕ(y1)dy1

(16.101)

We assume that the 90 degree diffraction downwards gets absorbed and we only
consider the upward waves:

∆E(y, z) = ω2

c2
0

∆ε 1
2jky

exp[−jky(y − y0)]ζ+1(y0)[L(z) +R(z)]ϕ(y0)dg (16.102)

where we assume a thin grating layer of dg thickness located at y0.
If the grating is on the surface (case A) of the device, ky = ω

c0
and we have:

∆E(y, z) = πdg

jλ
∆εζ+1(y0)ϕ(y0)[L(z) +R(z)]exp[−jky(y − y0)] (16.103)

where Γg is the confinement factor for the grating layer. If the grating is buried
within the device (case B), ky = nω

c0
and we have:

∆E(y, z) = πdg

jnλ
∆εζ+1(y0)ϕ(y0)[L(z) +R(z)]exp[−jky(y − y0)] (16.104)

To evaluate the emitted power of the radiating field, we consider the expression for
the edge emitting power first:

E(y, z) = [R(z)exp(−jβ0z) + L(z)exp(jβ0z)]ϕ(y) (16.105)

The bulk photon density is written as

s(y, z) = ϵ0n
2|E|2 = ϵ0n

2|R(z)|2 + |L(z)|2]|ϕ(y)|2 (16.106)

where we have neglected the interference term. The linear photon density is as
follows:

sl(z) = ϵ0n
2
∫

|E|2dxdy = ϵ0n
2|R(z)|2 + |L(z)|2]| (16.107)
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We assume that ∫
ϕ(y)dydx = 1 (16.108)

In our simulator, many of power quantities are expressed in terms of the total photon
number of the mode, S, which can be directly calculated from the Green’s function.

S =
∫
sl(z)dz = ϵ0n

2
∫

|R(z)|2 + |L(z)|2]|dz (16.109)

from which we can calculate the amplitude of R and L given the photon number in
the cavity.
The emitted power from the surface for the case A is as follows:

Ptop = ~ωc0ϵ0

∫
|∆E(y, z)|2dxdz

= ~ωc0ϵ0
π2d2

g

λ2 (∆ε)2ζ2
1ϕ(y0)2dwid

∫
[L(z) +R(z)]2dz

= ~ωc0ϵ0
π2dg

λ2 (∆ε)2ζ2
1 Γg

∫
|L(z) +R(z)|2dz

= ~ωc0ϵ0
π2dg

λ2 (∆ε)2ζ2
1 ΓgS

{ ∫
|L(z) +R(z)|2dz

ϵ0n2 ∫ |R(z)|2 + |L(z)|2]|dz

}
(16.110)

or
Ptop = ~ωc0

π2dg

n2λ2 (∆εζ1)2ΓgS

{ ∫
|L(z) +R(z)|2dz∫

|R(z)|2 + |L(z)|2]|dz

}
(16.111)

The upwards power within the device for the case B is as follows:

Pup = ~ωvgϵ0n
2
∫

|∆E(y, z)|2dxdz

= ~ωvgϵ0n
2π

2d2
g

n2λ2 (∆ε)2ζ2
1ϕ(y0)2dwid

∫
[L(z) +R(z)]2dz

= ~ωvgϵ0
π2dg

λ2 (∆ε)2ζ2
1 Γg

∫
|L(z) +R(z)|2dz

= ~ωvgϵ0
π2dg

λ2 (∆ε)2ζ2
1 ΓgS

{ ∫
|L(z) +R(z)|2dz

ϵ0n2 ∫ |R(z)|2 + |L(z)|2]|dz

}

= ~ωvg
π2dg

n2λ2 (∆εζ1)2ΓgS

{ ∫
|L(z) +R(z)|2dz∫

|R(z)|2 + |L(z)|2]|dz

}
(16.112)

The surface emitting power (case B) is as follows:

Ptop = (1 − rtop)~ωvg
π2dg

n2λ2 (∆εζ1)2ΓgS

{ ∫
|L(z) +R(z)|2dz∫

|R(z)|2 + |L(z)|2]|dz

}
(16.113)

where rtop is the power reflectivity of the top facet.
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Figure 16.1: Schematics of a common grating structure.

We define a unitless coefficient (surface power emisison coefficient) to measure the
surface emission intensity:

Csurf = π2dg

n2λ
(∆εζ1)2Γg (16.114)

so that the emisison power for case A is given by

Ptop = ~ωc0

λ
CsurfS

{ ∫
|L(z) +R(z)|2dz∫

|R(z)|2 + |L(z)|2]|dz

}
(16.115)

and for case B:

Ptop = (1 − rtop)~ωvg

λ
CsurfS

{ ∫
|L(z) +R(z)|2dz∫

|R(z)|2 + |L(z)|2]|dz

}
(16.116)

16.8.4 A common grating structure

We are going to solve for a commonly used grating structure with the following index
distribution (see Fig. 16.1).

∆n(z) = ∆n/2; 0 < z < a/2

∆n(z) = ∆n/2 − 2∆n
c

(z − a/2); a/2 < z < a/2 + c/2

∆n(z) = −∆n/2; a/2 + c/2 < z < a/2 + c/2 + b/2 (16.117)
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∆n(z) = ∆n[2ζ1cos(β0z) + 2ζ2cos(2β0z)] (16.118)
where β0 = 2π

a+c+b

Integrate the above equation by
∫ a/2+c/2+b/2

0 cos(β0z)dz to obtain:

∫ a/2+c/2+b/2

0
∆n(z)cos(β0z)dz

=
∫ a/2

0
∆n/2cos(β0z)dz

+
∫ a/2+c/2

a/2

[
∆n/2 − 2∆n

c
(z − a/2)

]
cos(β0z)dz

+
∫ a/2+c/2+b/2

a/2+c/2
(−∆n/2)cos(β0z)dz

= ∆n/2 1
β0
sin(β0z)

∣∣∣∣∣
a/2

0

+
[
∆n/2 + ∆n

c
a

]
1
β0
sin(β0z)

∣∣∣∣∣
a/2+c/2

a/2

− 2∆n
c

1
β2

0
[(β0z)sin(β0z) + cos(β0z)]

∣∣∣∣∣
a/2+c/2

a/2

− ∆n/2 1
β0
sin(β0z)

∣∣∣∣∣
a/2+c/2+b/2

a/2+c/2
(16.119)

Our result is as follows:

∫ a/2+c/2+b/2

0
∆n(z)cos(β0z)dz

= ∆n/2 1
β0
sin(β0a/2)

+
[
∆n/2 + ∆n

c
a

]
1
β0

[sin(β0(a/2 + c/2)) − sin(β0a/2)]

− 2∆n
c

1
β2

0
[β0(a/2 + c/2)sin(β0(a/2 + c/2)) − (β0a/2)sin(β0a/2)

+ cos(β0(a/2 + c/2)) − cos(β0a/2)]

− ∆n/2 1
β0

[sin(β0(a/2 + c/2 + b/2)) − sin(β0(a/2 + c/2))] (16.120)

We derive the expression for ζ1 here.
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∫
∆n(z)cos(β0z)dz = ∆n2ζ1

∫
cos2(β0z)dz (16.121)

∫ a/2+c/2+b/2

0
cos2(β0z)dz = (a/2 + c/2 + b/2)/2 (16.122)

∫
∆n(z)cos(β0z)dz = ∆nζ1(a/2 + c/2 + b/2) (16.123)

ζ1 = 1
∆n(a/2 + c/2 + b/2)

∫
∆n(z)cos(β0z)dz (16.124)

Similarly,

∫ a/2+c/2+b/2

0
∆n(z)cos(2β0z)dz

= ∆n/2 1
2β0

sin(2β0a/2)

+
[
∆n/2 + ∆n

c
a

]
1

2β0
[sin(2β0(a/2 + c/2)) − sin(2β0a/2)]

− 2∆n
c

1
2β2

0
[2β0(a/2 + c/2)sin(2β0(a/2 + c/2)) − (2β0a/2)sin(2β0a/2)

+ cos(2β0(a/2 + c/2)) − cos(2β0a/2)]

− ∆n/2 1
2β0

[sin(2β0(a/2 + c/2 + b/2)) − sin(2β0(a/2 + c/2))] (16.125)

ζ2 = 1
∆n(a/2 + c/2 + b/2)

∫
∆n(z)cos(2β0z)dz (16.126)

In the special case of c = 0:

∫ a/2+b/2

0
∆n(z)cos(β0z)dz

= ∆n
β0

sin(πa/(a+ b)) (16.127)

ζ1 = 1
(a/2 + c/2 + b/2)

a+ b+ c

2π
sin(πa/(a+ b)) (16.128)

ζ1 = 1
π
sin(πa/(a+ b)) (16.129)
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ζ2 = 1
∆n(a/2 + c/2 + b/2)

∫
∆n(z)cos(2β0z)dz (16.130)

∫ a/2+c/2+b/2

0
∆n(z)cos(2β0z)dz

= ∆n 1
2β0

sin(2β0a/2) (16.131)

ζ2 = 1
2π
sin(2πa/(a+ b)) (16.132)

In the case of thin grating layer of dg with a confining factor for the grating layer of
Γg, exp(jkyy) = 1 and we have the following results:

h1 =
(2π
λ

)2
(∆n)2ζ2

1 Γgdg

=
(2π
λ

)2
(∆n)2 1

π2 sin
2(πa/(a+ b))Γgdg

=
(2
λ

)2
(∆n)2sin2(πa/(a+ b))Γgdg (16.133)

h2 = 2π
λ

∆n
∫
ζ2(y)ϕ(y)2dy = 1

λ
∆nsin(2πa/(a+ b))Γg (16.134)

h1/h2 = λ
(2
λ

)2
∆nsin2(πa/(a+ b))dg/sin(2πa/(a+ b)) (16.135)

h1/h2 = = 2
λ

∆nsin2(πa/(a+ b))dg/[sin(πa/(a+ b))cos(πa/(a+ b))]

= 2∆ndg

λ
tan(πa/(a+ b)) (16.136)

The ratio above is identical to that derived in Ref. [81].

16.8.5 Case of thicker grating layer

In case of thicker grating layer (comparable or greater than wavelength) we need to
evaluate the coupling coefficient and surfurce emitting power more accurately. We
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need to modify Eqs. 16.114 and 16.133. In both of these equations, the factor Γgdg

should be replaced by the following integral:

Γgdg = |
∫
ϕ(x, y)exp[−jky(y − yc)]dxdy|2/dwid (16.137)

where dwid is the width of the grating layer. The integral is performed over the x-y
plane on the grating region. The yc is the y-position within the grating chosen such
that the 2nd term in Eq. 16.90 is zero. It is usually reasonable to choose yc as the
center of the grating. The above integral can be performed numerically.

16.9 3D Optical Amplifier Model

PICS3D is ideal for the study of semiconductor optical amplifiers. The simulation
approach is similar to that for lasers. The lack of optical feedback results in a
simplification of our numerical models. We can skip the longitudinal model search
and only deal with the spatial hole burning effects.
To use PICS3D for optical amplifier, we assume that the input light is from the right
facet with a single wavelength. We ramp up the bias current as in a laser simulation.
As the optical gain increases we expect the output power from the left facet to
increase. The statement to activate the amplifier model is 3d_amplifier_model.

16.10 Beam Propagation Method

All the models described so far in this chapter are based on the separation of variables
performed in Sec. 16.2. That is, the lateral mode profile ϕ0(x, y) changes very little
in the z direction.
In cases where this is assumption is not respected (e.g. tapered lasers), the beam
propagation method (BPM) may be used to obtain the forward and backward field
profiles and evaluate the Wronskian and round-trip gain.
As of version 2009, PICS3D uses a new FEM-BPM method: it will be detailed in
subsequent revisions of the manual.

16.11 Device structures

It is now appropriate to discuss some of the laser structures modeled by PICS3D
and how they correspond to the above equations:

• Fabry-Perot lasers are the limiting case where κ=0.
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• Conventional DFB lasers are assumed to have AR coating on both facets and
a real κ with no z-dependence.

• Phase Shifted DFB lasers are assumed to have real κ and zero Ω(z) but
with a phase shifted section (or a section without gratings) somewhere along
the waveguide.

• Chirped Grating DFB lasers can be represented by a linear change in z of
∆βch. This can be realized with changing the grating period linearly.

• Longitudinal Graded Index lasers can be represented by a linear change in
∆k̃.

• DBR lasers can be considered as a special case of DFB lasers with no grating
in the active section. The passive mirror section has a regular grating with a
low material gain. In such a case, more than one material segment may need
to be defined.

• Gain/Loss Coupled DFB lasers can be considered as having complex κ.

• Tapered structures with longitudinal variation of the cross section and op-
tical confinement of the laser are modeled with the beam propagation method
(BPM).

PICS3D provides every possibility of defining various variables within the framework
of the coupled wave equation. It is interesting to note that a complex κ (i.e., gain
coupled structure) has a similar (but not identical) effect on κ as changing the phase
Ωg(z) (chirp grating). This is consistent with the well known fact that gain coupling,
chirp grating and phase shifting all give similar results in the emission characteristics
of the laser and help move the main emission peak into the spectrum bandgap.

16.12 Slope Efficiency Issues: 3D vs. 2D Simula-
tion

16.12.1 Introduction

For laser diodes with strong longitudinal variation such as DBF and DBR lasers,
3D simulation is necessary. For Fabry-Perot (FP) lasers, it would be interesting to
compare 2D and 3D model of power emission characteristics. To be more specific, we
are interested in comparing the slope efficiency of 2D (as in LASTIP simulation) and
3D (as in PICS3D). The purpose of this section is to provide insight and guidance
to users who use both LASTIP and PICS3D would like to know exactly what kind
of difference to expect when comparing the results of 2D and 3D simulations.
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In the following discussion, we assume the laser has been well driven into lasing with
stimulated emission dominating.
Let us recall power emission models in LASTIP (2D model) for a Fabry-Perot laser.
We use the mirror loss αm:

αm = 1/(2L)ln[1/(R1R2)] (16.138)

where L is the cavity length; R1 and R2 are the facet power reflectivities. Following
standard practice, our 2D simulator LASTIP computes the power emitted (Pe) from
the laser diode as the photon number in the cavity (S) times the mirror loss:

Pe/(~ω) = vgαmS (16.139)

where vg is the group velocity of light within the laser.
In a 2D simulation, we usually assume the modal optical gain is uniform in the z-
dimension. Thus the injected current/power converts into stimulated recombination:

Pinj(z)/(~ω) = vggm(z)Ptot(z) (16.140)

The lasing condition requires that:

gm0 = αi + αm (16.141)

where αi is the internal material loss.
The efficiency can thus be written as,

η2D = Pe/Pinj = 1/(1 + αi/αm) = 1/(1 + Fr) (16.142)

where, for the convenience of discussions later, we defined a fraction Fr:

Fr2D = αi/αm = 2Lαi

ln[1/(R1R2)]
(16.143)

16.12.2 3D simulation: general consideration

Now let use examine the situation in 3D simulation with consideration of spatial hole
burning. Here we define spatial hole burning (SHB) as gain (and index variation)
in the z-direction caused by inhomogeneous stimulated recombination In the case of
FP laser with uniform injection (as is the case for default setting in PICS3D) along
the cavity of an edge laser, any variation in optical gain must be accompanied by
variation in wave intensity when the laser is well above threshold [see Eq. (16.140)].
In the following derivation, we neglect the factor of 1

~ω
so that the power should be

regarded as having units of ~ω.
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We separate the linear power density in an arbitrary laser into right-going and left-
going waves:

Ptot(z) = Pr(z) + Pl(z) (16.144)

By definition of gain and loss, we have the following relation if we neglect any coupling
between the left and right-going waves.

dPr/dz = (gm(z) − αi)Pr.

dPl/dz = −(gm(z) − αi)Pl. (16.145)

The injected power through stimulated recombination for the right going power is
as follows,∫

vgPr(z)gm(z)dz =
∫
vgαiPr(z)dz +

∫
vgPr(z)(gm(z) − αi)dz

= vg

∫
αiPr(z)dz + vg

∫
d[Pr(z)]

= vg

∫
αiPr(z)dz + vg[Pr(z2) − Pr(z1)] (16.146)

Please note that we have merely used the definition in Eq. (16.145) and no assump-
tions of uniformity in any quantities are made.
Similarly, integrated injected power for the left going wave is as follows:

vg

∫
Plαidz + vg(Pl(z1) − Pl(z2)) (16.147)

By simple algebraic manipulations, we can rewrite the injection power as follows:

Pinj = vg

∫
Ptot(z)αidz + vgPl(z1)(1 −R1) + vgPr(z2)(1 −R2) (16.148)

whose last two terms we identify as the power emission from both laser facets:

Pe = vgPl(z1)(1 −R1) + vgPr(z2)(1 −R2)
= vgPtot(z1)(1 −R1)/(1 +R1) + vgPtot(z2)(1 −R2)/(1 +R2) (16.149)

Therefore we obtain the following expression of efficiency for a general laser diode:

η3D = 1/(1 + Fr3D) (16.150)

where, using definition of Fr,

Fr3D =
∫
αiPtot(z)dz

Ptot(z1)(1 −R1)/(1 +R1) + Ptot(z2)(1 −R2)/(1 +R2)
(16.151)
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Please note that the above derivation neglects any grating/coupling effects. However,
it can be shown that if the coupling coefficient is real, the formula in Eq. (16.151)ap-
plies to any type of lasers including FP, DFB, DBR and VCSEL with variations in
all quantities.
This expression leads to some useful conclusions. Suppose we fix the photon density
at the facets Ptot(z1) and Ptot(z2) and allow the intensity to vary inside the cavity.
If the intensity inside is low (such as in FP laser), the integral in the numerator will
be small and thus lead to a higher efficiency.
On the other hand, if the power is high in the mid-section and small near the facets,
such as in 1/4 wavelength shifted DFB laser and VCSEL , the laser will be a less
efficient laser.

16.12.3 Fabry-Perot laser with uniform gain

We shall show that for FP laser with uniform gain, Eq. (16.151) reduces to our
standard 2D expression in Eq. (16.143).
For simplicity, we assume that R1 = R2. If the optical gain is uniform in the
longitudinal direction, we can write the wave intensity as follows.

Ptot(z) = P0 {exp[gz] + exp[g(L− z)]} (16.152)

where g is the net gain: g = gm − αi. The integral in the numerator of Eq. (16.151)
becomes: ∫

αiPtot(z)dz = 2αiP0[exp(gL) − 1]/g (16.153)

Using lasing condition gL = ln(1/R), we obtain∫
αiPtot(z)dz = 2αiP0[(1/R) − 1]

(1/L)ln(1/R)
= 2αiP0[(1/R) − 1]/αm (16.154)

We notice that in the denominator of Eq. (16.151),

Ptot(z1) = P0[1 + exp(gL)] = P0[1 + (1/R)] (16.155)

Therefore, we obtain the following results for FP laser under uniform gain:

Fr3D =
∫
αiPtot(z)dz

2Ptot(z1)(1 −R)/(1 +R)

= 2αiP0[(1/R) − 1]/αm

2P0[1 + (1/R)](1 −R)/(1 +R)
= αi/αm (16.156)

which is exactly the model we use in 2D model.
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Figure 16.2: Schematics of variation of power and gain within a Fabry-Perot laser.

16.12.4 Fabry-Perot laser with non-uniform gain

In this subsection, we allow the optical gain in FP laser to vary. In general, there
is no analytical expression if optical gain is allowed to vary. But we can assume a
reasonable form for the gain variation in order to study its effect on laser emission
characteristics. We assume the following parabolic variation of the net optical gain
(see Fig. 16.2):

g(z) = g0 + ∆g − ∆g
( 2
L

)(
z − L

2

)2
(16.157)

The optical power of the right-going wave can be expressed as follows from the
definition of the net optical gain:

ln

(
Pr(z)
Pr(0)

)
= (g0 + ∆g)z − ∆g

3

( 2
L

)2 [(
z − L

2

)3
+
(
L

2

)3]
(16.158)

By symmetry consideration, we can write down similar expression for the optical
power of the left-going wave.
The lasing condition becomes: ∫ L

0
g(z)dz = ln(1/R) (16.159)

or
g0 + 2∆g/3 = (1/L)ln(1/R) (16.160)

which is to be compared with the case of uniform gain: g0 = (1/L)ln(1/R).
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Since the stimulated recombination is dominant above threshold, we require that
the product of gain and total optical power is uniform because of uniform injection
assumption. This is in general not possible for parabolic gain variation. However,
we believe it will be reasonable to require that the product of gain-power be equal
at facet and at the middle point of the cavity as follows:

g(0)[Pr(0) + Pl(0)] = g(L/2)[Pr(L/2) + Pl(L/2)] (16.161)

Noting that
Pr(0) = P0[1 + exp[(g0L+ 2∆gL/3)] (16.162)

and
Pr(L/2) = Pl(L/2) = P0exp[(g0 + 2∆g/3)(L/2)] (16.163)

Eq. (16.161) becomes

g0[1 + exp(g0L+ 2∆gL/3)] = (g0 + ∆g)2exp[(g0 + 2∆g/3)(L/2)] (16.164)

Using the lasing condition in Eq. (16.160), the above becomes:

g0(1 + 1/R) = 2(g0 + ∆g)
√

1/R (16.165)

Combing the lasing condition in Eq. (16.160) with with Eq. (16.165), we obtain
the following solution of spatial hole burning under the assumption of parabolic gain
variation:

∆g =
( 1
L
ln

1
R

)
×

2
3

+
2
√

1/R

1 + (1/R) − 2
√

1/R

−1

(16.166)

g0 = 1
L
ln

1
R

− 2
3

∆g (16.167)

Having successfully solved the power distribution within the FP laser with spatial
hole burning, we may now proceed to compute the quantum efficiency using Eq
(16.151).

Fr3D = αi

∫
Ptot(z)dz

2Ptot(z1)(1 −R)/(1 +R)

= αiR

1 −R

∫ L

0
exp

{
(g0 + ∆g)z − ∆g

3

( 2
L

)2 [(
z − L

2

)3
+
(
L

2

)3]
dz

}
(16.168)

We find it convenient to write the above integral in the following form:

Fr3D = αiR

1 −R

∫ L

0
exp[(g0 + 2∆g/3)z + h(z)]dz (16.169)

h(z) = ∆gz
3

− ∆g
3

( 2
L

)2 [(
z − L

2

)3
+
(
L

2

)3]
(16.170)
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Since h(z) is a small quantity (linear in ∆g) equal to zero at facet and at the mid-
point of the cavity, we may use the following Taylor expansion:

Fr3D = αiR

1 −R

∫ L

0
exp[(g0 + 2∆g/3)z]dz

+ αiR

1 −R

∫ L

0
exp[(g0 + 2∆g/3)z]h(z)dz (16.171)

= term1 + term2 (16.172)

We find the first term above reduces to that of the usual mirror loss:

term1 = αiR

1 −R

∫ L

0
exp[(g0 + 2∆g/3)z]dz (16.173)

= αiR

(1 −R)(g0 + 2∆g/3)
{exp[(g0 + 2∆g/3)L] − 1} (16.174)

Using the lasing condition again,

term1 = αiR

(1 −R)(1/L)ln(1/R)
[(1/R) − 1]

= αi

(1/L)ln(1/R)
(16.175)

The second term term2 may be regarded as a correction term to the standard mirror
loss model for the computation of quantum efficiency. It may be evaluated analyt-
ically. Since the final expression is rather lengthy, we shall only plot the numerical
results of the correction term for a typical case of R = 0.32 and αi = 1000 1/m
in Fig. 16.3. Please note that the correction term, term2, is proportional to the
internal loss. The correction term becomes larger as the cavity length increases, as
we may expect from increased SHB. However, the magnitude of the correction term
to the conventional mirror loss in FP laser is typically around 0.1%.

16.12.5 Conclusions

In conclusion, we have derived a convenient formula for computation of slope effi-
ciency of lasing characteristics from a given power distribution. It is convenient to
be used to analyze the emission efficiency of an arbitrary laser under condition of
spatial hole burning (SHB). For a Fabry-Perot laser, use of mirror loss (1/L)ln(1/R)
is equivalent to a model of power distribution with uniform gain. The effect of SHB
on the efficiency of the standard mirror is in general rather small (about 0.1%) for
a Fabry-Perot laser. Thus, as far as FP lasers are concerned, 2D simulation (as
in LASTIP) and 3D simulation (as in PICS3D) should yield the same result for
practical purposes.
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Figure 16.3: Correction to the inverse efficiency of a Fabry Perot laser due to spatial
hole burning. The facet power reflectivity is taken to be 0.32. The internal loss is
set to be 1000 1/m

In the case of a phase shifted DFB the SHB influence can be very significant. In that
case both the gain distribution and index distribution will greatly affect the mirror
loss. Thus it is important to perform longitudinal modelling.
The author of this section (Simon Li) wishes to acknowledge helpful discussions on
the topic of spatial hole burning with Richard Schatz and Sebastian Mogg, Royal
Institute of Technology, Stockholm."



Chapter 17

PICS3D-SPECIFIC MODELS II:
VCSEL Theory

17.1 Introduction

In the previous chapter, we introduced the longitudinal model used by PICS3D for
edge-emitting devices. For VCSELs, much of the theory remains the same but there
are a few important changes that need to be discussed.
The first major change is that the equations must be solved in the cylindrical co-
ordinate system shown in Fig. 17.1. For a more detailed explanations on how the
drift-diffusion and Poisson equations are altered by the change in coordinate system,
the user is referred to Sec. 6.2.

17.2 Lateral Modes: Fiber-Like Index Model

The exact solution of the optical mode in VCSEL involves the vector wave solution
of a microcavity with complex boundaries. To see the complexity involved in a
vector wave solution of even a simple cylindrical boundary, the reader is referred to
Ref. [110]. Consequently, we have decided to start our VCSEL model from a simple
scalar wave solution and build up our capabilities in later versions.
We consider the solution of a scalar wave propagating in the axial direction of a
VCSEL structure (see the first and the second structure in Fig. 17.2. We assume
that the wave distribution in the VCSEL is such that the top cylinder determines
the optical confinement in the lateral direction and the lower cylinder only con-
tributes an effective index change in the lateral cladding (outer core). Essentially,
we approximate the optical confinement problem to that of an optical fiber.
We shall call this approximation a fiber-like index model in vertical structures [see
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Figure 17.1: Cylindrical coordinate system used to solve VCSEL equations

the third structure in Figure 17.2]. Under this approximation, the problem is reduced
to a simple one-dimensional equation with cylindrical boundaries and a closed-form
solution [111].
The basic scalar wave equation is given by:

1
r

∂

∂r

(
r
∂W

∂r

)
+ 1
r2
∂2W

∂θ2 + ∂2W

∂z2
r

+ k2W = 0. (17.1)

where zr is in the axial direction and coincides with the y-axis.
It has the following simple solution with cylindrical symmetry:

W = Wr(r)exp(−jkzzr) (17.2)

where Wr(r) is solved from the Bessel equation of order m:

d2Wr

dr2 + 1
r

dWr

dr
+
(
k2 − k2

z − m2

r2

)
Wr = 0. (17.3)

Using the well established Bessel and Hankel functions, the scalar wave equation can
be solved efficiently in PICS3D. The fiber-like solution is the default lateral optical
model used in PICS3D.
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Figure 17.2: Schematic of how the fiber-like effective index approximation is used
for a cylindrical VCSEL.

17.3 Effective Index Method for VCSELs

17.3.1 Introduction

In the previous section we describe a fiber-like solution for the lateral optical mode
of a VCSEL; such a model has the advantage of being easy to interpret and handle.
However, when the VCSEL structure becomes more complex, especially when there
is oxide confinement layer, a more sophisticated lateral model becomes necessary.
The VCSEL Effective Index Method (VCSEL-EIM) approximation was first pro-
posed by Hadley[112] and has been successfully used to calculate the optical modes
of more complicated VCSEL structures. In PICS3D, we use this VCSEL EIM cal-
culation method for the calculation of the lateral optical modes in VCSELs and it
especially recommended for structures with an oxide confinement aperture.

17.3.2 Models

The scalar wave equation in VCSELs is described by the following wave equation:

∇2F (r, z, ϕ, t) − ϵ(r, z)
c2

∂2F (r, z, ϕ, t)
∂t2

= 0, (17.4)

where ϵ(r, z) is the relative permittivity, c is the speed of light in vacuum. The
solution of above electric field can be separated into longitudinal (Ei(z)) and lateral
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(E(r, ϕ, t)) components in VCSELs:

F (r, z, ϕ, t) ≈ Ei(z)E(r, ϕ, t)e−iωt, (17.5)

where i denotes a region in the transverse direction in which the effective index is
calculated, and ω0 is the angular oscillation frequency of the light. Substituting
equation (17.5) into (17.4) and writing ∇2 = ∂2/∂z2 + ∇2

⊥, we have:

∂2Ei(z)
∂z2 E(r, ϕ, t) + Ei(z)∇2

⊥E(r, ϕ, t) + ϵi(r, z)k2
0Ei(z)E(r, ϕ, t)

+ 2iϵi(r, z)k0Ei(z)
∂E(r, ϕ, t)

c∂t
− ϵi(r, z)Ei(z)

∂2E(r, ϕ, t)
c2∂2t

= 0 (17.6)

where k0 = ω0/c. By neglecting the second derivative of E(r, ϕ, t) with respect to
time (slowly-varying envelope approximation) and writing the relative permittivity
ϵ(r, z) as the sum of a structural component ϵi(z) and a nonstructural (depending
on the carrier concentration, temperature etc.) component ϵr(r), we can get the fol-
lowing two equations for Ei(z) (i.e. the optical standing wave pattern) and E(r, ϕ, t)
(i.e. the lateral mode) under the effective index approximation:

∂2Ei(z)
∂z2 + k2

0(1 − ξi)ϵi(z)Ei(z) = 0, (17.7)

∂E(r, ϕ, t)
∂t

= ic0

2k0⟨ϵi⟩
[∇2

⊥ + k2
0∆ϵeff (r)]E(r, ϕ, t), (17.8)

where ⟨ϵi⟩ =
∫
E∗

i (z)ϵi(z)Ei(z)dz/
∫
E∗

i (z)Ei(z)dz and ∆ϵeff (r) = ξi⟨ϵi⟩+ ϵr(r). c0 is
the speed of light. The real part of the eigenvalue ξi is related to the effective index
and the imaginary part is related to the cavity loss (or gain). Using the conventional
LPmn notation, the transverse component of the electrical field can be written in the
following way:

Emn(r, ϕ, t) ∝ Ψmn(r, ϕ, t)e−i∆ωmnt, (17.9)
where Ψmn is the slowly varying modal field distribution function, and the real part
of ∆ωmn is the deviation of the LPmn mode from the angular oscillation frequency
ω0. For a system with a cylindrical symmetry with respect to the electrical field, the
modal field distribution function Ψmn must have the following form

Ψmn(r, ϕ, t) ≡ Ψmn(r, t)eimϕ. (17.10)

Combining expressions of (17.8)-(17.10) and neglecting the time derivative of the
slowly varying modal field distribution function Ψmn(r, ϕ, t), we get the following
eigenvalue equation in cylindrical coordinates:

−c0

2k0⟨ϵi⟩

[
1
r

∂

∂r
r
∂

∂r
− m2

r2 + k2
0∆ϵeff

]
Ψmn = ∆ωmnΨmn. (17.11)

In PICS3D, the equations (17.6) and (17.11) are solved numerically to obtain lateral
optical modes in VCSELs.
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17.4 Longitudinal Modes in VCSEL

In both the lateral models described earlier in this chapter, we have a separation of
variables. This means that like in our edge-emitting model from Chap. 16, we can
solve the longitudinal field profile separately. However, there are some differences
that justify the use of a different model to do so.
Recall that for a first-order grating, the period is approximately:

Lg = λ

2n
≈ 1.3

2 × 3.2
≈ 0.2µm

This means that a typical DFB/DBR laser cavity will have several thousand grating
periods. The combined effect of this grating on the propagating wave is described by
the coupled mode theory of Sec. 16.5. In this model, it is assumed that the grating
is a weak perturbation with a sinusoidal shape.
However in a VCSEL (Fig. 17.3), the gratings consist of multiple layers of different
materials with a large difference in refractive indices: using a sinusoidal function can
be rather inaccurate. We also note that the number of gratings used in VCSEL is
relatively small (≈ 100). Therefore it is more convenient to apply the 2 × 2 matrix
method commonly used in multiple layer optics.
In the transfer matrix method, (TMM, see also Fig. 17.4), simple matrix elements
represent propagation within a layer and the interface between layers: these are
stacked together to build an equivalent transmittance/reflectance transfer matrix for
a stack of layers. This is used to evaluate the round-trip gain and locate the position
of the longitudinal modes.
The basic matrix elements are[

exp[−jβ1(z − zk)] 0
0 exp[jβ1(z − zk)]

]
(17.12)

for propagation inside a layer of index n1 and[
1/t1 r1/t1
r1/t1 1/t1

]
(17.13)

for the interface between layers. The reflection and transmission coefficients are given
by:

r1 = n1 − n2

n1 + n2
(17.14)

t1 =
√
n1

n2

2n2

n1 + n2
(17.15)
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Figure 17.3: Schematics of surface-emitting lasers of front and back emission, re-
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Figure 17.4: Schematic of a simple multi-layer optical model for DFB/DBR gratings.
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For a periodic stack of layers, these matrices are combined using the approach sug-
gested by Makino in [113]. We also note that this model couples well with our earlier
lateral models: the lateral effective index is used in the propagation and interface
matrix.
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Chapter 18

PICS3D-SPECIFIC MODELS III:
Spectrum and Modulation
Response

18.1 Update notes

PICS3D has been undergoing several important changes in the model in the last
few years as we transition from an older quasi-3D model controlled by the scan3d
statement to a fully coupled 3D model based on the round-trip gain (RTG).
As a result, there have been several important model changes: most of the infor-
mation from the previous two chapters remains unchanged from previous versions
but this chapter is still undergoing major revisions. Some sections may be incom-
plete or have been temporarily removed while features from the previous model are
re-implemented under the new system.
Here is a brief summary of changes.

• As of version 2008, PICS3D can no longer process the scan3d statement: all
input files must be converted to use the RTG model.

• As of version 2009, PICS3D uses a new more stable rate equation model for
the longitudinal modes. AC model now consistent with that of LASTIP.

• As of version 2012, the older (pre-2008) AC model derived by Tromborg [106,
114, 115] is re-introduced as an “analytical” solution to supplement the existing
fully coupled analysis. While we believe the AM/FM response from this model
is inferior to our new derivation, the old model allows for noise terms (RIN,
FN) and second harmonic distortion (SHD) analysis which are not supported
in the full 3D model.
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18.2 Multi-mode complex pole expansion

As we discussed in Sec. 16.4, a complex frequency term is used to represent the
contribution of the spontaneous emission to the laser spectrum. This means that
all longitudinal modes are zeroes of the Wronskian when evaluated on the complex
plane.
Using this approach, we concentrate on getting the stationary multi-mode solution of
a laser. We neglect any carrier dynamics and note that in Eq. (16.3), the numerator
is only weakly dependent on ω.
Since now 1/W is non-singular for real optical frequencies, it can be expanded over
the poles ωi of 1/W on the complex frequency plane:

1
W

.=
∑

i

1
dW
dω

(ω − ωi)
(18.1)

The derivative dW/dω in (18.1) is evaluated for ω equals ωi, which is one of the zeros
of the Wronskian on the complex plane.
In App. E, we show that the optical mode spectrum of a laser can be written as:

Iω = (2π)−1Rsp,i

[(ω − ωre,i)2 + ω2
im,i]

(18.2)

where the parameter Rsp,i defines the spontaneous emission rate into mode i. It is
given by:

Rsp,i = c

[∫ l
0 n(z)ng|Z0(z)|2dz

] [∫ l
0 |Z0(z′)|2n(z′)g(z′)nspdz

′
]

∣∣∣∫ l
0 n(z)ngZ2

0(z)dz
∣∣∣2 (18.3)

Integrating over z, we get the total number of photons in the cavity Ip,i in the ith
mode:

Ip,i = Rsp,i

2ωim,i

(18.4)

which agrees with results from other works in the literature (see, e.g., Ref. [106]).
In the above formulas, Z0(z) = Z0,i(z) is the solution to the homogeneous scalar wave
equation at ω = ωi, vg the group velocity, g(z) the modal gain, and nsp the inversion
parameter. The expression (18.3) agrees completely with the results in Ref. [106].
The above derivation shows that the longitudinal modes can be represented by a set
of poles on the complex frequency plane. The simulator’s multi-mode calculation
then becomes a task of searching and following such a set of complex poles.
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18.3 Mode Spectrum

Once the steady state solution for the complex frequencies is found, we can compute
the emission spectrum of the laser. We start by noting that the modal spectrum of
Eq. (18.2) is actually the spectrum for the total photon number in the whole cavity.
For the emission spectrum from each facet, this must be scaled to represent the
number of photons actually transmitted by that facet. To get the local photon flux
inside the facet, we normalize the forward and backward waves L(z) and R(z) so
that for each longitudinal mode, we have the normalization

∫ L
0 Si(z)dz = 1 where

Si(z) = |L(z, i)|2 + |R(z, i)|2.
We note that L(z) and R(z) are known quantities used to evaluate the round-trip
gain and the Wronskian during the search for longitudinal modes. The discretization
is chosen so that the device is divided into sections where the optical propagation
coefficient is uniform and the fields are sampled on either side of these sections.
For any given facet, we use only the forward or backward flux and correct for the
the facet transmission coefficient. The photon density per unit of angular frequency
is then given by:

Sω,left = |L(0, i)|2 (1 −Rleft)
(2π)−1Rsp,i

[(ω − ωre,i)2 + ω2
im,i]

(18.5)

for the left facet and:

Sω,right = |R(L, i)|2 (1 −Rright)
(2π)−1Rsp,i

[(ω − ωre,i)2 + ω2
im,i]

(18.6)

for the right facet.
We note that this result is the “pure” spectrum of the laser, before any convolution
with the finite resolution of a spectrum analyzer.

18.4 Time-Dependent Solution of Longitudinal Modes

We now consider a time-dependent model where the mode amplitude varies as a
result of an external time-dependent bias. We assume that the external bias source
has a frequency much smaller than the optical frequency ω. This assumption is
reasonable since the typical optical frequency is 3 × 1014 Hz, while a typical external
modulation biasing source is on the order of 10 GHz ( 1 × 1010 Hz).
For any theory of large signal, our requirement is that it must be consistent with our
model in CW. That is, at ∆t → ∞, the equation must reduce to our CW theory.
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Figure 18.1: Schematic of the evaluation of round-trip gain in a laser.

Therefore, it is useful for us to expand on our Green’s function results from Chap. 16
to build our time-dependent model.

18.4.1 Alternative CW Solution of Longitudinal Modes

Let us consider a laser device as shown in Fig. 18.1. We choose a reference point
where both the left- and right-going waves (L(z),R(z)) are non-zero. By examining
the equivalent reflectivities to the left (rL) and right (rR), we have the following
equations:

L(z) = rRR(z) + FL (18.7)
R(z) = rLL(z) + FR (18.8)

where FL and FR are noise sources terms.
We note that we do not define rL and rR at this point. They are merely effective
reflection coefficients and this derivation hold true no matter which method is being
used to calculate the mode profiles. We then combine these two equation and note
that by definition, the round-trip gain Rg is equal to the product of rL and rR:

(1 −Rg)R(z) = rLFL + FR = Fω (18.9)

As previously shown, the Wronskian is position-independent so the same holds true
for Rg. We thus re-use our previous result and note that under CW conditions, the
laser oscillates at the complex solution ωs:



18.4 Time-Dependent Solution of Longitudinal Modes 351

1 −Rg(ωs) = 0 (18.10)

18.4.2 Longitudinal Mode Transient Model

As we mentioned earlier, the time scale involved can be separated into two differ-
ent types. The optical frequency causes the modes to vary with exp(jωt) while the
slow external modulation causes a much slower change exp(jΩt) in the wave ampli-
tude. We assume that above time scales are so different that they can be treated as
decoupled.
If we apply an external modulation of exp(jΩt), the round trip gain as calculated
by the optical frequency only may not be unity since the photon density must be
allowed to change with time. However the derivation in the previous section is still
valid if we assume the reflectivity is not the reflectivity at optical frequency but the
instantaneous reflectivity at the transient state. That is we can still use Rg(ω + Ω)
which includes the transient effect.
This approximation is consistent with our slow modulation hypothesis. At these time
scales, there is enough time for photons to do several round-trips in the cavity and
establish a solution that satisfies both mirror conditions simultaneously just like in
our earlier derivation for the Wronskian. However, these photons may not necessarily
be in equilibrium with the slower carriers.
In this case, we shall go back to our basic equation and regard the frequency as ω+Ω
where ω >> Ω. Our basic equation becomes:

(1 −Rg(ω + Ω))R(ω + Ω) = Fω+Ω (18.11)

Since Rg(ω) ≈ 1, we make the following simplification:

Rg(ω + Ω) = Rg(ω)
[
1 + ∂ln(Rg)

∂ω
Ω
]

(18.12)

≈ Rg(ω) + ∂ln(Rg)
∂ω

Ω (18.13)

We can derive ∂ln(Rg)
∂ω

by noting that for a FP laser:

Rg = r1r2exp(−j2Lkr + gmL) (18.14)

Applying this, we get:

∂ln(Rg)
∂ω

= −j
(

2L
vg

+ jL
∂gm

∂ω

)
(18.15)
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where the group velocity is be written as vg =
(

∂kr

∂ω

)−1
.

We assert that since Eq. (18.15) is derived from the round-trip gain, it is applicable
to any kind of laser, not just Fabry-Perot cavities. However, the real and imaginary
parts on the right-hand side are effective coefficients only. For example, in a DFB
laser L would be the effective cavity length of a particular longitudinal mode rather
the actual length of the laser.
By substitution into our basic equation, we get:

[
1 −Rg(ω) + j

(
2L
vg

+ jL
∂gm

∂ω

)
Ω
]
R(ω + Ω) = Fω+Ω (18.16)

At this point, we assume that the laser is oscillating at the peak gain wavelength so
that ∂gm

∂ω
≈ 0. Taking the inverse Fourier transform to get the slow time dependence

and noting jΩ = ∂
∂t

, we obtain:

[
1 −Rg(ω, t) + 2L

vg

1
R(ω, t)

∂R(ω, t)
∂t

]
R(ω, t) = Fω,t (18.17)

We can use the photon number S(t) to express R =
√
S(t)exp(jϕ(t)). From this, we

get:
2L
vg

1
R(t)

∂R(t)
∂t

= L

vg

1
S(t)

∂S(t)
∂t

+ j
2L
vg

∂ϕ(t)
∂t

(18.18)

Our key result is as follows:[
1 −Rg(t) + L

vg

1
S(t)

∂S(t)
∂t

+ j
2L
vg

∂ϕ(t)
∂t

]
R(t) = Ft (18.19)

In our simulation, we are not directly concerned with the phase variation but we
are more interested in the emission frequency. The phase factor can be written as
exp[jωt+ ϕ(t)]. We consider a short time interval ∆t = t− t0.
The phase at time t0 is given by jω0t0+ϕ(t0). Assuming the fast oscillation frequency
does not change substantially, the new phase is:

jω0t+ ϕ(t0) + ∂ϕ(t)
∂t

∆t (18.20)

Therefore the new frequency should be:

ω(t) = ω0 + ∂ϕ(t)
∂t

(18.21)
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Our basic equation in terms of S(t) and ω(t) can be written in a form easy for
numerical implementation:[

1 −Rg(t) + L

vg

1
S(t)

∂S(t)
∂t

+ j
2L
vg

(ω(t) − ω(t0))
]
R(t) = Ft (18.22)

The above equation leads to the new oscillation condition:

1 −Rg(t) + L

vg

1
S(t)

∂S(t)
∂t

+ j
2L
vg

(ω(t) − ω(t0)) = 0 (18.23)

We have implemented Eq. (18.23) in PICS3D: each longitudinal mode is governed by
such an equation. These equations are coupled together in the main Newton solver
alongside all the other equations (e.g. current continuity) described in Chap. 5. This
makes PICS3D a full 3D model and is at the heart of what we call the “coupled RTG
method”.

18.4.3 Comparison with Conventional Photon Rate Equa-
tion

We are going to make sure the above is consistent with the commonly used rate
equation for a FP laser. In the common textbook model, we are only interested in
the propagation of photons, not fields, and changes in the emission frequency are
neglected.
If we remove the terms related to these effects from Eq. (18.23) and rearrange it, we
get:

|Rg(t)| = 1 + L

vg

1
S(t)

∂S(t)
∂t

(18.24)

If we take the logarithm on each side, we get:

ln |Rg(t)| = ln(r1r2) + gm ∗ L (18.25)

for the left side and

ln

(
1 + L

vg

1
S(t)

∂S(t)
∂t

)
≈ L

vg

1
S(t)

∂S(t)
∂t

(18.26)

for the right side, assuming 1
S(t)

∂S(t)
∂t

≪ L
vg

for the expansion.

So for slow and/or small-signal modulation, we get:
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ln(r1r2) + gm ∗ L = L

vg

1
S(t)

∂S(t)
∂t

(18.27)

which is equivalent to our desired expression:

gm − 1
L
ln
( 1
r1r2

)
= 1
vgS(t)

∂S(t)
∂t

(18.28)

Note that r1,r2 are field reflection coefficients so a factor of 2 due to r =
√
R may

be present in some textbooks.

18.5 AC modeling in PICS3D

As of version 2009, the new rate equation model in Eq. (18.23) is used for all aspects
of PICS3D. For AC modeling, it becomes one more equation to be solved and the
techniques of Chap. 7 are used. This means that many effects such as carrier transit
times are now included in the modulation response.
However we note that Eq. (18.23) is complex so there are actually two terms. The
real part in ∂S

∂t
gives the amplitude response and, as shown in the previous section,

should reduce to the AM response from LASTIP in the case of a Fabry-Perot laser.
The second term in ω(t) − ω(t0) produces the frequency response (FM).

18.6 Analytical model

As of version 2012, the older (pre-2008) AC model derived by Tromborg [106, 114,
115] is re-introduced as an “analytical” solution to supplement the existing fully cou-
pled analysis. This solution is based on a transient perturbation of the steady state
solution but explicitly considers derivatives of the Wronskian rather than lumping
all effects into the round-trip gain as we have previous done.
As a result, Tromborg’s AC model relies on longitudinal integrals of these perturba-
tion terms rather than coupling directly to the sparse AC solver used for the drift
diffusion equations. We thus consider this an “analytical” 1D model since it mainly
considers the longitudinal spatial hole burning effects. We believe that our fully
coupled approach is superior since carrier transport times can have a strong effect
on the modulation speed of a laser and this requires treatment of transverse effects.
However, the Tromborg model does define noise and second-harmonic generation
terms which are not currently available in our full 3D model so we re-introduce it
here.
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18.6.1 Modulation response

Without going into the detail of Tromborg’s approach, we define the following general
formula for the weighted longitudinal perturbation of some quantity X(z):

CX(z) = −j δW
δk(z)

∂k

∂X
(z)

/
∂W

∂ω
(18.29)

where k(z) is the wave propagation constant and W is the Wronskian defined in
earlier sections.
The transient modulation response of the optical power and phase is defined as a
function of the change in the carrier (N) and photon (S) longitudinal profiles. Using
the shorthand notation of the dot product for

∫
dz, we write:

1
2
P0
d∆P
dt

= CNr · ∆N + CSr · ∆S (18.30)

d∆ϕ
dt

= CNi · ∆N + CSi · ∆S (18.31)

where r and i indicate the real and imaginary parts of the perturbation functions.
We also assume that the current is acting as the modulation source which imposes
the following current continuity equation at all z-points:

d∆N
dt

= ∆J − ∆N/τR(N) − vgg∆S (18.32)

where τR(N) is the carrier lifetime representing all recombination mechanisms except
the stimulated emission.
Assuming that the modulation does not strongly distort the shape of the photon
density profile, we can relate the variation of the power P (a scalar) to that of S(z):

∆S(z)/S0(z) = ∆P/P0 (18.33)

Further assuming an input modulation ∆J = ∆J0(z)exp(jΩt), we can eliminate the
carrier density fluctuation and obtain a useful formulation for the AM response:

∆P/P0 = 2CNr · ∆J /(jΩ + 1/τR)
jΩ + 2CNr · vggS0 /(jΩ + 1/τR) − 2CSr · S0

(18.34)

The FM response can be derived in the same way from the imaginary terms of the
perturbation functions. Re-using our results from the AM response, we get:

∆ω = d∆ϕ(t)
dt

= CNi · ∆J
jΩ + 1/τR

+
[
CSi · S0 − CNi · vggS0

jΩ + 1/τR

](
∆P
P0

)
(18.35)
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18.6.2 Second Harmonic Distortion

The rate equations for the photon number Ip(t) and the carrier density N(z, t) can
be written using the same notation as above:

dIp

dt
= 2Ip(t) {CNr · ∆N + CSr · ∆S} (18.36)

dN

dt
= J −R(N) −G(N,S)S (18.37)

We assume that the injection current density is modulated at an angular frequency
ω:

J(z, t) = Js(z) + ∆J(z)ejΩt (18.38)

To evaluate the second harmonic distortion (SHD), the carrier density and the photon
number are expanded to second order:

N(z, t) = Ns(z) + ∆N1(z)ejΩt + ∆N2(z)ej2Ωt (18.39)
Ip(t) = Ips + ∆Ip1e

jΩt + ∆Ip2e
j2Ωt (18.40)

In addition, to simplify the calculation, we make the assumption that

S(z, t) = Ss(z)
Ips

Ip(t) (18.41)

Equations (18.36)–(18.41) are solved for ∆Ip1 and ∆Ip2, following a straight forward
small signal analysis. We then define the SHD as:

SHD = ∆Ip2

∆Ip1
(18.42)

18.6.3 Noise Terms

The noise analysis in Tromborg’s model follows the same approach as the modulation
functions defined above. However, instead of a current source modulating the laser,
additional noise terms are added to equations 18.30 and 18.31. The noise spectrum
is then derived from the Fourier transform and correlation of these Langevin noise
functions. The derivation of these terms is beyond the scope of this section and the
user is referred to [106] for further details.
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Chapter 19

APSYS EXAMPLES

19.1 Introduction

This chapter will describe a few selected examples of APSYS simulations. The
relevant input files can be found in your local installation directory (default is
c:\crosslig\apsys_examples): the section name corresponds to the examples’s lo-
cation on your hard drive. These examples have been selected to teach the basic op-
eration of the software, explain key concepts essential to device simulation, showcase
some popular applications/devices and preemptively answer common user questions.
Note that the examples from this chapter are only a small subset of the included
tutorial files. There are a number of other examples that are supported through
accompanying README files and comments in the simulation files. Crosslight sup-
port staff will also be happy to explain these examples in more detail if you need
further assistance.
It is relevant to note that all examples are subject to change as the software is
updated. Between each release, there are often bug fixes, material macro changes,
new models and other improvements which can affect the results. In most cases,
these should result in negligible changes in the results which do not alter the tutorial
value of these examples. If any major inconsistencies are found, please report them
to Crosslight support staff. Most examples listed here were last updated as part of
the 2009 manual release. Whenever possible, we will note examples which have been
updated since then.
Throughout this chapter, we will concentrate on the specific simulation statements
and physical models that are needed for a particular device. Particular attention
will also be given to model parameters that may affect the convergence or reliability
of the simulation.
It is also assumed that the reader is familiar with the basic structure of the input files
so some of the basic setup steps for will be omitted for the sake of brevity. If you have
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not already done so, we strongly urge you to read through Chapter 3. Of particular
interest will be the sections dealing with the use of the command-line setup tools as
well as their integration into SimuCenter. If you are working using GUI tools such
as LayerBuilder, additional online help is available through SimuCenter.
In some cases, the setup tools will only provide the basic framework of an input file
and some direct editing may be required to complete the setup. If this is the case,
new users are encouraged to use the built-in Wizard option in SimuAPSYS: this
will present all the available statements and parameters. New statements may be
created by right-clicking on an empty line and selecting the Wizard option: existing
statements can be modified in the same way.
Note that users of other Crosslight tools besides APSYS may also benefit from this
chapter. In many cases, the physical models described here are relevant to other
devices that are not within the scope this software. While the input files themselves
cannot always be reused, most of the syntax will carry over to other Crosslight tools.
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Figure 19.1: Schematic of camel diode

19.2 A_tutorial

This is example is a camel diode, which is related to the planar doped barrier diode.
It is a n-p-n majority carrier diode which finds applications in high-speed switches,
mixers, fast photodiodes, BARRITT devices and thermionic emission transistors.
This particular device is adapted from[116].

Layer Structure

The major feature of this device is a thin highly-doped p-layer inside the intrinsic
region as shown in Fig. 19.1. The corresponding layer file is shown below:

begin_layer
$
column column_num=1 w=1. mesh_num=2 r=1.
$
bottom_contact column_num=1 from=0 to=1. contact_num=1
$
layer_mater macro_name=si column_num=1
layer d=1. n=15 r=-1.1 n_doping1=1.5e24

layer_mater macro_name=si column_num=1
layer d=0.2480 n=30 r=-1.1 n_doping1=1e2
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layer_mater macro_name=si column_num=1
layer d=0.0039 n=15 r=1. p_doping1=1.5e24 &&

gaussian_tail=0.0001

layer_mater macro_name=si column_num=1
layer d=0.0480 n=30 r=-1.1 n_doping1=1.e2
layer_mater macro_name=si column_num=1
layer d=1. n=15 r=-1.1 n_doping1=4.e24
$
top_contact column_num=1 from=0 to=1. contact_num=2
$
end_layer

One major difference from the device in the reference above is the lower doping
concentration of the p+ layer. Since this is a current-blocking structure, we have
chosen to lower the barrier height to make convergence easier. As explained in
Sec. 4.10.1, there are many possible solutions of the current continuity equations in
structures where the current is being blocked. In these conditions, the simulation
is not stable since it may oscillate between different solutions that lie within the
specified numerical precision.
One possible solution to this instability is to use relaxed convergence criterion such
as a larger tolerance value (var_tol parameter) in the newton_par statement.
As long as we find that the equation residue is low and that the currents on the
electrodes sum up to zero (i.e. Kirchoff’s law), we can consider the solution as valid.
To maintain convergence with stricter tolerance values, more advanced techniques
such as those of Chap. 4 may be required.

Simulation Setup

To run the simulation, use the following .sol file:

$file:camel.sol
$***********
begin
load_mesh mesh_inf=camel.msh
include file=camel.doping
include file=camel.mater
output sol_outf=camel.out

more_output ac_data=yes

newton_par damping_step=5. var_tol=1.e-9 res_tol=1.e-9 &&



19.2 A_tutorial 363

max_iter=100 opt_iter=15 stop_iter=50 print_flag=3

$ equilibrium solution is counted as scanline=1
equilibrium

newton_par damping_step=1 &&
max_iter=30 opt_iter=15 stop_iter=15 print_flag=3

$ The first scan statement is counted as scanline=2
scan var=voltage_1 value_to=1.6

$ The first scan statement is counted as scanline=3
scan var=voltage_1 value_to=-0.5 max_step=0.05 print_step=0.2

end

Since both contacts are n-doped, it is difficult to determine whether a particular bias
will put the device in a forward or reverse state. To capture both characteristics,
we apply bias in one direction and then reverse it with the next scan statement.
The shape of the I-V curve as well as the internal potential will help us identify the
reverse bias region.
Note that we will also be interested in doing some AC post-processing analysis for this
device so we use the more_output statement to generate the necessary auxiliary
data files (.ac extension). Also note the numbering of the scan lines in the comments:
this will be used to group together some of the data sets for later analysis.

Post-Processing

After the simulation, the results are post-processed in the .plt file as shown below:

$file:camel.plt
$ **************
begin_pstprc
plot_data plot_device=postscript

$ ---- plot structure data at first data set (equilibrium)

get_data main_input=camel.sol sol_inf=camel.out &&
xy_data=(1 1)

plot_1d variable=band from=(0.5 0.0) to=(0.5, 2.3)
plot_1d variable=donor_conc from=(0.5 0.0) to=(0.5, 2.3)
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plot_1d variable=acceptor_conc from=(0.5 0.0) to=(0.5, 2.3)

$ ---- plot structure data at last data set (max. voltage bias)
get_data main_input=camel.sol sol_inf=camel.out &&

xy_data=(2 2)

plot_1d variable=band from=(0.5 0.0) to=(0.5, 2.3)
plot_1d variable=potential from=(0.5 0.0) to=(0.5, 2.3)
plot_1d variable=field_mag from=(0.5 0.0) to=(0.5, 2.3)

plot_1d variable=elec_curr_y from=(0.5 0.0) to=(0.5, 2.3)
plot_1d variable=hole_curr_y from=(0.5 0.0) to=(0.5, 2.3)
plot_1d variable=elec_conc from=(0.5 0.0) to=(0.5, 2.3)
plot_1d variable=hole_conc from=(0.5 0.0) to=(0.5, 2.3)

$ Plot bias dep. quantities using scanline specification.
$ Please make sure scan_data range is large enough to cover
$ the intended scanline.
get_data main_input=camel.sol sol_inf=camel.out &&

scan_data=(3 13)
plot_scan scan_var=voltage_1 variable=current_1 scanline=3

$ ====> AC analysis as a post-processing step

$ AC analysis at max. voltage
get_data main_input=camel.sol sol_inf=camel.out &&

xy_data=(2 2)

$ AC analysis vs. freq.
ac_voltage log_freq1=6. log_freq2=10. contact_num=1
plot_ac_curr variable=capacitance_1
plot_ac_curr variable=conductance_1

$ Physical distribution of AC current @ 1 MHz
ac_voltage current_distr=yes log_freq1=6. log_freq2=6.
plot_1d_ac_curr variable=elec_curr_y imag_part=no from=(0.5 0.) to=(0.5 2.3)
plot_1d_ac_curr variable=hole_curr_y imag_part=no from=(0.5 0.) to=(0.5 2.3)

$ We plot capacitance-voltage and conductance-voltage here at 1 MHz
$ To generate reasonable AC vs. bias plots, please save sufficient
$ number of data sets. AC analysis plots cannot include equilibrium data
get_data main_input=camel.sol sol_inf=camel.out &&

scan_data=(3 13)
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ac_voltage log_freq1=6. log_freq2=6. contact_num=1 &&
freq_point=2 versus_bias=yes scanline=3

set_xydata_for_scan scan_var=voltage_1
plot_ac_curr variable=capacitance_1
plot_ac_curr variable=conductance_1

$ For purpose of demonstrating the plotting,
$ let us plot y parameters assuming input=output=eletrode No. 1
ac_parameters versus_bias=yes log_freq1=6. log_freq2=6. &&

input_contact=1 output_contact=1 freq_point=2 scanline=3

plot_ac_parameters parameter_type=y smith_chart=no

end_pstprc

The I-V curve of the device is shown in Fig. 19.2. Note that we use scan line #3 to
capture the part of the IV curve that has both negative and positive bias (i.e. the
third scan statement). From the shape of the I-V curve, we see that the positive bias
on electrode #1 yields reverse bias of the diode. This is confirmed by the internal
potential profile shown in Fig. 19.3: the potential of the p+ region is below that of
both n+ regions so the two junctions are reverse-biased.
At the maximum bias point, we also find there is a strong local field (Fig 19.4): this
indicates that even though we have neglected it for the sake of simplicity, impact
ionization may be significant in this region.
As mentioned before, we also want to do small-signal AC analysis on this device. This
is done via the ac_voltage statement to apply 1 V of AC voltage on a particular
electrode: all other electrodes are connected to the AC ground even though they
may have a different DC bias.
Depending on the quantity we are interested in, there are different kinds of AC
analysis:

• AC quantity vs. frequency at a particular bias point

• AC quantity vs. bias at a particular frequency

• Physical distribution of AC current at a particular bias and frequency

All of the above analyses are done in the above .plt file. For example, the capacitance
vs. bias plot is shown in Fig. 19.5. Since these different kinds of AC analysis are
mutually exclusive, the ac_voltage statement is issued multiple times to generate
new AC data before each plot.
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Figure 19.2: I-V curve of low-barrier camel diode
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Figure 19.3: Internal potential profile of camel diode under reverse bias
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Figure 19.4: Local field magnitude of camel diode under reverse bias
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Figure 19.5: Capacitance of camel diode vs. bias
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Figure 19.6: LED structure as shown in LayerBuilder

19.3 LED_GaN_MQW\2d\InGaN

This example1 is a light emitting diode (LED) based on multiple InxGa1−xN quantum
wells. Modeling of nitride devices is an active area of research and so requires special
care for accurate modeling: as a result, this example will be more complicated than
usual.
Since these devices are grown on an insulating sapphire substrate, both contacts
are on the top of the device (Fig. 19.6). The transparent indium tin oxide (ITO)
contacts are represented here as ideal ohmic contacts for the purposes of the elec-
trical simulation. However, these contacts are not completely transparent and have
optical properties that need to be considered: this will be done as part a ray tracing
simulation in the post-processing stage.

Layer Structure

The layer file used to define this device is shown below:

$ ----
begin_layer
$
$ this has been moved to ganled.sol
$set_polarization ref_column=1 screening=0.5

1Last updated July 2011
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independent_mqw
column column_num=1 w=200 mesh_num=10 r=0.85
column column_num=2 w=100 mesh_num=8 r=1.15
top_contact column_num=1 from=0.0 to=50 contact_num=2
top_contact column_num=2 from=30 to=100 contact_num=1
$

layer_mater macro_name=sapphire column_num=1
layer_mater macro_name=sapphire column_num=2
layer d=100. n=8 r=0.7

layer_mater macro_name=algan var1=0 column_num=1 var_symbol1=x
layer_mater macro_name=algan var1=0 column_num=2 var_symbol1=x
layer d=2.5 n=8 r=0.8 n_doping1=5e24 n_doping2=5e24

layer_mater macro_name=algan var1=0 column_num=1 var_symbol1=x
layer_mater macro_name=void column_num=2
layer d=0.5 n=5 r=0.8 n_doping1=5e24

$ MQW region
include file=ganled.bar
include file=ganled.qw
include file=ganled.bar
include file=ganled.qw
include file=ganled.bar
include file=ganled.qw
include file=ganled.bar
include file=ganled.qw
include file=ganled.bar
include file=ganled.qw
include file=ganled.bar

$ for superlattice, we use effective medium theory and anisotropic
$ mobility and thermal conductivity, 24 SL
layer_mater macro_name=algan var1=0.07 column_num=1 var_symbol1=x
layer_mater macro_name=void column_num=2
layer d=0.18 n=6 r=1.0 p_doping1=3e23

$p+
layer_mater macro_name=algan var1=0 column_num=1 var_symbol1=x
layer_mater macro_name=void column_num=2
layer d=0.015 n=4 r=1.0 p_doping1=1.2e24
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$
end_layer

Note the use of the include statement used to define the barrier and well regions:
this is a common technique to more easily define periodic structures. The main
advantage is that any change in well or barrier composition only needs to be done
once instead of for each well. When using direct input of the layer file, it also makes
the repeated structure of the MQW more obvious. The barrier and well input files
are shown below:

$
layer_mater macro_name=ingan var1=0.0 column_num=1 var_symbol1=x &&

n_doping=3.e23
layer_mater macro_name=void column_num=2 n_doping=3.e23
layer d=0.015 n=12 r=-1.4

$
layer_mater macro_name=ingan var1=0.11 &&
column_num=1 active_macro=InGaN/InGaN &&
avar1=0.11 avar2=0. &&
avar_symbol1=xw avar_symbol2=xb var_symbol1=x

layer_mater macro_name=void column_num=2 active_macro=void

layer d=0.0022 n=8 r=-1.3

Users working with LayerBuilder can also easily build a MQW region by copying &
pasting layers in the GUI.
We note that we have used the algan macro for many layers but that the composition
is set to x = 0. In truth, those layers are simply GaN and we could have used the
gan macro. However, using the ternary/quaternary macro is often a good idea in
this situation: since the same interpolation formulas are used everywhere, it ensures
that there is no conflict in the material parameters from different macros.
Aside from the MQW region, there is one other layer of particular importance: the
AlGaN layer with x = 0.07 near the top of the device. This layer is special in that we
use it to represent a superlattice region: the composition is averaged and represents
an effective medium. Superlattices are often used to block leakage current and have
different properties than a material having the same composition as the effective
medium: this will be handled in the .sol file later on.
There are a few other points of importance in this layer file which are related to
the interface charges between layers (common in c-plane nitride materials). These
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settings are not available in the LayerBuilder GUI and must be added manually
afterwards.
The first point is the set_polarization statement: this instructs the layer.exe pro-
gram to automatically calculate the interface charge between layers and add them to
the .mater file. However, this model is considered deprecated as of the 2011 version
of APSYS and has been commented out. A more accurate model based on material
macros will be discussed below. The older model is still available and many other
wurtzite examples have not been ported to the new syntax yet. We strongly recom-
mend the use of the new model in any new simulation project. However, care should
be taken not to use the new and old models at once as this will double-count the
interface charges.
Because this simulation will have interface charges, the bands will be tilted by the
local field these charges generate. In order to move beyond the flat-band approxi-
mation in the QW mdoel, a self-consistent simulation will need to be used. Since
the field value will not necessarily be uniform, we also use the independent_mqw
statement. This forces the software to assign different material numbers to each
QW and explicitly solve the Schrödinger equation for each one; by the default, the
software would normally try to save time by re-using the QW solution of wells with
identical compositions. See subsection 8.2.4 for details.

Simulation Setup

To run the simulation, we use the following .sol file:

$file:ganled.sol
$ *******
begin
load_mesh mesh_inf=ganled.msh
output sol_outf=ganled.out
more_output qw_states=yes
$ *******
include file=ganled.doping
include file=ganled.mater

polarization_charge_model screening=0.5 vector=(0 1 0)
set_active_reg tau_scat=0.4e-13
modify_qw tail_energy=0.03

$self-consistent is necessary for polarization
self_consistent wave_range=0.005
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$ Quantum transport model helps deal with thin,deep wells
q_transport

$ .mater shows superlattice is mater=9
mobility_xy dir=y factor_elec=0.2 mater=9
thermal_kappa_xy dir=y factor=0.1 mater=9
$ n-layer mobility may be enhanced due to SL design
max_electron_mob value=1 mater=2
min_electron_mob value=1 mater=2

$ Isothermal temperature at equilibrium
temperature temp=300

$ Turn on self-heating model
heat_flow damping_step=1

$ thermal_cond at contact here will determine self-heating
contact num=2 type=ohmic thermal_type=3 &&

thermal_cond=200. extern_temp=300

$ ----- initialize optical constatns------
set_wavelength wavelength=0.40 backg_loss=2000

$ Set LED model to "simple": we will calculate actual
$ extraction efficiency with raytracing later
led_simple wavelength=0.40 spectrum_num=50

$ Export raytracing data: convert 2D electrical simulation into
$ 3D raytracing boxes
export_raytrace ray3d_convert=yes

$
$ start solving
$
newton_par damping_step=5. max_iter=100 print_flag=3
equilibrium

newton_par damping_step=1. print_flag=3
scan var=voltage_1 value_to=-10 init_step=0.1 max_step=0.5 &&

auto_finish=current_1 auto_until=1.0 auto_condition=above

scan var=current_1 value_to=600. print_step=150 &&
init_step=1 min_step=1e-3 max_step=30
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end

As mentioned earlier, the 2011 version of APSYS introduces a new model for the
interface charges present in most wurtzite-based devices. This model is in two parts:
updated material macros which define the polarization_charge formulas and the
polarization_charge_model which activates it. When active, this model com-
putes the fixed interface charge in a particular region by examining the polarization
vector on each side of the interface. Graded regions (not used here) automatically
produce a 3D distribution of fixed charges with this new model.
The first statement is included in the new material macros and defines the sponta-
neous and strain-induced polarization. By default, all our macros assume the exis-
tence of a GaN buffer which determines the strain in the device; the macro should be
adjusted if another type of buffer layer (such as AlN) is used. A sample declaration
can be seen below and uses a well-established formula from theory[117]:

polarization_charge variation=function
function(temper)
substrate_latt=3.189;
alattice_GaN=3.189;
P_sp= -0.034;
a_latt=alattice_GaN;
strain=(substrate_latt - a_latt)/a_latt;
P_pz2 = -0.918*strain +9.541*strain**2;
P_pz_all = P_pz2;
P_sp + P_pz_all
end_function

The second statement modifies this polarization vector and adds a screening coeffi-
cient to account for deviations from theory due to compensation by defects and other
effects. It also defines the direction of the polarization vector: here (010) indicates
that the c-plane growth axis is in the +y direction, like most conventional devices.
This may be altered when studying non-polar or semi-polar devices.
To turn on the self-consistent QW calculations, we use the self_consistent. This
model allows the local field generated by the interface charges to affect the QW states
and gain/spontaneous emission calculations. When this model is turned on, .qws
output files are created which contain details of the Schrödinger solver calculations.
As we will see later, we can use this to plot the QW wave functions.
The gain calculation are also modified by the set_active_reg and modify_qw
statements. The first is used to modify the broadening width and the second intro-
duces a tail into the bandgap region to create inhomogeneous broadening.



374 APSYS EXAMPLES

In many MQW nitride devices, we have found that the standard drift-diffusion model
greatly overestimates the turn-on voltage. It is also believed that carrier leakage is
an important effect which contributes to efficiency droop 2. Both of these effects
may be explained by the fact that these devices have very deep and thin wells where
the classical drift-diffusion model fails and non-local transport mechanisms play an
important role. We have implemented this in the q_transport statement: please
consult the reference section for details. This subject is highly experimental and
careful calibration of parameters may be required.
As indicated above, we have a superlattice layers has different properties than the
effective medium. We introduce anisotropic behavior with the mobility_xy and
thermal_kappa_xy statements. These will scale the mobility and thermal con-
ductivity of the effective medium in the direction of the superlattice periodicity.
Note that for electrical modeling of superlattices, there is also a miniband tunneling
model available (see reference section for tunneling). This model is not used here
for simplicity and because it does not include any of the thermal effects associated
with a superlattice.
For thermal modeling, we activate self-heating with the heat_flow statement. The
thermal boundary conditions are important here and determine how much the active
region temperature increases. The contact statement must be re-issued in .sol to
override a default thermal boundary setting. In truth, thermal modeling is not
strictly required for LED devices such as this; the current density is not as high
as in laser devices the thermal increase is not sufficient to strongly affect material
parameters. We include this effect here purely for its tutorial value. For a more
detailed discussion on thermal modeling, consult Sec. 20.3.
For all LED modeling, a key concern is how much light is actually output from the
device (i.e. the extraction efficiency). This requires an optical model which means
that the optical constants for the various materials must be initialized in the code.
For historical reasons, this used to be done with the init_wave statement which is
also used to define waveguides.
This is still the method which should be used when using the LED model of Sec. 14.2
and the led_control statement. However, we have decided to use the simpler
model of led_simple in this simulation so the optical constants are initialized with
set_wavelength instead.
In the led_simple model, the solver makes no attempt to calculate the extraction
efficiency and a value must be provided. The LED optical output will be assumed
to be the total spontaneous emission source power multiplied by this coefficient.
However, we still want to calculate the extraction efficiency rather than rely on an
estimated value.

2This is still the subject of active research. Other explanations based on Auger recombination
mechanisms have also been suggested
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To do this, we will use the ray tracing approach of Sec. 14.5. This is a post-processing
step but it requires that some necessary data be output during the main solution.
This is done with the export_raytrace statement. There is a conversion to be done
here since the electrical simulation is in 2D whereas the ray tracing model operates
on 3D objects.
The rest of the .sol file should be simple to understand but we mention in passing
the auto_finish parameter in the voltage scan. This ensures that we transition from
voltage to current control once there is at least a little bit of current flowing. More
details on the reasons why this is necessary can be found in Chapter 4.

Post-Processing

In this simulation, there is a lot of post-processing to be done so we split things into
separate, more manageable files. Note that we use the same root name for all the
post-processing files: the extensions also all start with .plt as a matter of convention.
The first file is ganled.plt and is used to plot the results from the electrical/thermal
simulation as shown below:

$file:ganled.plt
$ **************
begin_pstprc
plot_data plot_device=postscript

get_data main_input=ganled.sol sol_inf=ganled.out &&
scan_data=(1 6)

plot_scan scan_var=voltage_1 variable=current_1 scale_horizontal=-1
plot_scan scan_var=current_1 variable=led_power
plot_scan scan_var=current_1 variable=led_effi

get_data main_input=ganled.sol sol_inf=ganled.out &&
xy_data=(4 6)

led_spectrum
gain_spectrum variable=gain

get_data main_input=ganled.sol sol_inf=ganled.out &&
xy_data=(6 6)

plot_1d variable=band from=(100. 100.0) to=(100. 104.)
plot_1d variable=band from=(100. 102.98) to=(100. 103.12)
plot_1d variable=band from=(100. 102.98) to=(100. 103.12) &&
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qw_wave=1 qw_wave_ht=0.3
plot_1d variable=elec_conc from=(100. 102.98) to=(100. 103.12)
$-----------------------
plot_2d variable=lattice_temp grid_sizes=40 40
plot_2d variable=potential grid_sizes=40 40

plot_2d variable=total_curr grid_sizes=20 20 &&
point_ll=(0. 100.) point_ur=(300 103.296) &&
xrange=(0. 300) yrange=(100 103.296)

plot_2d variable=hole_curr grid_sizes=20 20 &&
point_ll=(0. 100.) point_ur=(300 103.296) &&
xrange=(0. 300) yrange=(100 103.296)

plot_2d variable=elec_curr grid_sizes=20 20 &&
point_ll=(0. 100.) point_ur=(300 103.296) &&
xrange=(0. 300) yrange=(100 103.296)

plot_2d variable=lattice_temp grid_sizes=20 20 &&
point_ll=(0. 100.) point_ur=(300 103.296) &&
xrange=(0. 300) yrange=(100 103.296)

plot_2d variable=potential grid_sizes=20 20 &&
point_ll=(0. 100.) point_ur=(300 103.296) &&
xrange=(0. 300) yrange=(100 103.296)

end_pstprc

The I-V and curve is shown in Fig. 19.7 while the light output is shown in Fig. 19.8.
Note that this “broad-area power” is the output of the LED model chosen in .sol. In
the simplified model we have chosen, the extraction efficiency is assumed to be 10%.
We will see below that the ray tracing model predicts a very different value.
The internal quantum efficiency is also an important quantity in LED modeling and
many efforts have been made to study the origin of the reduced efficiency at high
current density (i.e. “IQE droop”). In Fig. 19.9, we see the calculated IQE curve
which shows this effect.
As mentioned earlier, self-consistent simulations allow us to plot the wave functions
of the quantum wells. This is shown in Fig. 19.10. In the original .plt file, we use
the qw_wave_ht parameter to scale the wave functions vertically (for aesthetic
reasons).
As of the 2011 version of APSYS, the ray tracing model has been moved to a separate
program called Optowizard where we also split things into separate files. The ray-
trace.sol has statements that configure and launch the external ray tracing program.
This can be a time-consuming step so we separate it from the raytrace.plt file which
plots the results of the last ray tracing simulation:
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Figure 19.7: I-V curve of InGaN LED
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Figure 19.8: Broad-area power vs. current for InGaN LED
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Figure 19.9: IQE curve of InGaN LED
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Figure 19.10: Band diagram and wave functions of InGaN LED
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begin_optowizard
setup_raytrace filebase=ganled

rt3d_contact_reflector transp_contact=yes &&
contact1_compindex=(2. 0.5) contact1_thick=0.05 &&
contact2_compindex=(2. 0.5) contact2_thick=0.05

$ No dome
do_raytrace_3d precision=0.01 datafile_range=(2,6) initial_rays=8000

$ With dome external package
$do_raytrace_3d precision=0.01 datafile_range=(2,6) initial_rays=8000 &&
$ external_package=dome working_direction=+y &&
$ dome_cyl_height=110 dome_base_thickness=10 &&
$ dome_cyl_radius=500 dome_sph_radius=500 &&
$ package_refr_index=(1.7,1.0e-6)

end_optowizard

begin_optowizard
plot_data plot_device=postscript
get_raytrace_data filebase=ganled xy_data=(6 6) scan_data=(2 6)

$ Plot previously generated RT results

3drayplot_bias variable = total_source
3drayplot_bias variable = transmitted
3drayplot_bias variable = transmitted relative=yes
3drayplot_phi theta=90.0 smooth=yes

end_optowizard

We note the use of the rt3d_contact_reflector statement in the setup of the ray
tracing simulation: this sets up the optical properties of the contacts. In this case,
we have semi-transparent ITO contacts with a thickness of 0.05 µm and a complex
refractive index of 2 + 0.5i.
Users of previous versions of APSYS may remember that the contact optical prop-
erties were defined in the export_raytrace statement. Moving this to the post-
processing avoids having to re-run the electrical simulation to study how the optical
properties of the contacts affect the light extraction.
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We also note that there are two set of ray tracing commands; one of them is com-
mented out so we do not do two ray tracing simulations in sequence. The first
operates on the LED itself while the other encapsulate the LED in a hemispherical
dome with a mirrored flat bottom. We see in Fig. 19.11 and Fig. 19.12 how the dome
affects the extraction efficiency and emission pattern of the LED.
The ray tracing model shows in Fig. 19.11 that our earlier estimate of 10% in
led_simple was inaccurate: even without encapsulation, we expect extraction effi-
ciency above 25%. With encapsulation, this can rise to above 35%.
The output log of the ray tracing program also provides clues to help in further
optimization of the design. For example, the power loss due to various reasons is
accounted for separately and printed. In this case, we see there is a lot of power loss
in the contacts:

..(ETC...)...
Total source power (W/m)

472.380007985757
TRANSMITTED POWER in absolute and relative to emitted (%) units

126.663735282548 26.8139491810093
SEMICONDUCTOR ABSORBED POWER in absolute and relative to emitted (%) units

88.3668556033336 18.7067306214191
CONTACTS ABSORBED POWER in absolute and relative to emitted (%) units

257.349417099875 54.4793201975716
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Figure 19.11: (a) Extraction efficiency of InGaN LED. (b) With dome encapsulation.
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Figure 19.13: Solar cell structure as shown in LayerBuilder GUI

19.4 solar_cell\Si_simple

This example is a simple bulk crystalline silicon solar cell with contact lines on the
top side. Since a practical device must consider the effects of shading by the contacts,
we make this a 2D device (see Fig 19.13). Note that because of symmetry, we could
conceivably cut this device in half to save on mesh.

Layer Structure

The device is built p-side up with a 100 µm lightly doped intrinsic region: this is
where we want most of the absorption to take place so the drift current can dominate
the transport. The width of the device is 6 µm with a 5 µm space between the
contacts:

$file:solar.layer
begin_layer
column column_num=1 w=0.5 mesh_num=4 r=1.
column column_num=2 w=5 mesh_num=12 r=-1.2
column column_num=3 w=0.5 mesh_num=4 r=1.
bottom_contact column_num=1 from=0 to=0.5 &&

contact_num=1 contact_type=ohmic
bottom_contact column_num=2 from=0 to=5 &&

contact_num=1 contact_type=ohmic
bottom_contact column_num=3 from=0 to=0.5 &&
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contact_num=1 contact_type=ohmic
$
layer_mater macro_name=si column_num=1
layer_mater macro_name=si column_num=2
layer_mater macro_name=si column_num=3
layer d= 0.5 n= 6 r= 0.8000E+00 n_doping1=0.2000E+26 &&

n_doping2= 0.2000E+26 n_doping3= 0.2000E+26
$
layer_mater macro_name=si column_num=1
layer_mater macro_name=si column_num=2
layer_mater macro_name=si column_num=3
layer d=100. n= 100 r= 0.8000E+00 n_doping1= 0.2000E+22 &&

n_doping2= 0.2000E+22 n_doping3= 0.2000E+22
$
layer_mater macro_name=si column_num=1
layer_mater macro_name=si column_num=2
layer_mater macro_name=si column_num=3
layer d=0.5 n= 6 r= 0.1200E+01 p_doping1= 0.5000E+26 &&

p_doping2= 0.5000E+26 p_doping3= 0.5000E+26
$
top_contact column_num=1 from=0 to=0.5 &&

contact_num=2 contact_type=ohmic
top_contact column_num=3 from=0 to=0.5 &&

contact_num=2 contact_type=ohmic
end_layer

We note in the above layer file that most of the mesh points are allocated near the
top of the device: this is necessary in a solar cell. Since the light decays expo-
nentially, most of the recombinations occur near the surface so this region must be
well-sampled. If it is not, then the linear interpolation can overestimate the optical
generation rate and, in some cases, produce results with over 100% efficiency.

Simulation Setup

To run the simulation, we use the following .sol file:

$file:solar.sol
$***********
begin
load_mesh mesh_inf=solar.msh
include file=solar.mater
include file=solar.doping
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output sol_outf=solar.out
more_output light_reflection=yes

$ Attach a 50 ohm resistor on the top contact.
$ Assume cell depth of 10 cm = 1e5 um
$external_cir resistance=50 z_dim=1e5 contact=2

minispice circuit_file=res.cir z_dim=1e5 &&
contact2_to_spice_node=0 spice_node_scan=1

newton_par damping_step=5. var_tol=1.e-9 res_tol=1.e-9 &&
max_iter=100 opt_iter=15 stop_iter=50 print_flag=3

$
$ Solve for equilibrium condition.
$
equilibrium

newton_par damping_step=1. var_tol=1.e-4 res_tol=1.e-5 &&
max_iter=30 opt_iter=15 stop_iter=15 print_flag=3 &&
change_variable=yes

$
$ Turn up the light
$
scan var=light value_to=1. print_step=1. &&

init_step=0.01 min_step=1.e-5 max_step=0.1
$
$ Apply a forward bias to offset the photo current
$
scan var=voltage_1 value_to=-0.7 &&

init_step=0.01 min_step=1.e-5 max_step=0.02

$
$ photo-sensitive device:
$
light_power spectrum_file=solar.am15 light_dir=top profile=(0.5 5.5 0.1 0.1) &&

angle=0.0
optic_coating spectrum_file=solar.sio2 thickness=0.05
index_spectrum spectrum_file=solar.silicon mater=1

end

The most important feature of this .sol file is the way in which the incident light is
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defined. This is done with the light_power statement as discussed in Section 12.7.
Here, we choose to use the AM15 solar spectrum as the optical pumping source: it
is provided in the solar.am15 file in the simulation directory.
The light input is confined to the center of the device to simulate the shadowing effect
of the contacts. However, should the user actually want to model the optical decay
in semi-transparent contacts, actual metal layers need to be used: contact regions in
a layer file are merely equipotential boundary regions with no optical properties of
their own.
In addition to the light input, the boundary conditions are important. In this ex-
ample, we use a 50 nm layer of SiO2 on the top surface as a simple antireflection
layer. The bottom surface is left unspecified which means that it is assumed to
be transparent: a boundary condition can be applied with the back_reflection
statement.
Another point to consider in solar cell simulations is that we must deal with a
very broad range of wavelengths. Therefore, a single value of the complex refractive
index (n, k) is inappropriate and we use the index_spectrum statement to provide
experimental n, k values the software can use.
A common concern on solar cell performance is how the device will behave when
external circuit elements are taken into account. We show on to model this by
providing an external resistance with the external_cir statement.
Now that we have explained the basic setup of the simulation, let us move on to the
actual simulation. As explained in Section 12.7, the initial equilibrium calculations
describe a state of thermal equilibrium with no external bias. Since optical pumping
is a form of bias, it needs be turned on via a scan statement: when the “light” variable
reaches 1.0, then the full value of the light defined in light_power is applied to the
device. Larger values can be used to model the effects of concentrators and multi-sun
illumination.
After the first scan statement is over, the current has reached its maximum value.
In order to get the open-circuit voltage (Voc), we must apply a forward bias large
enough to cancel the photocurrent.

Post-Processing

After the simulation, we can plot the results with the following .plt file. Note that we
use .plt here in order to use some post-processing parameter extraction commands
that are not yet available in CrosslightView.

$file:solar.plt
$ **************
begin_pstprc
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plot_data plot_device=postscript
$ before light is on
get_data main_input=solar.sol sol_inf=solar.out &&

xy_data=(1 1)

plot_multilayer_optics variable=absorption
plot_multilayer_optics variable=reflection

plot_1d variable=band from=(0.5 0.0) to=(0.5, 101.0)

plot_1d variable=incident_power from=(0.5 0.0) to=(0.5, 101.0)
plot_2d variable=incident_power
plot_3d variable=incident_power

$ after light is on
get_data main_input=solar.sol sol_inf=solar.out &&

xy_data=(2 2)
plot_1d variable=band from=(0.5 0.0) to=(0.5, 101.0)
plot_2d variable=total_curr
plot_2d variable=incident_power
plot_3d variable=incident_power

$ I-V curve
get_data main_input=solar.sol sol_inf=solar.out &&

scan_data=(2 3)

plot_scan scan_var=voltage_1 variable=current_2 &&
scale_vertical=1 scale_horizontal=-1

$ Scale from A/m to A/m^2 = 1/5e-6 = 2e5
$ Use parameter extraction on this curve to get Isc, Voc and max. power
para_extract file=Isc.txt fit_hori_from=0.02 &&

fit_hori_to=0.2 type=fit_line
plot_scan scan_var=voltage_1 variable=current_2 &&

scale_vertical=2e5 scale_horizontal=-1 &&
user_ylabel=A/m^2 yrange=[0 300]

para_extract file=Voc.txt hori_intercept=0
plot_scan scan_var=voltage_1 variable=current_2 &&

scale_vertical=2e5 scale_horizontal=-1 &&
user_ylabel=A/m^2 yrange=[0 300]

para_extract file=power.txt xy_hori_from=0 xy_vert_from=0 &&
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type=xy_product_search
plot_scan scan_var=voltage_1 variable=current_2 &&

scale_vertical=2e5 scale_horizontal=-1 &&
user_ylabel=A/m^2 yrange=[0 300]

$ Use parameter extraction to get max. effiency
$ Power result above is in W/m^2 so this time, we normalize
$ by the total power intensity of the AM15 solar spectrum: 963.56 W/m^2
para_extract file=eff.txt xy_hori_from=0 xy_vert_from=0 &&

xy_product_scale=1.037818e-3 type=xy_product_search
plot_scan scan_var=voltage_1 variable=current_2 &&

scale_vertical=2e5 scale_horizontal=-1 &&
user_ylabel=A/m^2 yrange=[0 300]

end_pstprc

It is also useful to use the .plt to scale the axes into more convenient plotting units.
Recall that the current continuity equations are formulated in terms of the local
current density (A/m2). However, in a 2D simulation, the solver reports the linear
current density in A/m. This is done by integrating the local current density at
various mesh points over the width of the contact region. Similarly, dividing this
value by the contact width defines an average current density.
However, current density is a spatially-dependent quantity so the average density
varies depending on where it is measured in the device: for example, the value
defined above would be the average density at that particular contact. In a laser or
LED, the user might care about the density in the active region and would use a
mesa width or ridge width.
For a solar cell, we choose to divide by the size of illuminated area (5 µm) in order
to better compare with experiments. When running their own comparisons, users
are strongly encouraged to verify how the current density value has been defined
experimentally.
Using this scale factor allows us to plot the I-V curve of Fig. 19.14:
Note this figure appears several times in the output of the post-processing step: this
is because the para_extract statement operates on the next plot in the .plt file.
Since we wish to extract several different parameters, we need to plot the I-V curve
several times.
From this extraction, we note that Isc = 260.68A/m2 and Voc = 0.68115V . The
maximum power product of the I-V curve is P = 142.69W/m2. The maximum
efficiency (14.81%) can be computed from this value by dividing by the total power
density of the input AM15 spectrum. The fill factor (80.36%) can also be computed
by dividing the maximum power by the product of Isc and Voc.
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Figure 19.14: Solar cell I-V curve with current density units
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Chapter 20

LASTIP EXAMPLES

20.1 Introduction

This chapter will describe a few selected examples of LASTIP simulations1. The
relevant input files can be found in your local installation directory (default is
c:\crosslig\lastip_examples): the section name corresponds to the examples’s lo-
cation on your hard drive. These examples have been selected to teach the basic op-
eration of the software, explain key concepts essential to device simulation, showcase
some popular applications/devices and preemptively answer common user questions.
Note that the examples from this chapter are only a small subset of the included
tutorial files. There are a number of other examples that are supported through
accompanying README files and comments in the simulation files. Crosslight sup-
port staff will also be happy to explain these examples in more detail if you need
further assistance.
It is relevant to note that all examples are subject to change as the software is
updated. Between each release, there are often bug fixes, material macro changes,
new models and other improvements which can affect the results. In most cases,
these should result in negligible changes in the results which do not alter the tutorial
value of these examples. If any major inconsistencies are found, please report them
to Crosslight support staff. Most examples listed here were last updated as part of
the 2009 manual release. Whenever possible, we will note examples which have been
updated since then.
Throughout this chapter, we will concentrate on the specific simulation statements
and physical models that are needed for a particular device. Particular attention
will also be given to model parameters that may affect the convergence or reliability
of the simulation.

1As of v.2016, the functionality of LASTIP has been merged with PICS3D. All files processed
using LASTIP in this chapter should now use PICS3D instead.
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It is also assumed that the reader is familiar with the basic structure of the input files
so some of the basic setup steps for will be omitted for the sake of brevity. If you have
not already done so, we strongly urge you to read through Chapter 3. Of particular
interest will be the sections dealing with the use of the command-line setup tools as
well as their integration into SimuCenter. If you are working using GUI tools such
as LayerBuilder, additional online help is available through SimuCenter.
In some cases, the setup tools will only provide the basic framework of an input file
and some direct editing may be required to complete the setup. If this is the case,
new users are encouraged to use the built-in Wizard option in SimuLASTIP: this
will present all the available statements and parameters. New statements may be
created by right-clicking on an empty line and selecting the Wizard option: existing
statements can be modified in the same way.
Note that users of other Crosslight tools besides LASTIP may also benefit from this
chapter. In many cases, the physical models described here are relevant to other
devices that are not within the scope this software. While the input files themselves
cannot always be reused, most of the syntax will carry over to other Crosslight tools.
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20.2 A_tutorial\1D_laser

This example is a simple GaAs/AlGaAs laser with a single quantum well and a
GRINSCH structure. It also shows how to define layers with composition gradings.

Layer Structure

The layers are defined as follows:

1.35 µm Al1−xGaxAs x=0.71 n=1e24
0.1462 µm Al1−xGaxAs x=0.71 → x=0.33 n=1e23
0.0076 µm GaAs undoped
0.1462 µm Al1−xGaxAs x=0.33 → x=0.71 p=1e23
1.35 µm Al1−xGaxAs x=0.71 p=1e24

We use a 1D model for simplicity so the width of the device is not relevant. How-
ever, some value must be provided for program to function so we simply use 1 µm.
Experienced users of the software may notice that earlier versions of this example
did not have doping in the graded layers. However we have found that by adding
this, it smooths out the carrier injection and eliminates a kink in the I-V curve. As
a result, the threshold current is lowered and the resonance frequency is increased.
The actual layer file corresponding to this structure can be built using the Layer-
Builder program or the command-line setuplayer program as discussed in Chapter
3. In LayerBuilder, the result looks like Fig. 20.1.
With some modifications, the final layer file is as follows:

$file:gaas10.layer
begin_layer
column column_num=1 w=1. mesh_num=2 r=1.
bottom_contact column_num=1 from=0 to=1 contact_num=1 &&

contact_type=ohmic
$
layer_mater column_num=1 macro_name=algaas &&

var_symbol1=x var1=0.71
layer d=1.35 n=20 r=0.9 n_doping1=1e24
$
layer_mater column_num=1 macro_name=algaas &&

var_symbol1=x grade_var=1 &&
grade_from=0.71 grade_to=0.33

layer d=0.1462 n=10 r=0.9 n_doping1=1e23
$
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Figure 20.1: Device structure

layer_mater column_num=1 macro_name=gaas &&
active_macro=AlGaAs/AlGaAs &&
avar_symbol1=xw avar1=0.0 &&
avar_symbol2=xb avar2=0.33

layer d=0.0076 n=5 r=1
$
layer_mater column_num=1 macro_name=algaas &&

var_symbol1=x grade_var=1 &&
grade_from=0.33 grade_to=0.71

layer d=0.1462 n=10 r=+1.1 p_doping1=1e23
$
layer_mater column_num=1 macro_name=algaas &&

var_symbol1=x var1=0.71
layer d=1.35 n= 20 r=+1.1 p_doping1=1e24
$
top_contact column_num=1 from=0 to=1 contact_num=2 &&

contact_type=ohmic
end_layer

For the mesh point allocation, we must correctly sample the optical mode shape and
the barrier potentials in the device. By controlling the mesh point ratios with the r
parameter in layer, we can meet these two goals simultaneously. The layer state-
ment also controls the linear grading of the doping that accompanies the composition
grading in this example.
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Simulation Setup

A basic .sol file to run the simulation can be generated with the command-line
setuplastip program as discussed in Chapter 3. With a few modifications, we get the
following:

$file:gaas10.sol
$***********
begin
load_mesh mesh_inf=gaas10.msh
output sol_outf=gaas10.out
$ **************************
include file=gaas10.doping
include file=gaas10.mater
more_output ac_data=yes

direct_eigen
init_wave length=400 backg_loss=500. &&

boundary_type=(2 2 1 1 ) init_wavel=0.83 mirror_ref=0.32 &&
wavel_range=(0.80, 0.85)

newton_par damping_step=5. max_iter=100 print_flag=3

$ scan_num=0

equilibrium
$stop

newton_par damping_step=1. print_flag=3

$ scan_num=1
scan var=voltage_1 value_to=-2 &&

init_step=1e-3 max_step=0.1 &&
auto_finish=current_1 auto_until=1e-3 auto_within=5e-4

$ scan_num=2
scan var=current_1 value_to=20. print_step=2. &&

init_step=1.e-3 max_step=0.2
$
end

For LASTIP simulations, one of the key statements in the .sol file is init_wave.
This statement defines the length of the laser, mirror coefficients and background
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Figure 20.2: Optical mode profile

scattering losses. It also initializes the mode solver by setting the boundary condi-
tions as well the wavelength range for the mode search. The mode solver itself is
invoked with direct_eigen. Since we will want to do AC analysis on this device,
we also add the more_output statement so the necessary data is saved during the
simulation.
Once these quantities have been defined, we can apply bias. As explained in Section
4.1, we cannot apply a current bias right away so after getting the equilibrium state,
a small voltage bias is applied in order to get a small amount of current flowing.
Here, we show how to use the auto_finish parameter of the scan statement to
automate the procedure but it is not required. A value of 80-90% of the built-in bias
as the ending point of the voltage scan would do just as well:

0.8 ∗ 1.24eV
0.83µm

≈ 1.2V

Post-Processing

To plot the simulation results, several options are available. One of them is CrosslightView,
which can be accessed from SimuLastip by right-clicking any .std output file. The
results are shown in Fig 20.2.
Some post-processing steps such as AC analysis still require the older .plt system
which produces plots in PostScript (.ps) format. We use the following .plt file in this
example:
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$file:gaas10.plt
$ **************
begin_pstprc
plot_data plot_device=postscript

$ plot structure data at equilibrium
get_data main_input=gaas10.sol sol_inf=gaas10.out &&

xy_data=(1 1)

plot_1d variable=wave_intensity from=(0.5 0.0) to=(0.5, 3.0)
plot_1d variable=band from=(0.5 1.3) to=(0.5, 1.7)

$ plot structure data at max. data set (max. current injection)
get_data main_input=gaas10.sol sol_inf=gaas10.out &&

xy_data=(12 12)

plot_1d variable=band from=(0.5 1.3) to=(0.5, 1.7)

$ plot DC/CW bias dependent quantities.
get_data main_input=gaas10.sol sol_inf=gaas10.out &&

scan_data=(1 12)
plot_scan scan_var=voltage_1 variable=current_1 scan_num=2

$ para_extract extracts data from the next plotting statetment
$ (L-I curve in this case). We fit the data above 1 mW to
$ a straight line in order to find the threshold current.
$ We also find the drive current at 8 mW output.
para_extract type=fit_line fit_vert_from=1 &&

hori_intercept=8.

$ laser_current is a special LASTIP variable where current density (A/m)
$ is converted to current (mA) by multiplying by the device length
$ and scaling for symmetry (factor of 2).
$ laser_power is the total output power from both facets and is also
$ scaled for symmetry.
plot_scan scan_var=laser_current_1 variable=laser_power scan_num=2

$ Add marker to subsequent plots
modify_plot show_data_points=yes

$ AC analysis (vs. freq.) at max. current
get_data main_input=gaas10.sol sol_inf=gaas10.out &&

xy_data=(12 12)
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ac_voltage log_freq1=6. log_freq2=10.3 &&
contact_num=1 freq_point=40 log_scan=no modulate_gain=yes

$ AM response
plot_ac_laser
plot_ac_modal_gain

$ Capacitance derived from AC current on electrode #1
plot_ac_curr variable=capacitance_1

$ AC analysis vs. bias (must start above equilibrium) at 10 GHz
get_data main_input=gaas10.sol sol_inf=gaas10.out &&

scan_data=(2 12)
ac_voltage log_freq1=10. log_freq2=10.3 &&

contact_num=1 freq_point=2 versus_bias=yes scan_num=2

$ AC data is regarded as xydata and this command would
$ enable plotting AC data versus scan variable
set_xydata_for_scan scan_var=laser_current_1 scan_num=2

plot_ac_laser
plot_ac_curr variable=capacitance_1

end_pstprc

Structural data is plotted with plot_1d at equilibrium and at maximum bias. We
note that when plotting the wave intensity in the .plt system, the confinement factor
of the mode is printed in the title. This information can also be found by examining
the .sol.msg file.
The I-V and L-I curves are obtained with the plot_scan statement. Note the use of
scan line numbers which matches the comments of the .sol file: this is not required
but it avoids the direct use of the scan_data numbers in get_data. The special
variables laser_power and laser_current_i are unique to LASTIP and are used
to convert the units of the 2D simulation to something more convenient to the user.
However, we note that since this is a 1D simulation, the device has no real impact on
the device simulation aside from scaling the current; instead, dividing the current_i
value (in A/m) by the device width to give a current density value in A/m2 may be
a more useful representation of pumping in a broad-area device.
AC analysis is done by invoking the ac_voltage statement. This defines the contact
number that is to be modulated as well as the frequency range of the analysis. AC
analysis can be done either as a function of the modulation frequency or as a function
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Figure 20.3: Band diagram at equilibrium
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Figure 20.4: LI curve of laser
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Figure 20.5: AM response of laser at maximum bias

of bias. The two are mutually exclusive so ac_voltage must be re-issued if both
sets of data are of interest. For further examples of AC analysis, consult Sec. 19.2.
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20.3 A_tutorial\1D_therm

This example explains how to include self-heating and thermal effects in a simulation.
Proper thermal boundary conditions and the behavior of the substrate are key points
to consider.
To model the substrate, some users prefer to abstract it as a fixed thermal resistance
boundary condition (see Chapter 11). Although this approach is certainly viable in
this simplified example, it could neglect important physical effects in other cases.
Therefore, we will also use this example to show how to explicitly include substrate
layers.

Layer Structure

We base this example on Sec. 20.2 so the substrate layer will be GaAs; it will be
highly n-doped in order to form an ohmic contact. Adding this layer can be done
easily in the LayerBuilder GUI or by editing the layer file and adding the appropriate
layer and layer_mater statements. The resulting file is shown below:

$file:gaas10.layer
begin_layer
column column_num=1 w=1. mesh_num=2 r=1.
bottom_contact column_num=1 from=0 to=1 contact_num=1 &&

contact_type=ohmic

layer_mater column_num=1 macro_name=gaas solve_wave=no
layer d=100 n=30 r=0.9 n_doping1=1e24

layer_mater column_num=1 macro_name=algaas &&
var_symbol1=x grade_var=1 &&
grade_from=0.0 grade_to=0.71 solve_wave=no

layer d=1.0 n=20 r=0.9 n_doping1=1e24

$
layer_mater column_num=1 macro_name=algaas &&

var_symbol1=x var1=0.71
layer d=1.35 n=20 r=0.9 n_doping1=1e24
$
layer_mater column_num=1 macro_name=algaas &&

var_symbol1=x grade_var=1 &&
grade_from=0.71 grade_to=0.33

layer d=0.1462 n=10 r=0.9 n_doping1=1e23
$
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layer_mater column_num=1 macro_name=gaas &&
active_macro=AlGaAs/AlGaAs &&
avar_symbol1=xw avar1=0.0 &&
avar_symbol2=xb avar2=0.33

layer d=0.0076 n=5 r=1
$
layer_mater column_num=1 macro_name=algaas &&

var_symbol1=x grade_var=1 &&
grade_from=0.33 grade_to=0.71

layer d=0.1462 n=10 r=+1.1 p_doping1=1e23
$
layer_mater column_num=1 macro_name=algaas &&

var_symbol1=x var1=0.71
layer d=1.35 n= 20 r=+1.1 p_doping1=1e24
$
top_contact column_num=1 from=0 to=1 contact_num=2 &&

contact_type=ohmic
end_layer

However, because the substrate layer is GaAs, it creates a few additional problems
that might not occur in other material systems (such as devices grown on InP). The
first issue we have to deal with is that in this structure, the layer interfacing with
the substrate is also heavily doped and has a very different composition than GaAs.
This forms an abrupt heterojunction (c.f. Sec. 5.2.3) which will block current and
cause convergence problems. There are a few ways of resolving this issue:

• Alter the doping profile of the original device and user a lighter doping in the
bottom Al0.71Ga0.29As layer. Since the Fermi level is not pinned on both sides,
it avoids forming a barrier.

• Add a thin layer with graded composition: the pinned Fermi level can safely fol-
low the composition grading and a thin layer should not disrupt the simulation
too much.

• Introduce quantum tunneling to the simulation so the current can flow past
this abrupt junction.

For tutorial purposes, we have chosen the second approach.
The second problem is the behavior of the mode solver in this new device. Since the
refractive index of AlGaAs is lower than that of GaAs, adding the substrate means
the structure now supports additional modes that peak in this region. These modes
have very poor confinement in the active region and do not compete with the lasing
mode but they have a higher effective index. Since the mode solver sorts modes
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in order of decreasing index, we would have to use an extremely high number of
optical modes to ensure that the lasing mode is included in the calculations. This is
impractical so we use another approach.
Since we know from Sec. 20.2 that the desired mode is well-confined in the active
region and does not leak, we exclude the high-index substrate layers from the mode
solver altogether. This is done by using the parameter solve_wave=no in the
relevant layer_mater statement. When the .layer file is processed, this will modify
the wave_boundary statement in the .mater file and restrict the mode calculations
to a range that does not include the offending layers.

Simulation Setup

The .sol file is virtually unchanged from Sec. 20.2. We will concentrate here only on
the statements relevant for a thermal simulation:

$file:gaas10.sol
$***********
begin
load_mesh mesh_inf=gaas10.msh
output sol_outf=gaas10.out
$ **************************
include file=gaas10.doping
include file=gaas10.mater
more_output ac_data=yes

direct_eigen
init_wave length=400 backg_loss=500. &&

boundary_type=(2 2 1 1 ) init_wavel=0.83 mirror_ref=0.32 &&
wavel_range=(0.80, 0.85)

$ Heat flow modeling
temperature temp=300
heat_flow fit_range=500
contact num=1 thermal_type=3 thermal_cond=10
contact num=2 thermal_type=2 heat_flow=0

$ Free carrier losses
passive_carr_loss ncarr_loss=5e-22 pcarr_loss=5e-22 mater=1
passive_carr_loss ncarr_loss=5e-22 pcarr_loss=5e-22 mater=2
passive_carr_loss ncarr_loss=5e-22 pcarr_loss=5e-22 mater=3
passive_carr_loss ncarr_loss=5e-22 pcarr_loss=5e-22 mater=5
set_active_reg ncarr_loss=5e-22 pcarr_loss=5e-22
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newton_par damping_step=5. max_iter=100 print_flag=3

$ scan_num=0
equilibrium
$stop

$ scan_num=1
scan var=voltage_1 value_to=-2 init_step=1e-3 max_step=0.1 &&

auto_finish=current_1 auto_until=0.1 auto_condition=above

newton_par damping_step=1.0 max_iter=100 opt_iter=50 stop_iter=10

$ print_step can sometimes fail during thermal simulations
$ so use multiple scan statements to print intermediate data

$ scan_num=2
scan var=current_1 value_to=10. &&

init_step=1.e-2 min_step=1e-8 max_step=0.1

$ scan_num=3
scan var=current_1 value_to=20. &&

init_step=1.e-2 min_step=1e-8 max_step=0.1

$ scan_num=4
scan var=current_1 value_to=30. &&

init_step=1.e-2 min_step=1e-8 max_step=0.1

$ scan_num=5
scan var=current_1 value_to=40. &&

init_step=1.e-2 min_step=1e-8 max_step=0.1

$ scan_num=6
scan var=current_1 value_to=50. &&

init_step=1.e-2 min_step=1e-8 max_step=0.1

end

The first relevant item is the temperature statement: this is used to define the
temperature at which the equilibrium calculations are done. In an isothermal simu-
lation, this is also the temperature for the rest of the simulation. This statement can
safely be omitted in many cases: a value of 300K will be assumed. However, certain
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designs call for active cooling which means that before the device is turned on, it
will have reached a different thermal equilibrium. If that is the case, this statement
must be used to define the new equilibrium point correctly.
The heat_flow statement activates the self-heating model from Chapter 11. This
model is decoupled from the main electrical solver so after each electrical step, the
temperature distribution and material parameters are updated. As a result, the
user must ensure the electrical step is always sufficiently small. Not only will this
increase the self-consistency of the simulation but it helps with convergence: a sudden
temperature change can invalidate the initial guess used for the next electrical step.
Thermal boundaries are set by two different methods. For contact regions, it is part
of the contact statement. Usually, this statement is generated automatically when
processing the .layer file but this sets the thermal boundaries to a default setting:
a fixed temperature of 300 K. In all thermal simulations, the user is advised to
re-issue the contact statements in order to provide the desired thermal boundary.
For non-contact regions, the thermal boundary conditions may be defined with the
thermal_inter statement.
For both these situations, there are several types of boundary conditions available
(see Chapter 11). For the bottom contact, we use the more realistic model (type
3) with a fixed thermal conductivity. For the top contact, we wish to present a
“worst-case” scenario in which no heat can escape through the top layer: this is done
by using an interface of type 2 and explicitly setting the heat flow to zero. We can
expect significant heat build-up in the active region as a result of this choice.
If a particular design has different thermal boundaries (e.g. substrate is cooled at
77K but top layers are exposed to air at 300K), then there is an inconsistency in
the equilibrium calculations. By definition, this calculation assumes the absence of
either current or heat flow so if there is an externally applied thermal gradient, the
the equilibrium state will need to be revised. The nstep parameter can be used to
re-run the equilibrium state multiple times so that it stabilizes to take this gradient
into account. Note that doing this abuses the concept of equilibrium but we only
need require an functioning initial guess to the scan statements.
The next element of thermal laser modeling to discuss is not strictly a thermal
term but we have found that it is important in modeling the expected power roll-
off in lasers at high temperature. This effect is an optical loss term commonly
referred to as “free carrier losses”: these are carrier-dependent and material-specific
loss coefficients that are added to the background loss coefficient defined in the
init_wave statement.
For passive regions, the free carrier losses may be defined through the passive_carr_loss
statement in the .sol file. It is also possible to use elec_carr_loss and hole_carr_loss
in the macro file. For active regions, these losses are defined in the .sol file with
set_active_reg.
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The user may also note that multiple scan statements are used in the bias current
scan: this is used to generate intermediate data sets for post-processing and plotting
purposes. Normally, we could use the print_step parameter in the scan statement
to accomplish this. However, since the thermal and electrical problems are not full
coupled in the Newton solver, it is not always possible to exactly match a requested
current value. Since print_step is designed to always print at specific values, the
conflict between the two can sometimes cause problems. By using multiple scan
statements, we can generate intermediate data and although the solver may complain
that the requested current value at the end of each scan cannot be matched exactly,
it will be close enough for most purposes.

Post-Processing

The post-processing is done with the following .plt file:

$file:gaas10.plt
$ **************
begin_pstprc
plot_data plot_device=postscript

$ plot structure data at equilibrium
modify_plot show_data_points=no

get_data main_input=gaas10.sol sol_inf=gaas10.out &&
xy_data=(1 1)

plot_1d variable=real_index from=(0.5 99.0) to=(0.5, 104.0)
plot_1d variable=wave_intensity from=(0.5 99.0) to=(0.5, 104.0)

plot_1d variable=band from=(0.5 99.0) to=(0.5, 104.0)

$ plot structure data at max. data set (max. current injection)

get_data main_input=gaas10.sol sol_inf=gaas10.out &&
xy_data=(7 7)

plot_1d variable=band from=(0.5 99.0) to=(0.5, 104.0)
plot_1d variable=lattice_temp from=(0.5 0.0) to=(0.5, 104.0)

$ plot DC/CW bias dependent quantities.
get_data main_input=gaas10.sol sol_inf=gaas10.out &&
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Figure 20.6: L-I curve of laser with thermal effects included

scan_data=(1 7)
plot_scan scan_var=voltage_1 variable=current_1

plot_scan scan_var=laser_current_1 variable=laser_power
plot_scan scan_var=laser_current_1 variable=temp_max

end_pstprc

The key points to observe are the roll-over in the L-I curve in Fig. 20.6 and the
accompanying increase in maximum temperature in Fig. 20.7.

Application notes for thermal laser simulations

It may be helpful to note that many of the default Crosslight macros do not include
the full temperature dependence of the refractive index. While the index change
calculations (see. Sec. 8.4) are affected by the temperature, the equilibrium contri-
bution to the refractive index is controlled solely by the real_index statement in
the macro file.
If this effect is deemed important in a particular design, the user is advised to check
the various macros used in the simulation. To include temperature dependence, the
real_index statement in the macro must be a function of the reserved keyword
“temper”. If not, the user may override the macro in the .sol file or use a custom
macro file.
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Figure 20.7: Maximum temperature increase vs. bias

Since high-power/thermal laser applications cover a wide variety of wavelength ranges,
it is also recommended to check if the macro index values are consistent with the
lasing wavelength. In particular, the default Crosslight macros for GaAs-based com-
pounds are set up for the 830 nm range. However, this material is also used in 980
nm applications so the index may have to de redefined to cover a different wavelength
range.
For transient analysis in a thermal simulation, the user must be sure to turn on
thm_transient in the heat_flow statement. The user must also specify values
for the specific heat (spec_heat) and density (mass_density of the materials since
most of the default macros omit these values.
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20.4 A_tutorial\basic_ridge

This example is a basic ridge waveguide laser. It introduces how to work with the
mode solver and deal with multiple lateral modes.

Layer Structure

This example is a simple modification of the 1D laser from Sec. 20.2. This time, we
want to model a ridge waveguide laser so we will need a second column. Note that
by doing this, we are using the symmetry of the device to our advantage in order to
save on mesh points and speed up the simulation. However, this means that the user
should scale the current and power output during the post-processing stage: unlike
older versions of the software LASTIP no longer automatically scales its output by
assuming symmetry exists. In current versions of the software, “what you see is what
you get” as far as symmetry is concerned.
The simplest way to get our second column is to take the layer file from the 1D laser
case and open it in LayerBuilder; it is then possible to copy/paste the column. Some
modifications must then be made, either by using LayerBuilder or editing the layer
file:

• Define the width of the columns; unlike the 1D case, this is important

• Assign mesh points to the column statements in order to sample the lateral
variation of the device

• Split the top layer into two and replace the material in the second column in
order to represent the etch depth for the ridge

• Remove the top contact from the second column

In this example, we are using an etch depth of 1 µm. We also decide to use an
arbitrary ridge width of 1 µm: since we are using symmetry, this means the first
column will be 0.5 µm. The second column needs to be wide enough to not artificially
confine the optical mode (because of boundary conditions) without wasting too many
mesh points: again, we use a value of 1 µm.
The appearance of the final design in LayerBuilder is shown in Fig. 20.8. The
corresponding layer file is shown below:

$file:gaas20.layer
begin_layer

column column_num=1 w=0.5 mesh_num=5 r=-1.1
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Figure 20.8: Device structure

column column_num=2 w=1. mesh_num=5 r=1.1
bottom_contact column_num=1 from=0 to=1 contact_num=1 contact_type=ohmic
bottom_contact column_num=2 from=0 to=1 contact_num=1 contact_type=ohmic
$
layer_mater column_num=1 macro_name=algaas var_symbol1=x var1=0.71 &&

n_doping=1e24
layer_mater macro_name=algaas column_num=2 var_symbol1=x var1=0.71 &&

n_doping=1e24
layer d=1.35 n=20 r=-1.1
$
layer_mater column_num=1 macro_name=algaas var_symbol1=x grade_var=1 &&

grade_from=0.71 grade_to=0.33 n_doping=1e23
layer_mater macro_name=algaas column_num=2 var_symbol1=x grade_var=1 &&

grade_from=0.71 grade_to=0.33 n_doping=1e23
layer d=0.1462 n=10 r=-1.1
$
layer_mater column_num=1 macro_name=gaas active_macro=AlGaAs/AlGaAs &&

avar_symbol1=xw avar1=0.0 avar_symbol2=xb avar2=0.33
layer_mater macro_name=gaas column_num=2 active_macro=AlGaAs/AlGaAs &&

avar_symbol1=xw avar1=0 avar_symbol2=xb avar2=0.33
layer d=0.0076 n=5 r=1
$
layer_mater column_num=1 macro_name=algaas var_symbol1=x grade_var=1 &&

grade_from=0.33 grade_to=0.71 p_doping=1e23
layer_mater macro_name=algaas column_num=2 var_symbol1=x grade_var=1 &&



20.4 A_tutorial\basic_ridge 411

grade_from=0.33 grade_to=0.71 p_doping=1e23
layer d=0.1462 n=10 r=-1.1
$
layer_mater column_num=1 macro_name=algaas var_symbol1=x var1=0.71 &&

p_doping=1e24
layer_mater macro_name=algaas column_num=2 var_symbol1=x var1=0.71 &&

p_doping=1e24
layer d=0.35 n=5 r=-1.1
$
layer_mater column_num=1 macro_name=algaas var_symbol1=x var1=0.71 &&

p_doping=1e24
layer_mater macro_name=air column_num=2
layer d=1.0 n=15 r=-1.1
$
top_contact column_num=1 from=0 to=1 contact_num=2 contact_type=ohmic
end_layer

Note that we use the “air” macro in the etched-away region instead of “void”. The
difference is that “void” will define a region without mesh points: this means it will
not be used in the mode solver and the boundary conditions will be applied at the
ridge wall. On the other hand, “air” and “vacuum” macros will define an isolating
region with the proper refractive index: this prevents the mode solver from artificially
confining the optical mode under the ridge.

Simulation Setup

The .sol file needed to run this simulation is fairly similar to the one from from
Section 20.2. However, please note the difference in boundary conditions and the use
of the multimode statement:

$file:gaas20.sol
$***********
begin
load_mesh mesh_inf=gaas20.msh
output sol_outf=gaas20.out
$ **************************
include file=gaas20.doping
include file=gaas20.mater
more_output ac_data=yes

direct_eigen
init_wave length=400 backg_loss=500. &&
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boundary_type=(2 1 1 1 ) init_wavel=0.83 mirror_ref=0.32 &&
wavel_range=(0.80, 0.85)

multimode mode_num=6 boundary_type1=(2 1 1 1) boundary_type2=(1 1 1 1)

newton_par damping_step=5. max_iter=100 print_flag=3

$ scan_num=0
equilibrium
$stop

newton_par damping_step=1. print_flag=3

$ scan_num=1
scan var=voltage_1 value_to=-2 &&

init_step=1e-3 max_step=0.1 &&
auto_finish=current_1 auto_until=1e-3 auto_within=5e-4

$ scan_num=2
scan var=current_1 value_to=20. print_step=2. &&

init_step=1.e-3 max_step=0.2
$
end

The two types of boundary conditions are needed to obtain both odd and even modes
in this symmetric structure. Since we use two boundary conditions, half of the modes
will have the symmetry of boundary_type1 and the other half will have that of
boundary_type2. Within each set, modes are sorted in order of decreasing modal
index. In this example, the highest order even mode is number #1 and the highest
order odd mode is #4; they are respectively shown in Fig. 20.9 and Fig. 20.10.
Please keep in mind that depending on the structure, it is not necessarily the fun-
damental mode or the mode with the largest confinement factor that lases: the only
thing that matters is the modal gain. For example, the .sol.msg output file for this
structure reports the following information at maximum bias:

----Optical data (in 1/m) for segment# 1
Mode Modal_gain Conf._factor Int._loss

1 0.2848E+04 0.2953E-01 0.4852E+03
2 0.2843E+04 0.2959E-01 0.4852E+03
3 0.2843E+04 0.2961E-01 0.4852E+03
4 0.2840E+04 0.2965E-01 0.4852E+03
5 0.2845E+04 0.2961E-01 0.4852E+03
6 0.2840E+04 0.2961E-01 0.4852E+03
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Figure 20.9: Mode # 1

Figure 20.10: Mode # 4
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Even though mode #1 has the lowest confinement factor, it has the highest modal
gain since it does not peak in the un-pumped region that extends beyond the ridge.
In other structures, the opposite can happen and a higher-order mode may lase
instead of the fundamental mode.

Post-Processing

The output file above shows that the modal gain values are quite close, which would
indicate significant mode competition. This is shown by plotting the total laser
power from all modes as well as that of the individual lateral modes in the following
.plt file:

$file:gaas20.plt
$ **************
begin_pstprc
plot_data plot_device=postscript

$ plot structure data at equilibrium
modify_plot show_data_points=no

get_data main_input=gaas20.sol sol_inf=gaas20.out &&
xy_data=(1 1)

plot_2d variable=wave_intensity mode_index=1
plot_2d variable=wave_intensity mode_index=2
plot_2d variable=wave_intensity mode_index=3
plot_2d variable=wave_intensity mode_index=4
plot_2d variable=wave_intensity mode_index=5
plot_2d variable=wave_intensity mode_index=6

plot_1d variable=band from=(0.5 1.3) to=(0.5, 1.7)

$ plot structure data at max. data set (max. current injection)

get_data main_input=gaas20.sol sol_inf=gaas20.out &&
xy_data=(12 12)

plot_1d variable=band from=(0.5 1.3) to=(0.5, 1.7)
plot_2d variable = total_curr

$ plot scan results
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Figure 20.11: Total power from all modes

get_data main_input=gaas20.sol sol_inf=gaas20.out &&
scan_data=(1 12)

plot_scan scan_var=voltage_1 variable=current_1 scan_num=2

$ Compare the total power vs. power in individual modes
plot_scan scan_var=laser_current_1 variable=all_mode_power scan_num=2
plot_scan scan_var=laser_current_1 variable=laser_power scan_num=2 mode_index=1
plot_scan scan_var=laser_current_1 variable=laser_power scan_num=2 mode_index=2
plot_scan scan_var=laser_current_1 variable=laser_power scan_num=2 mode_index=3
plot_scan scan_var=laser_current_1 variable=laser_power scan_num=2 mode_index=4
plot_scan scan_var=laser_current_1 variable=laser_power scan_num=2 mode_index=5
plot_scan scan_var=laser_current_1 variable=laser_power scan_num=2 mode_index=6

end_pstprc

As shown in Figures 20.11 and 20.12, most of the power is carried in mode #1 so it is
indeed the main lasing mode. However, it only accounts for about half of the output
power which confirms that higher-order modes are significant in this structure.
We also note that the higher-order modes have significant intensity near the right
side of the device: this may indicate that these modes are artificially confined by the
boundary and are actually leaky/radiative modes. To account for this, the user may
need to introduce PML boundary conditions as described in Sec. 12.6. However, this
is beyond the scope of this example: users who wish to know more are encouraged
to consult some of the other examples included in LASTIP.
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Figure 20.12: Power output from mode #1



Chapter 21

PICS3D EXAMPLES

21.1 Introduction

This chapter will describe a few selected examples of PICS3D simulations. The
relevant input files can be found in your local installation directory (default is
c:\crosslig\pics3d_examples): the section name corresponds to the examples’s lo-
cation on your hard drive. These examples have been selected to teach the basic op-
eration of the software, explain key concepts essential to device simulation, showcase
some popular applications/devices and preemptively answer common user questions.
Note that the examples from this chapter are only a small subset of the included
tutorial files. There are a number of other examples that are supported through
accompanying README files and comments in the simulation files. Crosslight sup-
port staff will also be happy to explain these examples in more detail if you need
further assistance.
It is relevant to note that all examples are subject to change as the software is
updated. Between each release, there are often bug fixes, material macro changes,
new models and other improvements which can affect the results. In most cases,
these should result in negligible changes in the results which do not alter the tutorial
value of these examples. If any major inconsistencies are found, please report them
to Crosslight support staff. Most examples listed here were last updated as part of
the 2009 manual release. Whenever possible, we will note examples which have been
updated since then.
Throughout this chapter, we will concentrate on the specific simulation statements
and physical models that are needed for a particular device. Particular attention
will also be given to model parameters that may affect the convergence or reliability
of the simulation.
It is also assumed that the reader is familiar with the basic structure of the input files
so some of the basic setup steps for will be omitted for the sake of brevity. If you have
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not already done so, we strongly urge you to read through Chapter 3. Of particular
interest will be the sections dealing with the use of the command-line setup tools as
well as their integration into SimuCenter. If you are working using GUI tools such
as LayerBuilder, additional online help is available through SimuCenter.
In some cases, the setup tools will only provide the basic framework of an input file
and some direct editing may be required to complete the setup. If this is the case,
new users are encouraged to use the built-in Wizard option in SimuPICS3D: this
will present all the available statements and parameters. New statements may be
created by right-clicking on an empty line and selecting the Wizard option: existing
statements can be modified in the same way.
Note that users of other Crosslight tools besides PICS3D may also benefit from this
chapter. In many cases, the physical models described here are relevant to other
devices that are not within the scope this software. While the input files themselves
cannot always be reused, most of the syntax will carry over to other Crosslight tools.
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Figure 21.1: 2D cut of quarter-wave-shifted DFB laser

21.2 A_tutorial

This example is an index-coupled distributed feedback (DFB) laser with a quarter-
wave phase shift in the middle. This kind of structure is often used to guarantee
the device lases on a single longitudinal mode and provides some immunity against
external cavity feedback. Users of previous versions of the software will note this
example has been altered significantly.

Layer Structure

We start by defining a 2D cut of the device as shown in Fig. 21.1. The device is
grown on an InP substrate and a bulk active region tuned to 1.3 µm is used for
simplicity:

1.0 µm InP n=2e24
0.3 µm In1−xGaxAsyP1−y x=lattice-matched, y=0.26 n=5e23
0.2 µm In1−xGaxAsyP1−y x=lattice-matched, y=0.64 undoped
0.3 µm In1−xGaxAsyP1−y x=lattice-matched, y=0.26 p=5e23
1.0 µm InP p=2e24

When defining this structure, care must be taken when selecting the macros: the
material properties will be very different if the selected macro is lattice-matched to
GaAs or InP. Some macros also allow for strain in which case the exact composi-
tion must be provided. The user is advised to consult the comments accompanying



420 PICS3D EXAMPLES

each macro to select the right one: improper macro selection is a common cause of
problems with simulations using the InGaAsP system.
An easy way to do this is to use the LayerBuilder GUI: it not only shows a full
alphabetized list of available macros but also the comments in the macro header.
It is also possible to consult the macros directly by opening the crosslig.mac and
more.mac files in your installation directory with a text editor. However, we do
not recommend making any changes to the default macro files: it is better to use a
custom macro file if you wish to make changes to the material parameters.
For the sake of simplicity, the grating layer has been abstracted away in the above
structure. Conceptually, we may assume that part of the top cladding layer is in fact
an average material for the grating. We will define an effective grating as part of
the longitudinal setup in the .sol file below. More accurate models to define grating
layers are available, as will be shown in Sec. 21.4.
For an additional simplification, we neglect any changes in the lateral direction so
the 2D cut is actually a 1D device. We have touched on this subject in a previous
LASTIP example (Sec. 20.2) so we will omit the rest of the setup steps for the layer
file. As can be seen below, it is quite simple:

$file:inp13.layer
begin_layer
column column_num=1 w= 0.100000E+01 mesh_num=2 r=1.
bottom_contact column_num=1 from=0 to= 0.100000E+01 &&

contact_num=1 contact_type=ohmic
$
layer_mater macro_name=inp column_num=1
layer d=1.0 n= 10 n_doping1=2e24 r=0.9
$
layer_mater macro_name=ingaasp column_num=1 &&

var_symbol1=y var1=0.26
layer d=0.3 n=9 n_doping1=5e23 r=0.9
$
layer_mater macro_name=ingaasp column_num=1 &&

var_symbol1=y var1= 0.64 &&
active_macro=InGaAsP &&
avar_symbol1=yw avar1=0.64

layer d=0.2 n= 12 r=-1.1
$
layer_mater macro_name=ingaasp column_num=1 &&

var_symbol1=y var1=0.26
layer d=0.3 n=9 p_doping1=5e23 r=1.1
$
layer_mater macro_name=inp column_num=1



21.2 A_tutorial 421

layer d=1.0 n= 10 p_doping1=2e24 r=0.9
$
top_contact column_num=1 from=0 to= 0.100000E+01 &&

contact_num=2 contact_type=ohmic
end_layer

Simulation Setup

The following .sol file is used to run this example:

$file:inp13.sol
begin

3d_solution_method 3d_flow=yes z_connect=no

z_structure uniform_length=500.0 zplanes=7 zseg_num=1
load_mesh mesh_inf=inp13.msh
$
$ Include the gain file which contains material info.
include file=inp13.gain
include file=inp13.doping
$
output sol_outf=inp13.out
$
$ Set parameters for wave equation
init_wave backg_loss= 0.5000E+03 init_wavel=1.3 &&

boundary_type=[2 2 1 1] wavel_range=[1.28 1.32]
direct_eigen

$ Set Newton parameters for equilibrium solution
newton_par damping_step=3. var_tol=1.e-8 res_tol=1.e-8 &&

max_iter=100 opt_iter=15 stop_iter=50 print_flag=3
$
$ Solve equations at equilibrium
equilibrium
$
rtgain_phase density=1.25e24
$
$ You may stop here to examine the round trip gain
$
$stop
$
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$ Set Newton parameters for solution with bias
newton_par damping_step=1. var_tol=1.e-4 res_tol=1.e-4 &&

max_iter=50 opt_iter=15 stop_iter=9 print_flag=3

$ Ramp up bias voltage
scan var=voltage_1 value_to=-5.0 &&

init_step=1e-3 max_step=0.1 &&
auto_finish=current_1 auto_until=1e-3 auto_condition=above

$ Ramp up bias to near threshold as judged by RT-Gain
scan var=current_1 value_to=20e-3 &&

init_step=1e-3 max_step=5e-3 print_step=10e-3 &&
auto_finish=rtgain auto_until=0.8 auto_within=0.1

$ Activate 3D C-RTG solver
scan var=current_1 value_to=20e-3 &&

init_step=1e-5 max_step=1e-4 print_step=10e-3 &&
solve_rtg=yes

$
end
$ Longitudinal mode session:
begin_zsol

$ Set up grating at 1.3 um
longitudinal ref_wavel=1.3e-6 &&

left_f_refl=0 right_f_refl=0

$ Quarter-wave phase shift: 90 degress=0.5*pi
section length=250e-6 kappa_real=2e3 &&

sec_num=1 mesh_points=10 phase_shift=0.5
section length=250e-6 kappa_real=2e3 &&

sec_num=2 mesh_points=10

$ longitudinal mode search parameters
mode_srch omega_xrange = 20 adjust_range = yes

end_zsol

In this section, we will skip over most of the details regarding the waveguide setup and
concentrate on the PICS3D-specific aspects of the simulation. The most important
point to understand is that there are two aspects to the 3D setup: electrical modeling
and optical modeling. These will be described below.
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3D Electrical Simulation

The first part of the 3D setup is the electrical simulation and it is identical to what
would be used in an APSYS simulation. In both cases, the 3D model is activated
with the 3d_solution_method statement and one or more segments are defined.
These segments combine multiple 2D mesh planes and define a 3D volume for the
simulation. For a more detailed discussion on this topic, the user is referred to
Sec. 6.3.
In this example, the layer file we defined above can represent a 2D cut at any z posi-
tion of the device. Therefore, we have a single segment and only one z_structure
statement defines the device for the electrical model. Note that since there is only
a single segment, zseg_num=1 is implicitly defined which simplifies the input file
somewhat: we will see in Sec. 21.4 how to deal with multiple segments.
The longitudinal electrical mesh is determined by the number of mesh planes defined
in z_structure. Since there is only a single segment, a minimum of two planes is
needed to define a volume. However, a minimum of three planes is needed to observe a
longitudinal variation of material parameters (i.e. longitudinal hole burning). More
planes provide better sampling in the z direction but require more memory and
processing power so there is always a compromise: we use seven mesh planes in this
example.

3D Optical Simulation

The second part of the 3D simulation is the optical propagation: this is tied to the
concept of the round-trip gain (RTG) discussed in Sec. 6.4. This longitudinal model
is at the very core of PICS3D and involves several setup steps. These require a
lengthy explanation so we will divide them into four main categories:

• Optical propagation model

• Longitudinal mode search

• Gain profile definition

• Bias setup

Optical Propagation Model

The optical propagation model is tied to the concept of “sections”: these define
the optical cavity in the same way that “segments” define the 3D geometry of the
electrical simulation. In this case, we have a 500 µm laser but with a phase shift in
the middle so we use two sections of equal length and define a phase shift at the end
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of the first section. This phase value must be expressed as a multiple of π so λ
4 is

equivalent to 0.5.
Within each section, the same propagation model is used: for edge-emitting devices
such as this one, it is the coupled-wave transfer matrix of Sec. 16.5. The detuning
term is based on the DFB grating’s reference frequency so we must define it with
the longitudinal statement. This statement also controls the boundary conditions
used in the longitudinal propagation model (i.e. mirror reflectivities).
We also define a pure index grating of κ = 2000 in each section so that the total
grating strength for the laser is κL = 1. This method of defining the grating is the
simplest and most convenient way available in PICS3D. More accurate models are
available but they require an explicit definition of the grating composition in the
layer file: we will show an example of this method in Sec. 21.4.
We note in passing that the two statements above replace some of the functionality
provided by init_wave in LASTIP: if the user attempts to use it to define the
cavity length or mirror strength, it will be ignored by the software. In PICS3D,
the init_wave statement is only used to define the background loss of the optical
propagation and to control the lateral mode solver.

Longitudinal Mode Search

The longitudinal mode search is controlled by the mode_srch statement. This
statement defines the search range for the longitudinal modes. This can be done ei-
ther explicitly with wavel_xrange or using a fixed-size window with omega_xrange.
This window is usually centered on the reference wavelength of the grating but can be
allowed to shift in order to center it on the strongest mode with adjust_range=yes.
As described in Chap. 16, longitudinal modes are found using the zeros of the Wron-
skian, which is equivalent to evaluating the RTG. However, evaluating the RTG while
considering the photon coupling is tricky: the photon density can only be known by
evaluating the RTG but evaluating the RTG requires knowledge of the photon den-
sity because of its impact on the longitudinal gain profile (i.e. spatial hole burning).
To provide an initial guess, we must assume that the photon coupling is negligible
at first and use a flat gain profile to find the longitudinal modes.
As part of its initialization, PICS3D requires a preview of the RTG and longitudinal
mode search with the rtgain_phase statement. Since this statement only produces
a preview of the RTG (i.e. with no photon coupling), it must be used before any
actual bias is applied but after the equilibrium calculations.
In addition to its normal use in initialization, rtgain_phase can also be useful to
troubleshoot device designs and ensure that the cavity modes are as expected. The
simulation may be stopped at this point by using the stop statement if the user
wishes to examine the result before going any further.
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The results of the longitudinal mode search will be shown in the simulation log as
shown below:

Longitudinal modes found:
Wavelength (um) Round-Trip-Gain
0.130504E+001 0.976213E-002
0.130457E+001 0.122080E-001
0.130398E+001 0.148400E-001
0.130352E+001 0.201960E-001
0.130292E+001 0.271156E-001
0.130247E+001 0.441081E-001
0.130186E+001 0.760265E-001
0.130141E+001 0.226975E+000
0.130061E+001 0.873341E+000
0.129981E+001 0.171932E+000
0.129937E+001 0.505705E-001
0.129874E+001 0.235128E-001
0.129832E+001 0.126577E-001
0.129769E+001 0.754646E-002
0.129728E+001 0.487527E-002
0.129664E+001 0.318803E-002
0.129624E+001 0.224836E-002
0.129559E+001 0.153203E-002
0.129521E+001 0.113569E-002

However, more information is also available by using the plot_rtgain statement in
the .rtgain file as shown in Fig. 21.2.
We note in passing that RTG ≥ 1 is an unphysical situation and should be ignored. It
usually indicates a point above threshold, which means that the photon density is too
strong to be ignored and the evaluation of the RTG is not realistic (i.e. hole burning
and carrier clamping effects were neglected or solution is not properly converged yet).
To be more accurate, RTG = 1 is a limit corresponding to an ideal cavity without
spontaneous emission: the RTG only approaches 1 in a real device and there is no
clear-cut value of the RTG at threshold.

Gain profile definition

During the RTG preview, a carrier density value must be provided since no bias has
been applied yet: this is used to obtain the propagation constant from tabulated
gain values. A convenient ways to provide these tables is to include the .gain file
instead of the .mater file in the .sol: the .mater file will still be included recursively.
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Figure 21.2: Round-trip gain (RTG) of quarter-wave-shifted DFB laser below thresh-
old

The actual gain tables for the preview are generated by the gain_wavel statement.
If it has not been defined already, a simple .gain template with the necessary state-
ments can be generated by right-clicking the .mater file in SimuCenter. It is a good
idea to process this file before the main simulation to optimize the gain curve peak
vs. the grating’s reference wavelength.
The user may also find it useful to manually add a gain_density statement to the
.gain file before processing: this will generate a material gain vs. carrier density
curve that can help locate a reasonable carrier density at which to preview the RTG.
During the full simulation (i.e. scan statements), PICS3D does not need to use tab-
ulated gain values. Instead, it uses the information from the electrical simulation to
obtain local gain values: these values will be linearly interpolated from the electrical
mesh planes onto the optical mesh points defined by the section statements and
used to evaluate the RTG.

Bias setup

When applying bias, we still have the same problem of initializing the photon cou-
pling that we described earlier: we need to provide an accurate initial guess of the
photon density and the wavelength of the longitudinal modes to ensure the conver-
gence of the Newton solver. As we discussed earlier, this means selecting a bias point
below threshold so that the starting photon density is negligible and the flat gain
profile approximation is realistic.
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However, it is well-known that the longitudinal mode wavelengths can shift below
threshold since increasing bias produces carrier-induced index changes. This means
that we cannot select a bias point that is too far below threshold since we might risk
missing the lasing mode during the mode search. This is a commonly encountered
problem in devices with many longitudinal modes such as very long Fabry-Perot
cavities.
A reasonable compromise is to select a bias point where the modal gain is positive but
not yet lasing. To do this, use the auto_finish parameter of the scan statement.
The RTG value selected to terminate the scan should be larger than what is provided
by the mirror feedback but still less than 1.
This auto_finish parameter is also required by PICS3D to initialize the coupled
RTG solution in the Newton solver. The photon coupling can be turned on im-
mediately afterwards by using solve_rtg=yes in the next scan statement. Once
photon the coupling is turned on, the user must take care to always use small bias
steps since the solution state will shift strongly as the threshold region is crossed:
although mode wavelengths tend to stabilize as the carrier density is clamped, the
photon density of the lasing modes will increase by several orders of magnitude.
Additional hints on how to configure the bias steps in PICS3D are discussed in
Chap. 4.

Post-Processing

Once the simulation has been run, results can be plotted using the following .plt file:

$file:inp13.plt
begin_pstprc
plot_data plot_device=postscript
get_data main_input=inp13.sol &&

sol_inf=inp13.out &&
xy_data=[5 5] scan_data=[1 5]

$
plot_scan scan_var=current_1 &&

variable=rtg_2facet_power_allmode &&
scan_num= 3

plot_scan scan_var=current_1 &&
variable=rtg_peak_wavelength &&
scan_num= 3

modify_plot longitudinal_mode=10
plot_scan scan_var=current_1 &&
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variable=wavelength &&
scan_num= 3

gain_spectrum variable=rtg_spectrum

$ Plot at xy cross sections
$
lplot_xy variable=band xy_from=[ 0.1000E+00 0.0000E+00] &&

xy_to=[ 0.1000E+00 0.2800E+01] z=0
$
lplot_xy variable=elec_curr_y xy_from=[ 0.1000E+00 0.0000E+00] &&

xy_to=[ 0.1000E+00 0.2800E+01] z=0
lplot_xy variable=hole_curr_y xy_from=[ 0.1000E+00 0.0000E+00] &&

xy_to=[ 0.1000E+00 0.2800E+01] z=0

vplot_xy variable=total_curr &&
z=0 grid_sizes=[35 35]

$
cplot_xy variable=wave_intensity &&

z=0 grid_sizes=[35 35]
splot_xy variable=elec_conc &&

grid_sizes=(35, 35) &&
view_xrot=0 view_zrot=30 z=0

splot_xy variable=hole_conc &&
grid_sizes=(35, 35) &&
view_xrot=0 view_zrot=30 z=0

$
$ Plot for all dimensions of xyz [for edge laser only].
$
splot_xyz variable=wave_intensity &&

xy_from=[ 0.1000E+00 0.0000E+00] &&
xy_to=[ 0.1000E+00 0.2800E+01] &&
grid_sizes=[50, 20] view_zrot=20.

modify_plot show_data_points=yes
lplot_xyz variable=wave_intensity xy_point=(0.0 1.4)
$
end_pstprc
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Figure 21.3: L-I curve of DFB laser

When plotting results, there are several differences between LASTIP and PICS3D.
The most important one of these is that results are always in 3D so no special
variables are needed for unit conversion. Another important point is that unlike
LASTIP, PICS3D does not apply any scaling factors due to symmetry: this is a
software design choice prompted by the fact that PICS3D must handle many devices
with different kinds of symmetry: for example unlike ridge waveguides, VCSELs
use rotational symmetry. The user should keep this in mind and apply appropriate
scaling of the current and power when comparing PICS3D and LASTIP results for
the same structure. Many variable names are also different than in LASTIP: for
example, most of the variables obtained from the coupled RTG calculations are
prefixed by “rtg_”.
To plot the L-I curve for the laser, we use the plot_scan statement as in Fig. 21.3 .
Power from individual modes can also be plotted by specifying the longitudinal mode
index with modify_plot before the plot command. Note that the mode_index
parameter in plot_scan is used to specify lateral mode index and cannot be used
for this purpose.
plot_scan can also be used to plot other variables vs. bias. For example, Fig. 21.4
shows the peak emission wavelength which confirms our earlier comment about the
shift in longitudinal mode positions. The change in photon number can also be
plotted in this way.
To plot spectral data, the gain_spectrum statement has been re-purposed to plot
different physical quantities. One of these is the mode spectrum as shown in Fig. 21.5
which shows the strong side-mode suppression and single-mode behavior that is
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Figure 21.4: Peak emission wavelength of DFB laser vs. bias

expected from this structure.
When plotting structural data, special plotting commands must be used to deal
with the 3D data but most of the plotting commands from 2D have a corresponding
command in 3D. For example, plot_1d is replaced by lplot_xy or lplot_xyz
depending on the direction of the line cut.
As an example of this, Fig. 21.6 shows the longitudinal distribution of the wave in-
tensity: the cut is taken in the center of the active region. As we discussed earlier, we
only used seven mesh planes since there is a compromise between the amount of lon-
gitudinal sampling and the speed & resources required for the simulation. However,
we see that even this rough amount of sampling is enough to obtain good results for
the L-I curve and spectral properties of the laser.
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Figure 21.5: Mode spectrum of DFB laser
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Figure 21.6: Longitudinal mode profile of DFB laser
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21.3 amplifier_3D\inp13amp

This example is a semiconductor optical amplifier (SOA): we define incoming power
on the left facet and study the outgoing power and amplified spontaneous emission
(ASE) of the device. The modeling techniques described here can also be applied
to electro-absorbing modulators (EAM) and superluminescent diodes (SLED) with
a few simple modifications.

Layer Structure

The layer structure used here is based on the one used in Sec. 21.2. The only
difference is that we do not assume there is a grating layer that is abstracted away
and defined later in the simulation: in most SOA applications, optical feedback must
be minimized so this device really has no grating.
In practical terms, it means that the .layer input file for this example is exactly the
same as in Sec. 21.2. In order to save time, we will simply reuse this file instead
of creating a new one from scratch. However, for the sake of consistency, we will
rename this file to inp13amp.layer so it matches the rest of our project files.

Simulation Setup

Defining the 3D model in an SOA is a bit different than for an edge-emitting laser.
The electrical part is the same as before and we use multiple mesh planes to define
a simulation volume. Depending on the precision required, more mesh planes may
be required: SOA saturation at high power is clearly related to longitudinal spatial
hole burning so the quality of the sampling in the z direction may be important.
We use the following .sol file for this simulation:

$file:inp13amp.sol
begin
z_structure uniform_zseg_from=0. uniform_zseg_to=500. zseg_num=1 &&

zplanes=5
3d_solution_method 3d_flow=yes

load_mesh mesh_inf=inp13amp.msh
$
include file=inp13amp.gain
include file=inp13amp.doping
$
output sol_outf=inp13amp.out
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more_output pics3d_ase=yes wave_phase=yes
$
$ Set parameters for wave equation
init_wave backg_loss=500 boundary_type=[2 2 1 1] &&

init_wavel=1.29 wavel_range=[1.28 1.32]
direct_eigen
$
$ ASE model assumes input single wavelength is close to gain peak
$
3d_amplifier_model wavelength=1.29 input_watt=1.e-4
$
$ Set Newton parameters for equilibrium solution
newton_par damping_step=3. var_tol=1.e-8 res_tol=1.e-8 &&
max_iter=100 opt_iter=15 stop_iter=50 print_flag=3
$
equilibrium
$
rtgain_phase density=1.4e24
$
$
$ Set Newton parameters for solution with bias

newton_par damping_step=1. var_tol=1.e-4 res_tol=1.e-4 &&
max_iter=50 opt_iter=15 stop_iter=9 print_flag=3

$ Ramp up bias voltage (adjust 1 volt for your case)
scan var=voltage_1 value_to= -1. print_step= 1. &&

init_step=0.1 min_step=1.e-5 max_step=0.5

$ auto_finish=rtgain is actually used to initialize parameters
scan var=current_1 value_to=18.5e-3 max_step=1.e-3 &&

auto_finish=rtgain auto_until=0.9

newton_par damping_step=1. var_tol=1.e-4 res_tol=1.e-4 &&
max_iter=50 opt_iter=25 stop_iter=9 print_flag=3

scan var=light value_to=1 init_step=1.e-3 &&
var2=current_1 value2_to=18.5e-3 max_step=0.02 solve_rtg=yes

end
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$ Longitudinal mode session:
begin_zsol
$ this is to control the data points in ASE spectrum
freq_control data_points=200
longitudinal ref_wavel= 0.12900E-05 &&

left_f_refl= 0.0000E+00 &&
right_f_refl= 0.0000E+00

section length= 0.5000E-03 &&
sec_num=1 mesh_points=20

mode_srch omega_xrange=10.
end_zsol

3D Optical Simulation

The longitudinal part of the 3D problem is a bit different since the longitudinal be-
havior is caused by an external light input rather than being due to the existence
of cavity modes. The 3d_amplifier_model statement is used to define the wave-
length and power of this input light. Alternatively, waveguide_input can also be
used.
We will consider here an ideal SOA with no optical feedback so the section state-
ments do not define any grating and the longitudinal statement defines facet re-
flectivities of zero.
In the absence of optical feedback, the longitudinal mode solver will not find any
modes. However, the solution method is based on a variation of the coupled RTG
equations so we need to define the optical propagation correctly. This means that
the longitudinal statement needs to define a reference frequency that will be used
to calculate the detuning term: this can be set as the SOA’s input wavelength. We
also need to initialize the mode search in the same way as for a DFB laser: the user
is referred to Sec. 21.2 for details.
When calculating the ASE spectrum, we need to do two things. The first is to use
the freq_control to define the number of points in the spectrum. The second is
to use more_output to force PICS3D to include the ASE spectrum in the output
data: it is not included by default since it is not usually relevant in lasers.

Bias setup

When applying bias, we refer to our solar cell example in APSYS (Sec. 19.4) and
note that the equilibrium calculations produce a state where no bias exists. The
input light to the SOA is a form of bias so it is turned off at the beginning of the
simulation.
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Just like in Sec. 19.4, we use the “light” scan variable to turn on this input light.
However, instead of being a multiple of light_power, this variable now represents
a fraction of the value defined in 3d_amplifier_model. A starting point of zero
light is also consistent of our usual strategy for the photon coupling: in order to
ensure convergence of the coupled RTG equations, we assume a flat gain profile in
the initial guess.
As in previous examples, the photon coupling is turned on by using solve_rtg=yes
in the scan statement. Again, this must be preceded by a scan statement using
auto_finish=rtgain. However, we note that in the absence of optical feedback,
the round-trip gain value is meaningless: this parameter will only initialize the RTG
model and will not terminate the current scan.

Post-Processing

After the simulation has been run, the results can be shown with the following .plt
file:

$file:inp13amp.plt
begin_pstprc
plot_data plot_device=postscript
get_data main_input=inp13amp.sol sol_inf=inp13amp.out &&
xy_data=(4 4) scan_data=(4 4)

modify_plot show_data_points=yes

plot_scan scan_var=light variable=rtg_wave_phase
plot_scan scan_var=light variable=rtg_right_power_allmode
plot_scan scan_var=light variable=rtg_ase_left
plot_scan scan_var=light variable=rtg_ase_right

gain_spectrum variable=rtg_asespec_left
gain_spectrum variable=rtg_asespec_right

modify_plot show_data_points=no
$
$ Plot for all dimensions of xyz [for edge laser only].
$
splot_xyz variable=wave_intensity &&

xy_from=[ 0.1000E+00 0.0000E+00] &&
xy_to=[ 0.1000E+00 0.2800E+01] &&
grid_sizes=[50, 20] view_zrot=20. wave_option=right

$
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$
$ Plot at xy cross sections first
$
lplot_xy variable=band xy_from=[ 0.1000E+00 0.0000E+00] &&

xy_to=[ 0.1000E+00 0.2800E+01] z=5
splot_xy variable=elec_conc z=5. grid_sizes=(35, 35) &&

xrange=[ 0.0000E+00 0.1000E+01] &&
yrange=[ 0.0000E+00 0.2800E+01] &&
view_xrot=0 view_zrot=30

$
vplot_xy variable=elec_curr &&

xrange=[ 0.0000E+00 0.1000E+01] &&
yrange=[ 0.0000E+00 0.2800E+01] &&
z=5 grid_sizes=[35 35]

$
cplot_xy variable=wave_intensity &&

xrange=[ 0.0000E+00 0.1000E+01] &&
yrange=[ 0.0000E+00 0.2800E+01] &&
z=5 grid_sizes=[35 35]

end_pstprc
$

Again, we use plot_scan to show results vs. bias. In Fig. 21.7, we show the
expected signal saturation of the SOA as the input power (i.e. “light” variable)
is varied. We also see in Fig. 21.8 that this is accompanied by a reduction in the
amount of amplified spontaneous emission. Note that the amount of ASE depends
on which facet it is being observed.
The ASE spectrum can be plotted in the same way as the RTG spectrum in a laser:
a specific variable has been defined to use in conjunction with the gain_spectrum
statement as shown in Fig. 21.9.
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Figure 21.7: Output power of SOA vs. input light
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Figure 21.8: ASE on right facet of SOA vs. input light
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Figure 21.9: ASE spectrum on right facet of SOA



21.4 DBR\3section_tunable 439

21.4 DBR\3section_tunable

This example1 is a tunable edge-emitting laser with a Distributed Bragg Reflector
(DBR). It consists of three segments: a gain region on the left, a tuner in the middle
and a Bragg mirror on the right. We use this example to show how PICS3D handles
complex structures where the device structure changes in the longitudinal direction.
We also use this example to show how to explicitly define grating layers. Unlike
the simplified method shown in Sec. 21.2, here PICS3D will calculate the coupling
coefficient (κ) by using the index profile of the grating and its overlap with the optical
mode.

Layer Structure

Since the device structure varies longitudinally in this example, we need multiple
2D cuts and .layer files: each of these cuts represents a single segment that will be
defined later in the .sol file.
The different .layer files can be created independently from each other using the same
techniques discussed in our other examples. However, in order to process these files
correctly and generate correct material numbers, the previous_layer statement
should be used after the first layer.
The user can also automatically generate all the .layer files for this project at once by
using the Layer3D GUI program (shown in Fig. 21.10). Each of the 2D cuts are built
using the same rules as the LayerBuilder GUI but the previous_layer statement
will be added automatically.
The gain segment is very similar to previous devices we have considered:

begin_layer

column column_num=1 w=1.5 mesh_num=2 r=1.0
bottom_contact column_num=1 from=0.0 to=1.5 contact_num=1

layer_mater macro_name=inp column_num=1
layer d=1.5 n=8 r=0.8 n_doping1=1e24

layer_mater macro_name=ingaasp var1=0.568 column_num=1 &&
var_symbol1=y

layer d=0.08 n=4 r=0.9

$ total thickness of the following MQW is 0.15 um
1Last updated Nov. 2011
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Figure 21.10: 2D & 3D view of tunable DBR laser

include file=tune1.well
include file=tune1.bar
include file=tune1.well
include file=tune1.bar
include file=tune1.well
include file=tune1.bar
include file=tune1.well
include file=tune1.bar
include file=tune1.well
include file=tune1.bar

layer_mater macro_name=ingaasp var1=0.568 column_num=1 &&
var_symbol1=y

layer d=0.05 n=4 r=1.1

layer_mater macro_name=inp column_num=1
layer d=1.55 n=9 r=1.2 p_doping1=5e23

top_contact column_num=1 from=0.0 to=1.5 contact_num=2
end_layer

The active region is an unstrained MQW InGaAsP region tuned to peak around
1.55 µm. Again, we use external files and the include statement to simplify this
declaration:
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layer_mater macro_name=ingaasp var1=0.568 column_num=1 var_symbol1=y
layer d=0.0225 n=3 r=1.

layer_mater macro_name=ingaasp var1=0.950 column_num=1 &&
active_macro=InGaAsP/InP avar1=0.443 avar2=0.95 &&
avar3=0.262 avar4=0.568 &&

var_symbol1=y avar_symbol1=xw avar_symbol2=yw avar_symbol3=xb avar_symbol4=yb
layer d=0.0075 n=3 r=1.

Users working with the LayerBuilder GUI program can also copy & paste layers to
easily create a MQW region.
For the tuning section, we need to consider what is the mechanism involved. In this
case, we wish to consider bias-induced index change due to interband transitions: this
is modeled by an active region and an active macro just like in the gain segment.
However, this particular active region has a very different bandgap and only the tail
edge of the the gain curve is visible in the 1.55 µm range. We call this a “mildly
active” layer for historical reasons: the gain is calculated but it is so small that it
has no practical effect beyond contributing to the index change.
The resulting layer file for the tuning section is shown below:

begin_layer

$ Make sure the program knows there is a segment before this structure.
$ The programs needs this information to generate the material numbers
$ correctly.

previous_layer file=tune1.layer

column column_num=1 w=1.5 mesh_num=2 r=1.0
bottom_contact column_num=1 from=0.0 to=1.5 contact_num=1

layer_mater macro_name=inp column_num=1
layer d=1.5 n=8 r=0.8 n_doping1=1e24

$ Passive waveguide material declared to be "active"
$ so that interband optical model for index change can be used.

layer_mater macro_name=ingaasp var1=0.5 column_num=1 &&
active_macro=InGaAsP avar1=0.5 &&
var_symbol1=y avar_symbol1=yw

layer d=0.38 n=9 r=1.
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layer_mater macro_name=inp column_num=1
layer d=1.45 n=9 r=1.2 p_doping1=5e23

top_contact column_num=1 from=0.0 to=1.5 contact_num=3

end_layer

For the DBR segment, we use the same “mildly active” region as the tuner (un-
strained InGaAs(0.5)P) as the base of the grating. Conceptually, we can imagine
that we partially etch this region and regrow with InP to form an average material
(unstrained InGaAs(0.25)P).
We quickly note that the regrowth region is below the original layer so things look
upside down. This is simply due to our usual convention of defining devices n-side
down which can be confusing if the original design is on a p-type substrate. However,
this convention is merely for the sake of consistency and the user is free to change it.
When defining the grating layer, we start by defining a layer made of the average
material in layer_mater. However, this is overridden immediately afterwards by
the grating_compos statement: the original layer material is replaced by a virtual
embedded structure and two sets of material macros are used for the same material.
This is shown in the following excerpt of the tune3.mater file, which generated when
all the layer files are processed:

$ -->grating region based on composition variation
grating_model grating_order=1 &&

use_active_mater= 5 &&
d_high= 0.100000000000E+000 d_low= 0.100000000000E+000 &&
d_fall= 0.000000000000E+000 d_rise= 0.000000000000E+000

$
$ -->high index grating region
load_macro name=ingaasp mater= 5 &&

var_symbol1=y var1= 0.5000E+00
get_active_layer name=InGaAsP mater= 5 &&

var_symbol1=yw var1= 0.5000E+00
active_reg embedded_structure=1 mater= 5 &&

thickness= 0.200000000000E+000
$
$ -->low index grating region
load_macro name=ingaasp mater= 5 &&

var_symbol1=y var1= 0.0000E+00
get_active_layer name=InGaAsP mater= 5 &&
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var_symbol1=yw var1= 0.0000E+00
active_reg embedded_structure=1 mater= 5 &&

thickness= 0.200000000000E+000

When defining the grating composition, we specify both passive and active macros
for the low and high index regions. This means that the grating is also a “mildly
active” layer: the index step will be affected by interband transitions. Note that
the bandgap values for the high and low regions are still far away from 1.55 µm:
otherwise, this would a gain- or loss-coupled laser, which a very different kind of
device. The user can also choose to omit the active macro: this means that the
index step of the grating will be frozen at its equilibrium value.
Alternatively, one can also define the grating using the grating_model statement
in the .layer file. In this case, the refractive index of the high and low regions must
be provided instead of the macro parameters. Also, the average material defined in
layer_mater will be used in the electrical simulation instead of being overridden
with the grating macros.
The layer file used for the DBR segment is shown below:

begin_layer

$ Make sure the program knows there is a segment before this structure.
$ The programs needs this information to generate the material numnbers
$ correctly.

previous_layer file=tune2.layer

column column_num=1 w=1.5 mesh_num=2 r=1.0
bottom_contact column_num=1 from=0.0 to=1.5 contact_num=1

layer_mater macro_name=inp column_num=1
layer d=1.3 n=8 r=0.8 n_doping1=1e24

$
$ 0.2 um corrugation grating is made between InP and InGaAs(0.5)P
$ So the average material is InGaAs(0.25)P. Let us declare it
$ as mild region to let the program treat it mildly.
$
layer_mater macro_name=ingaasp var1= 0.25 &&

active_macro=InGaAsP avar1= 0.25 &&
column_num=1 embedded_structure=1 &&
var_symbol1=y avar_symbol1=yw

grating_compos column_num=1 &&
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d_high= 0.1 d_low= 0.1 &&
hi_macro_name=ingaasp hi_var1=0.5 &&
hi_active_macro=InGaAsP hi_avar1=0.5 &&
lo_macro_name=ingaasp lo_var1=0. &&
lo_active_macro=InGaAsP lo_avar1=0. &&
hi_var_symbol1=y &&
hi_avar_symbol1=yw &&
lo_var_symbol1=y &&
lo_avar_symbol1=yw

layer d= 0.2 n= 9 &&
n_doping1= 1.E+23 &&
r= 0.9

$ Passive waveguide material declared to be "active"
$ so that interband optical model for index change can be used.

layer_mater macro_name=ingaasp var1=0.5 column_num=1 &&
active_macro=InGaAsP avar1=0.5 &&
var_symbol1=y avar_symbol1=yw

layer d=0.38 n=9 r=1.

layer_mater macro_name=inp column_num=1
layer d=1.45 n=9 r=1.2 p_doping1=5e23

top_contact column_num=1 from=0.0 to=1.5 contact_num=4
end_layer

Simulation Setup

The following .sol file is used in this simulation:

$***********
begin
use_macrofile macro1=my.mac

3d_solution_method 3d_flow=yes z_connect=no
z_structure uniform_zseg_from=0. uniform_zseg_to=400. zseg_num=1 zplanes=3
z_structure uniform_zseg_from=400. uniform_zseg_to=500. zseg_num=2
z_structure uniform_zseg_from=500. uniform_zseg_to=800. zseg_num=3 zplanes=3
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load_mesh mesh_inf=tune1.msh zseg_num=1
load_mesh mesh_inf=tune2.msh zseg_num=2
load_mesh mesh_inf=tune3.msh zseg_num=3

output sol_outf=tune.out

begin_zmater zseg_num=1
include file=tune1.gain
include file=tune1.doping
end_zmater

begin_zmater zseg_num=2
include file=tune2.gain
include file=tune2.doping
end_zmater

begin_zmater zseg_num=3
include file=tune3.gain
include file=tune3.doping
end_zmater

optical_field profile=effective_index x_segment=4
init_wave backg_loss=500 &&

boundary_type=(2 2 1 1 ) init_wavel=1.55 &&
wavel_range=(1.5, 1.60)

prop_constant_model zseg_num=1 precalculated_index=yes
prop_constant_model zseg_num=2 precalculated_index=yes
prop_constant_model zseg_num=3 precalculated_index=yes

newton_par damping_step=10. var_tol=1.e-9 res_tol=1.e-9 &&
max_iter=100 opt_iter=15 stop_iter=50 print_flag=3 mf_solver=2

equilibrium
rtgain_phase density=1.6e24 zseg_num=1
rtgain_phase density=1.6e24 zseg_num=2
rtgain_phase density=1.6e24 zseg_num=3

$parallel_linear_solver
newton_par damping_step=10.0 var_tol=1.e-4 res_tol=1.e-4 &&

max_iter=30 opt_iter=16 stop_iter=17 print_flag=3 mf_solver=2

scan var=voltage_1 value_to=-0.8
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scan var=current_2 value_to=-2.4e-3 init_step=1e-6 &&
min_step=1e-8 max_step=0.1e-3 &&
var2=current_3 value2_to=-0.3e-3 &&
var3=current_4 value3_to=-0.9e-3 &&

auto_finish=rtgain auto_until=0.9 auto_within=0.09

scan var=current_2 value_to=-7.2e-3 &&
var2=current_3 value2_to=-0.3e-3 &&
var3=current_4 value3_to=-0.9e-3 &&
init_step=1e-6 min_step=1e-8 max_step=0.5e-3 solve_rtg=yes

newton_par damping_step=10.0 var_tol=1.e-3 res_tol=1.e-1 &&
max_iter=30 opt_iter=16 stop_iter=17 print_flag=3 mf_solver=2

scan var=current_4 value_to=-18.e-3 &&
var3=current_2 value3_to=-7.2e-3 &&
var2=current_3 value2_to=-0.3e-3 &&
init_step=1e-6 min_step=1e-8 max_step=0.4e-3 solve_rtg=yes

$ alternatively, one may tune the laser by changing the middle phase section
$scan var=current_3 value_to=-10.e-3 &&
$var3=current_2 value3_to=-7.2e-3 &&
$var2=current_4 value2_to=-0.9e-3 &&
$init_step=1e-6 min_step=1e-8 max_step=0.4e-3 solve_rtg=yes

end
$ **********************************************************
begin_zsol
longitudinal ref_wavel=1.55e-6 left_f_refl=0.3 right_f_refl=0.3
section length=400.e-6 sec_num=1 mesh_points=10
section length=100.e-6 sec_num=2 mesh_points=10
section length=300.e-6 sec_num=3 mesh_points=10
mode_srch omega_xrange=16. adjust_range=yes
end_zsol

Like all edge-emitting devices in PICS3D, this is a 3D simulation with multiple mesh
planes so we must use the 3d_solution_method statement with 3d_flow=yes.
We also use three different z_structure statements to define the segment lengths
as well as the number of mesh planes within each segment.
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The 2D mesh used at the various z points in each segment is loaded by a series
of load_mesh statements. Material properties are loaded in the same way as in
Sec. 21.2 but since there is more than one segment, the include statements for each
segment must be bracketed by begin_zmater and end_zmater to identify the
segment being defined.

Optical Propagation Model

To define the optical cavity, we use three sections to match the segments defined
above. Note that no grating is defined at this stage: the earlier grating definition
will be used calculate the coupling coefficient automatically. Based on the index step
and wave profile, the solver prints this kind of information in the simulation log at
each bias step:

At lambda= 1.55379871355004
Grating Reg. Opt. Conf.= 0.180108918999968
Real kappa (1/m)= 36386.4705291671
Imag kappa (1/m)= -5.748666808201413E-013

As we can see, the gain coupling coefficient is negligible, which is consistent with
our “mildly active” model. The real part of the grating indicates a highly reflective
mirror (κL ≈ 10.9 for this segment).
To calculate the round-trip gain (RTG), we need a reference point in the cavity. For
best results, this point should be in the middle of the gain region so we modify the
default value of ref_midpoint in the longitudinal statement. We also use this
statement to specify the facet boundary conditions and the reference wavelength for
the longitudinal mode search.
To save on computation time, we also use prop_constant_model to instruct the
software to use precalculated index change tables from the .gain preview. This may
be less accurate then calculating the index automatically but often helps solve certain
convergence issues.

Bias setup

When defining the .layer files above, we note that we used the same electrode number
(1) for the n-side bottom electrode but we used a different number (2,3,4) for the top
p-side electrode. This means that the bottom electrode is shared across all segments
whereas the top electrodes are split and can be used to independently bias each
individual segment.
Since at the equilibrium point, we define a situation where all electrodes are grounded
at 0 V, this can create unexpected bias configurations. For example, if one were to
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ramp up the bias on electrode (#2) only, the current would naturally flow towards the
other top electrodes since that is the shortest electrical path. This is not the desired
situation so we apply a small bias to the bottom shared electrode (#1) instead. This
method shifts the reference ground and is equivalent to biasing all the top electrodes
simultaneously.
After this initial voltage scan, there is a trickle of current flowing down in each
segment so we can use a current bias on the top electrodes and bias each individual
segment separately. We note that by convention, current flowing into an electrode
is positive (and vice versa) so that the bias currents on the p-side electrodes are
negative in a forward bias situation.
When applying bias on the top electrodes, we use multiple scan variables: this is
because we want to control multiple currents simultaneously. If we omit a particular
electrode from the scan (i.e. electrode #1), then only its voltage value would be
controlled: it would be kept at its previous value during the new scan. This means
that as we apply current on the top electrodes, the voltage of these electrodes changes;
meanwhile, the voltage on the bottom electrode stays fixed at -0.8 V but the current
on this electrode changes.
The current scans are split into three steps: the first step initializes the coupled RTG
model at a point below threshold, as described in Sec. 21.2. The second one ramps
the gain segment above threshold to produce the L-I curve of the laser. The last scan
keeps the gain segment current at its previous value but applies a tuning current to
the middle segment. In the last two scans, the photon coupling is turned on with
solve_rtg=yes.

Post-Processing

Once the simulation has been run, results can be plotted using the following .plt file:

$file:tune.plt
$ **************
begin_pstprc
plot_data plot_device=postscript

get_data sol_inf = tune.out main_input=tune.sol scan_data=(1 4)

plot_scan scan_var=current_1 variable = rtg_left_power_allmode

get_data sol_inf = tune.out main_input=tune.sol scan_data=(5 5) &&
xy_data=(5 5)
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plot_scan scan_var = current_4 variable = rtg_left_power_allmode &&
scale_horizontal=-1

plot_scan scan_var = current_4 variable =rtg_peak_wavelength &&
scale_horizontal=-1

get_data sol_inf = tune.out main_input=tune.sol &&
xy_data=(4 4)
gain_spectrum variable=rtg_spectrum
get_data sol_inf = tune.out main_input=tune.sol &&
xy_data=(5 5)
gain_spectrum variable=rtg_spectrum

lplot_xy variable=band xy_from=(0.5 1.1) &&
xy_to=(0.5 2.2) z=200.

splot_xyz variable=wave_intensity xy_from=(0.05, 0.0) xy_to=(0.05 3.38) &&
grid_sizes=(80, 20) view_zrot=20.

end_pstprc

As before, we use the plot_scan statement to plot bias-related data. However
because of our current convention, we need to use a scaling factor of -1 to plot curves
in the usual direction when using the current of the top electrodes.
The L-I curve during bias ramp is shown in Fig. 21.11. We plot versus the current
on electrode #2 since the bottom electrode has current contributions from other
segments. We also plot the power on the left facet since we have already determined
that the DBR section on the right is highly reflective.
To plot the results of the tuning, we do the same with current #3. As can be seen
in Fig. 21.12 a), the tuning current produces small variations in the output power
of the device. This is due to changes in the position of the longitudinal modes with
respect to the peaks of the gain curve and DBR reflection spectrum. As the power
of one mode goes down, a new mode becomes favored by the cavity and a mode hop
occurs. This can be shown by plotting the changes in the peak mode wavelength vs
bias, as seen in Fig. 21.12 b).
For structural data, the same rules as in Sec. 21.2 apply.
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Figure 21.11: Bias ramp in gain segment of tunable DBR laser
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Figure 21.12: Tuning characteristics of DBR laser
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Figure 21.13: 2D cut of VCSEL

21.5 VCSELS\jim_vcsel

This example is a basic vertical cavity surface emitting laser (VCSEL). Since the
optical propagation takes place perpendicularly to the active region, we will use a
different method to define segments and sections.

Layer Structure

This VCSEL is a GaAs-based MQW device designed to lase at 0.835 µm. The DBRs
consist of alternating Al0.25Ga0.75As/AlAs quarter-wave layers. However, since it
would require a lot of mesh to model all the layers of the DBR stack, we approximate
this region by an average material (Al0.625Ga0.375As) as shown in Fig. 21.13. This
is only for the purposes of the electrical simulation though: to model the optical
propagation, we must explicitly consider the alternating layers of the DBR.

Optical Propagation Model

Since the light propagation takes place in the vertical direction, the .layer file of a
VCSEL must also define the optical cavity. Strictly speaking, each individual layer
should be considered as an individual section for the purposes of propagation but
that would require too much computation time.
Instead, groups of layers are assigned to the same section by assigning them a
vcsel_type label in the layer statement. This label refers to a section specified
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by vcsel_section which defines the optical propagation model used for a particular
layer or group of layers. New users of PICS3D may find it easier to use the Layer-
Builder GUI to define VCSEL sections: right-click on a given layer and select the
VCSEL tab.
For example, the average layer used to represent the DBR electrically is assigned a
model that describes propagation in a periodic stack of layers. The spacer region is
a single layer and is treated as such optically. For reasons that are explained below,
the MQW region is also approximated by a single layer.
When defining VCSEL sections, care must be taken not to interleave section labels:
it is not supported by the software at this time. For example, assigning a particular
section label (e.g. “b”) to the barrier region and another to the well region (e.g.
“w”) may result in the label sequence “b/w/b” which would be an error and produce
incorrect section lengths. Therefore, we recommend that a single VCSEL section
label be used for the entire MQW region.
In a simple VCSEL design such as this one, the user needs to define only five VCSEL
sections: n-DBR, n-spacer, mqw_active, p-spacer, p-DBR. This is shown in the .layer
file below:

begin_layer

$layer_input_convention layer_unit=relative ref_wavelength=0.84

$
column column_num=1 w=7.5 mesh_num=4 r=1.
$
bottom_contact column_num=1 from=0 to=7.5 contact_num=1
$
$ to save mesh, use effective media: AlGaAs Al=0.625
$ n-mirror
$

vcsel_section vcsel_type=n-dbr &&
dbr_period_from_macro=yes &&
active=no mesh_points=10

$ this is the effective medium
layer_mater macro_name=algaas var1=0.625 column_num=1 var_symbol1=x

$ let’s define a DBR period using macro like this (use column 1 only)
$ (also possible to define grading within a DBR period)
vertical_dbr_layer_mater macro_name=algaas var_symbol1=x var1=0.25 &&

thick=0.0595
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vertical_dbr_layer_mater macro_name=algaas var_symbol1=x var1=1. &&
thick=0.0706

$ thickness here is actually determined by DBR periods above
layer d=1. n=15 r=0.9 &&

n_doping1=2.e24 vcsel_type=n-dbr use_dbr_period=29
$
$ add a spacing layer Al(0.6) GaAs of 1 lambda: 0.825/3.2=0.26
$
$ We choose the spacer carefully because the emission
$ wavelength depends on it.
$
vcsel_section vcsel_type=n-spacer &&

grating_model=1layer active=no &&
mesh_points=5

layer_mater macro_name=algaas var1=0.6 column_num=1 var_symbol1=x
layer d=0.23 n=6 r=0.9 vcsel_type=n-spacer
$
$ MQW system:
$
vcsel_section vcsel_type=mqw_active &&

grating_model=1layer active=yes &&
mesh_points=9

include file=jim.bar
include file=jim.well
include file=jim.bar
include file=jim.well
include file=jim.bar
include file=jim.well
include file=jim.bar
$
$
$ add a spacing layer Al(0.6) GaAs of 1 lambda: 0.825/3.2=0.26
$
$ We choose the spacer carefully because the emission
$ wavelength depends on it.
$
vcsel_section vcsel_type=p-spacer &&

grating_model=1layer active=no &&
mesh_points=5

$
layer_mater macro_name=algaas var1=0.6 column_num=1 var_symbol1=x
layer d=0.23 n=6 r=0.9 vcsel_type=p-spacer
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$
$ to save mesh, use effective media: AlGaAs Al=0.625
$

vcsel_section vcsel_type=p-dbr &&
dbr_period_from_macro=yes &&
active=no mesh_points=10

$ effective medium layer
layer_mater macro_name=algaas var1=0.625 column_num=1 var_symbol1=x

$ let’s define a DBR period using macro like this (use column 1 only)
$ (also possible to define grading within a DBR period)
vertical_dbr_layer_mater macro_name=algaas var_symbol1=x var1=1. &&

thick=0.0706
vertical_dbr_layer_mater macro_name=algaas var_symbol1=x var1=0.25 &&

thick=0.0595

$ thickness here is actually determined by DBR periods above
layer d=1. n=12 r=1.1 &&

p_doping1=3.e24 vcsel_type=p-dbr use_dbr_period=20
$
top_contact column_num=1 from=0 to=7.5 contact_num=2
$
end_layer

Note that we used the include statement above to repeat the MQW more easily.
The well and barrier regions are defined below:

layer_mater macro_name=algaas var1=0.25 &&
column_num=1 var_symbol1=x

layer d=0.0100 n=3 r=1. xp1=1 xp2=1 vcsel_type=mqw_active

layer_mater macro_name=gaas &&
column_num=1 active_macro=AlGaAs/AlGaAs &&
avar1=0. avar2=0.25 &&
avar_symbol1=xw avar_symbol2=xb

layer d=0.0070 n=3 r=1. xp1=1 xp2=1 vcsel_type=mqw_active

When using the LayerBuilder GUI, MQW regions can also be created easily by
copying and pasting layers. However, when using this method, it is recommended
that the VCSEL sections be defined only after all layers have been copied. The
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reason for this is that VCSEL section labels get copied right along with the layer
itself which can inadvertently produce alternating section labels.
The thickness of the n and p spacer regions determines the cavity length and thus,
the lasing wavelength. Since longitudinal modes are found where the round-trip
phase is a multiple of π, it is common to use a quick rule (thickness = λ

n
) when

designing VCSELs.
However, this approximation does not include the phase contribution from the DBR
mirrors (penetration depth) and propagation in the active region (non-zero thick-
ness). Therefore, choosing the spacer thickness is an iterative process: the estimate
above can be used as a starting guess but the optimal thickness will likely be a
bit smaller. We recommend using the round-trip gain (RTG) preview from .sol to
facilitate the procedure; see below or Sec. 21.2 for details.
When the .layer file is processed, it creates a .vcsel file in addition to the usual output
files. This contains various statements such as section that define the longitudinal
cavity model that will be used by PICS3D in the .sol file. The starting and ending
points of these sections should correspond to the layer positions defined above:

$
$ type:n-dbr
section length= 0.377290000000E-005 &&

sec_num= 1 mesh_points= 10 &&
active=no dbr_period_mater= 1

passive_3d nref_type2=2.e24 index_nref=2.e24 &&
sec_num = 1

$
$ type:n-spacer
section grating_model=1layer &&

length= 0.230000000000E-006 &&
sec_num= 2 mesh_points= 5 &&
active=no

passive_3d nref_type2=2.e24 index_nref=2.e24 &&
sec_num = 2

$
$ type:mqw_active
section grating_model=1layer &&

length= 0.610000000000E-007 &&
sec_num= 3 mesh_points= 9 &&
active=yes

$
$ type:p-spacer
section grating_model=1layer &&

length= 0.230000000000E-006 &&
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sec_num= 4 mesh_points= 5 &&
active=no

passive_3d nref_type2=2.e24 index_nref=2.e24 &&
sec_num = 4

$
$ type:p-dbr
section length= 0.260200000000E-005 &&

sec_num= 5 mesh_points= 10 &&
active=no dbr_period_mater= 5

passive_3d nref_type2=2.e24 index_nref=2.e24 &&
sec_num = 5

section_location start= 0.000000000000E+000 end= 0.689590000000E+001

Simulation Setup

The following .sol file is used to run the simulation:

$file:jim.sol
$***********
begin
load_mesh mesh_inf=jim.msh
include file=jim.gain
include file=jim.doping
output sol_outf=jim.out
more_output rtgain_scan=yes

$
$ **************************
$ VCSEL parameters:
$
vcsel_model index_core=3.2 index_cladding=1.0 &&

core_radius =7.5 bessel_order=0
sor_par max_iter=0
init_wave backg_loss=500 init_wavel=0.83 wavel_range=(0.75, 0.90)
cylindrical axis=y
$
newton_par damping_step=5. var_tol=1.e-9 res_tol=1.e-9 &&

max_iter=100 opt_iter=15 stop_iter=50 print_flag=3
$restart
equilibrium
rtgain_phase density=4.5e24
$stop
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$
newton_par damping_step=2. var_tol=1.e-2 res_tol=1.e-3 &&

max_iter=50 opt_iter=25 stop_iter=10 print_flag=3 change_variable=yes

scan var=voltage_1 value_to=-1.3 print_step=1.3 &&
init_step=0.2 min_step=1.e-5 max_step=0.5

$ better to start with low RTG and progress slowly
$ auto_finish=rtgain is mandatory to get RTG ready
$
scan var=current_1 value_to=8.e-3 print_step=0.15e-3 &&

init_step=0.1e-4 min_step=1.e-6 max_step=0.5e-3 &&
auto_finish=rtgain auto_until=0.95 auto_condition=above

$ it is wise to start with a small step here.

scan var=current_1 value_to=8.e-3 solve_rtg=yes &&
init_step=0.01e-3 max_step=0.1e-3

$
end
$*****************************
begin_zsol
longitudinal ref_wavel=0.825d-6 left_f_refl=0.32 right_f_refl=0.32

$
include file=jim.vcsel
$
mode_srch iter_num=75 wavel_xrange=(0.75e-6 0.9e-6)
bias3d step_num=10
end_zsol
$

As we previously discussed in Sec. 6.4, all PICS3D simulations are in 3D. However,
since this VCSEL has rotational symmetry, only a single mesh plane is required:
this means that most of the setup steps are the same as in a 2D simulation. What
turns this example into a 3D simulation is the simple addition of the cylindrical
statement: the y axis of the .layer file becomes the z axis of the cylindrical system
defined in 6.2.
Since this simulation is using cylindrical coordinates, a different mode solver must be
used. In this example, we use the fiber-like EIM model from Sec. 17.2 as defined in the
vcsel_model statement. As a result, many of the parameters from init_wave are
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inoperative. Here, this statement should only be used to define an initial wavelength
estimate for the mode solver, a wavelength range for material properties as well as
the background propagation loss coefficient.

Optical Propagation Model

The RTG is calculated by using a reference point in the cavity. For best results,
this point should be in the middle of the gain region so we modify the default
value of ref_midpoint in the longitudinal statement. We also use this statement
to specify the facet boundary conditions that lie beyond the DBR layers and the
reference wavelength for the longitudinal mode search.
The sections that define the optical cavity were generated by the layer.exe program
earlier. By adding the jim.vcsel file to the simulation with the include statement,
the .sol file can use this information.

Longitudinal Mode Search

Since a DBR cavity is very short, it must be tuned correctly to make the most of
the available material gain: the spacer thickness must be adjusted to get the desired
emission wavelength and the DBR stacks have to be optimized for this particular
wavelength.
To do this, we use the RTG preview we introduced in Sec. 21.2. This previews the
round-trip gain of the cavity using the tabulated gain from the .gain file and does a
preliminary search for longitudinal modes. The output is shown in the .log file:

Longitudinal modes found:
Wavelength (um) Round-Trip-Gain
0.895948E+000 0.447049E+000
0.889152E+000 0.615152E+000
0.834478E+000 0.997190E+000
0.785883E+000 0.437601E+000
0.780535E+000 0.344013E+000
0.771981E+000 0.330875E+000
0.760833E+000 0.500443E+000
0.752508E+000 0.136641E+000

Printing standing wave pattern near the active
region along with MQW information

End of Printing
Longitudinal standing wave gain

enhancement factor gfactor_stdwave= 1.70915643886328
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Figure 21.14: Feedback provided by bottom(left) and top(right) DBR stacks

In addition to this information, more data is available by using the plot_rtgain
statement in the.rtgain file. For example, we can verify the DBR stacks individually
by comparing the left (bottom) and right (top) RTG values with respect to the cavity
reference point defined earlier. This is shown in Fig. 21.14.
For VCSELs, additional information is available from the standing wave file (.stw)
generated by the RTG preview. This information is provided by adding stand-
ing_wave to the plot_rtgain statement.
For example, the standing wave overlap with the quantum well region is shown in
Fig. 21.15. In edge-emitting lasers, the standing wave is in the plane of the MQW
region so its contribution usually averages out. In a correctly tuned VCSEL cavity
however, the standing wave produces significant gain enhancement: the value is
shown in the .log printout above.

Bias setup

When applying bias, we follow the guidelines of Sec. 4.2. Since VCSELs have very
low threshold currents, the initial voltage scan not only terminates on a current
condition, it also initializes the coupled RTG model. That model is turned on by
solve_rtg=yes in the following scan statement.
In previous sections, we tried to emphasize the fact that the RTG initialization
should not take place at too low a bias value. This general rule does not apply to
VCSELs since the cavity is very short: even with a wide search window, there are
few longitudinal modes so it is unlikely that the lasing mode will be missed in the
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Figure 21.15: Standing wave pattern of VCSEL and overlap with MQW region

below-threshold search. However, we still need to turn on the photon coupling before
threshold is reached: the auto_finish=rtgain scan must use small bias steps in
order not to overshoot the desired bias point.

Post-Processing

Once the simulation has been run, results can be plotted using the following .plt file:

$ **************
$file:jim.plt
$ **************
begin_pstprc
plot_data plot_device=postscript
get_data main_input=jim.sol sol_inf=jim.out &&

xy_data=(4 4) scan_data=(1 4)
$
plot_scan scan_var=current_1 &&

variable=rtg_2facet_power_allmode

plot_scan scan_var=current_1 &&
variable=rtg_left_power_allmode

plot_scan scan_var=current_1 &&
variable=rtg_right_power_allmode
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Figure 21.16: Band diagram of VCSEL

gain_spectrum variable=rtg_spectrum

$
$ Plot at xy cross sections first
$
plot_1d variable=band from=(0.5 0.0) to=(0.5 6.9)
plot_2d variable=total_curr grid_sizes=(35, 35)
plot_2d variable=wave_intensity grid_sizes=(35, 35)
end_pstprc

Since the simulation uses only a single mesh plane, structural data is plotted using the
same commands as for 2D simulations. For example, the band diagram in Fig. 21.16
was generated with the plot_1d statement. The (x,y) coordinates are equivalent to
(r,z) in the cylindrical system.
For bias-dependent data, the same plot_scan statement is used. The 3D nature of
the simulation is already taken into account so unlike 2D simulations, the current is
plotted in Amperes. We show in Fig. 21.17 the power from the “right” side of the
device which corresponds to the top side of the VCSEL: there are fewer DBR layers
on that side of the device so it is where most of the output power comes out.
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Figure 21.17: Emission power from top facet
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Chapter 22

COMMAND SYNTAX

22.1 Introduction

This chapter explains the syntax of the various statements used in our software. Each
statement also supports a number of parameters: they are detailed in the relevant
section below.

22.2 2nd_harmonic

parameter data type values [defaults]
freq_shd1 real [0.1e9] (Hz)
freq_shd2 real [0.1e9] (Hz)
freq_shd3 real [0.1e9] (Hz)
freq_shd4 real [0.1e9] (Hz)
freq_shd5 real [0.1e9] (Hz)
freq_shd_num intg [1]

The statement 2nd_harmonic is used to specify the the modulation frequencies at
which the second harmonic distortion ratio is computed.

Parameters

• freq_shd# is the modulation frequency of channel number #.

• freq_shd_num is the number of modulation channels being considered for
calculation.
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Examples

2nd_harmonic freq_shd1=1.e7 freq_shd2=1.e8 freq_shd3=2.e8 &&
freq_shd4=6.e8 freq_shd_num=4

22.3 3d_amplifier_model

parameter data type values [defaults]
input_spec_shape char
interband_bulk_absorption char
wavelength real [1.55] (µm)
input_watt real [0.001] (Watt)
linewidth_ghz real [1.] (GHz)
more_wavelength_pair intg [0]

The statement 3d_amplifier_model is used to specify the input power and wave-
length of the semiconductor optical amplifier (SOA) or photo-absorbing waveg-
uide/modulator. It is assumed that input light is incident from the left facet and
output power is from the right facet.

Parameters

• input_spec_shape defines the spectral shape of the light input to the SOA
or modulator. The input file defined here should consist of a text file with two
columns: wavelength (in µm) and normalized intensity.

• interband_bulk_absorption is needed to turn on the optical generation
due to the SOA/modulator light input when the device consists only of passive
bulk regions. This step is necessary due to the separation (in the code) of
the optical generation related to optical pumping (i.e. light_power) and the
generation that occurs as a result of negative stimulated recombination.
3d_amplifier_model and waveguide_input are both designed with an
amplifier model in mind and use this second term to amplify/absorb the input
light. If no active material is present to trigger the calculation of the stim-
ulated recombination term, the simulation may not behave correctly. Using
this parameter substitutes the bulk absorption coefficient for the computed
gain/absorption value in the stimulated recombination term.

• wavelength is the input light wavelength in µm.
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• input_watt is the input light power in Watt. This value is scaled by the
light variable in the scan statement. This scaling factor is equal to zero under
equilibrium conditions.

• linewidth_ghz can be used to quickly define an input spectrum having a flat
profile and a certain width. It does not correspond to the linewidth of a laser
line input to the device.

• more_wavelength_pair defines the number of additional mode peaks in the
spectral window being solved. Each peak will be solved self-consistently to get
the photon number and amplified spontaneous emission spectra.

Examples

3d_amplifier_model wavelength=1.3 input_watt=1.e-4

$ Bias steps omitted ...
scan var=light value_to=1 init_step=1.e-3 &&

var2=current_1 value2_to=18.5e-3 max_step=0.02 solve_rtg=yes

22.4 3d_attachment

parameter data type values [defaults]
xy realx2 [0 0] (µm2)
to_xy realx2 [0 0] (µm2)
zeg_num intg [1]
to_zseg_num intg [1]

In a conventional 3D setup, z-segments are stacked on top of each other to form a
long back to back sequence of 3D objects. The 3d_attachment command is used
to break this sequence and attach any z-segment to any previously defined z-segment:
this is used to design complicated 3D structures.

Parameters

• xy is a reference point on the segment being attached. This point will be
connected to to_xy during the attachment process.

• to_xy is a reference point on the segment that is the target of the attachment.
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• zeg_num is the segment being attached.

• to_zeg_num is the segment that is the target of the attachment.

Examples

z_structure uniform_zseg_from=0 uniform_zseg_to=1 &&
zseg_num=2 zplanes=4

z_structure uniform_length=0.3 &&
zseg_num=3 zplanes=4

3d_attachment xy=(0.4 0.4) to_xy=(0.5 0.5) &&
zseg_num=3 to_zseg_num=2

22.5 3d_plane_control

parameter data type values [defaults]
z_link_same_mater_only char [no]
min_cyl_plane_distance real [1.e-4](um)
scale_z_coupling real [1.]

The statement 3d_plane_control is similar to 3d_solution_method and is
used to control the connectivity between stacked mesh planes in a 3D simulation.

Parameters

• z_link_same_mater_only would force mesh connectivity only between the
same material. This can help avoid undesirable current leakage through differ-
ent materials.

• min_cyl_plane_distance specifies a minimum distance between planes stacked
in a cylindrical system. At r = 0, the distance between planes is also zero and
allowing mesh connectivity can cause problems in some cases.

• scale_z_coupling would be used to artificially scale the coupling coefficient
(in units of areas) between z-planes.

Examples

3d_plane_control z_link_same_mater_only=yes
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22.6 3d_solution_method

parameter data type values [defaults]
3d_flow char [yes],no
z_connect char yes,[no]
z_connect_method char [gpc1],gpc2
xy_compatible_mesh char yes,[no]
traveling_wave_model char yes,[no]
suprem_insert_mesh char yes,[no]
save_z_connect_data char yes,[no]
load_z_connect_data char yes,[no]
skip_fv_data char yes,[no]

The statement 3d_solution_method is used to define the solution method for a
3D structure. It is related to the statement z_structure.
Note that this is used only for devices with more than one mesh plane. Cylindrical
devices with a single mesh plane rely on rotational symmetry to define the third
dimension and should use the cylindrical statement instead.

Parameters

• 3d_flow is obsolete and used for historical reasons only. All current versions of
the software should use 3d_flow=yes when modeling devices with more than
one mesh plane. If necessary, the electrical connection between mesh planes
can be turned off with z_connect.

• z_connect is used when modeling multiple mesh planes at once is required
(as in the coupled-RTG method of PICS3D) but it is not necessary to allow
current to flow between planes. This should not be used in devices where the
main current flow direction is perpendicular to the mesh planes.

• z_connect_method controls the algorithm used to evaluate the connection
between mesh points on neighboring planes; this connection is a function of
the overlap between the polygon boxes surrounding each mesh points. Two
methods are available: gpc1 which favors speed and gpc2 which favors accuracy.

• xy_compatible_mesh can be used to simplify the problem when all mesh
planes use the same identical layout. The software will alter the way is positions
planes at z-segment boundaries and will not calculate the mesh point overlap
between planes. Warning: using this option when the planes are not
compatible is a serious error so this option should be used with care.
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• traveling_wave_model is used in 3D amplifier and SLED models in PICS3D.
It is used to calculate the round-trip propagation based on power flux rather
then optical fields.

• suprem_insert_mesh is used only when importing 3D mesh data from
CSUPREM where additional bent mesh planes have been added.

• save_z_connect_data instructs the software to save the connection data
between mesh planes. In subsequent simulations, load_z_connect_data
may be used to speed up the simulation by re-using these results.

• skip_fv_data instructs the software not to store filling volume data. This
statement should be used in simulations where multiple 2D devices are solved
using a single 3D mesh but the devices are not actually monolithically inte-
grated.

Examples

3d_solution_method 3d\_flow=yes

This setting is used for full 3D simulations in APSYS.

3d_solution_method 3d\_flow=yes z_connect=no

In PICS3D the above would mean decoupling all plane interactions except for the
optical wave propagation (coupled round-trip gain).

22.7 3drayplot_angle

parameter data type values [defaults]
data_file char void
smooth char [yes] no
view_xrot real [0.]
view_zrot real [0.]
theta_range realx2 [0. 180.]
phi_range realx2 [0. 360.]
smooth_width real [8.](degree)
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Figure 22.1: The spherical coordinates used for raytracing commands

3drayplot_angle is used after a 3D raytracing simulation to plot the emitted power
distribution. The power is shown in the form power(phi,theta) where the two angles
(in degrees) are defined in the spherical coordinate system of Fig. 22.1.
In order to save time, it is common to use separate .plt files to do the raytracing
simulation and plot its results. If that is the case and symmetry conditions have
been enforced with set_3dray_mirror during the raytracing simulation, then this
statement should be reused to guarantee the symmetry of the plot.
Note that 1D cuts of this data are available with the 3d_rayplot_phi and 3d_rayplot_theta.
This should be used when plotting results from a 2D simulation since the raytracing
program will only emit rays in a plane: 3drayplot_angle cannot be used in that
case.

Parameters

• data_file copies the plot results to the specified data file.

• view_xrot rotates the plot around the phi-axis.

• view_zrot rotates the plot around the power-axis.

• theta_range narrows the area plot within theta angle range.

• phi_range narrows the area plot within phi angle range.

• smooth indicates if data smoothing is performed. This is usually recom-
mended since there are only a finite number of rays in a given simulation.
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• smooth_width is the width of the data broadening/smoothing. A Gaussian
function is used for smoothing and this parameter is the standard deviation.
The larger the standard deviation, the smoother the data curve appears to be.

Examples

3drayplot_angle phi_range=(180. 360.)

22.8 3drayplot_bias

parameter data type values [defaults]
variable char [transmitted]
relative char [no] yes
bias_variable char [current]voltage
data_file char [void]
bias_electrode intg [1]

3drayplot_bias is used to plot bias-dependent results from a 3D raytracing simu-
lation.
In order to save time, it is common to use separate .plt files to do the raytracing
simulation and plot its results. If that is the case and symmetry conditions have
been enforced with set_3dray_mirror during the raytracing simulation, then this
statement should be reused to scale the results properly.

Parameters

• variable is the physical variable to be plotted. It takes one of the following
values:

variable description
total_source Total power of the emission source.
transmitted Total transmitted power.
semicond_absorb Power absorbed in LED, excluding losses due to metal contacts.
contact_absorb Power absorbed in LED due to metal contacts.
upper_half Power emitted towards the upper half semi-sphere.
lower_half Power emitted towards the lower half semi-sphere.
left_half Power emitted towards the left half semi-sphere.
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right_half Power emitted towards the right half semi-sphere.
front_half Power emitted towards the front half semi-sphere.
back_half Power emitted towards the back half semi-sphere.
upper_side Power emitted through the upper side facet(s).
lower_side Power emitted through the lower side facet(s).
left_side Power emitted through the left side facet(s).
right_side Power emitted through the right side facet(s).
front_side Power emitted through the front side facet(s).
back_side Power emitted through the back side facet(s).

• relative indicates whether relative or absolute values are being plotted.

• bias_variable is the bias variable to appear in the horizontal axis of the plot.

• data_file copies the plot results in the specified data file.

• bias_electrode is the electrode/contact number of parameter bias_variable.

Examples

3drayplot_bias variable=transmitted bias_variable=current

The above statement plots the total transmitted LED power versus the current from
electrode number 1.

22.9 3drayplot_phi

parameter data type values [defaults]
data_file char [void]
smooth char [yes] no
polar char [yes] no
theta real [0.] (degrees)
smooth_width real [8.](degree)

3drayplot_phi is used after a 3D raytracing simulation to plot the emitted power
distribution. The power is shown as a 1D of power(phi,theta) at a specific theta
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value. Both angles are in degrees and are defined in the spherical coordinate system
of Fig. 22.1.
In order to save time, it is common to use separate .plt files to do the raytracing
simulation and plot its results. If that is the case and symmetry conditions have
been enforced with set_3dray_mirror during the raytracing simulation, then this
statement should be reused to guarantee the symmetry of the plot.

Parameters

• theta is the fixed-theta angle for the plot of power versus phi. It ranges from
0 to 180 degrees.

• data_file copies the plot results to the specified data file.

• polar determines whether or not the results are shown in polar coordinates.

• smooth indicates if data smoothing is performed. This is usually recom-
mended since there are only a finite number of rays in a given simulation.

• smooth_width is the width of the data broadening/smoothing. A Gaussian
function is used for smoothing and this parameter is the standard deviation.
The larger the standard deviation, the smoother the data curve appears to be.

Examples

3drayplot_pho theta=0

22.10 3drayplot_project

parameter data type values [defaults]
view_xrot real [0.]
view_zrot real [0.]
distance real [1.]
radius real [2.]
position_phi real [270.]
position_theta real [90.]

3drayplot_project is a post-processing statement for a 3D raytracing simulation.
It shows the power distribution as projected onto a screen some distance away from
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LED

distance

X
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Z

radius

Figure 22.2: The variables distance and radius of 3drayplot_project statement

the LED as shown in Fig. 22.2. Position on the screen is determined by the angles
phi and theta (see Fig. 22.1) of a spherical coordinate system centered on the LED.

Parameters

• view_xrot rotates the plot around the phi-axis.

• view_zrot rotates the plot around the power-axis.

• distance is the distance between the screen center and the center of the LED.

• radius is the radius of the circle area of projection.

• position_phi is a screen center position defined by the angle phi.

• position_theta is a screen center position defined by the angle theta.

The angle values are given in degrees. The distance and radius are in units of meter.

Examples

3drayplot_project radius=3. position_phi=90.
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22.11 3drayplot_spectrum

parameter data type values [defaults]
variable char [transmitted]
data_file char
relative char yes,[no]

3drayplot_spectrum is used after a 3D raytracing simulation to plot various
wavelength-dependent results.

Parameters

• variable is the variable being plotted. The definitions are the same as in
3drayplot_bias.

• data_file copies the plot results to the specified data file.

• relative is used to show plots using absolute power units or as a percentage.

Examples

3drayplot_spectrum variable=transmitted relative=yes

22.12 3drayplot_surfpower

parameter data type values [defaults]
data_file char [void]
smooth char [yes] no
side char -x,+x,-y,+y,-z,+z
x_range realx2 [-9999. , -9999.] (um)
y_range realx2 [-9999. , -9999.] (um)
smooth_width real [1.](um)

3drayplot_surfpower is used to plot the surface emission power in a 3D ray tracing
simulation.
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Parameters

• data_file copies the plot results to the specified data file.

• side determines which side is to be plotted.

• smooth indicates if data smoothing is performed.

• smooth_width is the width of the data broadening/smoothing. A Gaussian
function is used for smoothing and this parameter is the standard deviation.
The larger the standard deviation, the smoother the plot.

• x_range and y_range can be used to zoom in on a particular section of the
plot. Note however that the original data is still limited by surface_power_grid
in do_raytrace_3d.

Examples

3drayplot_surfpower side=+y

22.13 3drayplot_theta

parameter data type values [defaults]
data_file char [void]
smooth char [yes] no
polar char [yes] no
phi real [90.] (degrees)
smooth_width real [8.](degree)

3drayplot_theta is used after a 3D raytracing simulation to plot the emitted power
distribution. The power is shown as a 1D of power(phi,theta) at a specific phi value.
Both angles are in degrees and are defined in the spherical coordinate system of
Fig. 22.1.
In order to save time, it is common to use separate .plt files to do the raytracing
simulation and plot its results. If that is the case and symmetry conditions have
been enforced with set_3dray_mirror during the raytracing simulation, then this
statement should be reused to guarantee the symmetry of the plot.
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Parameters

• phi is the fixed-phi angle for the plot of power versus theta. It ranges from 0
to 360 degrees.

• data_file copies the plot results to the specified data file.

• polar determines whether or not the results are shown in polar coordinates.

• smooth indicates if data smoothing is performed. This is usually recom-
mended since there are only a finite number of rays in a given simulation.

• smooth_width is the width of the data broadening/smoothing. A Gaussian
function is used for smoothing and this parameter is the standard deviation.
The larger the standard deviation, the smoother the data curve appears to be.

Examples

3drayplot_theta phi=90

22.14 a_bar

The material statement a_well is an active layer macro statement used for zincblende
materials to define the total hydrostatic deformation potential (eV) in the barrier
of a quantum well. This value is split between the conduction and valence bands
(ac + av = a). The exact ratio between these values is determined by av_over_a
in active_reg.
Please note that for wurtzite, a more complex strain model is required so this pa-
rameter is ignored. See ac_bar for details.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.15 a_bulk

This statement is obsolete. Please see ac_bulk for details.
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22.16 a_well

The material statement a_well is an active layer macro statement used for zincblende
materials to define the total hydrostatic deformation potential (eV) in a quantum well
or bulk active region. This value is split between the conduction and valence bands
(ac + av = a). The exact ratio between these values is determined by av_over_a
in active_reg.
Please note that for wurtzite, a more complex strain model is required so this pa-
rameter is ignored. See ac_well for details.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.17 absorption

This material statement is used to defined the optical absorption or loss (in units of
1/m) in passive materials of the device. For active materials, this value is overridden
by the internal gain calculations.
The default macro setting for this parameter is zero which means that a default
background loss will be applied for this material. This background loss will be
determined either by a hard-coded value in the software or from the backg_loss
value in init_wave or set_wavelength. Note that conversely, a non-zero value of
absorption will override the background loss for this material.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.18 ac_bar

ac_bar is an active layer macro statement that is used for wurtzite materials [62].
It defines the hydrostatic deformation potential (in eV) applied to the conduction
band in the barrier of a quantum well. This parameter is applied to the lateral strain
coefficient ϵxx; see acz_bar for the matching coefficient which is applied to ϵzz.
This value is used to position the band edges based on the value of band_offset
and the strained bandgap difference, as discussed in Sec. 10.1
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.
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22.19 ac_bulk

The material statement ac_bulk is a passive macro statement used to define the
hydrostatic deformation potential (eV) applied to the conduction band in wurtzite
bulk regions[62].
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

Important Note

This parameter is used internally to solve the bulk Wurtzite Hamiltonian and com-
pute band edges as part of the fitting procedure for the effective masses in Sec. 13.1.
However, it is not used to actually shift the conduction band that is used
for transport.
Users who wish to see strain effects affect the position of bulk band edges are advised
to modify the affinity statement to include the hydrostatic shift. It may also be
necessary to use bulk_strain_exist=yes in wurtzite_offset_model.

22.20 ac_light

parameter data type values [defaults]
output_file char [void]
current_distr char [no] yes
versus_bias char yes [no]
log_freq1 real [6.]
log_freq2 real [12.]
freq_point intg [20]
scanline intg [-9999]
scan_num intg [-9999]

ac_light is a post-processing statement used to apply a small AC light signal to
a photosensitive device being simulated. It is otherwise similar to ac_voltage
and the required AC data must be gathered during the main simulation with the
more_output statement.
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Parameters

• output_file is the output file where AC small signal analysis data for this
statement will be saved.

• current_distr is used to indicate if AC current distribution data is to be
saved in the output file for later use.

• versus_bias indicates if the plot is against bias (or scanned variable) or vs.
the modulation frequency.

• log_freq1 is the starting frequency in log10 scale for the frequency scan.

• log_freq2 is the ending frequency in log10 scale for the frequency scan.

• freq_point is the number of frequency points for the AC scan.

• scanline is used only when versus_bias=yes. It is the same as in plot_scan.

• scan_num equals scanline-1.

Examples

ac_light output_file=testlight.ac log_freq1=6. log_freq2=12. &&
freq_point=20
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22.21 ac_parameters

parameter data type values [defaults]
output_file char [void]
log_scan char [yes] no
versus_bias char yes [no]
scan_label char []
modulate_gain char [no], yes
mixmode char [no], yes
log_freq1 real [6.]
log_freq2 real [12.]
scale_lit real [1.]
scale_curr real [1.]
input_contact intg
output_contact intg
freq_point intg [20]
scanline intg []
scan_num intg []

ac_parameters is used to set up the AC analysis for a 2-port high frequency model.
Once the input and output contacts are defined, the analysis is performed with an
AC voltage signal at the input and output contacts; the resulting current responses
are saved in a data file so that AC characteristics (such Y- and S-parameters) can
be plotted afterwards.
This statement is used in .plt files as a post-processing statement after the DC results
are obtained. To use this statement, more_output should be used in the .sol file
to instruct the program to save the necessary extra AC data while performing the
DC simulation.
To apply the AC bias to a single electrode, use ac_voltage.

Parameters

• output_file is the output file where AC small signal analysis data for this
statement will be saved for later use. The simulator will assign an internal file
name if this parameter is not defined.

• log_scan indicates whether frequency points are spaced equally on a logarith-
mic or linear scale.
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• versus_bias indicates if the plot is against bias (or scanned variable) or vs.
the modulation frequency.
In the first case, data sets at multiple bias values are used so the input range
for the AC analysis is defined by the scan_data parameter of the preceding
get_data statement. A single frequency value is used for all bias points.
In the latter case, a single bias value is used so the input range is instead set by
xy_data in the same command. Multiple frequency points are used to analyse
this single bias point. Note that the equivalence between the data set number
and the exact voltage/current bias value is shown in the .log and .sol.msg files
for each simulation.

• log_freq1 is the starting frequency in log10 scale for the frequency scan; the
end of the range is given by log_freq2. If versus_bias=yes, these two values
should be identical to set the single frequency at which the AC analysis is done.

• scale_lit is applicable for laser simulation and scales the light power to account
for the symmetry of the device; scale_lit is similar but scales the laser current.
Previous versions of LASTIP assumed symmetry and set both of these values
to 2 by default; see plot_scan for more information.

• input_contact is the input contact in a 2-port system; similarly, output_contact
is the output contact. For example, in the common emitter configuration of a
BJT, the input contact would be the base while the output contact would be
the collector.
Please note that during the AC analysis, all other contacts are assumed to have
a zero AC voltage bias unless otherwise specified or controlled in some way. To
define a floating electrode that can still supply a DC bias, an external circuit
with a large inductance may be used.

• freq_point is the number of frequency points for the AC scan when ver-
sus_bias=no.

• scanline is used only when versus_bias=yes; the definition is the same as in
plot_scan. This parameter filters the data sets defined in get_data so that
only some of them get processed in the AC analysis.
Alternatively, scan_num = scanline-1 may be used to select data sets. A
previously-defined scan label may also be used with scan_label.

• modulate_gain is used in laser simulations to include the effects of the photon
rate equation on the AC response.

• mixmode is used in mixed-mode (minipsice) simulations to include the ef-
fects of external circuit elements in the AC response.
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Examples

To plot y, s or h-parameters vs. the input voltage at 1 MHz:

$ For purpose of demonstrating the plotting,
$ let us plot y parameters assuming input=output=electrode #1
get_data main_input=camel.sol sol_inf=camel.out &&

scan_data=(3 13)

ac_parameters versus_bias=yes log_freq1=6. log_freq2=6. &&
input_contact=1 output_contact=1 freq_point=2 scanline=3

plot_ac_parameters parameter_type=y smith_chart=no

For a frequency analysis between 1 kHz and 10 GHz for data set #6:

$ contact 1 = collector
$ contact 2 = emitter
$ contact 3 = base
$
$ AC results
get_data main_input=bi_mi.sol sol_inf= bi_mi.out &&

xy_data=(6 6)

ac_parameters log_freq1=3. log_freq2=10. &&
freq_point=20 input_contact=3 output_contact=1

plot_ac_parameters parameter_type=y smith_chart=no

plot_ac_parameters parameter_type=s smith_chart=no

plot_ac_parameters parameter_type=s smith_chart=yes

22.22 ac_sparse_solver

parameter data type values [defaults]
use_mf char [yes],no

sparse_eigen_solver is used to control the sparse solver used in the .plt file for
AC small signal analysis. The default setting is usually optimal and should be used
unless there is a convergence problem.
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Parameters

• use_mf is used to indicate whether multi-frontal solver will be used.

Examples

ac_sparse\_solver use_mf=yes

22.23 ac_voltage

parameter data type values [defaults]
output_file char [void]
current_distr char yes, [no]
log_scan char [yes], no
versus_bias char yes, [no]
scan_label char []
modulate_gain char [no], yes
mixmode char [no], yes
log_freq1 real [6.]
log_freq2 real [12.]
scale_lit real [1.]
scale_curr real [1.]
contact_num intg
freq_point intg [20]
scanline intg []
scan_num intg []

ac_voltage is used to apply a small AC bias voltage on one of the electrodes; the
resulting current responses are saved in a data file so that AC characteristics can be
plotted afterwards.
This statement is used in .plt files as a post-processing statement after the DC results
are obtained. To use this statement, more_output should be used in the .sol file
to instruct the program to save the necessary extra AC data while performing the
DC simulation.
For devices with more than two electrodes, ac_parameters may be used to perform
a similar small-signal analysis using a two-port model.
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Parameters

• output_file is the output file where AC small signal analysis data for this
statement will be saved for later use. The simulator will assign an internal file
name if this parameter is not defined.

• current_distr instructs the software to output the AC current distribution
instead of data related to the AC current on the electrodes. Since this current
flow is shown vs. x-y coordinates, the AC analysis can only be done at a single
frequency rather than over a range.

• log_scan indicates whether frequency points are spaced equally on a logarith-
mic or linear scale.

• versus_bias indicates if the plot is against bias (or scanned variable) or vs.
the modulation frequency.

In the first case, data sets at multiple bias values are used so the input range
for the AC analysis is defined by the scan_data parameter of the preceding
get_data statement. A single frequency value is used for all bias points.

In the latter case, a single bias value is used so the input range is instead set
by xy_data in the same command. Note that the equivalence between the
data set number and the exact voltage/current bias value is shown in the .log
and .sol.msg files for each simulation.

• log_freq1 is the starting frequency in log10 scale for the frequency scan; the
end of the range is given by log_freq2. If versus_bias or current_distr
are set to yes, these two values should be identical to set the single frequency
at which the AC analysis is done.

• scale_lit is applicable for laser simulation and scales the light power to account
for the symmetry of the device; scale_lit is similar but scales the laser current.
Previous versions of LASTIP assumed symmetry and set both of these values
to 2 by default; see plot_scan for more information.

• contact_num is the input contact for the AC voltage; all other contacts are
assumed to have a zero AC voltage bias unless controlled in some other way.

Please note that during the AC analysis, all other contacts are assumed to have
a zero AC voltage bias unless otherwise specified or controlled in some way. To
define a floating electrode that can still supply a DC bias, an external circuit
with a large inductance may be used.

• freq_point is the number of frequency points for the AC scan when ver-
sus_bias=no.
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• scanline is used only when versus_bias=yes; the definition is the same as in
plot_scan. This parameter filters the data sets defined in get_data so that
only some of them get processed in the AC analysis.

Alternatively, scan_num = scanline-1 may be used to select data sets. A
previously-defined scan label may also be used with scan_label.

• modulate_gain is used in laser simulations to include the effects of the photon
rate equation on the AC response.

• mixmode is used in mixed-mode (minipsice) simulations to include the ef-
fects of external circuit elements in the AC response.

If this setting is used then the input source for the AC voltage are defined in
the SPICE circuit file and the contact_num setting is ignored: all TCAD
electrode voltages become unknowns that must be solved for.

Examples

This example shows analysis vs. frequency for data set #2. The real and imagi-
nary parts of the AC current for electrode #1 is used to obtain G-f and C-f plots,
respectively.

$ AC analysis at max. voltage
get_data main_input=camel.sol sol_inf=camel.out &&

xy_data=(2 2)

$ AC analysis vs. freq.
ac_voltage log_freq1=6. log_freq2=10. contact_num=1
plot_ac_curr variable=capacitance_1
plot_ac_curr variable=conductance_1

We wish to emphasize that in the above, capacitance is obtained directly from the
AC electrode current (I = V Y , with Y = G + jωC). Different electrodes may
have different AC current values, in which case the capacitance values will also
be different; this may occur in current-blocking device simulations with numerical
accuracy difficulties or in devices where multiple electrodes split the current. This
definition of capacitance is thus similar to what is obtained experimentally and lumps
together all effects which add a “lag” to the signal response including, but not limited
to, junction capacitance and carrier transit time in thick layers.
This second example is the same as above except that instead of looking at data from
the electrodes, the physical distribution of AC current inside the device is shown.
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$ AC analysis at max. voltage
get_data main_input=camel.sol sol_inf=camel.out &&

xy_data=(2 2)

$ Physical distribution of AC current @ 1 MHz
ac_voltage current_distr=yes log_freq1=6. log_freq2=6.
plot_1d_ac_curr variable=elec_curr_y imag_part=no from=(0.5 0.) to=(0.5 2.3)
plot_1d_ac_curr variable=hole_curr_y imag_part=no from=(0.5 0.) to=(0.5 2.3)

The third example shows C-V and G-V plots at 1 MHz. The electrode used to input
the AC signal (#1) serves as the horizontal axis of the C-V plot which means that
it was also used as the original DC bias electrode.

$ We plot capacitance-voltage and conductance-voltage here at 1 MHz
$ To generate reasonably smooth AC vs. bias plots, please save a sufficient
$ number of data sets. AC analysis plots cannot include equilibrium data.
get_data main_input=camel.sol sol_inf=camel.out &&

scan_data=(3 13)

ac_voltage log_freq1=6. log_freq2=6. contact_num=1 &&
freq_point=2 versus_bias=yes scanline=3

set_xydata_for_scan scan_var=voltage_1
plot_ac_curr variable=capacitance_1
plot_ac_curr variable=conductance_1

Our final example is a mixed-mode AC simulation, new to v.2015 of the software.

get_data main_input=tt.sol &&
sol_inf=tt.out xy_data=[ 2 2]

ac_voltage mixmode=yes log_freq1=6. log_freq2=10 &&
current_distr=no freq_point=20

plot_ac_curr variable=t_real_2
plot_ac_curr variable=d_real_2
plot_ac_curr variable=capacitance_2

plot_ac_minispice variable=voltage node=2 element=void
plot_ac_minispice variable=current node=2 element=Dtcad1
plot_ac_minispice variable=current node=2 element=R2
plot_ac_minispice variable=current node=2 element=Dtcad1 imag_part=yes
plot_ac_minispice variable=current node=2 element=R2 imag_part=yes
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As in the first example, capacitance is extracted from the electrode’s (#2) current
response. However this time, the input AC voltage is located outside the device and
is applied to a SPICE node, as shown in the following circuit file:

# test circuit
R1 0 1 1k
Vcc 1 0 0.65V AC_INPUT
R2 1 2 1k
R3 0 2 0.5k
Dtcad1 2 0 tcadmesh
.END

22.24 ac_well

ac_well is an active layer macro statement that is used for wurtzite materials [62].
It defines the hydrostatic deformation potential (in eV) applied to the conduction
band in a quantum well or in a bulk active region. This parameter is applied to
the lateral strain coefficient ϵxx; see acz_well for the matching coefficient which is
applied to ϵzz.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

Important Note

In quantum wells, this parameter is used, among other things, to compute the band
edges based on the value of band_offset and the strained bandgap difference, as
discussed in Sec. 10.1.
However, in a bulk active region the position of the conduction band is inherited from
the underlying passive macro. As such, this parameter is not used to actually
shift the conduction band that is used for transport. This parameter is only
used internally as part of the band fitting procedure for the effective masses in Sec.
13.1.
Users who wish to see strain effects affect the position of bulk active band edges are
advised to modify the affinity statement (in the underlying passive macro) to include
the hydrostatic shift. It may also be necessary to use bulk_strain_exist=yes in
wurtzite_offset_model.
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22.25 active_macro_override

parameter data type values [defaults]
complex_macro char [yes]

The statement active_macro_override is used to control how parameters that are
defined in both active and passive macros co-exist in the simulation. For example,
bandgap is necessary for both the gain calculations (active macro, can be used in
stand-alone gain preview mode) and the electrical solver (passive macro, aligns the
band edges). By default, the passive macro is always overridden by the active macro.
In the conventional active macros, passive parameters belonging to both the quantum
well and barrier may be overridden. More complex situations can occur when using
complex MQW macros where the distinction between barrier and well is fuzzier so
this statement allows for a convenient way of going back to a simpler model and
disabling the active macro override.
See also use_bulk_affinity, use_bulk_bandgap and use_bulk_property for
a partial disabling of the active macro override system.

Parameters

• The complex_macro flag turns on (default) or off the override of passive
material parameters by complex MQW macros.

22.26 active_reg

parameter data type values [defaults]
mode char [te],tm
broadening char [lorentzian], landsberg, lands-

berg_2
axial_approx char [yes],no
valence_mixing char [no],yes
analytical_recomb char [no],yes
bandgap_renorm char [no],yes
gain_coulomb char [no],yes
exciton char [no],yes
coulomb_dim char [quasi2d],2d,3d
coulomb_screen char [yes],no
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franz_keldysh char [no],yes
mater_label char
bulk_active char [no],yes
strained_bulk_active char [no],yes
uniaxial_strain char [no],yes
exch_coef real [0.0] (eV/m)
tau_scat real [2.e-13] (sec)
a_scat real [0.0] (eV m3/2)
thickness real [0.05] (µm)
ncarr_loss real [0.0] (m2)
pcarr_loss real [0.0] (m2)
dip_factor real [1.]
k_range real [0.06]
tau_bkg real [5.e-13](sec)
expo_mix real [0.01] (eV)
active_loss real [0.] (1/m)
av_over_a real [0.33333]
k_range_wurt real [0.1]
diel_av real [13.1]
plasma_coeff real [1.0]
sommerfeld_fac real [1.7]
rmesh_fd real [0.2]
two_photon_loss real [0] (m2)
two_photon_carr real [0] (m5)
mater intg [1]
qw_print intg [1]
level_srch intg [30]
fd_mesh intg [80]
qw_plane intg [100]
coulomb_int_acc intg [6]
embedded_structure intg [0],1,2

The statement active_reg is used to define active regions where optical gain/absorption
is calculated according to the usual formulas (i.e. Fermi’s golden rule). This state-
ment should be used in conjunction with get_active_layer to load active macro
parameters such as composition.
active_reg also defines various gain calculation settings on a per-material basis. In
practice, users who wish to alter these settings in their simulation want to change
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them for all active regions in the device: this means using set_active_reg is often
preferred to change these settings. With a few exceptions, the two statements share
the same set of input parameters.
For wurtzite structures, additional relevant parameters are controlled by the mod-
ify_wurtzite statement.

Parameters

• mode defines whether TE or TM modes are assumed in the gain calculation.
The spontaneous emission is not affected by this choice because spontaneous
emission is randomly polarized.

• broadening defines the type of energy level broadening used in the quantum
well gain calculation. Bulk optical gain is not affected by this option since
this effect is much smaller than in quantum wells. The following choices are
available:

– lorentzian uses the ideal Lorentzian function with constant half-width Γ
over all frequencies. Refer to Sec. 8.3.3 for details.

– landsberg uses a broadening function of the Landsberg type, i.e., a Lorentzian
function with an energy and carrier concentration dependent Γ. Note that
this model does not include any broadening for optical gain below trans-
parency (or loss). Therefore the gain spectrum contains step-like jumps
in the negative gain region. Refer to Sec. 8.3.4 for details.

– landsberg_2 is a modified version of the ideal Landsberg model that com-
bines useful features of the previous two options. The original Lands-
berg model assumes no broadening below transparency and results in
sharp edges in the quantum well spectrum. The modified Landsberg
model replaces the spectrum below transparency by a Lorentzian broad-
ened gain with a different broadening tau equal to tau_bkg (for tau
of background). Above the transparency, the gain function is a mixture
of Landsberg broadened gain and Lorentzian broadened gain controlled
by expo_mix. Physically the background Lorentzian broadening can
be considered as contributions from scattering mechanisms other than
carrier-carrier interaction.

• axial_approx turns on/off the axial approximation in k.p band dispersion
calculation.

• valence_mixing turns on/off the valence mixing model in the k.p quantum
well theory. The 4 × 4 Luttinger-Kohn Hamiltonian is solved for the quantum
well system based on the formulas of S.L. Chuang. For the wurtizte structure
system, a 6 × 6 Hamiltonian is used: refer to Chap. 13 for details.
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• analytical_recomb is used to indicate if the analytical recombination term
Bnp defined with the radiative_recomb statement in the passive macro is
used to model the spontaneous recombination term. In bulk active regions,
this is always the case but the default setting for quantum wells is to use the
integral of the spontaneous recombination spectrum.

• override_barrier is here for historical reasons. It determines whether active
layer macros from the quantum well can override passive layer macros for the
barrier. This is the default behavior in newer versions of the software although
setting this to no can recover the behavior of older versions.

• bandgap_renorm turns on the internal bandgap renormalization model when
considering many-body Coulomb interaction. If this is used, exch_coef should
be set to zero to avoid double-counting the bandgap renormalization term.

• gain_coulomb turns on many-body Coulomb interactions in the optical gain
model. The shape of the gain and spontaneous emission spectrum may become
more symmetric as a result of this model and the magnitude of the gain/PL
spectrum may be enhanced.

• exciton turns on the exciton model.

• coulomb_dim specifies the dimension of the Coulomb potential used for the
derivation of the exciton binding energy. The most appropriate for excitons
confined to thin (but not zero thickness) semiconductor layers is the quasi2d
model. 3d is a normal Coulomb potential without any spatial confinement; 2d
is a Coulomb potential acting only in a 2-dimensional plane of charges (zero
thickness) and is only used here for comparative studies.

• coulomb_screen means two options of Coulomb potential model for the pur-
pose of finding binding energy of an exciton with screening ("yes") or without
screening ("no").

• franz_keldysh turn on/off the Franz-Keldysh effect for bulk active layer.

• exch_coef is the bandgap renormalization coefficient due to exchange effects:

∆Eg = Ax

(
n+ p

2

)1/3
(22.1)

The value of this parameter sets Ax; a typical value is ∼ 10−10 eV.m. Care
should be taken not to double-count this effect if bandgap_renorm and
gain_coulomb are used.

• tau_scat and a_scat are parameters defining the gain broadening due to car-
rier scattering. For the Lorentzian model, this defines an effective broadening
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constant:
~
τ

= ~
τscat

+ ascat

√
n+ p

2
(22.2)

For the Landsberg model, we simply have:

Γ0 = ~
τscat

(22.3)

Refer to Sec. 8.3 for more details.

• thickness defines the thickness of the active quantum well and is used to
compute the subband structures of the quantum well in the absence of mesh
information. Note that this parameter should be consistent with the device
geometry given in the .geo input file. This parameter is not used for bulk
active regions.

• ncarr_loss and pcarr_loss are the loss coefficients due to free carrier ab-
sorption for n and p carriers. pcarr_loss can also be used to model the inter-
valence band absorption effects because it is also proportional to the p-carrier
densities. Note that this only applies for active regions. For passive regions,
the equivalent statements elec_carr_loss and hole_carr_loss should be
used in the material macro.

• dip_factor is an artificial scaling factor for the dipole moment of the interband
optical transition.

• k_range specifies the k-space range within which the in-plane effective mass
is fitted from k.p theory for a strained material. It is given in units of 2π/a0,
where a0 is the lattice spacing of the substrate material. Large values tend
to average out the details of the k.p band structure and produce lower optical
gain. Small values tend to over-estimate the optical gain and run the risk of
producing invalid fitted mass values. Caution: zone center masses can be
negative in some material compositions and this may cause numerical
trouble.

• tau_bkg is the background scattering lifetime. It is used with broaden-
ing=landsberg_2 to broaden the negative part of the gain spectrum.

• expo_mix defines the amount of mixing of Landsberg and Lorentzian broad-
ening, used in an exponential factor

Gain = Gainlorentzianexp(−∆Eimref/expo_mix)
+Gainlandsberg(1 − exp(−∆Eimref/expo_mix))

where ∆Eimref is the difference between Fermi level splitting and transition
bandgaps. This formula indicates that when ∆Eimref is greater than expo_mix,
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the Lorentzian component is negligible and the Landsberg component takes
over. expo_mix may be on the order of kT to signal the onset of thermally-
activated carrier-carrier scattering.

• active_loss is used to add a background loss to the active region to account
for loss mechanisms other than interband transition and free carrier absorption.

• av_over_a is the fraction of hydrostatic potential appearing in the valence
band. For wurtzite, refer to ac_bar and ac_well instead.

• k_range_wurt is the same as k_range except it applies to the wurtzite
material system.

• diel_av is the average dielectric constant of the well and the barrier for the
many-body gain model.

• plasma_coeff is the plasma coefficient used in the many-body gain model.

• sommerfeld_fac typically takes a value between unity and two. Often called
the Sommerfeld enhancement factor, it characterizes the degree of contribution
of continuum state excitons into the exciton absorption. The continuum state
excitons give some background in absorption without absorption peak, which
is characteristic for bound excitons.

• rmesh_fd is a mesh ratio used to control the uniformity of the finite difference
mesh for the gain calculations. A schematic diagram illustrating the effect of
various ratios is given in Fig. 22.22.

• two_photon_loss is a two-photon absorption term in S2 for this active re-
gion. See two_photon_loss for details.

• two_photon_carr is a free carrier loss coefficient related to the two-photon
absorption process: these two effects combine to create an S3 loss term for this
active region. See two_photon_carr for details.

• mater is the material number assigned to a specific material. This number
should always be consistent with the value used in the mesh generator and .geo
file. If a label has previous been assigned to the material, mater_label may
be used instead.

• qw_print is a flag number controlling the amount of information on quantum
well models printed to the screen and to the message file with extension “.msg”.
When the value is “1”, only limited or no amount of information is printed to
the screen. When it is “2”, detailed information on the quantum well model
such as subband levels and transition matrix elements is printed to a file with
extension “ .msg” or as a screen runtime message.
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• level_srch is a parameter used in the case where the well width is very large
(500 Åor greater) and the subband level finder can miss some quantum levels.
To fix this problem, level_srch may be used to sample the boundary condition
function to search for the subband levels. When subband levels are very close
to the bottom of the energy bands, a large level_srch should be used.

• fd_mesh is the finite difference mesh points used in computing the active
region MQW subbands.

• qw_plane takes 100, 111 or 110. These are crystallographic planes used in the
quantum MOS model. For non-polar or semi-polar wurtzite plane orientations,
see modify_wurtzite.

• coulomb_int_acc is a selection number on the scale 1-9, which determines
the order of Gauss-Legendre quadrature used in calculating integrals of electron-
hole Coulomb interaction matrix element. The result is subsequently use in
calculating exciton binding energy by Ritz variational method.

– 1 corresponds to 2nd order quadrature.

– 6 corresponds to 12th order quadrature; this is the default value.

– 9 corresponds to 24th order quadrature.

• embedded_structure takes types 1 and 2. If it is set to zero, no embedded
structures are present for the present layer/region. It is used to define an active
material embedded inside a regular active layer.

For type 1, it is used to define a corrugation grating in a DFB/DBR waveguide.
A corrugation structure is regarded as two different kinds of active material
embedded within an active layer material which has a material property equal
to the overall average of the grating layer. The two embedded layers are con-
sidered active because interband model is used to calculate refractive index
change. This kind of material was formerly referred to as “mildly active” be-
cause the gain at the lasing wavelength is close to zero: only the index change
really matters.

The 2nd type of embedded structure involves a quantum dot (QDOT) em-
bedded within the wetting layer (regular quantum well). For quantum dot
material, material style "cx-" is required. The solver will combine the quan-
tum levels of the dot and and wetting layer to calculate the optical gain and
spontaneous emission.

• bulk_active switches the gain model to use bulk calculations rather than
those for a QW. This parameter is intended to be used as part of the new
shared material library system in the 2014 version.
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• strained_bulk_active is used to enable the use of strain in zincblende bulk
active macros: normally, zincblende macros only support strain in QW active
macros. This parameter is currently of limited use and was developed to model
SiGe lasers.

• uniaxial_strain switches the default strain calculations from biaxial strain
to uniaxial strain in zincblende active macros. This parameter is currently of
limited use and was developed to model SiGe lasers.
Note that in both models, the lateral strain from the epitaxial growth (ϵxx) is
defined by commands such as strain_well. For biaxial strain, we further set
ϵyy = ϵxx while for uniaxial strain, we use ϵyy = ϵzz.
The remaining strain component is obtained by enforcing a zero stress condition
along the growth axis:

σzz = 0 = C12 ∗ (ϵxx + ϵyy) + C11 ∗ ϵzz

where C11 and C12 are stiffness coefficients. Shear strain terms such as ϵxy are
not considered.

Examples

active_reg exch_coef=3.e-10 &&
tau_scat=1.e-13 thickness=0.010 mater=3

22.27 active_reg_zdim

parameter data type values [defaults]
zdim real 0.01(um)

active_reg_zdim is a statement used in the .layer file to define an active region
thickness in the z direction. This is used in 3D simulations when each layer file
represents a single x-y plane and the quantum well normal is along the z direction.
The solver still needs to know the quantum well thickness to find the energy levels.

Parameters

• zdim is the z-dimension thickness in microns.
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Examples

active_reg_zdim zdim=0.01

22.28 active_temper

parameter data type values [defaults]
mater_label char
ref_temper real [300.] degree
delta_tau_scat real [0.] (sec/K)
delta_ncarr_loss real [0.] (m2/K)
delta_pcarr_loss real [0.] (m2/K)
delta_active_loss real [0.] (m−1/K)
delta_two_photon_loss real [0.] (m2/K)
delta_two_photon_carr real [0.] (m5/K)
mater intg [1]

The statement active_temper is used to specify temperature dependence in some
of the important parameters for the active region of a laser diode. This statement
may be used in the .gain or .sol files.
The linear temperature dependence of the parameters controlled by this statement
is given by the following formula:

apar = apar0 + ∆apar(T − Tref )

where apar0 is the initial value of the parameter at the reference temperature Tref

and ∆apar is the rate of temperature variation.
Note that for parameters defined in a macro file (see section 22.456), the temperature
dependence can also be written as a function in the macro itself.

Parameters

• ref_temper is the reference temperature.

• delta_tau_scat is the rate of temperature change for the intra-band scatter-
ing lifetime.

• delta_ncarr_loss is the rate of temperature change for the intra-band elec-
tron free carrier absorption loss.
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• delta_pcarr_loss is the rate of temperature change for the intra-band hole
free carrier absorption loss.

• delta_active_loss is the rate of temperature change for the additional loss
mechanism in the active region.

• delta_two_photon_loss is the rate of temperature change for the two-
photon absorption coefficient in the active region.

• delta_two_photon_carr is the rate of temperature change for the carrier-
induced two-photon loss absorption coefficient in the active region.

• mater is the material number assigned to the active region and must match
the value in the active_reg statement. If a label has previously been assigned
to this material, mater_label may be used instead.

Examples

active_temper ref_temper=300 delta_tau_scat=-0.01e-13 mater=3

22.29 acz_bar

Like ac_bar, this command defines the hydrostatic deformation potential in the
barrier region of wurtzite quantum wells. However, it applies to the perpendicular
strain ϵzz.

22.30 acz_well

Like ac_well, this command defines the hydrostatic deformation potential in wurtzite
quantum wells. However, it applies to the perpendicular strain ϵzz.

22.31 add_acmemory

parameter data type values [defaults]
megbyte real [0.]

add_acmemory is used to add memory to the ac solver. This is used only for
special cases where the default memory allocation is insufficient.
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Parameters

• megbyte is the amount of memory in megabyte to be added.

Examples

add_acmemory megbyte=2

22.32 add_arnoldimemory

add_arnoldimemory is used to add memory to the direct Arnoldi eigenmode
sparse solver. This is used only for special cases where the default memory allocation
is insufficient. For more details, see the add_acmemory statement.

22.33 add_boundary

parameter data type values [defaults]
polygon_name char
edge_points charx2 (void void)
limits realx2 (0. 1.0) (µm)
boundary_num intg 1

add_boundary is used in the mesh generator to define a boundary region on the
edge of a given polygon. It should be used instead of the polygon statement’s own
boundary definition parameters when there are multiple boundaries on the same
polygon edge.

Parameters

• polygon_name is the name of the polygon.

• edge_points are the point labels (defined with the point statement) used to
identify which edge of a polygon is being affected. Point labels should be given
in counter-clockwise order.

• limits are the beginning and ending coordinates of the boundary. The first
point label in edge_points is the zero reference.
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• boundary_num is a number identifying the boundary region being applied
to this polygon.

Examples

add_boundary polygon_name=poly1 edge_points=(a1 a2) &&
limits=(0.0 1.0) boundary_num=1

22.34 add_mainmemory

parameter data type values [defaults]
megbyte real [0.]
sparse_fill real [0.] (megabyte)
symbolic real [0.] (megabyte)

add_mainmemory is used to add memory to the main solver. This is used only
for special cases where the default memory allocation is insufficient. Usually, there
will be error messages suggesting the use of this statement.
The most frequent case is 3D simulations where the connection between mesh ele-
ments on different planes result in non-zero terms that are far from the sparse matrix
diagonal. This requires using more fill-in terms.

Parameters

• megbyte is the memory added to main sparse solver at the numerical factor-
ization stage.

• sparse_fill is the memory added to the sparse filling space.

• symbolic is the memory added to the symbolic factorization stage of the sparse
solver.

Examples

add_mainmemory sparse_fill=50
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22.35 add_rcled_lambertian

parameter data type values [defaults]
mix_fraction real [0.]
extraction real [0.1]

This statement replaces rcled_mix_lambertian from previous versions of the soft-
ware. Like its predecessor, it is used to artificially mix the angle-dependent optical
power from the RCLED model with a background component having a Lambertian
form. These two components can be understood as light being emitted from different
parts of the LED.
Unlike its predecessor, this statement is used in the .plt post-processing rather than
in the .sol file.

Parameters

• mix_fraction is the fraction of the light having a Lambertian emission profile.

• extraction is the extraction efficiency for the Lambertian light component.
The extraction for the RCLED component is determined internally.

Examples

add_rcled_lambertian mix_fraction=0.2 extraction=0.1

22.36 add_thermalmemory

add_thermalmemory is used to add memory to the thermal solver. This is
used only for special cases where the default memory allocation is insufficient. See
add_acmemory for further examples and details.
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22.37 adjust_active_reg

parameter data type values [defaults]
valence_mixing char [void]
exch_coef real
tau_scat real
ncarr_loss real
pcarr_loss real
dip_factor real
active_loss real
two_photon_loss real
two_photon_carr real
qw_print intg

adjust_active_reg is used in the .layer file to adjust the parameters of the ac-
tive_reg statement that is automatically generated as part of the active material
declaration when this file is processed. In general, this is not used and a global
override of gain calculation settings with set_active_reg is preferred.
Refer to active_reg for further details.

22.38 adjust_column_screening

parameter data type values [defaults]
screening real [0.5]

adjust_column_screening is used in the .layer file to locally adjust the screening
coefficient of the set_polarization command. It can be used to account for local
defects and surface states which compensate the fixed charge due to piezoelectric
effects.
The modified screening coefficient will apply to all layer interfaces in a given column.
See also adjust_layer_screening.

Parameters

• screening is the local value of the screening coefficient for all layer interfaces
in this column.
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Examples

column column_num=1 w=0.04 mesh_num=10 r=-1.1
adjust_column_screening screening=0.0

This will force all the interface charges in column #1 to be zero.

22.39 adjust_doping

parameter data type values [defaults]
impurity char [void]
pf_model char void
level real

adjust_doping is used in the .layer file to adjust parameters in the doping state-
ment that is automatically generated when processing the file. See dopingfor further
details and examples.

22.40 adjust_layer_screening

parameter data type values [defaults]
interface char [top],bottom
screening real [0.5]

adjust_layer_screening is used in the .layer file to locally adjust the screening
coefficient of the set_polarization command. It can be used to account for local
defects and surface states which compensate the fixed charge due to piezoelectric
effects.
See also adjust_column_screening.

Parameters

• interface defines the location of the interface whose screening coefficient is
modified. The position is defined relative to the preceding layer statement.

• screening is the local value of the screening coefficient.
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Examples

layer_mater macro_name=gan
layer d=0.0025 n=20 r=-1.1
adjust_layer_screening interface=top screening=0.44

This will modify the interface charges on top of the GaN layer.

22.41 affinity

affinity is a passive macro material statement defining the electron affinity (in eV)
of a material. In metal and resistors, this value is equal to the work function: it is
the difference between the vacuum level and the conduction band edge. For active
layers, affinity will be overridden by band offset parameters from the active macro.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.42 a1_bar

ai_bar,i=1...6 are a set of parameters used to define barrier properties in wurtzite
quantum well active macros. They define the effective valence mass terms of the
Hamiltonian, labelled as (Ai) in Ref [62]. The parameters for this statement are the
same as for all other material statements. See material_par in section 22.456 for
examples and further details.

22.43 a2_bar

See Sec. 22.42.

22.44 a3_bar

See Sec. 22.42.

22.45 a4_bar

See Sec. 22.42.
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22.46 a5_bar

See Sec. 22.42.

22.47 a6_bar

See Sec. 22.42.

22.48 a1_bulk

ai_bulk,i=1...6 are a set of parameters used to define material properties in bulk
wurtzite active macros. They define the effective valence mass terms of the Hamil-
tonian, labelled as (Ai) in Ref [62].
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.49 a2_bulk

See Sec. 22.48.

22.50 a3_bulk

See Sec. 22.48.

22.51 a4_bulk

See Sec. 22.48.

22.52 a5_bulk

See Sec. 22.48.
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22.53 a6_bulk

See Sec. 22.48.

22.54 a1_well

ai_well,i=1...6 are a set of parameters used to define well properties in wurtzite
quantum well active macros. They define the effective valence mass terms of the
Hamiltonian, labelled as (Ai) in Ref [62].
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.55 a2_well

See Sec. 22.54.

22.56 a3_well

See Sec. 22.54.

22.57 a4_well

See Sec. 22.54.

22.58 a5_well

See Sec. 22.54.

22.59 a6_well

See Sec. 22.54.
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22.60 align_complex

parameter data type values [defaults]
x_range realx2 (um)

This statement defines the limits of a complex quantum-coupled region along the x
axis. It is primarily used when importing mesh from CSUPREM.
See also y_from_bottom in begin_complex.

22.61 alignment_ref

This statement defines a reference energy level used to compute Schottky contact
barrier heights. It is commonly used when a single contact touches different materi-
als.
This energy level is defined via a material macro and composition so all parameters
are the same as in layer_mater.

22.62 alpha_n

See electron_mobility

22.63 alpha_p

See hole_mobility.

22.64 alpha_wavel

alpha_wavel is the same as gain_wavel except that it plots the linewidth enhance
factor α.
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22.65 analytical_gain

parameter data type values [defaults]
import_fit_data char [no]
fit_data_file char [fitgain.txt]
import_spectrum_only char [no]
fit_density real [2.e24] (m−3)
fit_density_p real [-9999.] (m−3)
fit_gain real [10000] (m−1)
dg_dn real [1.e-19] (m2)
dg_dp real [1.e-19] (m2)
dg2_dlambda2 real [3.e8] (m−1/µm2)
peak_wavelength real [0.83] (µm)
peak_shift_n real [0.] (m−1/µm−3)
peak_shift_p real [0.] (m−1/µm−3)

This statement overrides the internal gain calculations and replaces them with a
simple analytical model often found in textbooks:

gpeak = g0 + ∂g

∂n
(n− n0) + ∂g

∂p
(p− p0)

λpeak = λ0 + ∂λ

∂n
(n− n0) + ∂λ

∂p
(p− p0) (22.4)

g(λ) = gpeak − 1
2
∂2g

∂λ2 (λ− λpeak)

These values may be obtained by using the fit_gain_wavel statement in the .gain
file.

Parameters

Most of the parameters are defined in Eq. 22.4 above.

• import_fit_data uses fitting parameters from fit_data_file instead of the
parameters from this statement.

• import_spectrum_only imports only the spectral shift information.

• fit_density and fit_density_p are equal to n0 and p0, respectively. By
default, p0 = n0.
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• fit_gain is g0.

• dg_dn and dg_dp are ∂g
∂n

and ∂g
∂p

, respectively.

• dg2_dlambda2 is equal to ∂2g
∂λ2 . It can be related to the gain width.

• peak_wavelength is λ0.

• peak_shift_n and peak_shift_p are ∂λ
∂n

and ∂λ
∂p

, respectively.

Examples

analytical_gain fit_density=1.5e24 peak_wavelength=1.55

22.66 auger_n

auger_n is a passive macro material statement defining the Auger coefficient for
electrons. See Sec. 5.1.1 for details.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.67 auger_p

auger_p is a passive macro material statement defining the Auger coefficient for
holes. See Sec. 5.1.1 for details.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.68 auto_tunneling

parameter data type values [defaults]
carrier_type char [both], electron, hole
max_range real [0.02] (µm)
min_barrier real [0.1] (eV)
ratio_division real [1.]
shift_division real [0.] (µm)
division intg [1]
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auto_tunneling instructs the software to automatically look for barriers that block
current flow and define an appropriate intraband tunneling command. In effect,
this command replaces manual usage of the tunneling command and defines a
propagation matrix model for the automatically-detected tunneling range.
Note that this command only looks for barriers present under equilibrium conditions:
barrier heights may increase or decrease with applied bias.

Parameters

• carrier_type determines whether the software looks for barriers that block
the flow of a particular kind of charge carrier.

• max_range determines the maximum distance allowed for the automatic tun-
neling profile.

• min_barrier is the minimum barrier height required during the search to
trigger the declaration of an automatic tunneling range. Smaller barriers will
be ignored and will default back to the usual thermionic emission model.

• division is a factor used to oversample the existing mesh for the purposes of the
tunneling model. ratio_division and shift_division control the distribution
profile of this new mesh, following the usual rules outlined in the put_mesh
commands.

22.69 az_bar

az_bar is the same as a_bar except in the z-direction (c-plane axis).

22.70 az_well

az_well is the same as a_well except in the z-direction (c-plane axis).

22.71 b_bar

This active layer statement is identical to b_well except that it refers to the barrier
material in a simplified quantum well macro. Note that this parameter is not used
in complex MQW macros.
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22.72 b_well

The material statement b_well is an active layer macro statement used to define
the shear deformation potential (eV) in a quantum well and thus, the separation
between the heavy and light hole bands. Note that this parameter only applies to
materials with zincblende symmetry. For wurtzite materials, a set of parameters
define in ai_well,i=1...6 are used instead.
See Sec. 10.1 for additional details on band alignment rules.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.73 back_index

parameter data type values [defaults]
real_index real [-9999.]
imag_index real [0.]

back_index is an outside index value used as a boundary condition for optical
pumping. The default value assumes a continuous index to prevent back reflections.
This command has no practical effect if back_reflection is used.
See the theory section in front_reflection for more details.

22.74 back_reflection

See front_reflection.

22.75 band_discont

band_discont is an active layer macro statement that defines the conduction band
discontinuity (in eV) between an active layer and the neighboring passive layer. This
value overrides both the band_offset statement from active macros and the affinity
statement from passive macros. A negative value can be used to define a type II band
alignment.
Note that band_discont will define the discontinuity on both sides of the layer
unless band_discont_right is used. In that case, it only defines the discontinuity
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on the left. This should be used in complex MQW regions (cx-style macros) so the
discontinuity is set correctly on the edges of the complex region.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.76 band_discont_right

See band_discont.

22.77 band_distance

parameter data type values [defaults]
data_file char
use_fermi_level char [no]
conc_logscale char [no]
prop_file char [void]
ignore_cband char [no]
ignore_vband char [no]
plot_qcl_3levels char [no]
band_edge_file char [void]
use_sheet_density char [yes]
conc real [1.e15] (m−2 or m−3)
pn_ratio real [1.]
qw_wave_ht real [0.1]
fermi_n real [0.]
fermi_p real [0.]
band_range realx2 [-1.5 1.5]
data_point intg [90]
cond_valley intg [1]
val_valley intg [1]
cond_valley_prop intg [0]
val_valley_prop intg [0]

band_distance plots the band and subband structure versus distance. This state-
ment is only used in the gain preview module or preview session before a full-blown
simulation.
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By default, a flat band model is used. A local field can be defined gain_module
but self_consistent should also be used in this case.

Parameters

• data_file is an output file containing a copy of the plot data in ASCII format.

• use_fermi_level tells the software to directly set the Fermi levels according
to fermi_n and fermi_p.

• conc_logscale used to indicate whether log scale is used in plotting any con-
centrations.

• prop_file is a file to store the property results from this statement. All results
will be appended to this file so that multiple simulations can be summarized
within this file.

• ignore_cband will ignore conduction band so that only the valence band will
appear.

• ignore_vband will ignore valence band so that only the conduction band will
appear.

• plot_qcl_3levels lets the program plot only the 3 critical quantum levels
related to intersubband transition in a quantum cascade laser.

• band_edge_file instruct the program to save the band edge profile to this
file so that an upper level project can use it later.

• conc is the total electron concentration used to determine the Fermi levels
and subband population. The units of this parameter change depending on
the use_sheet_density setting. If set to yes, sheet density in m−2 is used;
otherwise, bulk density in m−3 is used. As of the 2012 version, the new default
is to use the sheet density.
Sell also the gain_module statement which also enables the use of sheet
density in other gain preview commands.

• pn_ratio is the ratio of hole over electron concentrations. Note that this ratio
can be set to an arbitrary number in the gain preview. In the main solver, this
ratio is determined automatically by the simulator according to the local Fermi
levels.

• qw_wave_ht is the height of the quantum wave amplitude as plotted on the
band diagram.

• fermi_n is the electron Fermi level (eV) from the conduction band edge.
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• fermi_p is the hole Fermi level (eV) from the HH valence band edge.

• band_range is the energy range (in units of eV) in a band diagram plot.

• data_point is the number of data points in one curve.

• cond_valley directs the program to plot properties related to a particular
conduction band valley with this valley index. The valley index means band
valleys with labels such as Gamma, L, X, or Delta2, Delta4, etc.

• val_valley directs the program to plot properties related to a particular va-
lence band valley with this valley index. The valley index means band valleys
with labels such as HH, LH, SO, etc.

• cond_valley_prop is kth the conduction band property as defined by state-
ment condj_valley_propk. The valley number j is defined by the parameter
cond_valley.

• val_valley_prop is kth the conduction band property as defined by state-
ment valj_valley_propk. The valley number j is defined by the parameter
val_valley.

22.78 band_gap

band_gap is a passive macro material statement used the define the energy bandgap
(in eV) of a bulk semiconductor. For quantum well barriers and active regions, this
value will be overridden with the values of eg0_bar or eg0_well from the active
macro.
For wurtzite materials, the bulk unstrained bandgap is given by eg0_bulk instead
of band_gap.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.79 band_offset

band_offset is an active layer macro statement defining the band offset of a quan-
tum well as defined in Sec. 10.1. This value overrides the affinity statement from
the passive macro and may itself be overridden by band_discont.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.
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22.80 bandgap_narrow

parameter data type values [defaults]
model char [slotboom]

The statement bandgap_narrow is used to include the bandgap narrowing effect.
Currently, only the Slotboom model is supported.

22.81 bandgap_optical_gen

parameter data type values [defaults]
allowed char [no],yes
bandgap_gen_iqe real [0.1]

bandgap_optical_gen is used to enable optical generation at photon energies
smaller than the bandgap of the material.

Parameters

• allowed turns this effect on or off.

• bandgap_gen_iqe is the internal quantum efficiency (IQE) for the below-
bandgap optical generation.

Examples

bandgap_optical_gen allowed=yes bandgap_gen_iqe=0.01

22.82 barrier_correction_by_qw_model

This statement overrides the band alignment for the last barrier of a complex MQW
region so that it follows the same rules that are used for the inner wells (c.f. Sec. 10.1).
It also instructs the software to use other aspects of the quantum well model for that
region, such as the carrier masses.
This statement is only used for the simplified complex library system (c.f. Sec. 3.5.1);
it has no additional parameters.
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22.83 basic_var_symbol

parameter data type values [defaults]
var_lib char
var_basic char

basic_var_symbol translates a variable/symbol name from the library to the un-
derlying basic/passive macro. This statement can be omitted if the variable name is
the same in both the library and the macro.
See material_lib and complex_var_symbol for further information.

Examples

begin_library AlGaAs
import_basic name=algaas
import_complex name=cx-AlGaAs
complex_var_symbol var_lib=x var_complex=xw
end_library

This set of commands defines the “AlGaAs” library as being composed of the “algaas”
passive macro and the “cx-AlGaAs” active macro. The material parameter x used
when invoking the library is translated into the xw parameter of the active macros
and used “as-is” in the passive macro.

22.84 begin_bpmplot

begin_bpmplot is used as the starting point of a post-processing file displaying re-
sults from the Crosslight BPM model. The matching end command is end_bpmplot.

22.85 begin_cavity

parameter data type values [defaults]
cavity_num intg [1]
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begin_cavity is used as a starting bracket for the statements belonging to a
laser cavity in a multiple laser cavity application. The matching closing bracket
is end_cavity.
This can be used in multi-junction devices where the optical modes peak in different
active regions and there is poor overlap between the two sets of modes. It can also
be used in quantum dot devices where there are multiple gain peaks at very different
wavelength ranges.

Parameters

• cavity_num is the cavity number.

Examples

$$$$$$$$$$$$$$$$$$$
$ Cavity #1 at 1.55 um
$$$$$$$$$$$$$$$$$$$
begin_cavity cavity_number=1
init_wave init_wavel=1.55
multimode ...
end_cavity
$$$$$$$$$$$$$$$$$$$
$ Cavity #2 at 1.3 um
$$$$$$$$$$$$$$$$$$$
begin_cavity cavity_number=2
init_wave init_wavel=1.3
multimode ...
end_cavity
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22.86 begin_complex

parameter data type values [defaults]
tag char void
cx_qw_side char [bottom], top
use_xy_range char [no] yes
y_start_label char [void]
qw_thick real (um)
y_start_complex real (um)
x_start_complex real (um)
y_from_bottom real (um)
layer_num intg [3]
column_num intg [1]

begin_complex is used as a starting bracket for a group of layers coupled to each
other quantum mechanically, forming a roughly rectangular region. The matching
closing bracket is end_complex.
See complex_region for examples and more details.

Parameters

• tag is a user-defined label to define identical complex MQW regions: this helps
the solver save on computation time by re-using the solutions of the Schrödinger
solver. It is usually defined through the start_same_complex command in
the .layer file.

• layer_num is the number of layer within a complex.

• column_num is the number of columns within a complex.

• use_xy_range indicates whether the rectangle region is defined using an x-y
range or by using the polygon names. The latter method is usually preferred.

• y_start_label and y_end_label are position labels used to define the y-
range of the rectangle region.

• y_start_complex specifies the absolute y-coordinate of the starting point of
the rectangle (um).

• x_start_complex specifies the absolute x-coordinate of the starting point of
the rectangle (um).
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• y_from_bottom specifies the y-position of the starting point of the rectangle
(um) relative to the bottom of the mesh. It is primarily used in conjunction
with align_complex when importing mesh from CSUPREM.

• cx_qw_side is used to define a special case of a complex MQW region with
only two layers. For historical reasons (see complex_region) an odd number
of layers is normally required in a complex region and the even-numbered
layers are defined as quantum wells. With cx_qw_side, one of the two layers
is internally split by the software to produce this barrier-well-barrier layout:
this parameter specifies which of the two layers is to be split. The parameter
qw_thick defines how much of this layer is used as a quantum well region.

This parameter is most often used in GaN HEMT simulations where the piezo-
electric potential defines the quantum confinement region. In this case, the two
layers used to define the complex are a thick GaN region which serves as both
barrier and well and an AlGaN cap layer which forms the top barrier.

22.87 begin_qwire_complex

parameter data type values [defaults]
x1 real (µm)
x2 real (µm)
y1 real (µm)
y2 real (µm)
x1_label char
x2_label char
y1_label char
y2_label char
auto_search char yes,[no]

begin_qwire_complex is used in the .mater or .sol file and is usually generated
automatically by the .layer file statement start_qwire_complex. It serves the
same role as begin_complex except that it defines the start of a 2D quantum-
confined region (a quantum wire) rather than a complex MQW region with 1D
confinement.
end_qwire_complex is the closing tag for this statement. Between these two
commands, qwire_complex_region statements are used to define the materials
in the quantum wire cross-section.
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Parameters

• x1, x2, y1 and y2 define the xy range of the quantum wire cross-section.
If position labels have been defined, x1_label, x2_label, y1_label and
y2_label may be used instead.

• auto_search automatically sets the cross-section range based on material
numbers. When importing mesh from CSUPREM, material labels must be set
to correctly identify the quantum region.

22.88 begin_zdir_complex

parameter data type values [defaults]
num_segment intg [1]

begin_zdir_complex is used as a starting bracket for a group of layers coupled
to each other quantum mechanically in the z direction (i.e. stacked mesh planes in
a 3D simulation). The matching closing bracket is end_zdir_complex.
See also zdir_cx for more information.

Parameters

• num_segment is the z-segment number where the quantum-confined region
begins.

Examples

begin_zdir_complex num_segment= 9
zdir_cx zseg= 16 type=barrier mater= 3
zdir_cx zseg= 17 type=barrier mater= 3
zdir_cx zseg= 18 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 19 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 20 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 21 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 22 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 23 type=barrier mater= 3
zdir_cx zseg= 24 type=barrier mater= 3
end_zdir_complex
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22.89 begin_zmater

parameter data type values [defaults]
zseg_num intg [1]

begin_zmater is used as a starting bracket for the material and doping statements
belonging to a given z-segment. The matching closing bracket is end_zmater.

Parameters

• zseg_num is the z-segment number

Examples

{
begin_zmater zseg_num=1
include file=ref.mater
include file=ref.doping
end_zmater
}

22.90 bend_extern

parameter data type values [defaults]
variation char function,table,[constant]
var_symboli(1=1..5) char void
vari(i=1..5) real
value real
func_num intg [1]

bend_extern is used to define an external function used by bend_xy_plane.

Parameters

Except for func_num, all parameters are the same as in bend_xy_plane.
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• func_num is a label to identify different external functions so that this state-
ment can be used more than once.

Examples

See bend_xy_plane.

22.91 bend_xy_plane

parameter data type values [defaults]
variation char linear_x,linear_y,function,[constant]
var_symboli(1=1..5) char void
vari(i=1..5) real
value real
zseg_num intg [1]

To realize complex device shapes, the user may bend 2D mesh planes (x-y) in the
z-direction. This bending is represented by a small local offset of the mesh point:

(x, y, z) → (x, y, z + ∆z(x, y)) (22.5)

bend_xy_plane defines this bending function ∆z(x, y) for a single plane. It should
return an offset value in microns. External functions may be defined to re-use certain
elements and simplify the declaration by passing the z-position of the plane as a
function argument: see bend_extern.

Parameters

• variation defines how the offset varies with position. There are two options
for this parameter:

– constant means that a fixed value is used everywhere.
– function means a mathematical function of the form:

function(variable1, variable2, ...)
......
end_function
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All lines in a function except the last one must end with a semicolon (;)
to suppress the line output. The output of the last line is the value re-
turned by the function. The rules for mathematical functions are further
explained in Appendix B. Three reserved keywords can be used in addi-
tion to user-defined variables: x_point and y_point (the in-plane point
coordinates) and z_plane (the position of the mesh plane before bending).

• var_symboli is an external function variable symbol to be used by the func-
tion mentioned above.

• vari is an external function variable value to be used by the function mentioned
above.

• value is the constant value of shift in z-direction if variation=constant.

• zseg_num is the z-segment number affected by this statement.

Examples

$ bend function at z=350
$ bend = 0 @ y = 402, > 0 @ y =0 => points downwards
bend_extern func_num=1 variation=function
function(x_point,y_point)
y_0=0; z_0=-350; radius=sqrt(350**2+402**2);
z_0+sqrt(radius**2-(y_point-y_0)**2)
end_function

$ z-segment #1 is unbended
bend_xy_plane variation=function zseg_num=2
function(z_plane,x_point,y_point)
z0 = 100.0; z1 = 350.0;
zfac=(z_plane-z0)/(z1-z0);
bend_extern1*zfac
end_function

22.92 beta_mte

beta_mte is used in the modified transferred-electron mobility model for GaN.
When this model is activated, the software actually implements the mixture of the
MTE and Canali models proposed in Eqn.(11) of Ref. [7]. This model has a number
of hard-coded parameters taken from the above reference but the value defined by
beta_mte corresponds to βT in Eqn.(3).
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A number of other parameters related to the Canali model are also defined as usual.
For example. beta_n corresponds to βC in Eqn.(1).
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.93 beta_n

beta_n defines a parameter in the “beta” field-dependent mobility model for elec-
trons (see Eq. 5.37).
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.94 beta_p

beta_p defines a parameter in the “beta” field-dependent mobility model for holes
(see Eq. 5.38).
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.95 bias_output_at_maximum

parameter data type values [defaults]
variable char
xrange realx2 (µm)
yrange realx2 (µm)
zrange realx2 (µm)

bias_output_at_maximum replaces the previous more_bias_output com-
mand; this command is specialized to output the spatial maximum of a variable. See
also the following related commands which also replace more_bias_output:

• bias_output_curr_flux

• bias_output_tunneling

• bias_output_longitudinal
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• bias_output_near_point

• bias_output_spatial_integral

• bias_output_wave_average

These various commands generate additional bias-dependent data for later plotting
using the plot_scan command. Each statement generates a new plotting variable
stored in more_bias_vari,i=1..15 ; the numbering corresponds to the order of the
various bias_output commands in the .sol input file.

Parameters

• variable is the variable being exported:

– optical_loss: the total optical loss
– optical_loss_mirror : the optical mirror losses
– optical_loss_ncarr : the optical loss due to electron free carrier absorption
– optical_loss_pcarr : the optical loss due to hole free carrier absorption
– optical_loss_two_photon: the optical loss due to the two-photon absorp-

tion process
– optical_loss_two_photon_carr : the optical loss from free carriers gener-

ated during the two-photon absorption process
– potential: the internal potential V
– field_mag: the electric field magnitude
– electron: the electron concentration
– hole_curr_mag: the hole current magnitude
– recomb_aug: the Auger recombination rate
– recomb_rad: the total spontaneous emission rate
– recomb_rad_te: the TE mode spontaneous emission rate
– recomb_rad_tm: the TM mode spontaneous emission rate
– recomb_srh: the SRH recombination rate
– recomb_st: the stimulated recombination rate
– recomb_all: the total recombination rate
– impact_alpha_n: impact ionization coefficient for electrons
– impact_alpha_p: impact ionization coefficient for holes
– impact_ionization: total impact ionization rate
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– impact_elec_rate: electron impact ionization rate
– impact_hole_rate: hole impact ionization rate

• xrange, yrange and zrange define the coordinates inside which the search
for the spatial maximum takes place.

22.96 bias_output_curr_flux

parameter data type values [defaults]
variable char
at_y real (µm)

bias_output_curr_flux replaces the previous more_bias_output command;
this command is specialized to output local current values at specific points of the de-
vice. See also the following related commands which also replace more_bias_output:

• bias_output_tunneling

• bias_output_at_maximum

• bias_output_longitudinal

• bias_output_near_point

• bias_output_spatial_integral

• bias_output_wave_average

These various commands generate additional bias-dependent data for later plotting
using the plot_scan command. Each statement generates a new plotting variable
stored in more_bias_vari,i=1..15 ; the numbering corresponds to the order of the
various bias_output commands in the .sol input file.

Parameters

• variable is the variable being exported:

– elec_curr : the electron current magnitude
– hole_curr : the hole current magnitude
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– nonloc_esc_cap_curr_n: non-local escape current for electrons in q_transport
model.

– nonloc_fly_over_curr_n: non-local flyover current for electrons in q_transport
model.

• at_y is the position of the y cutline used to export the data.

22.97 bias_output_ii_integral

parameter data type values [defaults]
variable char [max_alpha],
method char [via_max_field], manual
between_contacts intgx2 [1 3]
pointi (i=1..9) realx3 (µm)

bias_output_ii_integral is used to integrate the impact ionization profile and
output the result as a variable that can be plotted vs. bias in the post-processing
stage. Each statement generates a new plotting variable stored in more_bias_vari,i=1..15 ;
the numbering corresponds to the order of the various bias_output commands in the
.sol input file.

Parameters

• variable is the variable being integrated:

– impact_alpha_n: the impact generation rate for electrons

– impact_alpha_p: the impact generation rate for holes

– max_alpha: the maximum of the two above values

• method

• between_contacts

• pointi (i=1..9)
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22.98 bias_output_longitudinal

parameter data type values [defaults]
variable char
long_fraction realx2 [0.5]
long_mode_index intg [1]

bias_output_longitudinal replaces the previous more_bias_output command;
this command is specialized to output longitudinal data from PICS3D. See also the
following related commands which also replace more_bias_output:

• bias_output_curr_flux

• bias_output_tunneling

• bias_output_at_maximum

• bias_output_near_point

• bias_output_spatial_integral

• bias_output_wave_average

These various commands generate additional bias-dependent data for later plotting
using the plot_scan command. Each statement generates a new plotting variable
stored in more_bias_vari,i=1..15 ; the numbering corresponds to the order of the
various bias_output commands in the .sol input file.

Parameters

• variable is the variable being exported:

– kappa_l_real: real part of the κL coupling coefficient
– kappa_l_imag: imaginary part of the κL coupling coefficient
– phase_index : effective index of the optical mode
– alpha_l_over_2 : αL

2 from the coupled round-trip gain model
– delta_beta_l: δβL from the coupled round-trip gain model
– alpha_integral: integrated value of α(z)

2 in the round-trip gain model
– delta_beta_integral: integrated value of δβ(z) in the round-trip gain

model
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– linewidth_spon: linewidth contribution from spontaneous emission noise
– linewidth_carrier : linewidth contribution from carrier density fluctua-

tions
– linewidth_cross: linewdith contribution due to cross-carrier modulation
– linewidth_sidemode: linewidth contribution due to side modes
– linewidth_total: total linewidth of main mode
– linewidth*power : linewidth power product
– effective_alpha: linewidth enhancement factor (αH)
– density_mode_average: carrier density averaged using the local mode

profile as a weighting coefficient

• long_fraction sets the export position of the data as a fraction of the optical
cavity length. It is not used for integrated variables.

• long_mode_index specifies which longitudinal mode is used in the export.

22.99 bias_output_mater_average

parameter data type values [defaults]
variable char
mater_label char
mater intg [1]

bias_output_mater_average is similar to other commands in the bias_output
family. This version of the command is specialized to output the average of a variable
over all the mesh points belonging to a specific material.
All commands in the bias_output family generate additional bias-dependent data
for later plotting using the plot_scan command. Each statement generates a new
plotting variable stored in more_bias_vari,i=1..15 ; the numbering corresponds to
the order of the various bias_output commands in the .sol input file.

Parameters

• variable is the variable being exported.

• mater_label is the material label identifying the material for the variable
average.

• mater is the material number for the variable average.
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22.100 bias_output_near_point

parameter data type values [defaults]
variable char
near_xyz realx3 (µm)

bias_output_near_point replaces the previous more_bias_output command;
this command is specialized to output a spatial variable near a specified point. See
also the following related commands which also replace more_bias_output:

• bias_output_curr_flux

• bias_output_tunneling

• bias_output_longitudinal

• bias_output_at_maximum

• bias_output_spatial_integral

• bias_output_wave_average

These various commands generate additional bias-dependent data for later plotting
using the plot_scan command. Each statement generates a new plotting variable
stored in more_bias_vari,i=1..15 ; the numbering corresponds to the order of the
various bias_output commands in the .sol input file.

Parameters

• variable is the variable being exported:

– optical_loss: the total optical loss
– optical_loss_mirror : the optical mirror losses
– optical_loss_ncarr : the optical loss due to electron free carrier absorption
– optical_loss_pcarr : the optical loss due to hole free carrier absorption
– optical_loss_two_photon: the optical loss due to the two-photon absorp-

tion process
– optical_loss_two_photon_carr : the optical loss from free carriers gener-

ated during the two-photon absorption process
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– potential: the internal potential V
– field_mag: the electric field magnitude
– electron: the electron concentration
– hole_curr_mag: the hole current magnitude
– recomb_aug: the Auger recombination rate
– recomb_rad: the total spontaneous emission rate
– recomb_rad_te: the TE mode spontaneous emission rate
– recomb_rad_tm: the TM mode spontaneous emission rate
– recomb_srh: the SRH recombination rate
– recomb_st: the stimulated recombination rate
– recomb_all: the total recombination rate
– impact_alpha_n: impact ionization coefficient for electrons
– impact_alpha_p: impact ionization coefficient for holes
– impact_ionization: total impact ionization rate
– impact_elec_rate: electron impact ionization rate
– impact_hole_rate: hole impact ionization rate

• near_xyz defines a set of coordinates; the mesh point nearest to these coor-
dinates will be used for the export.

22.101 bias_output_peak_wavelength

parameter data type values [defaults]
variable char

bias_output_peak_wavelength searches for the peak wavelength of a spec-
tral variable and outputs it for all bias steps so that it may be plotted in the
post-processing stage. Each statement generates a new plotting variable stored
in more_bias_vari,i=1..15 ; the numbering corresponds to the order of the various
bias_output commands in the .sol input file.

Parameters

• variable is the spectral variable that is searched when exporting the peak. This
variable corresponds to the full spectrum plot available in gain_spectrum or
plot_spectrum.



22.102 bias_output_spatial_integral 535

22.102 bias_output_spatial_integral

parameter data type values [defaults]
variable char
active_reg_only char [no], yes
inactive_reg_only char [no], yes
xrange realx2 (µm)
yrange realx2 (µm)
zrange realx2 (µm)

bias_output_spatial_integral replaces the previous more_bias_output com-
mand; this command is specialized to output the integral of a spatial variable
over a specified range. See also the following related commands which also replace
more_bias_output:

• bias_output_curr_flux

• bias_output_tunneling

• bias_output_longitudinal

• bias_output_at_maximum

• bias_output_near_point

• bias_output_wave_average

These various commands generate additional bias-dependent data for later plotting
using the plot_scan command. Each statement generates a new plotting variable
stored in more_bias_vari,i=1..15 ; the numbering corresponds to the order of the
various bias_output commands in the .sol input file.

Parameters

• variable is the variable being exported:

– potential: the internal potential V
– field_mag: the electric field magnitude
– electron: the electron concentration
– hole_curr_mag: the hole current magnitude
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– recomb_aug: the Auger recombination rate
– recomb_rad: the total spontaneous emission rate
– recomb_rad_te: the TE mode spontaneous emission rate
– recomb_rad_tm: the TM mode spontaneous emission rate
– recomb_srh: the SRH recombination rate
– recomb_st: the stimulated recombination rate
– recomb_all: the total recombination rate
– impact_alpha_n: impact ionization coefficient for electrons
– impact_alpha_p: impact ionization coefficient for holes
– impact_ionization: total impact ionization rate
– impact_elec_rate: electron impact ionization rate
– impact_hole_rate: hole impact ionization rate

• active_reg_only restricts the integration to optically active regions.

• inactive_reg_only restricts the integration to optically passive regions.

• xrange, yrange and zrange define the integration range.

22.103 bias_output_tunneling

parameter data type values [defaults]
variable char
tunnel_region intg [1]

bias_output_tunneling replaces the previous more_bias_output command;
this command is specialized to output tunneling data for a specific tunneling region.
See also the following related commands which also replace more_bias_output:

• bias_output_curr_flux

• bias_output_at_maximum

• bias_output_longitudinal

• bias_output_near_point

• bias_output_spatial_integral
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• bias_output_wave_average

These various commands generate additional bias-dependent data for later plotting
using the plot_scan command. Each statement generates a new plotting variable
stored in more_bias_vari,i=1..15 ; the numbering corresponds to the order of the
various bias_output commands in the .sol input file.

Parameters

• variable is the variable being exported:

– tunnel_average_factor : the averaged (over the barrier) enhancement fac-
tor applied to the Drift-Diffusion current due to tunneling

– tunnel_enhance_factor : the peak (at barrier maximum) enhancement
factor applied to the Drift-Diffusion current due to tunneling

– tunnel_peak_transmittance: the peak transmittance of the tunneling re-
gion

– tunnel_peak_energy: the energy at which the tunneling transmittance
peaks

– tunnel_above_bar_refl: the reflection coefficient for carriers above the
tunneling barrier

– tunnel_negf_current: the tunneling current from the NEGF model, inde-
pendent from terminal/electrode current.

• tunnel_region is the tunneling region used for the export, numbered accord-
ing to the order of the tunneling statements in the .sol input file.

22.104 bias_output_wave_average

parameter data type values [defaults]
variable char
active_reg_only char [no], yes
inactive_reg_only char [no], yes
xrange realx2 (µm)
yrange realx2 (µm)
zrange realx2 (µm)
wave_mode_index intg [1]
long_mode_index intg [1]
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bias_output_wave_average replaces the previous more_bias_output com-
mand; this command is specialized to output the average of a variable, weighted by
the optical mode profile. See also the following related commands which also replace
more_bias_output:

• bias_output_curr_flux

• bias_output_tunneling

• bias_output_longitudinal

• bias_output_at_maximum

• bias_output_near_point

• bias_output_spatial_integral

These various commands generate additional bias-dependent data for later plotting
using the plot_scan command. Each statement generates a new plotting variable
stored in more_bias_vari,i=1..15 ; the numbering corresponds to the order of the
various bias_output commands in the .sol input file.

Parameters

• variable is the variable being exported. This command supports two categories
of variables:

– Quantities averaged over the lateral wave profile:

∗ optical_loss: the total optical loss
∗ optical_loss_ncarr : the optical loss due to electron free carrier ab-

sorption
∗ optical_loss_pcarr : the optical loss due to hole free carrier absorption
∗ optical_loss_two_photon: the optical loss due to the two-photon ab-

sorption process
∗ optical_loss_two_photon_carr : the optical loss from free carriers

generated during the two-photon absorption process
∗ optical_loss_backg: the optical loss due to background scattering
∗ optical_loss_bandtoband: the optical loss from band-to-band transi-

tions.
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∗ optical_gain_bandtoband: the optical gain from band-to-band tran-
sitions.

∗ optical_loss_mirror : the optical mirror loss in Fabry-Perot lasers
∗ modal_index_change: the modal effective index change vs. the equi-

librium value
– Quantities averaged over the longitudinal wave profile:

∗ alpha_l_over_2 : αL
2 from the coupled round-trip gain model in PICS3D

∗ delta_beta_l: δβL from the coupled round-trip gain model in PICS3D
∗ density_mode_average: electron carrier density averaged over lateral

mode
∗ kappa_l_real: real part of the κL coupling coefficient
∗ kappa_l_imag: imaginary part of the κL coupling coefficient
∗ phase_index : effective index of the optical mode

Please note that most of the variables that are longitudinally averaged in this
command are, by definition, already averaged over the lateral mode.

• active_reg_only restricts the integration to optically active regions.

• inactive_reg_only restricts the integration to optically passive regions.

• xrange, yrange and zrange define the integration range.

• wave_mode_index is the lateral mode index used to average data in the
x,y plane.

• long_mode_index is the longitudinal mode index used for the average along
z.

22.105 blank_area

parameter data type values [defaults]
point1 realx2 [0. 0.] (µm)
point2 realx2 [0. 0.] (µm)
point3 realx2 [0. 0.] (µm)
point4 realx2 [0. 0.] (µm)
num_points intg 4

This statement can be used repeatedly to blank out areas in plotting statements in
the .plt files. It is especially useful when areas with no material ("void" material)
show non-physical current flows.
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Each statement can only blank out one area of quadrilateral or triangle.

Parameters

• pointk,k=1..4 is the x and y coordinates of point k in counter-clockwise order.

• num_points takes either 4 or 3, representing quadrilateral or triangle.

Examples

blank_area point1=(0. 0.) point2=(1. 0.) &&
point3=(1. 0.5) point4=(0. 0.5)

22.106 bottom_contact

left_contact is the same as top_contact except that the contact is placed at the
bottom.

22.107 boundary_smooth

parameter data type values [defaults]
mesh_inf char
mesh_outf char
order char [yes],no

The mesh generation statement boundary_smooth is used to make the extension
of added mesh lines (by using double_mesh) from one polygon to the adjacent
one smooth. This prevents the accumulation of too many terminated mesh lines
extending to the adjacent polygon.
Note that this statement is used only when the user wants to manually refine the
mesh in a region of the device geometry. In most cases, this statement is not needed
because the mesh may be automatically refined using refine_mesh.

Parameters

• mesh_inf is the mesh input file.
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• mesh_outf is the mesh output file.

• order specifies the format of the mesh output. If the mesh output from this
statement is directly to be used by the solver, choose yes. Choose no if further
manipulations are required.

Examples

boundary_smooth mesh_inf=case1.msh1 &&
mesh_outf=case1.msh2 order=yes

22.108 boundary_xpoint

parameter data type values [defaults]
xp_size real [0.0001] (um)
boundary intg [1]

The statement boundary_xpoint is used to control the internal extra point at a
contact. The mesh spacing at a Schottky contact is important since the simulator
treats the contact mesh point as a point at the metal while the next mesh point
inside is regarded as the semiconductor. Therefore, the mesh spacing defines the
sharpness of the interface and the Schottky barrier height.
Thus we need to allocate an extra point near every Schottky contact. If a contact
is defined as Schottky contact in .layer file, this statement will be automatically
generated in the .geo file. The distance at which the extra point is placed can be set
in the contact definition in the .layer file.

Parameters

• boundary is the contact or electrode number.

• xp_size is the distance at which the extra point is placed. It is recommended
that a value of around 1 Åbe used unless it causes convergence problems. In
the limit of zero, the internal numerical Schottky barrier height is exactly as
defined by the user in the contact statement.
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22.109 bpm

parameter data type values [defaults]
go_backward char [yes],no
update char yes,[no]
paraxial_model char [yes],no
symmetrize char yes,[no]
fft char [yes],no
initialize_backward char [no],yes
coupled_mode char [no],yes
zstep_size real [0.1]
x_ratio real [1.0]
y_ratio real [1.0]
x_center real [1.0]
y_center real [1.0]
transm_xrange realx2 (µm)
transm_yrange realx2 (µm)
xsize_power2 intg 6
ysize_power2 intg 6
smooth_step intg 0
update_per_scan intg
round_trip intg 1
ipade intg [0]
semi_vect intg [0]
nx_mesh intg [40]
ny_mesh intg [40]
transm_2d_mode_zseg intg

bpm activates the Beam Propagation Method (BPM) to solve the wave equation
in PICS3D. The BPM assumes a known wave distribution at an initial x-y plane
and solves the wave distribution on the next plane in the z-direction. Repeating this
procedure propagates the beam along the whole waveguide.
Please note that our BPM method maintains its own propagating power in both
directions but only for the purpose of computing the lateral wave profile. Since the
BPM method works on a relatively coarse mesh, the coupling with the local refractive
index is not accurate enough to be used in actual lasing power computation.
Instead, the BPM method is used to obtain a lateral wave profile which is then
mapped to our usual 2x2 transfer matrix plane wave model (coupled-wave theory).
This transfer matrix is then solved self-consistently with the Drift-Diffusion equations
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and takes into account the coupling of the gain, refractive index and DFB/DBR
gratings.
This Crosslight-specific method can be viewed as a hybrid method that combines
the benefits of BPM propagation with our complex round-trip gain (RTG) model.

Frequently Asked Questions

Q: Is Crosslight BPM bidirectional? A: Yes and no. The iteration method itself
does not define a distributed reflection from local detailed grating but at the end
of the wave guide, a reflective beam is launched with calculated intensity so that
(go_backward=yes) both backward and forwards beams are present in the cavity
and the lateral mode used by the solver is the sum of the two.
Q: Is BPM necessary for a tapered laser/amplifier ? A: Yes. The 2D eigenmode
solver no longer gives an accurate solution when there is a longitudinal variation of
the lateral waveguide dimensions. BPM works best when launched from a single
mode/straight segment where the lateral profile is initialized by the usual 2D eigen
mode solver.
Q: Can BPM used for tapers and DBR gratings ? A: Yes. The DBR grating is taken
care of by the 2x2 transfer matrix approach (coupled-wave theory) while only the
lateral wave profile from BPM is used. The hybrid approach ensures efficiency and
self-consistency with local gain/index

Parameters

• go_backward directs the wave to be propagated backwards towards z=0 once
it reaches the end of the device so it makes one or more complete round-trips
(defined by round_trip). However, the current version of the Crosslight BPM
code is not a fully bidirectional BPM method.

• initialize_backward tells the BPM solver to use the mode profile to initialize
the backwards propagation rather than the forward propagated wave. In gen-
eral, this setting should not be used unless the forward wave output is heavily
distorted.

• coupled_mode enables use of the bpm_coupled_mode statement.

• update tells the software to update the results of the BPM method during the
simulation. The BPM is recalculated automatically as needed when the bias
increases but this can be explicitly controlled using update_per_scan.

• paraxial_model determines whether a paraxial approximation is used in the
BPM code.
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• symmetrize may be used to artificially force a symmetric BPM output.

• zstep_size is the BPM step size (in units of wavelength) within the semicon-
ductor medium.

• fft switches between an older FFT-BPM algorithm and a newer FD-BPM
method.

For the FFT-BPM method, the mesh size must be a power of two: xsize_power2
and ysize_power2 set the exponent of that power of two in the x and y di-
rection, respectively. Otherwise (FD-BPM), the number of mesh points in the
x and y direction are defined using nx_mesh and ny_mesh. These points
are distributed along center points x_center and y_center using mesh ra-
tios x_ratio and y_ratio. This system is somewhat similar to the way mesh
point ratios are allocated in the layer file and in put_mesh.

• smooth_step is used to transfer solution of regular mesh to BPM mesh
smoothly. Usually the regular simulation mesh is non-uniform and much dif-
ferent from the uniform BPM mesh. Since the initial solution is provided on
the regular mesh, transferring it BPM mesh does not give a smooth solution.
Using this parameter (can be set to several hundred) will allow the wave to be
propagated with the uniform mesh (without taper) until it becomes smooth
and can be regarded as a real solution on the BPM mesh.

• ipade is the order of the Padé approximation used.

• semi_vect specifies the semi-vectorial settings for the BPM method:

0 scalar BPM

1 semi-vectorial BPM with TE mode

2 semi-vectorial BPM with TM mode

• transm_xrange and transm_yrange are used to compute the transmission
factor by integrating the BPM mode over a xy window. As an alternative, the
mode profile in a particular z-segment specified by transm_2d_mode_zseg
may be used to compute the transmission using a mode overlap criterion.

Examples

bpm zstep_size=0.2 xsize_power2=5 ysize_power2=5 update=yes
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22.110 bpm_coupled_mode

parameter data type values [defaults]
z_from real (µm)
z_to real (µm)
mode_num intg [1]
zseg_num intg

bpm_coupled_mode works in conjunction with the bpm statement; it enables a
filtering model that restricts the shape of the BPM mode at each propagation point
zBP M . Instead of the natural output of the BPM method, we use an approximate
solution that is based on the shape of the eigenmodes present in the simulation; this
has the advantage of eliminating spurious elements of the BPM solution which may
accidentally propagate.
We describe this process by writing our filtered BPM mode shape (using bra-ket
notation) as:

∣∣∣wf
BP M > =

N∑
i=1

ai |wAi > +
N∑

j=1
bj |wBj > (22.6)

where |wAi > are the sets of eigenmodes present at z = zA and |wBj > is another
set of modes present at z = zB. The A and B reference planes are chosen to be the
z-segments (c.f. Chap 6.3) surrounding the current BPM propagation point so that
zA <= zBP M <= zB. We note that the eigensolver is only called once per z-segment
and not once for each electrical mesh plane.
To obtain the coefficients of the expansion, we left-multiply the above by < wAi|
and < wBj| to obtain a set of linear equations; when solved, this yields a set of
ai, bj coefficients which minimize the error between the actual BPM solution and the
filtered mode shape.
The filtered BPM mode is then used as the initial value for the next propagation
step; this process is repeated for all selected BPM steps. When the BPM propagates
in reverse, the same method is used but an independent set of expansion coefficients
is obtained.

Parameters

• z_from and z_to describe the range of BPM steps where the filtering occurs;
outside this range, the standard BPM mode shape is used as-is. If multiple
independent ranges need to be filtered, the bpm_coupled_mode statement
may be issues multiple times in the .sol input file.
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• mode_num describes the number of eigenmodes used in the filtering expan-
sion. If zseg_num is omitted, this number is used for all z-segments; if not,
this number is set only for the specified z-segment.

22.111 bpm_initial_import

parameter data type values [defaults]
intensity char [power_arb_unit.txt]
phase_in_pi char [void]

bpm_initial_import works in conjunction with the bpm statement. By default,
the software uses the eigenmode profile at z = 0 as the initial wave profile for the
BPM method; by using this statement, the user may import an external wave profile
as this initial wave.

Parameters

• intensity is the name of a text file containing the BPM mode shape being
imported. This data should be stored in a GnuPlot-compatible format with
three columns: x,y and arbitrary power/intensity value.

• phase_in_pi is the name of a text file containing the local phase of the
imported field; if empty, the phase factor is set to zero. This data should be
stored in a GnuPlot-compatible format with three columns: x,y and the local
phase value expressed as a multiple of π.

22.112 bpm_longmode_splot

parameter data type values [defaults]
data_file char
variable char
plane char [xy], xz, yz
cut_near real [0.0] (µm)
longmode intg
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bpm_longmode_splot does a surface plot of the Beam propagation Method wave
solution and other relevant model information. Unlike other BPM plotting com-
mands, this statement does not fit inside a begin_bpmplot block: instead, it is
meant to be used alongside regular .plt post-processing commands.

Parameters

• data_file may be used to save a copy of the plot data to a text file.

• variable is the variable being plotted:

– BPM_fwd_wave_intensity is the forward wave intensity
– BPM_fwd_wave_phase is the forward wave phase factor
– BPM_bck_wave_intensity is the backward wave intensity
– BPM_bck_wave_phase is the backward wave phase factor
– BPM_real_index is the real part of the refractive index used for propa-

gation
– BPM_imag_index is the imaginary part of the refractive index used for

propagation
– BPM_fwd_longmode_intensity is the forward intensity of a given longi-

tudinal mode.
– BPM_bck_longmode_intensity is the backward intensity of a given lon-

gitudinal mode.

• plane controls which plane is used for the surface plot. The position of the
cut plane along the remaining axis is determined by cut_near.

• longmode controls which longitudinal mode is used in the plot. If this pa-
rameter is omitted, the plot will show a sum over all longitudinal modes.

22.113 bpm_multimode

parameter data type values [defaults]
initial_amplitude real [0.2]
initial_phase real [0.0]
mode_index intg [2]

bpm_multimode is used to define an initial optical field profile consisting of more
than one lateral mode for the beam propagation method.



548 COMMAND SYNTAX

Parameters

• initial_amplitude is the initial amplitude of mode profile relative to the
fundamental mode.

• initial_phase is the initial phase (as a multiple of π) of the mode profile
relative to the fundamental mode.

• mode_index is the mode index label (integer) of the lateral mode.

Examples

The following statements define a profile with 3 modes, with 2nd and 3rd order modes
of amplitude being 50 percent and 10 percent of the 1st order mode, respectively.

bpm_multimode initial_amplitude=0.5 initial_phase=0 mode_index=2
bpm_multimode initial_amplitude=0.1 initial_phase=0 mode_index=3

22.114 bpmintegr_xy

parameter data type values [defaults]
outfile char [void]
backward char [no]
xrange realx2
yrange realx2
z real [0.0]

bpmintegr_xy may be used to integrate the Beam Propagation Method (BPM)
wave intensity over an x-y plane. This statement must be used inside a begin_bmplot
block.

Parameters

• outfile is the output file used to save the result of the numerical integration

• backward, if enabled, integrates the backward wave instead of the forward
wave.

• xrange and yrange are the integration ranges in the x and y direction, re-
spectively.
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• z is the position of the x-y plane.

Examples

bpmintegr_xy z=10. outfile=tmp.data3

22.115 bpmplot_xy1d

parameter data type values [defaults]
direction char [y],x
plot_phase char [no]
backward char [no]
rel_cutpoint real [0.5]
xrange realx2
yrange realx2
z real [0.0]

bpmplot_xy1d is used to plot a 1D cut of the Beam Propagation Method wave so-
lution on a specified x-y plane. This statement must be used inside a begin_bmplot
block.

Parameters

• direction is used to indicate the direction of the cut-line.

• contour indicates if contour plot is required.

• plot_phase indicates whether the phase or intensity is plotted.

• backward, if enabled, plots the backward wave instead of the forward wave.

• rel_cutpoint is the relative cut point position.

• xrange and yrange are the plot ranges in the x and y directions, respectively.

• z is the position of the x-y plane.

Examples

bpmplot_xy1d direction=y rel_cutpoint=0.5 z=105 plot_phase=no backward=no
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22.116 bpmplot_xyz1d

parameter data type values [defaults]
plot_phase char [no]
backward char [no]
rel_x real [0.5]
rel_y real [0.5]
xrange realx2
yrange realx2

bpmplot_xyz1d is used to plot the Beam Propagation Method wave solution on
a line along the z-direction. This statement must be used inside a begin_bmplot
block.

Parameters

• plot_phase indicates whether the phase or intensity is plotted.

• backward, if enabled, plots the backward wave instead of the forward wave.

• rel_x and rel_y are respectively the relative x and y positions of the cut line.

• xrange and yrange are the plot ranges in the x and y directions, respectively.

Examples

bpmplot_xyz1d plot_phase=no backward=no
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22.117 bpmsplot_xy

parameter data type values [defaults]
contour char [no]
plot_phase char [no]
backward char [no]
view_xrot real [0.]
view_zrot real [0.]
xrange realx2
yrange realx2
zrange realx2
z real [0.0]

bpmsplot_xy is used to plot the Beam propagation Method wave solution on an
specified x-y plane. This statement must be used inside a begin_bmplot block.

Parameters

• contour indicates if contour plot is required.

• plot_phase indicates whether the phase or intensity is plotted.

• backward, if enabled, plots the backward wave instead of the forward wave.

• view_xrot and view_xrot rotate the surface plot along the x and z axes,
respectively.

• xrange, yrange and zrange are the plot ranges in the x, y and z directions,
respectively.

• z is the position of the x-y plane.

Examples

bpmsplot_xy z=400 contour=no plot_phase=yes backward=no

22.118 bpmsplot_xz

bpmsplot_xz is used to plot the Beam propagation Method wave solution on an
specified x-z plane. This statement must be used inside a begin_bmplot block.
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Parameters

With the following exceptions, most parameters for this statement are identical to
those of bpmsplot_xy:

• rel_y is the relative y position of the x-z plane.

• abs_y is the absolute y position of the x-z plane (in microns). This parameter
will override rel_y.

22.119 bpmsplot_yz

bpmsplot_yz is used to plot the Beam propagation Method wave solution on an
specified y-z plane. This statement must be used inside a begin_bmplot block.

Parameters

With the following exceptions, most parameters for this statement are identical to
those of bpmsplot_xy:

• rel_x is the relative x position of the y-z plane.

• abs_x is the absolute x position of the y-z plane (in microns). This parameter
will override rel_x.

22.120 bulk_dos_model

parameter data type values [defaults]
carrier char [electron],hole
model char [3d],2d
mater_label char
2d_thick real [0.01] (µm)
2d_barrier real [0.3] (eV)
scale real [1.]
mater intg [1]

This statement is used to modify the density of states used in a bulk layer. The
most common application is when a thick MQW region is approximated by a single
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average bulk material: the density of states in that case should be that of the original
quantum wells and not that of the bulk material.

Parameters

• carrier is the carrier type whose density of states will be modified.

• model changes between the 2D (QW) and 3D (bulk) DOS models.

• 2d_thick is the thickness of the QW to be used in the 2D DOS model.

• 2d_barrier is the barrier height of the QW to be used in the 2D DOS model.

• scale is a scaling factor for the DOS.

• mater is the number identifying the material being modified. If a label alias
has previously been defined for this material, mater_label may be used in-
stead.

Examples

bulk_dos_model model=2d carrier=electron mater=2

22.121 bulk_treatment

parameter data type values [defaults]
type char [void]n,p

The statement bulk_treatment is used to turn on/off the quantum treatment for
one type of carrier. By default, both electron and hole subbands of a quantum
well are solved simultaneously. If one wish to achieve faster simulation or easier
convergence, one may use this statement to skip the quantum treatment and treat
the less important carrier as if it were in a bulk region.

Parameters

• type is the type of carrier to be treated as bulk carrier without quantum
models.
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Examples

bulk_treament type=p

The above statement will instruct the program to only compute the quantum states
of the n-type carriers.

22.122 bulk_xfunc1

bulk_xfunck,k=1..9 are a set of external functions that can be used as part of a
passive macro declaration. They can for example, define a bandgap formula that is
reused in the declaration of different parameters.
These statements follow the same rules for functions defined for other material macro
statements. See section 22.456 for examples and further details.

22.123 bulk_xfunc2

See bulk_xfunc1.

22.124 bulk_xfunc3

See bulk_xfunc1.

22.125 bulk_xfunc4

See bulk_xfunc1.

22.126 bulk_xfunc5

See bulk_xfunc1.

22.127 bulk_xfunc6

See bulk_xfunc1.
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22.128 bulk_xfunc7

See bulk_xfunc1.

22.129 bulk_xfunc8

See bulk_xfunc1.

22.130 bulk_xfunc9

See bulk_xfunc1.

22.131 c11_bar

cij_bar are a set of statements defining the stiffness tensor (elastic constants) of
the barrier material in the active macro of a quantum well. It is necessary to define
strain effects on bandgap and other material properties.
See c11_well for a list of tensor elements used in zincblende and wurtzite materials.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.132 c12_bar

See c11_bar

22.133 c13_bar

See c11_bar

22.134 c33_bar

See c11_bar
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22.135 c44_bar

See c11_bar

22.136 c11_bulk

cij_bulk are a set of statements defining the stiffness tensor (elastic constants) in
a passive material macro. This is only used for wurtzite materials since the software
does not support strained bulk zincblende.
See c11_well for a list of applicable tensor elements.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.137 c12_bulk

See c11_bulk

22.138 c13_bulk

See c11_bulk

22.139 c33_bulk

See c11_bulk

22.140 c44_bulk

See c11_bulk

22.141 c11_well

cij_well are a set of statements defining the stiffness tensor (elastic constants) in
the active macro of a quantum well or bulk active region. It is necessary to define
strain effects on bandgap and other material properties.
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For zincblende, the following Cij values are used[118]:



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 4C44 0 0
0 0 0 0 4C44 0
0 0 0 0 0 4C44


(22.7)

For wurtzite, the following Cij combinations are used:



C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 4C44 0 0
0 0 0 0 4C44 0
0 0 0 0 0 2 (C11 − C12)


(22.8)

The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.142 c12_well

See c11_well

22.143 c13_well

See c11_well

22.144 c33_well

See c11_well

22.145 c44_well

See c11_well
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22.146 column
parameter data type values [defaults]
indep_xmqw char [no] yes
add_top_mesh char [no] yes
w real
r real [1.]
column_num intg [1]
mesh_num intg [6]
shift_center real [0.] (fraction)

column is the statement used in the .layer file to define a column in the cross section
of the device; it also defines the mesh allocation in the vertical direction within said
column.
In that sense, this command is analogous to the layer statement which defines
horizontal properties.

Parameters

• indep_xmqw may be used to force the active layers in different columns
to be treated as different (or independent) active regions even if the material
parameters are the same. Such treatment may be necessary if the potential
distribution in the two columns are substantially different in a self-consistent
simulation.

• add_top_mesh instructs the software to define a mesh line boundary at the
top of the column. By default, this boundary is defined at the bottom of the
column so if a void region is present in a column, this may cause issues for the
mesh generator.

• column_num is a number assigned to the column for identification purposes.

• w defines the width of the column.

• mesh_num sets the number of vertical mesh lines for this column. This mesh
line boundary is processed by the mesh generator.

• r is the ratio for mesh line distribution. See Fig. 22.22.

• shift_center is used when r is negative and a symmetric mesh distribution is
requested. This parameter moves the position of the point around which the
mesh is symmetric.
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Examples

column column_num=1 w=1.0 mesh_num=6 r=0.8

22.147 column_position

parameter data type values [defaults]
label char
hline location char [right]
hline delta_x_from_left real [-9999.] (µm)
delta_x_from_right real [-9999.] (µm)

This statement is similar to layer_position and is used to mark a specific x coordi-
nate for later use. This is useful to automatically track changes to a device structure
without having to redefine coordinates in other commands.
All the parameters from this statement are analogous to those of layer_position.
The main difference is that all positions are defined relative to the preceding column
statement.

22.148 compact_junction_region

parameter data type values [defaults]
data_column char
data_folder char
data_file char [compact_junction_data.csv]
materi_label (i=1...9) char
yrange realx2
materi (i=1...9) intg

compact_junction_region works in conjunction with compact_semiconductor_model
and essentially allows the MQW region of an optical device to be modeled like a
“black box” using experimental data curves. It instructs the software to load a data
file that contains optical emission information that would normally be computed to
solve current continuity equations but which is unavailable in the compact semicon-
ductor model.
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Parameters

• materi (i=1...9), with “i” as a placeholder number, define the different mate-
rial numbers that are part of the semiconductor junction and which are affected
by this command. Alternatively, pre-existing material labels can be defined us-
ing materi_label (i=1...9), with “i” as a placeholder number again.

• yrange is the spatial extent of the region affected by this command.

• data_file defines the name of data file being loaded. The data must be stored
in a comma-separated value (CSV) text format.

• data_folder defines the path to the data file being loaded.

• data_column specifies the column format for the CSV file. At present, the
following settings are possible:

– v_j_iqe/temp is a 3-column format with the first line containing column
headers that will be ignored. The first column is the voltage, the sec-
ond column is the current and the third column is the internal quantum
efficiency (IQE) of a LED.
Multiple curves at different temperatures can be included in the same
file. The 3-column data blocks should be separated by a single-column
line containing the new temperature; the first data block is assumed to
be at 300K.

– j_gain/temp is a 2-column format with the first line containing column
headers that will be ignored. The first column is the current and the
second column is the optical gain; this format is primarily used for lasers.
Multiple curves at different temperatures can be included in the same
file. The 2-column data blocks should be separated by a single-column
line containing the new temperature; the first data block is assumed to
be at 300K.

22.149 compact_semiconductor_model

parameter data type values [defaults]
set_min_elec_density real (m−3)
set_min_hole_density real (m−3)
set_max_resistivity real (Ω ·m)
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compact_semiconductor_model turns on a simplified electrical transport model
for the simulation: instead of solving the coupled drift-diffusion equations of Chapter
5, only the Poisson equation is solved in the main Newton solver. The reduction in
problem size that comes from solving only one equation greatly simplifies convergence
and speeds up the computation speed in large 3D problems.
Since this approach does not solve the current continuity equations, only the drift
current is available in this model: this current is obtained from the gradient of the
potential, assuming an ohmic resistor model for all points. The local equivalent
resistivity is computed from the carrier mobility defined in the material macros and
the carrier density from the solution of the Poisson equatio. This conversion can be
shown using the definition of the net drift-diffusion current in Eq. 5.6:

Jn = nµn∇Efn

≈ nµn∇V

≈ ∇V
ρn

from which we obtain ρn = 1
nµn

.
As this model is an extreme simplification, using very small voltage steps in the
scan command is strongly recommended to reduce the variation of carrier density
between scan steps and obtain a smooth I-V curve.

Parameters

• set_min_elec_density sets the minimum value of the electron carrier den-
sity used to obtain the local resistivity: this is used to avoid dividing by zero
during the conversion. set_min_hole_density is likewise the minimum
value of the hole carrier density used in the conversion.

• set_max_resistivity artificially caps the value of the local resistivity. This
cap thus takes into account small values in both the carrier density and carrier
mobility.
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22.150 complex_region

parameter data type values [defaults]
polygon_name char
mater_label char
thickness real [0.01] (µm)
x_size real (µm)
mater intg [1]

The statement complex_region is used to describe a rectangle region of material
within a complex; that is a group of layers coupled to each other quantum mechani-
cally. Note that there should be odd number of layer for each column due to historical
reasons: the convention is that a complex describes a coupled MQW system in the
sequence of barrier-well-barrier...well-barrier. As of the 2012 version, there is a spe-
cial exception to this rule which can be used to define a complex region with only
two layers: see begin_complex for details.
Also for historical reasons, the optical gain is only calculated in the even-numbered
layers of a complex. This can be changed with inner_bar_gain but only for the
“inner” barriers: the gain will not be calculated in the outer layers and only serve as
boundary regions where the wavefunction decays. The user may split certain layers
into smaller pieces to account for this.
Note that complex MQW region declarations are usually generated automatically by
the layer.exe program. All that is needed is to use the appropriate complex MQW
active macros (prefixed by “cx-”) in the layer_mater statement.

Parameters

• polygon_name is the name of the polygon as defined in the .geo file.

• thickness is the thickness of the region in microns.

• x_size is the width of the region in microns.

• mater is the material number of the region. If a label has previous been defined
for this material, mater_label may be used instead.

Examples

begin_complex layer_num= 5 column_num= 1
complex_region polygon_name=p002 mater= 2 thickness= 0.785000000000E-001
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complex_region polygon_name=p003 mater= 3 thickness= 0.750000000000E-002
complex_region polygon_name=p004 mater= 2 thickness= 0.850000000000E-002
complex_region polygon_name=p005 mater= 3 thickness= 0.750000000000E-002
complex_region polygon_name=p006 mater= 2 thickness= 0.785000000000E-001
end_complex

22.151 complex_var_symbol

parameter data type values [defaults]
var_lib char
var_complex char

complex_var_symbol translates a variable/symbol name from the library to the
underlying complex/active macro. This statement can be omitted if the variable
name is the same in both the library and the macro.
See material_lib and basic_var_symbol for further information.

Examples

begin_library AlGaAs
import_basic name=algaas
import_complex name=cx-AlGaAs
complex_var_symbol var_lib=x var_complex=xw
end_library

This set of commands defines the “AlGaAs” library as being composed of the “algaas”
passive macro and the “cx-AlGaAs” active macro. The material parameter x used
when invoking the library is translated into the xw parameter of the active macros
and used “as-is” in the passive macro.

22.152 compute_inductance

parameter data type values [defaults]
ref_contact intg [1]
critical_curr real (A/m2)
ref_zplane real [8.0] (µm)
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compute_inductance is a post-processing statement used to compute the mag-
netic inductance (L = dΦ

di
) of the device. The software will compute the magnetic

flux density (B = ∇×A) based on Ampere’s law (∇×B = µ0J) and the DC current
flow in the device.

Parameters

• ref_contact is the contact number used to inject current in this model.

• critical_curr is a current density used to determine an equivalent coil geom-
etry based on the current distribution inside the device.

• ref_zplane is the position of z-plane used to compute the magnetic flux Φ.

22.153 cond_band2_edge

cond_bandj_edge, j=2,3 are a set of material statements used in active macros
with the layer_type of general_cx_strain. They define the offset (in eV) of the
2nd or 3rd conduction band valley with respect to the lowest conduction band valley.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.154 cond_band3_edge

See cond_band2_edge.

22.155 cond_band1_valley

cond_bandj_valley,j=1..3 are a set of material statements used in active macros
with the layer_type of general_cx_strain. When used, they override the number
of band valleys defined for the conduction bands in that statement.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.
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22.156 cond_band2_valley

See cond_band1_valley.

22.157 cond_band3_valley

See cond_band1_valley.

22.158 cond_dos_mass_ratio_n

The statements cond_dos_mass_ratio_n and cond_dos_mass_ratio_p are
used to define the ratio:

ratio = conduction mass
DOS mass

for electrons and holes, respectively. This allows the user to indirectly set the con-
duction mass of a material.

Theory

In the macros, the mass definitions are related to the density of states (DOS) and
the curvature of the energy dispersion relation: i.e., the DOS mass is a measure of
“how many” carriers there are in the material.
On the other hand, tunneling transparency (see Sec. 9.2) is derived from the Schrõdinger
equation. This means that the mass used in the WKB approximation and other mod-
els originates from a kinetic energy term: it is a measure of "how fast" the carriers
are. This is often called the conduction mass since it can be related to the carrier
mobility.
We note however that since the software directly uses the mobility as a macro vari-
able, the conduction mass is not used in the drift-diffusion model.

Parameters

The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.
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22.159 cond_dos_mass_ratio_p

See Sec. 22.158

22.160 cond1_mass_para

condj_mass_para,j=1..2 are a set of active macro parameters defining the rela-
tive conduction band mass of valley j in a direction parallel to the quantum well[119].
The mass defined in this statement can also be modified by non-parabolic terms with
the condj_para_e_dep_mass1 and condj_para_e_dep_mass2 statements:

m(E) = a+ bE + cE2

E(k) = ~2k2

2m0m(E)

Note that the j placeholder value must be the same in all thee statements since they
all refer to the same band valley.

Parameters

The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

Examples

This statement is used for general complex strained macros; the most common ap-
plications are for strained silicon, SiGe and II-VI lead salt materials.

layer_type type=general_cx_strain valley_c1=4 valley_v1=4 &&
optic_trans_valley_pair1=(1 1)

$ Define band gap as a bulk_xfunc1, to be referred to later by other functions
ext_func1 variation=function
function(x,temper)
0.17+0.057*x-0.095*x**2+sqrt(4.e-4+2.56e-7*temper**2)
end_function

cond1_mass_para value=0.05



22.161 cond2_mass_para 567

cond1_para_e_dep_mass1 variation=function
function(x)
em_parab=0.05;
egt=ext_func1;
2.*em_parab/egt
end_function

This defines a mass equal to m(E) = 0.05 + 0.1 E
Eg

in the notation above.

22.161 cond2_mass_para

Se st:cond1_mass_para.

22.162 cond1_mass_perp

condj_mass_perp,j=1..2 are a set of active macro parameters defining the rela-
tive conduction band mass of valley j in a direction perpendicular to the quantum
well[119].
The mass defined in this statement can also be modified by non-parabolic terms with
the condj_perp_e_dep_mass1 and condj_perp_e_dep_mass2 statements:

m(E) = a+ bE + cE2

E(k) = ~2k2

2m0m(E)

Note that the j placeholder value must be the same in all thee statements since they
all refer to the same band valley.

Parameters

The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

Examples

This statement is used for general complex strained macros; the most common ap-
plications are for strained silicon, SiGe and II-VI lead salt materials.



568 COMMAND SYNTAX

layer_type type=general_cx_strain valley_c1=4 valley_v1=4 &&
optic_trans_valley_pair1=(1 1)

$ Define band gap as a bulk_xfunc1, to be referred to later by other functions
ext_func1 variation=function
function(x,temper)
0.17+0.057*x-0.095*x**2+sqrt(4.e-4+2.56e-7*temper**2)
end_function

cond1_mass_perp value=0.05

cond1_perp_e_dep_mass1 variation=function
function(x)
em_parab=0.05;
egt=ext_func1;
2.*em_parab/egt
end_function

This defines a mass equal to m(E) = 0.05 + 0.1 E
Eg

in the notation above.

22.163 cond2_mass_perp

Se st:cond1_mass_perp.

22.164 cond1_para_e_dep_mass1

See cond1_mass_para.

22.165 cond1_para_e_dep_mass2

See cond1_mass_para.

22.166 cond2_para_e_dep_mass1

See cond1_mass_para.
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22.167 cond2_para_e_dep_mass2

See cond1_mass_para.

22.168 cond1_perp_e_dep_mass1

See cond1_mass_perp.

22.169 cond1_perp_e_dep_mass2

See cond1_mass_perp.

22.170 cond2_perp_e_dep_mass1

See cond1_mass_perp.

22.171 cond2_perp_e_dep_mass2

See cond1_mass_perp.

22.172 cond1_valley_prop1

condj_valley_propk are a set of active layer macro statements: j and k are place-
holder values that indicate the conduction subband valley number (j=1..2) and the
property number (k). For each valley, the subband concentrations are used to com-
pute material properties.
This parameter is not directly used for simulation but it allows for printing of data in
the post-processing stage. The statement more_output must be used to specifically
turn on the printing of this data.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.
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22.173 cond2_valley_prop1

See cond1_valley_prop1.

22.174 contact

parameter data type values [defaults]
type char [ohmic], schottky
touch_macro char
touch_var_symbolk(k=1..0) char
mater_label char
auto_numbering char [no],yes
barrier real (eV)
junc_coefs realx2 [1. 1.]
elec_temp real [1.5]
hole_temp real [1.5]
lattice_temp real [300.] (K)
heat_flow real [100.] (3D: W, 2D: W/m)
thermal_cond real [10.] (3D: W/K, 2D: (W/m)/K)
extern_temp real [300].
work_function real (eV)
touch_vark(k=1..9) real
num intg
thermal_type intg [1]
touch_mater intg

The statement contact defines the properties of an equipotential region belonging
to an electrode or metal contact. It does not define any other properties associated
with a metal contact such as optical absorption: this can be handled by using real
metal layers in the device or other statements relevant to a particular model.
For ohmic contacts, the simulation program must determine a built-in voltage based
on the flat band condition of semiconductor material in contact with the electrode.
Therefore, the program will get confused if an ohmic contact is in contact with
more than one semiconductor materials. In such a case, a solution is to use the
parameters started with “touch_” to force the electrode to use the properties of a
specific semiconductor.
In all thermal simulations, it is strongly recommended to override automatic contact
definitions from the .layer file in order to guarantee that the correct thermal boundary
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conditions are applied to the simulation. The default values may not make sense in
all cases.

Parameters

• type defines the type of the contact.

• touch_mater is used to specify the material number used to compute the
contact boundary conditions. For example, an ohmic contact touching two
different materials cannot be at two different energy levels simultaneously so
it only “touches” one of them. mater_label can also be used to identify the
“touch” material if the material has previously been given an alias.
The “touch” material can also be detected automatically by the software using
the name of the material macro (touch_macro) and the macro parameters
(touch_var_symbolk(k=1..9) and touch_var_symbolk(k=1..9)).

• auto_numbering may be used to automatically assign numbers to contact
based on the local doping profile and “touch” material composition.

• barrier is the barrier height in eV which is used only for Schottky contacts. It
is equal to semiconductor affinity minus the work function of the metal. The
user should define either barrier or work_function but not both.

• junc_coefs are the Schottky junction coefficients of a contact used in the for-
mulas of thermionic emission current model. They scale the emission velocities
of electrons and holes, respectively.

• num is the contact number. It much match the boundary number information
from the .geo file and the mesh.

• elec_temp and hole_temp are the electron and hole temperatures at the
contact (in units of kT). This is used as the boundary condition for the hydro-
dynamic model and should not be confused with the lattice temperature which
is a boundary of the thermal model.

• lattice_temp is the lattice temperature at the contact for thermal contact
type 1.

• heat_flow is the heating power flow going out of the contact for thermal
contact type 2. The unit of Watt/m for a 2D section of a cubic coordinate
system. The unit is Watt for 3D device or a 2D section of a cylindrical system.

• thermal_cond is the thermal conductance connected to the contact for ther-
mal contact type 3. The total heat flow (in Watt) to/from the device is given
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by Σ(T − Text) where Σ is the thermal conductance and Text is the external
thermal contact.

For a realistic 3D device, the unit is Watt/K. For a 2D simulation, the heat flow
is in unit of Watt/m and the unit of Σ is Watt/m/K for a 2D section of a cubic
coordinate system. That is, one must divide the total thermal conductance by
the device depth (in z-direction).

For an ideal uniform device, the thermal conductance of a cubic system can be
converted to that of cylindrical system by formula: Σcyl = πR2

2D
Σcub. R is the

radius of the cylindrical device and D is the half-width of the cubic device.

If external_cir is used to specify the resistance of this thermal conductor, the
self-heating effect will also be taken into account. A temperature difference will
appear between the contact and the external heat sink.

Important Note: many users make the mistake of using the thermal conduc-
tivity (k) instead of the thermal conductance (Σ) in thermal_cond. These
two quantities are related by:

Σ3D = k
w × L

t
(22.9)

Σ2D = k
w

t
(22.10)

where w,L, t are the width,length and thickness of the contact, respectively.
The 2D thermal conductance thus has, unfortunately, the same units ofWm−1K−1

as the thermal conductivity but the two values may differ by several orders of
magnitude.

• extern_temp is the temperature of the heat sink connected to the thermal
conductance for thermal contact type 3.

• See barrier above.

• thermal_type is the thermal boundary condition. All three types are defined
in Sec. 11.5. Please also see contact_heating for self-heating due to contact
resistance or other external circuit elements.

Examples

contact num=1 type=ohmic
contact num=2 type=schottky barrier=0.84
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22.175 contact_heating

parameter data type values [defaults]
resistance real [0.1] (Ω)
contact_num intg [1]

contact_heating is used to supplement the contact statement in thermal simula-
tions that use the minispice external circuit model. If the thermal boundary of the
contact is Type 3 as defined in Sec. 11.5, this command will add a heat flow equal
to the resistor’s self-heating (RI2) to the boundary condition.
Note that the resistance value defined in this command should be equal to the re-
sistance of the path between the contact and the external heat sink, no matter how
many resistors are actually connected to the contact node in the minispice circuit
layout.

22.176 contact_metal_interface

parameter data type values [defaults]
use_fix_charge char [no], yes
interface_thickness real [1.e-3] (µm)

contact_metal_interface overrides some of the default behavior associated with
electrical contact boundaries.

Parameters

• use_fix_charge controls whether or not fixed charges are applied on contact
boundaries. This setting is relevant when dealing with ohmic contacts (which
impose charge neutrality at the boundary) in wurtzite materials since a net
polarization vector may be present at the outer surfaces of the device. The
default behavior has the effect of automatically neutralizing the piezoelectric
charge on contact boundary regions, leaving the usual ohmic behavior intact.

• interface_thickness is the effective thickness of the contact. Because each
mesh point touching the contact may have its own effective thickness and
node area, a common reference is needed so that the total charge can be col-
lected/summed over the entire contact.
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22.177 convention

parameter data type values [defaults]
positive_current_flow char [outward],inward

The command convention is used to define the positive current flow. By default,
the simulator treats current flowing out of the device and in to a contact as being
positive.

22.178 couple_input_power

parameter data type values [defaults]
fraction real [1.]
lateral_mode intg [1]

This statement is used in PICS3D when modeling semiconductor optical amplifiers
(SOA) and modulators. It controls how much of the input light goes into each of the
various lateral modes.

Parameters

• fraction is the fraction of power that is input into a given lateral mode.

• lateral_mode is the number of the lateral mode receiving a fraction of the
input power.

Examples

$ Make sure these sum up to 1.0 ...
couple_input_power fraction=0.8 lateral_mode=1
couple_input_power fraction=0.2 lateral_mode=2
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22.179 couple_next

parameter data type values [defaults]
power_loss real 0. (fraction)
loss_modek (k=2..5) real 0. (fraction)
sec_num intg [1]

The statement couple_next is used to define the coupling between sections of a
device in PICS3D.

Parameters

• power_loss is the power loss fraction between sections.

• loss_modek,k=2..5 is the power loss fraction between sections for higher
order lateral mode number k.

• sec_num is the section number. The coupling defined by this statement is
between sections sec_num and sec_num+1.

Examples

couple_next power_loss=0.05 sec_num=1

22.180 cplot_xy

parameter data type values [defaults]
variable char (see list)
data_file char [vttek]
mater_boundary char [no]yes
point_ll realx2 (µm)
point_ur realx2 (µm)
xrange realx2
yrange realx2
z realx2
level intg [10]
grid_sizes intgx2 [20, 20]
mode_index intg [1]
trap_index intg [1]
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cplot_xy is a post-processor statement used to plot structural data on a 2D plane.
Unlike plot_2d, this command can only generate contour plots.
Other related commands exist and should be used depending on the 2D/3D nature
of the original simulation results. The following rules apply:

• 2D simulations: use plot_2d

• 3D cylindrical simulations with one mesh plane: use plot_2d

• xy plane from a 3D simulation: use cplot_xy for contour plots of scalar
variables, splot_xy for 3D surface plots of scalar variables or vplot_xy for
vector variables.

• xyz plane from a 3D simulation: use cplot_xyz for contour plots of scalar
variables, splot_xyz for 3D surface plots of scalar variables or vplot_xyz
for vector variables.

Parameters

With the exception of the z-position and vector plot-related parameters that do not
apply, all parameters are the same as in plot_2d.

• z is the position on the z-axis for the 2D plot. If necessary, the variable data
will be interpolated from neighboring mesh planes.

Examples

cplot_xy variable=potential z=50.
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22.181 cplot_xyz

parameter data type values [defaults]
variable char (see list)
data_file char
wave_option char [right],total,left
xy_from realx2
xy_to realx2
xrange realx2
yrange realx2
z_min real [-1.e9]
z_max real [1.e9]
mode_index intg [1]
grid_sizes intgx2 [20, 20]
level intg [10]
trap_index intg [1]

cplot_xyz is a post-processor statement used to plot structural data on a 2D plane.
Unlike plot_2d, this command can only generate contour plots.
Other related commands exist and should be used depending on the 2D/3D nature
of the original simulation results. The following rules apply:

• 2D simulations: use plot_2d

• 3D cylindrical simulations with one mesh plane: use plot_2d

• xy plane from a 3D simulation: use cplot_xy for contour plots of scalar
variables, splot_xy for 3D surface plots of scalar variables or vplot_xy for
vector variables.

• xyz plane from a 3D simulation: use cplot_xyz for contour plots of scalar
variables, splot_xyz for 3D surface plots of scalar variables or vplot_xyz
for vector variables.

Parameters

This statement is similar to cplot_xy and varies only in the way it defines the
plotting plane. As such, most of the parameters are also similar to those in plot_2d.

• xy_from and xy_to define the (x,y) corners of the plotting plane.
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• z_min and z_max define the z coordinates of the corners of the plotting
plane.

Examples

cplot_xyz variable=wave_intensity xy_from=(0.5, 0.0) xy_to=(0.5 3.0) &&
grid_sizes=(60, 20)

22.182 csuprem_mask

parameter data type values [defaults]
tag char [void]

csuprem_mask is used in the .layer file pre-processing in conjunction with the
export_layers_to_suprem command. It modifies the CSUPREM input files
that are generated by that command and adds a comment line at the appropriate
place. An optional used-defined label can also be added as part of the comment line
to facilitate the identification of layers.

Parameters

tag is a user-defined label that can be added to the comment line in CSUPREM
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22.183 current_conc

parameter data type values [defaults]
data_file char [void]
use_macro char [no]
fit_outfile char [void]
auto_pn_ratio char [no]
conc_log_scale char [no]
conc_range realx2 [(1.e23 1.e24)] (m−3)
pn_ratio real [1.]
av_index real [3.3]
auger_n real [2.e-42] (m6/s)
auger_p real [2.e-42] (m6/s)
life_n real [1.e-6] (sec.)
life_p real [1.e-6] (sec.)
data_point intg [30]
well_num intg [1]
zseg_num intg [1]

The statement current_conc is a gain preview statement which allows the user
to find the relation between carrier concentration and the recombination current in
the quantum well active region. The recombination rate is expressed as

R = Rspon +Rauger + n/taun + p/taup

where the spontaneous emission spectrum computed from the quantum well model
is integrated over all emission wavelengths and the Auger recombination is given
by auger_n and auger_p, defined below. The last two terms are due to traps,
surface recombination, thermal leakage, etc.

Parameters

• data_file is the file to which the graphic data is written in ASCII format.

• use_macro directs the program to use the material parameters such as Auger
coefficients from the material macros instead from parameters in this statement.
If this parameter is set to yes, parameters of auger_n, auger_p, life_n
and life_p in this statement will not be used for the model fitting.

• fit_outfile if set to a valid file name, is used to direct the model fitting results
to a file in the working directory.
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• auto_pn_ratio is used to indicate if automatic setting of hole/electron
density ratio is used in PICS3D simulation. If positive, averaged hole/electron
density from the drift-diffusion solver is used. This parameter, if positive, will
override pn_ratio.

• conc_range is the electron concentration range in the well.

• pn_ratio is the ratio of hole over electron concentrations. Note that this
ratio can be set to an arbitrary number in the gain preview. In the main solver,
however, this ratio is determined by the simulator automatically, according to
the local Fermi levels.

• conc_log_scale would vary the concentration in log scale.

• av_index is the estimated average refractive index.

• auger_n is the Auger coefficient Cn .

• auger_p is the Auger coefficient Cp .

• life_n is the minority carrier life time for electrons.

• life_p is the minority carrier life time for holes .

• data_point is the number of data points to be used in the current versus
concentration plot.

• well_num is the total number of active quantum wells involved.

• zseg_num is the z-segment number.

22.184 cylindrical

parameter data type values [defaults]
axis char x,[y]
cylindrical_origin real [0.] (µm)
min_core real [0] (µm)

The cylindrical statement is used to define a cylindrical coordinate system. It has
been implemented so that 3D devices with cylindrical symmetry can be modeled
with a single mesh plane.
With this setting, the 2D cut of the device shown in the .layer file corresponds to a
radial cut. 3D results are obtained by integrating the 2D results of the simulation
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from 0 to 2π. Note that in versions prior to 2012, the integration range was from 0
to π and a scaling factor had to be used during plotting. This scaling is no longer
necessary.
Please refer to Sec. 6.2 for details.

Parameters

• axis is the cartesian axis which is used as the rotation or z-axis of the cylindrical
coordinate system. The other direction is automatically equivalent to r.

• cylindrical_origin is used to offset r axis values during the conversion to the
cylindrical coordinate system. A value larger than zero turns a rectangular 2D
cut into a torus rather than a cylinder.

• core_min is a minimum r value used when converting the local mesh area
into a volume for the FEM. This value is necessary to avoid division by zero
errors since the gradient operator in cylindrical coordinates contains a term in
1
r

∂
∂θ

22.185 dbr_truncate

parameter data type values [defaults]
dir char [left] right
kappa_l real [5.]
sec_num intg [1]

dbr_truncate is used to modify the DBR grating in edge type of lasers so that
numerical stability may be achieved. When a DBR grating structure is used as a
reflector for a laser diode, the propagating light can only penetrate a finite distance
before fully reflected. Such a penetration length is usually in the order of several
1/kappa, where kappa is the coupling coefficient. The DBR gratings beyond this
penetration length does not contribute to the laser diode operation but may cause
numerical stability during Newton iterations. Thus, we artificially truncate the DBR
portion beyond the penetration length by setting the kappa there to zero.

Parameters

• dirdir is the direction towards which the DBR grating is used as a reflector.
For example, dir=left means the DBR is used to reflect light coming from the
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left.

• kappa_l is a real number of around five. It is used to measure the penetration
length beyond which the DBR is to be truncated. The penetration length is
given by kappa_l/kappa, where kappa is the coupling coefficient.

• sec_num is the index of the section where the DBR truncation is applicable.

Examples

dbr_truncate sec_num=2 kappa_l=5

22.186 define_alias

parameter data type values [defaults]
alias char [void]
name real [void]

define_alias is used to define an alias which may be used instead of the original
variable in all input files. It acts in many ways like the #define directive in C/C++.
To associate an alias to a numerical value, use define_symbol instead.

Parameters

• alias is the alias being used.

• name is the name the alias represents.

Examples

define_alias alias=Vg name=voltage_2

This defines Vg (gate voltage) as being equivalent to voltage_2.
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22.187 define_cavity

parameter data type values [defaults]
propagation_dir char y, [z]
symmetric_x char [yes], no
import_xy_wave char
eim_core_xrange realx2 (µm)
eim_core_zrange realx2 (µm)
eim_core_index real [3.5]
eim_clad_xindex real [1.5]
eim_clad_zindex real [1.5]

The define_cavity command is exclusively used in PICS3D and is similar to
vcsel_model. It is used to define the optical mode profile of a micro cavity/photonic
crystal structure in the cartesian coordinate system. Unlike vcsel_model, de-
fine_cavity does not try to compute the standing wave overlap between the optical
mode and the active region.

Parameters

• propagation_dir is the overall direction of the wave vector in the laser cavity.

• symmetric_x is a flag indicating the left border of the cavity is a symmetry
axis.

• import_xy_wave is the name of text file containing a mode profile that
should be imported into the simulation. The format should be defined in 3
columns (x y intensity) with x changing the fastest and a line break between
each set of y values. A uniform grid is assumed.

• eim_core_xrange is the waveguide core x-range for effective index method
(EIM) when computing the wave profile. If propagation_dir=y, eim_core_zrange
serves the same purpose and the defines the depth of the waveguide core. If
propagation_dir=z, it is assumed the y-range of the waveguide core is the
same as the x-range.

• eim_core_index is the real part of the refractive index in the waveguide core.
Similarly, eim_clad_xindex and eim_clad_zindex respectively define the
real part of the refractive index in the cladding for the x and z directions. If
propagation_dir=z, it is assumed that the cladding along y is the same as
along x.
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Examples

define_cavity propagation_dir=y &&
eim_core_xrange=(0 0.5) eim_core_zrange=(0. 1.035) &&

eim_core_index=3.5 eim_clad_xindex=1.5 eim_clad_zindex=1.

22.188 define_material

parameter data type values [defaults]
mater intg [1]

This statement is used when a material number is re-used between z-segments. The
first z-segment where this material occurrs must use load_macro to load the macro
parameters. The other z-segments use define_material to indicate load_macro
has already been used.

Parameters

• mater is the number of the material being reused.

Examples

define_material mater=8

22.189 define_symbol

parameter data type values [defaults]
symbol char [void]
value real

define_symbol is used to associate numerical values with symbols. It acts in many
ways like the #define directive in C/C++.
This may be used to simplify input files or to represent repeated numerical values so
that revisions are more convenient.
A few precautions should be taken when using this statement:
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• 1) Avoid using it when the same symbol appears than once within a line;

• 2) The line containing the symbol must have enough line space so that the
total length does not exceed 80 character after value substitution;

• 3) Please avoid using symbols that are already defined as parameters in crosslight.tab.
For example, the following statement will cause problems:

define_symbol symbol=doping value=2.e24

Since "doping" is commonly used statement, the program will replace all oc-
currence of "doping" by "2.e24" and the input file will loss its original meaning.
To avoid this problem, try

define_symbol symbol=john_smith_doping value=2.e24

To associate a symbol to a variable or a string input value, use define_alias instead.

Parameters

• symbol is the symbol to be used to represent numerical value in the program.

• value is the numerical value to be used.

Examples

define_symbol symbol=my_doping value=1.e24

22.190 define_vertical_position

parameter data type values [defaults]
label char [void]
reference_to char [void]
use_y_coord real (um)
above_previous real (um)
below_previous real (um)
cut_at_x real (um)
from_top real (um)
from_bottom real (um)
above_reference real (um)
below_reference real (um)
between_materials intgx2
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define_vertical_position is used in .sol file to label a vertical position for later
reference. This can be done in one of the following ways:

• 1) Use absolute coordinates

• 2) Defined as first occurrence of material interface between two materials when
searching from bottom to top

• 3) In reference to a previously defined position, i.e., using relative distance

• 4) Use relative distance with respect to the top or bottom of the x-y mesh.

Parameters

• label is a position label at a specific y-coordinate.

• reference_to is used to define a reference point for approach number 3). It
must be a predefined position label.

• use_y_coord is the y-coordinate for approach number 1).

• above_previous indicates the position is above a label in the preceeding
statement for 3).

• below_previous indicates the position is below a label in the preceeding
statement for 3).

• cut_at_x is used to define the x-position when using approach 2).

• from_top defines the distance from top of the mesh system in 4).

• from_bottom defines the distance from bottom of the mesh system in 4).

• above_reference is the distance above the reference point defined by pa-
rameter reference_to.

• below_reference is the distance below the reference point defined by pa-
rameter reference_to.

• between_materials defines the two materials used to identify the interface
position in 2).
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Examples

define_vertical_position label=sio2/si &&
cut_at_x=0. between_materials=(2 3)

This example labels a y-position between materials 2 and 3 and label it as “sio2/si".

22.191 delta_real_index_caxis

delta_real_index_caxis is a passive macro parameter describing the birefrin-
gence in wurtzite materials. This value describes the difference between the ex-
traordinary index and the ordinary index with the latter value being defined in
real_index.
To model the birefringence, optical_axis must also be used to configure the waveg-
uide orientation with respect to the extraordinary axis.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.192 delta_so_bar

delta_so_bar is an active macro parameter defining the spin-orbit coupling (in
eV) in a zincblende Hamiltonian. It applies to the barrier region of a quantum well.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.193 delta_so_well

delta_so_well is an active macro parameter defining the spin-orbit coupling (in
eV) in a zincblende Hamiltonian. It applies to quantum wells and bulk active regions.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.194 delta1_bar

deltaj_bar,j=1..3 are a set of active macro parameters defining valence band edges
(in eV) in the barrier of a wurtzite quantum well. They correspond to the ∆j values
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appearing in the Hamiltonian[62].

• ∆1 corresponds to the crystal field splitting (∆cr)

• ∆2 and ∆3 correspond to the spin-orbit splitting. It is common to set ∆2 =
∆3 = ∆so

3 .

The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.195 delta2_bar

See delta1_bar.

22.196 delta3_bar

See delta1_bar.

22.197 delta1_bulk

deltaj_bulk,j=1..3 are a set of passive macro parameters defining valence band
edges (in eV) in wurtzite materials. They correspond to the ∆j values appearing in
the Hamiltonian[62].

• ∆1 corresponds to the crystal field splitting (∆cr)

• ∆2 and ∆3 correspond to the spin-orbit splitting. It is common to set ∆2 =
∆3 = ∆so

3 .

The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.198 delta2_bulk

See delta1_bulk.
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22.199 delta3_bulk

See delta1_bulk.

22.200 delta1_well

deltaj_well,j=1..3 are a set of active macro parameters defining valence band
edges (in eV) for a wurtzite quantum well or bulk active region. They correspond to
the ∆j values appearing in the Hamiltonian[62]:

• ∆1 corresponds to the crystal field splitting (∆cr)

• ∆2 and ∆3 correspond to the spin-orbit splitting. It is common to set ∆2 =
∆3 = ∆so

3 .

The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.201 delta2_well

See delta1_well.

22.202 delta3_well

See delta1_well.

22.203 d1_bar

di_bar,i=1...6 are a set of parameters used to define barrier properties in wurtzite
quantum well active macros. They define the shear deformation potential (Di) as
defined in Ref [62].
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.204 d2_bar

See Sec. 22.203.
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22.205 d3_bar

See Sec. 22.203.

22.206 d4_bar

See Sec. 22.203.

22.207 d5_bar

See Sec. 22.203.

22.208 d6_bar

See Sec. 22.203.

22.209 d1_bulk

di_bulk,i=1...6 are a set of parameters used to define barrier properties in wurtzite
passive macros. They define the shear deformation potential (Di) as defined in
Ref [62].
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.210 d2_bulk

See Sec. 22.209.

22.211 d3_bulk

See Sec. 22.209.
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22.212 d4_bulk

See Sec. 22.209.

22.213 d5_bulk

See Sec. 22.209.

22.214 d6_bulk

See Sec. 22.209.

22.215 d1_well

di_well,i=1...6 are a set of parameters used in the active macros for wurtzite
quantum wells and bulk active regions. They define the shear deformation potential
(Di) as defined in Ref [62].
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.216 d2_well

See Sec. 22.215.

22.217 d3_well

See Sec. 22.215.

22.218 d4_well

See Sec. 22.215.
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22.219 d5_well

See Sec. 22.215.

22.220 d6_well

See Sec. 22.215.

22.221 diagonal_split

parameter data type values [defaults]
split_dir char [north-west], north-east
right_mater_from char [east], west, north, south, original
right_doping_from char [east], west, north, south, original

The diagonal_split command is used in the .layer file to split a rectangle into two:
a line drawn between two corners splits the rectangle into two pieces which can have
different material or doping properties from the original rectangle.
In this command, cardinal directions from a map are used instead of the usual
up/down/left/right convention.

Parameters

• split_dir gives the direction of the diagonal line splitting the rectangle.

• right_mater_from is used to initialize the material number of the new tri-
angle created from the split. The triangle left of the split line is left unchanged
and uses the material number of the original rectangle. The triangle to the right
of the split line may borrow the material number from one of the neighbors of
the original rectangle or keep its original number.

• right_doping_from is the same as right_mater_from but deals with the
doping value used in the new triangle to the right of the split line.



22.222 dielectric_constant 593

22.222 dielectric_constant

The material statement dielectric_constant defines the static dielectric constant
which appears in the Poisson’s equation. It does not affect the wave equation which is
written for optical frequencies so this value is unrelated to the value of real_index.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.223 differential_gain

parameter data type values [defaults]
data_file char
include_data char
conc_log_scale char [no], yes
wavel_range realx2 (µm)
conc_range realx2 [1.e23 1.e24] (m−3)
pn_ratio real [1]
av_index real [3.3]
data_point intg

differential_gain plots the differential material gain (at the peak of the gain curve)
versus carrier density in the active region. This statement can be used in the gain
preview module.

Parameters

• data_file specifies a file name used to save a copy of the plot data.

• include_data includes data files from other gain calculations on the plot for
comparison purposes.

• wavel_range is the wavelength range used to search for the gain peak.

• conc_range is the electron concentration range in the well used for the plot.

• pn_ratio is the ratio of hole over electron concentrations.
Note that this ratio is set to an arbitrary number in the gain preview in order
to generate a 1-dimensional plot or a family of spectral curves which depend
on a single parameter. In the main solver, this ratio is normally unused and
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the gain calculations automatically make use of the local Fermi levels for both
electrons and holes.

• av_index is the estimated average refractive index.

• data_point is the number of data points in the curve.

• conc_log_scale determines if the carrier density points are spaced linearly
or on a logarithmic scale.

Examples

differential_gain wavel_range=(1.0 1.4) &&
conc_range=(5.e23 5.e24) pn_ratio=1 data_point=20

22.224 direct_eigen

parameter data type values [defaults]
select_modes char [no] yes
max_index char [yes] no
max_element char [no] yes
sigma_factor real [2.]
select_index real
arnoldi_base intg [10]

The statement direct_eigen is used to activate the restarted Arnoldi algorithm for
the optical mode solver.
This statement can be used in conjunction with multimode if multiple lateral modes
are present.

Application Notes

direct_eigen is not recommended for use in structures without lateral variation. If
the mode shape has no variation along the x direction, then the eigensolver should
expect to find one degenerate mode for each vertical x = xi mesh line. In theory,
picking any one of these degenerate modes is sufficient as they have the same shape.
In practice however, lack of numerical precision can result in nearly-degenerate modes
which are identical in the y direction but differ along x. Picking a single mode out
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of these nearly-degenerate modes can therefore result in an artificial lateral variation
in the mode intensity. Considering ALL of the degenerate modes for the simulation
works around this issue as the sum of all modes respects the expected uniform lateral
behavior; however, this approach slows down the simulation.
direct_eigen is also not recommended for broad-area devices. The situation here is
similar to the above case but even inclusion of all degenerate modes is not sufficient
to capture the physics of interest. For broad-area devices, the lateral standing wave
pattern is often of interest but the mesh density in the x direction is seldom dense
enough to capture this effect.
In these two cases, using the optical_field statement instead of direct_eigen is
recommended. Note that these two commands should not be used together.

Parameters

• select_modes , if positive, is used to select eigen modes based on an effective
index value supplied through parameter select_index. The eigen modes
found will have effective indices below select_index. If negative, the search
of eigen value will start from effective index estimated from the highest local
material index within the solution region.

• max_index turns on automatic mode search based on a maximum material
index of the device structure.

• max_element , if positive, instructs the simulator to find eigen modes based
on maximum value of matrix elements.

• sigma_factor is used in conjunction with max_element to obtain an esti-
mate of the maximum eigen value. This factor is multiplied with the maximum
matrix element to provide a starting point for eigen value search.

• arnoldi_base is used to control the number of Arnoldi eigen solutions we
intend to work with. The total number of eigen vectors is this number plus the
number of modes we specify in the multimode.

Examples

direct_eigen sigma_factor=2.



596 COMMAND SYNTAX

22.225 disconnect_zmesh

parameter data type values [defaults]
plane intg [-9999]
zseg_num intg [-9999]

This statement serves the same purpose as the z_connect=no option in the 3d_solution_method
statement: it forces all connecting elements between certain z planes to zero so that
no current can flow between them. This statement offers a bit more control as it
allows disconnection of individual planes and segments instead of turning off all
connections at once.

Parameters

• plane is a plane number. The connection will be cut between plane and
plane+1.

• zseg_num is a segment number. The connection will be cut between the last
plane of zseg_num and the first plane of zseg_num+1, thereby disconnecting
the two segments.

Examples

disconnect_zmesh zseg_num=2

22.226 do_raytrace_3d

parameter data type values [defaults]
3d_emission_model char [plane]
external_package char [void]
working_direction char [-y]
device_kind char [led]
incident_light_side char [+y]
surface_model char [void]
surface_model_side char [+y]
reject_edges char [no]
extract_to_file char [void]
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extract_data char [wavelength_absorption]
append_data char [no]
dome_bottom_mirror char [yes]
precision real [0.01](percentage)
te_portion real [0.5]
tm_portion real [0.5]
plate_thickness real [100.] (um)
plate_width real [1000.] (um)
dome_cyl_height real [500.] (um)
dome_cyl_radius real [400.] (um)
dome_sph_radius real [400.] (um)
dome_base_thickness real [10.] (um)
scale_refl real [1.]
scale_tran real [1.]
thickness1 real [0.023]
thickness2 real [0.034]
package_refr_index realx2 [1.7,1.e-7]
effective_exit_index realx2 [1.0,0.0]
refr_index1 realx2 [1.3,0.0]
refr_index2 realx2 [1.7,0.0]
datafile_range intgx2 [1 1000]
initial_rays intg [5000]
max_secondary intg [100000]
3d_angle_store intg [50]
emit_points_number intg [10]
max_primary intg [5000]
n_layer intg [1]
surface_power_grid intg2 [100,100]
TE_TM_mode intg [0]

do_raytrace_3d is used to set parameters for and to activate the raytracing
module for 3D simulation of light emitting diodes (LED).
It can also be used for 2D simulations. In this case, the x-y modeling plane is extruded
in the z direction with a thickness of 1 µm to create a 3D volume compatible with
the 3D raytracing program. However, emitted rays are restricted to the original 2D
plane.
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Parameters

• 3d_emission_model is the emission source model of an LED active region.
It can take one of the following values:

– one_point: the spontaneous emission power is averaged to find the center
of emission. All the rays emanate from this one point.

– xy_plane: the spontaneous emission power is averaged into a few “hot
spots” of emission. Each of these spots is allowed to emit rays which
carry the total integrated power of that spot. This is the recommended
model when the quantum well plane normal is along the z-axis.

– xz_plane: same as xy_plane except for the plane of averaging for the “hot
spots”. This is the recommended model when the z-axis is in the plane of
the quantum well.

– mesh_points and active_mesh: every mesh point assigned to an active
region is allowed to emit rays. This model is very time-consuming but
is the most accurate. The number of angular points should be reduced
when using this model to get a reasonable computation time.

– box_emitting: every polygon of the .geo file becomes a 3D box for the
raytracing program. The spontaneous emission source power from each
box is averaged into a hot “spot” of emission and used to emit rays.

– random_points: Rays are emitted from a randomly-selected points in the
device.

• external_package indicates the existence of an external package that encap-
sulate the LED. The value of this variable can be chosen as: void, medium,
plate or dome. A value of void means the LED is not encapsulated.

• working_direction defines the working direction of all external packages.
It can be chosen as: -x, +x, -y, +y, -z or +z. Figure 22.3 shows how this
parameter is defined.

• device_kind determines what kind of device (led or detector) is being mod-
eled.

• incident_light_side determines which side of a detector is illuminated.

• surface_model determines which boundary conditions are applied to cer-
tain surfaces; this can be used to represent optical coatings. Note that in
certain structures, the coating must be modeled inside the device with the
set_3dray_internal_interface statement.

• surface_model_side determines which side of the device is affected by
surface_model.
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Figure 22.3: An explanation of the packages parameters
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• reject_edges determines how the mesh points are used internally by the ray
tracing program to average material properties. Choosing yes will cause the
program to ignore mesh points too close to box edges which can lead to more
a accurate refractive index near large discontinuities. However, it will cause an
error if there are not enough mesh points.

• extract_to_file specifies which file the ray tracing code will export data to;
this will be disabled when set to void. The extracted data will be appended to
an existing file or will overwrite it, depending on the value of append_data.

• append_data would instruct the program to append data to an existing
data file instead of creating a new one.

• dome_bottom_mirror would set a perfect mirror on the bottom of a dome
external package.

• extract_data specifies which ray tracing result will be extracted to the file
specified by extract_to_file.

• precision is the ray-tracing precision of the ray-tracing calculation. The ray-
tracing procedure is terminated if the relative power of a ray decays to this
value.

• te_portion, tm_portion are the fractions of TE and TM polarizations of
propagating light. For non-polarized light te_portion and tm_portion
are equal.

• plate_thickness, plate_width, dome_cyl_height, dome_cyl_radius,dome_sph_radius,
dome_base_thickness are geometrical dimensional parameters of the pack-
ages. Figure 22.3 illustrates the meaning of all these parameters. They are in
units of µm. A given package is built around (or besides) the device. If one or
more sizes of a package are set less than device sizes, the program corrects the
sizes automatically to their possible minimum values.

• scale_refl, scale_tran are scaling factors to the Fresnel coefficients which
are applied when surface_model=scale_fresnel_coef.

• thickness1, thickness2, refr_index1,refr_index2, n_layer are the pa-
rameters of the multi_layer option of surface_model.

• package_refr_index defines the complex optical refractive index for all
packages.

• effective_exit_index is the effective index of the coating when surface_model
is set to exit_index.
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• datafile_range the range of data sets exported from APSYS/Optowizard
used to do the raytracing simulation. Note that this may be different than the
data sets used for normal plotting purposes.

• initial_rays is the number of initial rays launched from one emission source
point. Equal angular distribution is forced upon these initial rays.

• max_secondary is an integer value parameter, that defines maximum sec-
ondary rays generated during multiple reflections and refractions. The ray-
tracing procedure will terminate for a certain initial ray if the number of
secondary rays exceeds this number. A ray is regarded as secondary if it is
generated by transmission from its initial material box to one of its neighbors.

• 3d_angle_store is the resolution which is used to store the angular power
distribution. It is equal to the number of angular divisions in theta angle and
is equal to half of the number of divisions in phi angle.

• emit_points_number is a total given number of emitting points (“hot spots”)
for the plane emission models.

• max_primary is the maximum number of primary rays allowed. If the pri-
mary rays exceeds this number, the program will terminate the tracing of the
primary rays. A ray is regarded as primary if it is directly produced from one
of the emission points and not from transmission at a material box interface.

• surface_power_grid is the size of the grid used to record the location and
power of rays exiting the device. Six such grids are located around the de-
vice to form a box. The resulting surface emission map can be plotted with
3drayplot_surfpower

• TE_TM_mode defines the behavior of the TE/TM emission model for
LEDs. If equal to 0, the mix of TE/TM emission from APSYS is used for
the raytracing. For 1, the TE emission spectrum is used and for 2, the TM
emission is used.

Examples

rt3d_contact_reflector transp_contact=yes &&
contact1_compindex=(2.

0.5) contact1_thick=0.05 && contact2_compindex=(2. 0.5)
contact2_thick=0.05

$ No dome do_raytrace_3d precision=0.01 datafile_range=(2,6)
initial_rays=8000
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$ With dome external package $do_raytrace_3d precision=0.01
datafile_range=(2,6) initial_rays=8000 && $ external_package=dome
working_direction=+y && $ dome_cyl_height=110
dome_base_thickness=10 && $ dome_cyl_radius=500
dome_sph_radius=500 && $ package_refr_index=(1.7,1.0e-6)

22.227 dopant_ionization_model

parameter data type values [defaults]
mott_trans_correction char [yes],no
mater_label char
scale_factor real [1.]
max_activation_energy real [0.1] (eV)
mater intg [1]

This statement controls the heavy doping effects model for a given material. By de-
fault, the Mott transition model is always active for shallow dopants so this command
does not need to be issued. See Sec. 5.1.5 for details.

Parameters

• mott_trans_correction turns on or off the Mott transition model.

• scale_factor is a scaling factor for the transition.

• max_activation_energy defines the maximum ionization energy where the
Mott transition is allowed. Deep dopants with ionization energies beyond this
value will not be affected by the Mott transition.

• mater identifies the material affected by this statement. If a label has previ-
ously been defined for this material, mater_label may be used instead.

Examples

$ To specifically turn off the Mott transition for a material
dopant_ionization_model mott_trans_correction=no mater=1

$ To specifically turn on the Mott transition for a material
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$ with deep dopants
dopant_ionization_model max_activation_energy=1e99 mater=2

22.228 doping

parameter data type values [defaults]
impurity char [shal_dopant]
charge_type char [donor],acceptor
shape char [gaussian],polygon
pf_model char [no],yes
x_datafile char [void]
y_datafile char [void]
direction char [positive],negative
log_scale char [no] yes
xy_datafile char [void]
xy_linedata char [yes]
traplevel_model char [void], gaussian, expo_tail, uniform
traplevel_tail_side char [conduction]
datafile_unit char [1/m^3],1/cm^3
sheet_density char [no] yes
sheet_location char [void],bottom,top
polygon_file char [void]
all_segment char [no]
polygon_z_datafile char [void]
polygon_z_datafile_unit char [1/m^3],1/cm^3
polygon_z_datafile_log char [yes]
decay_type char [gaussian],erfc
use_position_label char [no], yes
x1_label char [void]
x2_label char [void]
y1_label char [void]
y2_label char [void]
max_conc real 1.e10 (m−3)
level real [0.01] (eV)
x_prof realx4 x1,x2,dx1,dx2 (µm)
y_prof realx4 y1,y2,dy1,dy2 (µm)
edge1_prof realx3 x2,y2,dx2
edge2_prof realx3 x2,y2,dx2
edge3_prof realx3 x3,y3,dx3
edge4_prof realx3 x4,y4,dx4
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pf_cont_shift real [0.] (eV)
arc_height1 real [0.](µm)
arc_height2 real [0.](µm)
arc_height3 real [0.](µm)
arc_height4 real [0.](µm)
origin real [0.] (µm)
grading_from real (fraction)
grading_angle real [90.] (degrees)
xy_data_factor real [1.]
xy_x_transform realx2 [1. 0.]
xy_y_transform realx2 [1. 0.]
traplevel_stddev real [0.1](eV)
traplevel_tail real [0.05](eV)
label_tail real [0.01] (µm)
polygon_file_stddev real [0.01] (µm)
z_stddev real [0.] (µm)
z_stddev2 real (µm)
pnt_num intg [4]
newdoping_index intg
xy_skipline intg [1]
xy_data_column intg [3]

The statement doping is a frequently used statement which describes the doping
profile of impurities or impurity concentration distribution. This statement is often
generated automatically when processing the .layer file and should only be used by
advanced users.
Multiple doping statements covering overlapping areas can be used to define co-
doping or create advanced shapes. Experimental or doping profiles simulated in an
another program can also be defined using this statement.
For an even more accurate model, the user is encouraged to try our CSUPREM soft-
ware which can model the entire growth process of semiconductor devices including
etching, diffusion and implantation.

Parameters

• The parameter impurity defines the type of impurity being modeled:
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– shal_dopant or shal_dopanti,i=1..9 for shallow dopants; multiple species
may be defined

– trap_i,i=1..9 for deep level traps of type i
– fix_charge for fixed space charges

When defining traps, the user should also define the statements trap_ncap_i
and trap_pcap_i in the .sol file to specify the capture cross sections of the
trap.

• charge_type is the charge state of the impurity. For shallow dopants and
traps, it must be either donor or acceptor. For fixed space charges, it must be
positive or negative.

• shape controls the shape of the doping region created by this statement:

– For gaussian or rectangle, the profile is uniform within a rectangle (see
Fig. 22.4) and falls off from the sides using Gaussian tails. The corner
points and standard deviations for the Gaussian tails are given by using
x_prof and y_prof.
The 4 values in x_prof correspond to (x1,x2,dx1,dx2) (in µm). y_prof
similarly defines (y1,y2,dy1,dy2). Note that if x1=x2 and y1=y2, only
the tails remain and the shape collapses into a standard Gaussian.
Alternatively, use_position_label allows the use of the position labels
in x1_label, x2_label, y1_label and y2_label to define the corner
points. In such a case, the tail value is set using label_tail.

– polygon extends the above behavior with uniform doping inside a more
generic polygon with corner points defined through edgei_prof,i=1..4.
These commands each define 3 values(x,y,dx); (x,y) are the corner coor-
dinates for point i and dx is the standard deviation of the Gaussian tail
extending perpendicularly from the polygon edge connecting points i and
i+1.
The number of corner points actually used to define the polygon is con-
trolled with pnt_num (see Fig. 22.5).

– use_polygon_file further extends the above behavior with a uniform dop-
ing with a polygon whose corners are defined inside a separate text file
(polygon_file). As before, each edge of the polygon has a Gaussian tail
extending perpendicular to it; the standard deviation of this tail is defined
in polygon_file_stddev.

Note that when importing doping profiles (e.g. SIMS) from a data file, the
shape parameter should be left to its default values.

• decay_type can be used to replace the standard Gaussian tails mentioned
throughout this section with the complimentary error function (erfc).



606 COMMAND SYNTAX

• pf_model turns on/off the Poole-Frenkel model for field-induced thermionic
emission of partially ionized dopants. Such a model is important when the
ionization energy is high or when the operating temperature is low.

• x_datafile or y_datafile allows the user to import numerical doping data
for the x or y direction. The file data must be stored in 2-column format:

relative_distance_in_microns doping_density
(no blank lines anywhere)

The doping density stored inside the file can be in linear or log10 scale de-
pending on the choice of log_scale. The units of the data can also be set by
datafile_unit (1/m3 or 1/cm3).
The exact position of the doping when importing a profile is further controlled
by two other parameters:

– direction is used to flip the sign of the coordinates for imported data
files. If negative, the actual doping profile is in a direction opposite to the
relative-distance given in the data file.

– origin is the origin used to calculate the absolute position for the data
points of the imported doping profile.

The actual coordinates used in device simulation are therefore:

(origin) + (sign-of-direction)*(relative-distance)

• sheet_density instructs the program that the present command is used to
describe a sheet density profile instead of the bulk default. The max_conc
would be in unit of 1/m2 to define a sheet charge over the x-y plane.

• sheet_location is used in conjunction with sheet_density=yes for a 3D
structure. It defines the location of the sheet charge either on the top or
bottom of the present z-segment.

• max_conc defines the maximum concentration of the doping profile.

• level defines the relative energy level of the impurity. For shallow donors and
deep level traps, the level is calculated from the conduction band. For shallow
acceptors the level is measured from the valence band. For gaussian type of
trap model, this parameter also refers to the maximum trap level position.
Note that this parameter is used to describe the energy level of the shallow or
deep impurities over the whole device. If the properties of the impurity in each
different material need to be defined, the user must override this value with
one of the following statements:
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– shal_dnr_level
– shal_dnr_level_i
– shal_acpt_level
– shal_acpt_level_i
– trap_level_i

• pf_cont_shift is the ionization energy level shift (due to the Poole-Frenkel
effect) at the contact. Once it is specified by this parameter, the ionization
energy is fixed during the simulation while the shift in the bulk material is
varied as a function of the local electric field.

• arc_heighti,i=1..4 are parameters are used to bend the edge of the doping
profile given in edgei_prof. The values of arc_height can take positive or
negative numbers. The sign of the height is understood as follows:
Let the counter-clockwise direction of the vector defined by two adjacent points
of the polygon be vector e and the vector pointing from the starting point of e
to a point on the arc be vector a. Then a positive height means that the cross
product a cross e must point to positive z direction. On the other hand, if the
height is negative, the cross product yields a vector in the negative z direction.
In other words, a positive height makes the edge curve outwards while a neg-
ative height makes the edge curve inwards. These parameters can be used
together with the edge_curve statement.

• grading_from, if used, is the relative starting value of a linearly graded
doping profile; its value is relative to the final doping value of max_conc.
This linear grading is in the direction specified with grading_angle where
the angle definition follows the usual convention (0 degrees = +x direction).

• newdoping_index, if set to positive integer, is used to label a doping profile
so that the doping concentration of this profile may be varied during a simu-
lation. The variable key word in the scan statement to control this profile is
new_doping.

• xy_datafile, xy_linedata, xy_data_factor, xy_x_transform, xy_y_transform,
xy_skipline, xy_data_column.
All these parameters with the xy_ prefix are used to import 2D doping profiles
in ASCII format:

– xy_datafile is doping data file in a column-wise format:

x y doping-concentration
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where x and y are in micons and doping-concentration is in 1/m3. To
convert to a different unit, the parameter xy_data_factor may be used.

– xy_linedata indicates whether the doping profile is line-ordered data or
randomly distributed. If yes, the data is ordered in multiple straight x-
lines, from left to right. The x-lines are ordered from bottom to top. Using
random data generally yields a less accurate profile after interpolation.

– xy_data_factor is a multiplication factor applied to the doping con-
centration. It may also be used as a way of converting units.

– xy_x_transform consists two parameters (say a and b) which can be
used to perform a linear transform of the x-coordinate in the doping profile
so that the actual coordinate used by the simulator is a*x+b.

– xy_y_transform is the same as xy_x_transform except it is for y-
coordinate.

– xy_skipline is the number of header lines in the doping file that should
be skipped.

– xy_data_column is the data column number where the doping-concentration
can be found. In some data files, n- and p-doping are stored in different
columns and this parameter can be used to specify which type of doping
is to be used from the same file.

The following code is used internally to read the doping profile and may be
helpful in understanding the required syntax:

! program skips lines of xy_skipline first. then, the following code
! is used

do jj=1,npnt
read(iu,*) (adata(kk),kk=1,jcolumn)

! this include unit change, direction flip, etc., and shift ref. point
! let me assume unit is um

xdata(jj)=adata(1)*xy_x_transform1+xy_x_transform2
ydata(jj)=adata(2)*xy_y_transform1+xy_y_transform2

! unit here is 1/m**3
if(log_flag.eq.0) then
ddata(jj)=adata(jcolumn)*xy_data_factor
else
ddata(jj)=10.d0**(adata(jcolumn))*xy_data_factor
endif

enddo

• traplevel_model may be used to define a continuous distribution of trap
states. If this statement is omitted, then a single energy level is used.
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• traplevel_stddev is the trap level standard deviation if the trap level model
is gaussian.

• traplevel_tail is the characteristic decay constant (L) of the exponential tail
model e−E/L. The energy E is measured from either the conduction of valence
band depending on the value of traplevel_tail_side.

• traplevel_width is the energy width for a uniform distribution of trap states.

• all_segment instructs the software to apply the 2D doping profile defined by
this command to all mesh planes of all z-segments.

• polygon_z_datafile is used to extend the 2D doping profile across multiple
mesh planes. The file specified in this command must contain 2 columns: the
z-position and the maximum 2D doping concentration at that position. Units
and log-scaling for this file are controlled by polygon_z_datafile_unit
and polygon_z_datafile_log; these parameters follow the same rules as
datafile_unit and log_scale, respectively.

• z_stddev extends the 2D doping profile in the z-direction so that it straddles
multiple mesh planes. It defines a Gaussian tail which is applied in both
directions. For an asymmetric Gaussian profile in z, z_stddev2 may also be
defined.

Examples

doping impurity=shal_dopant charge_type=donor max_conc=1.e24 &&
x_prof=(0.0e0, 10.0e0, 0.01e0, 0.01e0 ) &&
y_prof= 0.e0, 1.4e0, 0.02e0, 0.02e0

doping impurity=trap_1 charge_type=acceptor max_conc=1.e22 &&
x_prof=(0.0e0, 10.0e0, 0.01e0, 0.01e0 ) &&
y_prof=(0.e0, 10.e0, 0.02e0, 0.02e0 )

doping impurity=shal_dopant charge_type=donor max_conc=1.e24 &&
shape=polygon &&
edge1_prof= (0. 1.1 0.01) &&
edge2_prof= (0.429 1.1 0.01) &&
edge3_prof= (0.146 1.5 0.01) &&
edge4_prof= (0. 1.5 0.01)

doping impurity=shal_dopant charge_type=acceptor max_conc=1.5e23 &&
level=0.115 pf_model=yes pf_cont_shift=0.115 &&
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Doping Conc.

Max. Conc.

x-axisx1 x2

dx1 dx2

Figure 22.4: Schematics for the Gaussian/Rectangle doping profile in the x-
direction.

x_prof=(0.0e0, 10.0e0, 0.01e0, 0.01e0 ) &&
y_prof=(0.e0, 1.e0, 0.02e0, 0.02e0 )

22.229 double_mesh

parameter data type values [defaults]
mesh_inf char
mesh_outf char
polygon char
order char [yes],no
direction intg 1,2
range_1 realx2 (um)
range_2 realx2 (um)

The mesh generation statement double_mesh provides the basic mechanism to
refine a rough mesh manually. It can be used to double the existing mesh density in
a given region in the device. This statement is rarely needed because mesh can be
automatically refined using the refine_mesh statement.
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Figure 22.5: Schematics for the Polygon doping profile. Note the labeling of points
and corresponding edges.

Parameters

• mesh_inf is the mesh input file.

• mesh_outf is the mesh output file.

• polygon is the name of the polygon affected by this statement.

• order specifies the format of the mesh output. If the mesh output is to be
used by the solver, yes should be used, i.e., ordering of the mesh is required to
interface with the solver. If the mesh is to be further manipulated after this
statement, no should be used.

• direction is the direction of the mesh lines to be doubled. Direction 1 corre-
sponds to lines parallel to the first edge of the polygon; direction 2 refers to
lines parallel to the second edge. See Fig. 22.6 for details.

• range_1 defines the range along direction 1 in which the mesh doubling will
occur. This distance is measured on the first edge of the polygon.

• range_2 is the same as range_1 excepts that it works along direction 2.

Examples

double_mesh polygon=p1 direction=1 &&
range_1 =(0.1 0.5) range_2=(0.6 0.9) &&
mesh_inf=cas1.msh1 mesh_outf=cas1.msh2 order=yes
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Direction 2

Direction 1

point_ur

point_ll

Figure 22.6: Schematics for the region to be manually refined.

22.230 dox_efield0_pf_elec

parameter data type values [defaults]
(see) material_par

The material statement dox_efield0_pf_elec is a constant E0pf (in V/m) used to
define the Poole-Frenkel-like E-field dependent electron mobility: µn = µ0exp[

√
(E/E0pf )]

This parameter is used to describe a doped organic (thus the prefix dox) material.
For more details, please see the following reference:
B. Ryhstaller and S.A. Carter, S. Barth, H. Riel, and W. Riess, "Transient and
steady-state behavior of space charges in multilayer organic light-emitting diodes,"
J. Appl. Phys., 15 April, 2001, Vol. 89, No. 8, pp. 4575-4586.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)
dox_efield0_pf_elec value=1.959e8 mater=1
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22.231 dox_efield0_pf_hole

parameter data type values [defaults]
(see) material_par

The material statement dox_efield0_pf_hole is a constant E0pf (in V/m) used to
define the Poole-Frenkel-like E-field dependent hole mobility: µp = µ0exp[

√
(E/E0pf )]

This parameter is used to describe a doped organic (thus the prefix dox) material.
For more details, please see the following reference:
B. Ryhstaller and S.A. Carter, S. Barth, H. Riel, and W. Riess, "Transient and
steady-state behavior of space charges in multilayer organic light-emitting diodes,"
J. Appl. Phys., 15 April, 2001, Vol. 89, No. 8, pp. 4575-4586.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)
dox_efield0_pf_hole value=1.959e8 mater=1

22.232 dox_el_weight

parameter data type values [defaults]
(see) material_par

The material statement dox_el_weight is used to define the electroluminescent
spectrum weight for the dopant material. This is useful when there is dopant in the
system so that one has to define the relative contribution from host and the dopant.
For EL spectrum model when there is dopant, two approaches are used, depending
on whether exciton diffusion equations are solved. If exciton transport is solved by
organic_exciton_diff, dopant and host spectra at each mesh point are simply
mixed by local exciton density, divided by their respective life times, and weighted
by this factor. If exciton transport is not considered, their respective bimolecular
recombination rates are used along with this factor to determine the relative contri-
butions.
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The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)

dox_el_weight value=0.01 mater=1

22.233 dox_exciton_eg

This statement is the same as ox_exciton_eg except it is for the dopant material.

22.234 dox_extern_spectrum

parameter data type values [defaults]
(see) material_par

The material statement dox_extern_spectrum is used to define the electrolumi-
nescent (EL) spectrum of the dopant material imported from an external source.
This may be based on experimental data or on a different type of model. If table
format is used, the program expects a 2-column uniformly spaced data with first
column being the wavelength in micron meters. The unit of the EL is arbitrary and
the program will normalize it.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)

dox_extern_spectrum variation=table
table(wavelength)

0.488524E+00 0.309522E-01
0.499601E+00 0.421672E-01
...

end_table
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22.235 dox_gaussian_divj

This statement is the same as ox_exciton_eg except it is for the dopant material.

22.236 dox_gaussian_sdj

This statement is the same as dox_gaussian_sdj except it is for the dopant ma-
terial.

22.237 dox_hopping_energy

This statement is the same as ox_hopping_energy except it is for the dopant
material.

22.238 dox_peak_abs

This statement is the same as dox_peak_abs except it is for the dopant material.

22.239 dox_vib_quanta

This statement is the same as ox_vib_quanta except it is for the dopant material.

22.240 dox_xp_coupling

This statement is the same as dox_xp_coupling except it is for the dopant ma-
terial.

22.241 dox2_el_weight

parameter data type values [defaults]
(see) material_par
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The material statement dox2_el_weight is used to define the electroluminescent
spectrum weight for the 2nd dopant in multiply doped materials. This is useful to
define the relative contribution from host and the dopant.
For EL spectrum model when there is dopant, two approaches are used, depending
on whether exciton diffusion equations are solved. If exciton transport is solved by
organic_exciton_diff, dopant and host spectra at each mesh point are simply
mixed by local exciton density, divided by their respective life times, and weighted
by this factor. If exciton transport is not considered, their respective bimolecular
recombination rates are used along with this factor to determine the relative contri-
butions.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)

dox2_el_weight value=0.01 mater=1

22.242 dox2_extern_spectrum

parameter data type values [defaults]
(see) material_par

The material statement dox2_extern_spectrum is used to define the electrolumi-
nescent (EL) spectrum of the 2nd dopant material imported from an external source.
This may be based on experimental data or on a different type of model. If table
format is used, the program expects a 2-column uniformly spaced data with first
column being the wavelength in micron meters. The unit of the EL is arbitrary and
the program will normalize it.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)

dox2_extern_spectrum variation=table
table(wavelength)

0.488524E+00 0.309522E-01
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0.499601E+00 0.421672E-01
...

end_table

22.243 dox3_el_weight

parameter data type values [defaults]
(see) material_par

The material statement dox3_el_weight is used to define the electroluminescent
spectrum weight for the 3rd dopant in multiply doped materials. This is useful to
define the relative contribution from the host and the dopant.
For EL spectrum model when there is dopant, two approaches are used, depending
on whether exciton diffusion equations are solved. If exciton transport is solved by
organic_exciton_diff, dopant and host spectra at each mesh point are simply
mixed by local exciton density, divided by their respective life times, and weighted
by this factor. If exciton transport is not considered, their respective bimolecular
recombination rates are used along with this factor to determine the relative contri-
butions.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)

dox3_el_weight value=0.01 mater=1

22.244 dox3_extern_spectrum

parameter data type values [defaults]
(see) material_par

The material statement dox3_extern_spectrum is used to define the electrolumi-
nescent (EL) spectrum of the 3rd dopant material imported from an external source.
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This may be based on experimental data or on a different type of model. If table
format is used, the program expects a 2-column uniformly spaced data with first
column being the wavelength in micron meters. The unit of the EL is arbitrary and
the program will normalize it.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)

dox3_extern_spectrum variation=table
table(wavelength)

0.488524E+00 0.309522E-01
0.499601E+00 0.421672E-01
...

end_table

22.245 dox4_el_weight

parameter data type values [defaults]
(see) material_par

The material statement dox4_el_weight is used to define the electroluminescent
spectrum weight for the 4th dopant in multiply doped materials. This is useful to
define the relative contribution from host and the dopant.
For EL spectrum model when there is dopant, two approaches are used, depending
on whether exciton diffusion equations are solved. If exciton transport is solved by
organic_exciton_diff, dopant and host spectra at each mesh point are simply
mixed by local exciton density, divided by their respective life times, and weighted
by this factor. If exciton transport is not considered, their respective bimolecular
recombination rates are used along with this factor to determine the relative contri-
butions.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)
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dox4_el_weight value=0.01 mater=1

22.246 dox4_extern_spectrum

parameter data type values [defaults]
(see) material_par

The material statement dox4_extern_spectrum is used to define the electrolumi-
nescent (EL) spectrum of the 4th dopant material imported from an external source.
This may be based on experimental data or on a different type of model. If table
format is used, the program expects a 2-column uniformly spaced data with first
column being the wavelength in micron meters. The unit of the EL is arbitrary and
the program will normalize it.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)

dox4_extern_spectrum variation=table
table(wavelength)

0.488524E+00 0.309522E-01
0.499601E+00 0.421672E-01
...

end_table

22.247 dox5_el_weight

parameter data type values [defaults]
(see) material_par

The material statement dox5_el_weight is used to define the electroluminescent
spectrum weight for the 5th dopant in multiply doped materials. This is useful to
define the relative contribution from host and the dopant.
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For EL spectrum model when there is dopant, two approaches are used, depending
on whether exciton diffusion equations are solved. If exciton transport is solved by
organic_exciton_diff, dopant and host spectra at each mesh point are simply
mixed by local exciton density, divided by their respective life times, and weighted
by this factor. If exciton transport is not considered, their respective bimolecular
recombination rates are used along with this factor to determine the relative contri-
butions.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)

dox5_el_weight value=0.01 mater=1

22.248 dox5_extern_spectrum

parameter data type values [defaults]
(see) material_par

The material statement dox5_extern_spectrum is used to define the electrolumi-
nescent (EL) spectrum of the 5th dopant material imported from an external source.
This may be based on experimental data or on a different type of model. If table
format is used, the program expects a 2-column uniformly spaced data with first
column being the wavelength in micron meters. The unit of the EL is arbitrary and
the program will normalize it.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)

dox5_extern_spectrum variation=table
table(wavelength)

0.488524E+00 0.309522E-01
0.499601E+00 0.421672E-01
...

end_table
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22.249 edge_curve

parameter data type values [defaults]
edge
shape [arc]
height [µm]

The mesh generation statement edge_curve bends an edge of a polygon.

• edge contains the two points of the edge to be bent.

• shape is the shape into which the edge is to be bent.

• height is the height of the arc. The sign of the height is understood as follows:
Let the counter-clockwise direction of the vector defined by two adjacent points
of the polygon be vector e and the vector pointing from the starting point of
e to a point on the arc be vector a. Then a positive height means that the
cross product a cross e must point to positive z direction. On the other hand,
if the height is negative, the cross product yields a vector in the negative z
direction. In another word, positive height makes the edge curve outwards
while a negative height makes the edge curve inwards.

Example(s)

edge_curve edge=(a b) shape=arc height=-0.3
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22.250 eeim_optic

parameter data type values [defaults]
gain_correction char [yes],no
sort_imag char [yes],no
pure_index_loss char [yes],no
export_eeimmsg char [no],yes
modal_base intg [3]
xsearch_real intg [2000]
xsearch_imag intg [40]
muller_maxit intg [80]
wi (i=1,2,3...19) real (um)
xsearch_range real [5.]
muller_vartol real [1.e-8]
muller_functol real [1.e-5]

The eeim_optic statement is used to invoke the enhanced effective index method
(EEIM) for the optical mode computation. It can be used to treat device structure
with leaky (radiative) modes.
The rectangle solution area is defined by point_ll and point_ur in the init_wave
statement. It assumes that the modes in the y-direction is confined. The boundary
on the right is such that it can support traveling wave to the right (which may be
decaying as in the case of confined modes).
The boundary on the left can be confined as even or odd, or as radiative. The
left boundary may be modified using the first number (we shall refer to as lx1) in
boundary_type of the init_wave statement. If lx1 is 1, the left boundary is to
set the wave to zero (odd). If lx1 is 2, the left boundary is to set the wave derivative
to zero (even). If lx1 is 3, the left boundary is to have traveling wave going out of
the device (to the left).
To study device with radiation loss to the substrate, we suggest that the device be
rotated by 90 degrees so that the substrate is towards the +x direction. The rotated
device may be done within the .geo file or by using the GeoEditor.

• gain_correction may be used to enable the optical gain in the rate equation
to be corrected for radiation loss. With this setting to “no”, The simulator will
calculate the modal gain by averaging the local material gain with weight of
the wave intensity.

• sort_imag is used to decide if EEIM modes are sorted according to the imag-
inary parts of the optical dielectric constant. If positive, the modes will be
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sorted according to modal gain with the highest first. If negative, the real part
will be sorted with the highest real index first.

• pure_index_loss. There are two ways to estimate the modal radiative loss.
The first is the pure index method. This is by setting all imaginary mate-
rial indices to zero throughout the device. The imaginary part of the eigen
value of the EEIM is the modal loss. The other method is to estimate the
bias dependent radiative loss by comparing the EEIM solution with averaged
material gain. The former is a convenient and definite way of characterizing
the device. The latter is more realistic but less stable numerically. Please note
that if pure_index_loss=yes, only the modal radiative loss for pure index
structure is printed as run-time message. If pure_index_loss=no, both the
radiative loss for pure index structure and the bias-dependent radiative loss at
different bias will be printed

• export_eeimmsg is used to enable the export of EEIM column index data
in .sol.msg files.

• modal_base is the number of y-modes within each column. In principle, there
are infinite number of y-modes is the mode searching range is large enough. In
practice, several of these will be sufficient.

• xsearch_real is the number of search points for the x-modes in the real part
of ε, the eigen solution of the x-modes.

• xsearch_imag is the number of search points for the x-modes in the imagi-
nary part of ε, the eigen solution of the x-modes.

• muller_maxit is the maximum number of the Muller solver that is used to
find the complex root as the eigen solution of the lateral modes.

• wi (i=1,2,3,...,19) is the ith column width.

• xsearch_range is the search range for the real part of ε, the eigen solution
of the x-modes.

• muller_vartol is the variable relative tolerance at convergence of the Muller
solver.

• muller_functol is the function relative tolerance at convergence of the Muller
solver.

eeim_optic modal_base=3 &&
w1=2 w2=0.75 w3=1.25 &&
xsearch_real=2000 xsearch_imag=5

The above statement uses three y-modes, sets the with for each column. The number
search points are also specified.
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22.251 effective_medium

parameter data type values [defaults]
materi(i=1..9) intg
xrange realx2 (um)
yrange realx2 (um)
zrange realx2 (um)

effective_medium defines an effective “average” material out of multiple bulk
materials. This is useful in regions like DBR layers where multiple thin layers are
needed for optical modeling but the electrical modeling can be approximated by a
single bulk materials. The software will compute the affinity, bandgap, DOS, etc...
based on a weighed average of the materials present in the specified region.
For a similar model used in QWs, please see effective_miniband_model.

Parameters

• materi(i=1..9) are the material numbers that are considered when construct-
ing the effective medium.

• xrange, yrange and zrange are the extent of the effective medium.

Examples

effective_medium mater1=1 mater2=2 yrange=(2.5 2.75)

22.252 effective_miniband_model

parameter data type values [defaults]
materi(i=1..9) intg
xrange realx2 (um)
yrange realx2 (um)
zrange realx2 (um)
set_cond_level real (ev)
set_val_level real (ev)
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effective_miniband_model defines an effective miniband model for coupled quan-
tum wells/dots. For the specified materials, the solver creates an effective band
structure with band edges defined by the miniband levels and density of states from
the quantum mechanical modeling.
For bulk layers, please see effective_medium.

Parameters

• materi(i=1..9) are the material numbers assigned to the miniband.

• xrange, yrange and zrange are the extent of the miniband.

• set_cond_level and set_val_level can be used to manually override the
position of the miniband energy levels. The values are measured from the QW
bottom.

Examples

effective_miniband_model mater1=1 mater2=2 yrange=(2.5 2.75)

22.253 efield0_pf_elec

parameter data type values [defaults]
(see) material_par

The material statement efield0_pf_elec is a constant E0pf (in V/m) used to define
the Poole-Frenkel-like E-field dependent electron mobility: µn = µ0exp[

√
(E/E0pf )]

For more details, please see the following reference:
B. Ryhstaller and S.A. Carter, S. Barth, H. Riel, and W. Riess, "Transient and
steady-state behavior of space charges in multilayer organic light-emitting diodes,"
J. Appl. Phys., 15 April, 2001, Vol. 89, No. 8, pp. 4575-4586.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)
efield0_pf_elec value=1.959e8 mater=1
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22.254 efield0_pf_hole

parameter data type values [defaults]
(see) material_par

The material statement efield0_pf_hole is a constant E0pf (in V/m) used to define
the Poole-Frenkel-like E-field dependent hole mobility: µp = µ0exp[

√
(E/E0pf )] For

more details, please see the following reference:
B. Ryhstaller and S.A. Carter, S. Barth, H. Riel, and W. Riess, "Transient and
steady-state behavior of space charges in multilayer organic light-emitting diodes,"
J. Appl. Phys., 15 April, 2001, Vol. 89, No. 8, pp. 4575-4586.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)
efield0_pf_hole value=1.959e8 mater=1

22.255 eg0_bar

eg0_bar is an active layer macro statement defining the unstrained bandgap (in eV)
of a quantum barrier. This overrides bandgap values defined in the passive macro.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.256 eg0_bulk

eg0_bulk is a passive macro material statement that defines the unstrained bandgap
for a bulk wurtzite material. It is used instead of band_gap due to the more
complex strain effects in this material system.
For quantum well barriers and active regions, this value will be overridden with the
values of eg0_bar or eg0_well from the active macro.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.
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22.257 eg0_well

eg0_well is an active layer macro statement defining the unstrained bandgap (in
eV) of a quantum well or bulk active region. This overrides bandgap values defined
in the passive macro.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.258 e15_bulk

e15_bulk and related commands are used in a passive macro (wurtzite only) to
define piezoelectric tensor components[120]. This is used in conjunction with the
spont_charge macro parameter and the polarization_charge_model command
to define the total polarization vector and the interface charges that occur in GaN
and ZnO-based materials.
See also piezo_d11 for related commands used in SAWAVE.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.259 e31_bulk

See e15_bulk

22.260 e33_bulk

See e15_bulk

22.261 elec_carr_loss

elec_carr_loss is a passive macro material statement defining the dependence of
the optical loss coefficient on the electron density for a given material. It introduces
a loss term equal to αn = elec_carr_loss × (n − n0) so that elec_carr_loss has
units of m2.
Note that this term is only used for passive regions as active regions have their own
mechanism for carrier-dependent losses; see passive_carr_loss for more informa-
tion.
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The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

Examples

elec_carr_loss value=2.e-21 mater=1

22.262 elec_dos_energy

parameter data type values [defaults]
data_file char
energy_range realx2
data_point intg [50]
subband_valley intg [1]

elec_dos_energy plots the electron density of states (DOS) versus energy. This
statement is only used in the gain preview module.

Parameters

• data_file is a user-specified text file containing a copy of the plot data.

• energy_range is the range of energy in eV.

• data_point is number of data points in the plot.

• subband_valley is the index labeling the subband valley.

Parameters

elec_dos_energy energy_range=(1 1.7)

22.263 electron_mass

parameter data type values [defaults]
(see) material_par
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The material statement electron_mass defines the electron effective mass relative
to the free electron mass.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.264 electron_mobility

The statement electron_mobility is usually used as part of a passive material
macro and provides a way for the user to define the low field mobility for electrons.
The user may input a specific value or use a custom function to model the doping
or trap dependence.
An alternative way to define the low field mobility is to use the following statements
to implement Eq. 5.42 exactly:

• max_electron_mob defines µ2n

• min_electron_mob defines µ1n

• electron_ref_dens defines Nrn

• alpha_n defines αn

Note that using electron_mobility explicitly overrides this alternative method.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.265 electron_ref_dens

See electron_mobility

22.266 electron_sat_vel

The material statement electron_sat_vel is used to define the saturation elec-
tron velocity (in m/s). It is used in Eq. 5.37 to define the field-dependent mobility
function.
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The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.267 eliminate_mesh

parameter data type values [defaults]
line_dir char x,[y]
xrange realx2 (µm)
yrange realx2 (µm)
column_num intg 1
ntimes intg 1

eliminate_mesh is used after the layer_mater statement in the .layer file to
change the mesh inside the “box” defined by the intersecting layer and column. It
removes mesh lines so that in this particular region, the mesh is sparser than what
is specified by the layer and column statements.
See also the related low-level commands double_mesh and half_mesh.

Parameters

• line_dir removes either horizontal or vertical mesh lines.

• xrange and yrange, when used, limit the effect of this command to a specific
region. Coordinates are relative to the lower left corner of the “box” affected
by this command.

• column_num is the column number; it matches the declaration in layer_mater
and is used for the same reason.

• ntimes is the number of times is the mesh lines are eliminated; each elimination
removes half of the mesh lines so that the total reduction is 2−n.
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22.268 embedded_material

parameter data type values [defaults]
mater_label char
position_from real (µm)
position_to real (µm)
grade_from real
grade_to real
mater intg
grade_var intg [0]
grade_num intg [5]

embedded_material is used to define a material occupying the same space as
another material; the second material is “embedded” into the first. This command
works in conjunction with get_active_layer to load material parameters related
to the embedded material.

Parameters

• position_from and position_to are the absolute starting and ending coor-
dinates of the embedded region.

• grade_from and grade_to are the starting and ending compositions.

• mater is the material number inside which the new material is embedded. If
a label alias has previously been defined, mater_label may be used instead.

• grade_var is the material macro variable number in which there is a compo-
sition grading (if > 0).

• grade_num is the number of composition evaluation points if there is a com-
position grading.

Examples

embedded_material position_from=0.5 position_to=0.501 mater=6

22.269 end_bpmplot

See begin_bpmplot.
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22.270 end_cavity

See begin_cavity.

22.271 end_complex

See begin_complex.

22.272 end_loop

end_loop terminates a loop initialized by start_loop.

22.273 end_qwire_complex

end_qwire_complex is the closing tag for start_qwire_complex (in the .layer
file) or begin_qwire_complex (in the .sol or .mater file).

22.274 end_same_complex

See start_same_complex.

22.275 end_zdir_complex

end_zdir_complex is the the closing bracket for begin_zdir_complex. This
statement has no parameters.
See also zdir_cx for more information.

22.276 end_zmater

See begin_zmater.
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22.277 endloopif

Terminates a conditional execution block started by loopif .

22.278 equilibrium

parameter data type values [defaults]
print_output char [yes]
all_newdoping char [no]
outfile_label char [void]
scan_label char [void]
impose_bg_field char [no]
bandgap_reduction real [0.]
mobility_order real [0.]
surf_charge_expo real [0.]
newdoping_order real [0.]
impact_fermi_factor real [0.]
scale_impact_cr_field real [1.]
scale_polar_charge real [1.]
bg_field_x real [0.] (V/m)
bg_field_y real [0.] (V/m)
bg_field_z real [0.] (V/m)
bg_ref_potential real [0.] (V)
scale_negative_stim real [1.]
nstep intg [1]
index_newdoping intg
num_newdoping intg [1]
n_index_newdoping intgxn

equilibrium solves the thermal equilibrium state of the device. All electrode volt-
ages and currents are set to zero, as are all other forms of bias (e.g. optical pumping).
The quasi-Fermi levels are flat (Efn = Efp = 0) and the net current for electrons and
holes has a trivial solution (J⃗ = 0). Only the Poisson equation needs to be solved to
find the position of the band edges.
The results of equilibrium are often used as the initial guess for a subsequent scan
statement.
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Parameters

• print_output is used to decide whether or not to print detailed xy-data sets.

• all_newdoping decides if all doping profiles labeled as “newdoping” will be
scaled by this statement.

• outfile_label labels the output file (.out) so that future scan statements can
refer to it.

• scan_label labels the output file so it can be easily referred to by plotting
tools such as CrosslightView.

• impose_bg_field can be used to impose a uniform background field to the
Poisson equation. Note that this clearly violates the assumption of zero net
current during thermal equilibrium so it should never be used on a real device.
It can however be useful when modeling a stand-alone GaN-based quantum
dot where the external piezoelectric field must be considered for self-consistent
quantum calculations. The results of such a microscopic-scale calculation are
then imported into the full macroscopic device simulation.
The background field is defined through the parameters bg_field_x, bg_field_y
and bg_field_z.

• bandgap_reduction is used to set the overall initial bandgap reduction factor
at equilibrium. The bandgap is multiplied by (1-bandgap_reduction).

• mobility_order is used to increase or reduce the overall mobility at equilib-
rium. A factor of 10m.o. is multiplied to the mobility where m.o. stands for
mobility_order.

• surf_charge_expo is used to increase or reduce the equilibrium surface
charge density as specified by the interface statement. A factor of 10s.c.e is
multiplied to the surface charge density where s.c.e stands for surf_charge_expo.

• scale_polar_charge is a linear factor used to scale the fixed charges created
as a result of the polarization_charge and polarization_charge_model
commands.

• newdoping_order is used to specify an initial doping concentration reduc-
tion factor given by 10newdoping_order which is applied to doping profiles with
a new-doping label. The labels where the reduction is applied must be speci-
fied using all_newdoping, index_newdoping or n_index_newdoping.
If newdoping_order is zero (default), then no reduction of doping concen-
tration is initially set.
The purpose of using this factor is to reduce the doping concentration at equi-
librium so that numerical convergence is more easily achieved.
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• nstep is used only when equilibrium is difficult to converge. In such case,
several steps may be used.

• index_newdoping refers to a single doping profile that will be varied during
the simulation. This index must corresponds to the new-doping labels attached
to a doping statement.

• num_newdoping is the number of indices to be specified by n_index_newdoping.

• n_index_newdoping is the same as index_newdoping except it is used
to specify multiple new-doping labels that will be simultaneously varied during
the simulation.

• impact_fermi_factor is a coefficient used to scale between a completely
field-driven impact ionization model (0.0) and a model driven by the gradi-
ent of the Fermi level (1.0). The latter model must be activated in the im-
pact_model statement for it to be available here.

• scale_impact_cr_field can be used to artificially scale the critical field for
the impact ionization model.

• scale_negative_stim can be used to artificially scale the stimulated recom-
bination rate in areas where it is below zero.

22.279 evaluate_parameter

parameter data type values [defaults]
para_name char
printout char [parametervalueout.txt]
var_symboli (i=1..9) char
var_values_from_file char
mater_label char
vari (i=1..9) real
mater intg [1]

evaluate_parameter can be used to manually evaluate a macro function; it is
mainly used with the MacPlot GUI to automate the input.

Parameters

• para_name is the macro function or parameter name to be evaluated.
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• printout is a user-specified text file where the results are saved.

• var_symboli and vari define the input parameters to the macro. The syntax
rules are the same as in layer_mater.

• var_values_from_file is a user-specified file that can be used to input a
series of values that will be used to evaluate the macro parameter. Each line
of the file corresponds to one call to the function.

• mater is the material number of the function being evaluated. It should match
that of the previous load_macro statement.

• mater_label may be used instead of mater if a label has previously been
defined as an alias.

22.280 exclude_from_electrical

parameter data type values [defaults]
mater_label char
x_on_left real -1.e89 (um)
x_on_right real 1.e89 (um)
y_below real -1.e89 (um)
y_above real 1.e89 (um)
mater intg

exclude_from_electrical is used to exclude a specific region of the mesh from the
electrical solver.

Parameters

• x_on_left excludes all mesh points to the left of this value.

• x_on_right excludes all mesh points to the right of this value.

• y_below excludes all mesh points below this value.

• y_above excludes all mesh points above this value.

• mater excludes all mesh points with the specified material number. If a label
has been defined for this material, mater_label may be used instead.
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22.281 export_3dgeo

export_3dgeo is reversed for use in CSUPREM and PROCOM and is outside the
scope of this manual.

22.282 export_fdtd_inputdata

export_fdtd_inputdata forces the device simulator to stop just after generating
the input data file (fdtd.aux) for the FDTD solver. It can be used in cases where
the electrical calculations are not needed. It should not be needed in OptoWizard
which does not include the electrical solver at all.
This statement has no parameters.

22.283 export_gain_data

parameter data type values [defaults]
file char [void]
pn_ratio_range realx2 [1. 1.]
temper_range realx2 [300. 300.] (K)
pn_ratio_points intg [1]
temper_points intg [1]

export_gain_data exports the gain/index/PL data into an ASCII file for later
use. It is a preview simulation statement (used in a .gain file).

• file the data file into which the gain data is to be exported. If not specified,
a default file name gain_datafile.txt is to be used.

• pn_ratio_range is the range of hole/electron ratio changes for the data.

• temper_range is the temperature range in the data.

• pn_ratio_points is the number of data points for hole/electron ratio changes.

• temper_points the number of temperature points.

Example(s)
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export_gain_data pn_ratio_range=[0.5 1.5] pn_ratio_points=5 &&
temper_range=[250 350] temper_points=5

22.284 export_kp_data

parameter data type values [defaults]
file char [void]

export_kp_data exports the k.p subbands and dipole moment data an ASCII file
for later use. It is a preview simulation statement (used in a .gain file).

• file the data file into which the k.p data is to be exported. If not specified, a
default file name kp_datafile.txt is to be used.

Example(s)

export_kp_data

which will save the k.p data in kp_datafile.txt.

22.285 export_kp_para

parameter data type values [defaults]
file char [void]

export_kp_data exports the k.p parameters, such as Luttinger numbers as an
ASCII file for later use. It is a preview simulation statement (used in a .gain file).

• file the data file into which the k.p data is to be exported. If not specified, a
default file name kp_parafile.txt is to be used.

Example(s)
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export_kp_para

which will save the k.p parameters in kp_parafile.txt.

22.286 export_layers_to_suprem

parameter data type values [defaults]
column_num intg [1]
plane_num intg [2]
z_size real [1.0] (µm)

export_layers_to_suprem is a .layer pre-processing statement which emulates
the functions of the MaskEditor GUI. When used, the layer.exe output is modified
so that 3D CSUPREM input files are generated.
As in the normal .layer output, the plane of .layer file corresponds to the xy plane of
the simulation. Multiple copies of this mesh plane are stacked in the z direction to
form the 3D device. This convention is the same as that used in the z_structure
statement.
Note that this behavior is different from that of layers_for_semicrafter which
uses the SemiCrafer convention for the orientation of the mesh planes.

Parameters

• column_num is the column number which is used in the CUSPREM output.
The current version of the software supports the export of only one column to
CSUPREM.

• plane_num is the number of mesh planes used in the z-direction.

• z_size is the length of the device in the z-direction, in microns.

22.287 export_raytrace

parameter data type values [defaults]
every_bias char [no]
ray3d_convert char [no]
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export_raytrace is used to export control parameters for the ray-tracing model in
the post-processing stage.

• every_bias indicates whether ray-tracing data are exported at every bias
point. If "no", the export action will occur only at structure data printing
point corresponding to .out and .std files.

• ray3d_convert should be used to convert 2D electrical simulations to 3D ray
tracing structures: this is done by setting a fake z-length of 1 µm. Emitted
rays will also be restricted to the 2D plane since the z-direction has no real
meaning: this must be taken into account during plotting the emission pattern.
As of the 2009 version of APSYS, 2D ray tracing is no longer supported and
the 3D ray tracing program must be used. This options is mandatory to do
ray tracing in 2D APSYS simulations.

22.288 export_to_iccap_mdm_file

parameter data type values [defaults]
iccap_file_name char [iccap.mdm]
input_vari(i=1..5) char voltage_1,current_1
input_namei(i=1..5) char v1,vs,vg
output_vari(i=1..5) char voltage_1,current_1
output_namei(i=1..5) char v1,vs,vg
point_num intg [51]

export_to_iccap_mdm_file is a post-processing statement used to export I-V
data to the .mdm file format for the parameter extraction program IC-CAP. This
command acts like the plot_scan command except that only voltage and current
are supported.

Parameters

• iccap_file_name is the output file name.

• input_vari(i=1..5) is the input variable, similar to scan_var in plot_scan.
A label may be assigned to this variable with input_namei(i=1..5).
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Output variables are likewise defined using output_vari(i=1..5) and out-
put_namei(i=1..5).

• point_num is the number of data points used to sample the simulated IV
curve and export the .mdm file.

Examples

The following scan commands are used to generate (.sol) and plot (.plt) the IdVg
curve:

scan var = voltage_3 value_to = 15 max_step = 2
scan var=voltage_2 value_to=3 max_step= 0.5
scan var=voltage_2 value_to=-6 max_step= 0.5

...

get_data main_input=hemt.sol sol_inf=hemt.out &&
xy_data=(4 4) scan_data=(4 4)

export_to_iccap_mdm_file input_var1=voltage_2 input_var2=voltage_1 &&
input_var3=voltage_3 input_name1=vg input_name2=vs &&
input_name3=vd output_var1=current_3 output_var2=current_2 &&
output_name1=id output_name2=ig

The above command is similar to the usual Id-Vg plot:

plot_scan scan_var = voltage_2 variable = current_3 &&
user_xlabel = vg user_ylabel = id

The output iccap.mdm looks like the following:

BEGIN_HEADER
ICCAP_INPUTS
vg V 2 GROUND SMU1 0.1 LIN -1 2.99000 -6.00000 51 -0.179800
vs V 1 GROUND GND 0.1 CON 0.00000
vd V 3 GROUND GND 0.1 CON 15.0000
ICCAP_OUTPUTS
id I 3 GROUND SMU1 B
ig I 2 GROUND SMU1 B
END_HEADER
BEGIN_DB
ICCAP_VAR vs 0.00000
ICCAP_VAR vd 15.0000
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# vg id ig
2.99000 711.714 0.00000
2.81020 703.636 0.00000
2.63040 695.340 0.00000
2.45060 686.417 0.00000
2.27080 677.368 0.00000
2.09100 668.234 0.00000
1.91120 657.506 0.00000
1.73140 646.778 0.00000
1.55160 635.566 0.00000
1.37180 623.040 0.00000
1.19200 610.514 0.00000
1.01220 597.816 0.00000

0.832400 584.936 0.00000
0.652600 572.057 0.00000
0.472800 558.599 0.00000
0.293000 544.903 0.00000
0.113200 531.206 0.00000

-0.666000E-01 513.744 0.00000
-0.246400 495.984 0.00000
-0.426200 477.230 0.00000
-0.606000 452.650 0.00000
-0.785800 428.070 0.00000
-0.965600 402.283 0.00000
-1.14540 374.394 0.00000
-1.32520 346.504 0.00000
-1.50500 318.346 0.00000
-1.68480 289.997 0.00000
-1.86460 261.648 0.00000
-2.04440 232.944 0.00000
-2.22420 204.152 0.00000
-2.40400 175.349 0.00000
-2.58380 146.058 0.00000
-2.76360 116.767 0.00000
-2.94340 88.8666 0.00000
-3.12320 65.3389 0.00000
-3.30300 41.8113 0.00000
-3.48280 24.3041 0.00000
-3.66260 13.8499 0.00000
-3.84240 3.39561 0.00000
-4.02220 0.138864E-02 0.00000
-4.20200 0.463291E-05 0.00000
-4.38180 0.259545E-05 0.00000
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-4.56160 0.557988E-06 0.00000
-4.74140 0.375334E-09 0.00000
-4.92120 0.674823E-09 0.00000
-5.10100 0.974312E-09 0.00000
-5.28080 0.134528E-08 0.00000
-5.46060 0.143912E-08 0.00000
-5.64040 0.798202E-09 0.00000
-5.82020 0.157282E-09 0.00000
-6.00000 -0.671439E-12 0.00000

END_DB

For detailed explanation of the mdm file format, the user is referred to the IC-CAP
manual.

22.289 export_wave

parameter data type values [defaults]
backward char [no]
data_file char [void]
print_point intg

export_wave is used to export the wave solution of Beam Propagation Method to
a designated output file.

Parameters

• backward specifies which wave is being exported (forward or backward).

• data_file is the file name where the wave data will be exported

• print_point is the print point at which the data to be to exported.

Example(s)

export_wave backward=no data_file=tmp.wave print_point=12

http://cp.literature.agilent.com/litweb/pdf/iccap2008/manuals.html
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22.290 ext_funck (k=1..9)

parameter data type values [defaults]
(see) material_par

The material statement ext_funci (i=1,2,..,9) is an active layer macro statement
used to define an external function to be used by other statements in the same macro.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.291 external_cir

external_cir is outdated. It has been replaced with a full-fledged mixed-mode
simulator using the minispice command.

22.292 external_heat_source

parameter data type values [defaults]
mater_label char
power_density real [0.0] (W/m3)
power real (W ) for 3D, (W/m) for 2D
mater intg 1

external_heat_source is used to define an artificial heat source inside the device.

Parameters

• power_density is the heat source density inside the specified material. Al-
ternatively, power may be used to define the heat source using the same units
as the overall simulation: see the (W ) for 3D, (W/m) for 2D. If used, power
overrides the power_density setting.

• mater is the material number where the heat source is defined; alternatively,
a pre-existing material label may be set in mater_label.
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22.293 external_spice_cir

external_spice_cir is outdated. It has been replaced with the minispice com-
mand.

22.294 external_stress_band_model

parameter data type values [defaults]
device_lattice_const real [3.189] (A)
device_lattice_c_const real [3.189] (A)
device_bulk_mater intg []
ref_elasticity_mater intg []

external_stress_band_model works in conjunction with set_stress to define
externally applied stress (σ) on a device. This should be understood as the stress
applied on the whole device rather than the internal, as-grown, strain (ϵ). A good
example of this is GaN-based devices grown on silicon substrates.
external_stress_band_model is used to define the reference lattice parameters
and internal strain of the device so the software can correctly calculate the total
displacement/strain caused by the external stress.
At the moment, this statement primarily applies to wurtzite materials.

Parameters

• device_bulk_mater is used to indicate the buffer layer which controls the
initial growth and internal strain in the device. When the external stress is
applied, it is assumed that this layer is massive enough that its mechanical
properties dominate the overall bending in the device.

• device_lattice_const and device_lattice_c_const are the reference a
and c lattice constants of the device during the growth. These values are only
used when the bulk reference material is not provided.

• ref_elasticity_mater is the reference material which provides the stiffness
coefficients cij. This value is only used when the bulk reference material is not
provided.
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Examples

$ no for 50:50 EBL offset
wurtzite_offset_model bulk_strain_exist = no
$ material numbers
$ 1 - n-GaN = ingan(0.001)
$ 2 - MQW barrier = ingan(0)
$ 3-7 quantum well = ingan(0.24)
$ 8 - EBL = gaalinn(0.20)
$ 9 - p-GaN = gaalinn(0)
set_stress xx=10. yy=10.
external_stress_band_model device_bulk_mater=1

22.295 extract_contour

parameter data type values [defaults]
variable char (see list)
data_file char
flip_y char yes,[no]
at_value real
at_fraction real
extend_y_fraction real 0.
set_yrange realx2 (µm)
mode_index intg 1
trap_index intg 1

extract_contour is a post-processor statement used to plot structural data on a
2D plane. It is similar to plot_2d in that it plots contour lines but this command
only plots a single line at a specified value or fraction.

Parameters

• variable is the variable to be plotted. See App. G for a full list of available
variables.

• data_file is the name of a text file in which a copy of the plot data will be
saved.

• flip_y flips the y axis of the display.
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• at_value is the absolute value of the contour cut line. It is mutually exclusive
with at_fraction.

• at_fraction sets the value of the contour cut line to a fraction of the maxi-
mum. It is mutually exclusive with at_value.

• extend_y_fraction is used to zoom in on the y axis: a scaling factor of
1 + value is applied

• set_yrange limits the contour plot to the data points found within this range.

• mode_index is the index of the lateral mode in a multi-lateral mode sim-
ulation. If only the fundamental mode is concerned, the default value of one
should be used.

• The parameter trap_index has been added for SRH recombination, so that
the user can specify which trap center is being plotted.

Examples

extract_contour variable=wave_intensity at_fraction=0.367879

This plots the contour of the wave intensity where the wave is 1/e of its maximum.

22.296 farfield

parameter data type values [defaults]
option char [contour], segment_x, segment_y,

surface
data_file char [void]
symmetric char [yes],no
add_all_modes char [yes],no
type char [intensity], real, imaginary
theta_x real [10] (degrees)
theta_y real [40] (degrees)
2ndmode_phase real [0.]
points intg [30]
mode_index intg [1]
level intg [9]
sum_2ndmode intg [0]
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farfield is a post-processing statement used to compute the far-field distribution
of an optical mode. The near-field distribution is obtained by simply plotting the
wave_intensity variable in statements such as plot_2d.

Parameters

• option specifies the format of the far-field output:

– contour shows a 2D contour plot
– segment_x shows a 1D plot along the x direction
– segment_y shows a 1D plot along the y direction
– surface shows a 3D surface plot

• type instructs the software to plot either the intensity, the real part or the
imaginary part of the far-field pattern.

• data_file can be used to save the data to a text file.

• symmetric specifies whether or not the device being simulated is symmetric.
If set to yes, it is assumed that only the right half is simulated and the far-field
is computed with the missing near-field on the left half. Otherwise, the far-field
is computed as is.

• add_all_modes instructs the program to sum the intensities of all the far-
field modes without considering any phase-interference effects. The sum is
weighed by the power in each mode.

• theta_x and theta_y are the range of the far-field angle along the x and y
directions, respectively.

• 2ndmode_phase is the phase factor of the higher order mode with respect
to the main mode when sum_2ndmode is used. This factor corresponds to
the phase difference between the two modes over a single cavity round-trip and
is added as part of the summation for the far-field pattern.

• points is the number of points used to evaluate the far-field in each direction.

• mode_index is the index of the lateral mode in a multi-lateral mode simula-
tion. If only the fundamental mode is concerned, the default value of 1 should
be used.

• level is the number of contour lines when option=contour.
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• sum_2ndmode is the index of the second mode added to the main mode
for the far-field calculations; unlike add_all_modes phase effects are used
for this sum, using the value of 2ndmode_phase. This parameter is ignored
when using the default value of 0.

Examples

farfield option=contour points=30 &&
theta_x=15 theta_y=70

22.297 farfield_couple

parameter data type values [defaults]
symmetric char [yes],no
theta real [2] (degrees)
2ndmode_phase real [0.]
scale_lit real [1.]
scale_curr real [2.]
points intg [50]
mode_index intg [1]
sum_2ndmode intg [0]
electrode intg [1]

farfield_couple used to integrate a certain farfield angle and modify the L-I curve
to simulate a detector.

• symmetric specifies whether or not the device being simulated is symmetric.
If the choice is “yes”, it is assumed that only the right half is simulated and the
far-field is computed with the missing near field on the left half. If the choice
is “no”, then the far field is computed using only the near field as it is.

• theta is the farfield angle of power detection.

• 2ndmode_phase is the phase factor of the 2nd order mode to be added to
the farfield of the main mode.

• scale_lit is a scale factor to be multiplied to light power.

• scale_curr is a scale factor to be multiplied to current.
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• points is the number of points in each direction for farfield integration.

• mode_index is the index of the lateral mode in a multi-lateral mode simu-
lation. If only the fundamental mode is concerned, the default value of one
should be used.

• sum_2ndmode is the mode number of the higher order mode to be added to
the main mode for farfield computation. ( see also 2ndmode_phase parameter
above).

• electrode is the electrode upon which the current of the L-I curve is based.

Example(s)
farfield_couple theta=5 sum_2ndmode=1

22.298 fdtd_background_mater

parameter data type values [defaults]
mater intg

The command fdtd_background_mater defines a material number that is to be
used as a background material for the FDTD model. This material contains the
FDTD current source and the FDTD model will always start by modeling light
propagation in this isotropic material in order to set normalization constants (e.g.
for power).
Usually, the FDTD current source is placed in an air or vacuum region. However,
in special cases, the user may want to put the FDTD current source inside of the
device which is where this command becomes useful.

Parameters

• mater is a material number to be dealt as background material.

Examples

fdtd_background_mater mater=1
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22.299 fdtd_CLFDTD_control

parameter data type values [defaults]
operation char [append_xml]
append_from char
append_to char

fdtd_CLFDTD_control may be used to directly issue commands to the Crosslight
FDTD solvers using XML input files; the syntax of these files is beyond the scope of
this document.
Only append operations between two XML files are currently supported by this
command.

Examples

This example appends contents of QE_monitor.xml to fdtdinput_device.xml:

fdtd_CLFDTD_control operation=append_xml &&
append_from=QE_monitor.xml &&
append_to=fdtdinput_devicespace.xml

22.300 fdtd_data_analysis

parameter data type values [defaults]
tag char
operation char relative_energy_intensity, trans-

mittance, reflectance, poynting,
QE, OE

operandA_tag char
operandB_tag char
data_file char
scale real 1.0

The command fdtd_data_analysis is used to define data analysis post-processing
for FDTD simulations. This command only works for CLFDTD.
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Parameters

• tag is a user-defined name assigned to the results of this analysis and which
may be referenced by other post-processing commands. The assigned tag must
be unique and not reused by other fdtd_data_analysis commands.

• operandA_tag and operandB_tag define the quantities being analyzed.
These user-defined labels are inherited from fdtd_field_monitor.

• operation is the kind of analysis performed by this command; the analysis
operates on operandA_tag and operandB_tag as outlined in the examples
below.

• data_file is the name of a data file where the data analysis results are recorded.

• scale is an artificial scaling factor that may be used to multiply the analysis
results.

Examples

operation=relative_energy_intensity calculates the spatial distribution of n |operandA_tag|2
|operandB_tag|2

where n is the refractive index:

fdtd_data_analysis &&
operation=relative_energy_intensity &&
operandA_tag = device_fields &&
operandB_tag = empty_fields &&
data_file=rei.txt

operation=transmittance calculates
∫

operandA_tag·n⃗dr⃗∫
operandB_tag·n⃗dr⃗

:

fdtd_data_analysis &&
operation=transmittance &&
operandA_tag = trans_fields &&
operandB_tag = injection_fields &&
data_file=trans.txt

operation=reflectance calculates
∫

(operandA_tag−operandB_tag)·n⃗dr⃗∫
operandB_tag·n⃗dr⃗

:

fdtd_data_analysis &&
operation=reflectance &&
operandA_tag = refl_fields &&
operandB_tag = injection_fields_refl &&
data_file=refl.txt
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operation=poynting calculates the Poynting vector distribution of operandA_tag:

fdtd_data_analysis &&
operation=poynting &&
operandA_tag = trans_fields &&
data_file=poynting.txt

operation=QE calculates the quantum efficiency:

fdtd_data_analysis &&
operation=QE &&
operandA_tag = QE_monitor_devicespace &&
operandB_tag = QE_monitor_emptyspace &&
scale=1e-6 &&
data_file=QE.txt

operation=OE calculates the optical efficiency.

fdtd_data_analysis &&
operation=OE &&
operandA_tag = flux_monitor_group &&
operandB_tag = injection_monitor &&
data_file=OE.txt

22.301 fdtd_define_region

parameter data type values [defaults]
tag char
shape char line, plane, box
flip_normalj (j=1..6) char -x,+x,-y,+y,-z,+z
point_ll realx3 (um)
point_ur realx3 (um)
normal realx3

fdtd_define_region defines a geometric region in a FDTD simulation domain.
This command only works for CLFDTD.
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Parameters

• tag is a user-defined name for this region which allows it to be referenced by
other commands such as fdtd_field_monitor. The tag must be unique and
not reused by other fdtd_define_region commands.

• shape specifies shape and dimensionality of the region.

• flip_normalj is used in the context of box regions; each facet/side of the box
has its own surface normal vector. By default, surface normals point outwards
from the box center; flipping the normal means that the normal now points
towards the center of the box.

Multiple flips (j=1..6) may be issued in the same command. For example,
flip_normal1=-y will flip the surface normal vector on the -y side of the box
region as the first operation.

Issuing this command may be required depending on whether the user is in-
terested the fields that are incoming or exiting from a specific region.

• point_ll is used to specify the lower-left corner of the region.

• point_ur is used to specify the upper-right corner of the region.

• normal is used to specify the normal vector of the region when shape=plane:
it is necessary to compute the flux through a specific region. In the case of
shape=box, the normal vector for each facet is automatically assigned by the
simulator as described in flip_normalj.

Examples

fdtd_define_region &&
shape=plane &&
point_ll=(0.0 -1.2 0.0) &&
point_ur=(1.0 11.5 0.0) &&
normal=(0.0 0.0 1.0) &&
tag=planeXY
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22.302 fdtd_dispersion

parameter data type values [defaults]
type char [Lorentz],Drude,Drude-

Lorentz,Direct
import char [no],yes
file char void
freq_convention char [omega],frequency
input_unit char [MEEP],SI
autofit_singlepole char [no],yes
mater intg 1
order intg 0
order_drude intg 0
epsinf real 1.0
omegak(k=1..9) real
gammak(k=1..9) real
delta_epsk(k=1..9) real
omega_drudek(k=1..9) real
gamma_drudek(k=1..9) real
a_directk(k=1..9) real
b_directk(k=1..9) real
c_directk(k=1..9) real
d_directk(k=1..9) real
scale_absorption real

The command fdtd_dispersion defines dispersion parameters for a particular ma-
terial. These parameters are used in the FDTD model to account for dispersion
and loss. Different models are available depending on the FDTD solver being used
(interface in fdtd_model).

Theory

Since the FDTD model works in the time domain, it is not possible to directly use
spectral properties. Instead, spectral properties must be fitted to a set of simple
basis functions which can be represented more easily in the time domain. This is
analogous to the concept of “digital filters” used in modern digital signal processing
algorithms.
The Lorentz dispersion model is supported by both MEEP and Acceleware FDTD
(in exp(−iωt) convention):
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ϵ(ω,x) = ϵ∞(x) +
∑

n

ω2
n∆ϵn

ω2
n − ω2 − iωγn

, (22.11)

The Drude (in exp(+iωt) convention):

ϵ(ω,x) = ϵ∞(x) −
∑

n

ω2
n

ω(ω + iγn)
, (22.12)

and Direct (in exp(+iωt) convention):

ϵ(ω,x) =
∑

n

An

Bnω2 + Cniω +Dn

, (22.13)

dispersion models are only supported by Acceleware FDTD.

Important note on units and fitting of experimental data

Most FDTD solvers use dimensionless and scale-invariant units internally to speed up
computations. Because users of Crosslight deal mostly with photonic applications,
the scale of the simulation is always set to be 1 µm and the speed of light is set to
c = 1: this is consistent with the convention used by the MEEP FDTD solver.
Using this convention, the following relations hold in vacuum:

ω = 2πf (22.14)

f = 1
λ

(22.15)

where λ is equal the wavelength value in µm but is otherwise without units.
However, not all FDTD solvers use the same convention when defining the dispersion
relations. The Acceleware solver use the formulas shown above for all available
dispersion models. On the other hand, MEEP’s polarizability class expresses the
Lorentz dispersion model using an alternate but equivalent form (in terms of f
rather than ω):

ϵ(f,x) = ϵ∞(x) +
∑

n

f 2
n∆ϵn

f 2
n − f 2 − if γn

2π

, (22.16)

The parameters freq_convention and input_unit can be used to convert to the
appropriate between frequency conventions and to specify the choice of units in the
dispersion relations.
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Parameters

• mater is a material number in which dispersion parameters are to be assigned.

• type specifies type of dispersion function.

• import is a switch for the importation of dispersion function parameters.
When import=yes, all the dispersion function parameters will be read from
an external file.

• file is the name of a file containing dispersion function parameters.

• freq_convention tells simulator what kind of frequency was used in the fitting
procedure of dispertion function. Augular frequency ω is assumed by default.
Since MEEP accepts ω, whereas Acceleware FDTD accepts frequency, ade-
quate conversion of frequency type will take place in the Crosslight/FDTD in-
terface according to the combination of FDTD program and freq_convention.

• input_unit tells simulator what kind of unit is used for the fitting parameters
of dielectric function. Since MEEP accepts MEEP unit, whereas Acceleware
FDTD accepts SI unit, adequate unit conversion will take place according to
the combination of FDTD program and input_unit.

• autofit_singlepole is a switch for fitting real and imaginary part of complex
index at single wavelength automatically. By activating this switch, user do
not have to fit index spectrum to analytical functions like Lorentizian. This
switch only works for single wavelength simulation.

• order is the number of dispersion terms (n) used in the Lorentz and Direct
models.

• order_drude is the number of dispersion terms (n) in the Drude model.

• epsinf is the instantaneous dielectric function: the real part of permittivity at
infinite frequency. It corresponds to ϵ∞ appearing in the equations above.

• omega# is the resonant frequency of the absorption peak in the Lorentz
model. For the Acceleware solver, it corresponds to ωn in Eqn. (22.11). For
the MEEP solver, it corresponds to fn = ωn

2π
in Eqn. (22.16).

• gamma# sets the width of the absorption peak in the Lorentz model. For the
Acceleware solver, it corresponds to γn in Eqn. (22.11). For the MEEP solver,
it corresponds to γn

2π
in Eqn. (22.16).

• delta_eps# sets the amplitude of the resonance peak in the Lorentz model.
It corresponds to ∆ϵn for both the Acceleware and MEEP solvers.

• omega_drude# corresponds to ωn appearing in Eq. (22.12).
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Figure 22.7: Fitted dielectric function for Silicon

• gamma_drude# corresponds to γn appearing in Eq. (22.12).

• a_direct# corresponds to An appearing in Eq. (22.13).

• b_direct# corresponds to Bn appearing in Eq. (22.13).

• c_direct# corresponds to Cn appearing in Eq. (22.13).

• d_direct# corresponds to Dn appearing in Eq. (22.13).

• scale_absorption scales strength of absorption of dispersion function. This
scaling only works for single wavelength case.

Examples

Figure 22.7 shows an example of how the dielectric function of crystalline silicon is
fitted with a sum of harmonic oscillators (Lorentzian model); nine oscillator terms
were used in this fitting.
The horizontal axis corresponds to frequency f = 1/λ using the MEEP convention
which means that λ is the wavelength value in µm. The absorption peaks between
f = 2 and f = 4 on Figure 22.7 correspond to a wavelength range of 250-500 nm.
The fitting was done by using non-linear least square fitting procedure. In this
fitting, different weight was used at lower and higher frequency region. Especially,
large weight value was assigned to lower frequency region(f ≤ 2.5) of the imaginary
part, since fitting errors in this region cause large errors in the resulting optical
absorption. Note that no automated fitting procedure is included in APSYS: it is
the responsibility of the user to provide the correct fit.
The corresponding fdtd_dispersion command reads as follows:



22.302 fdtd_dispersion 659

fdtd_dispersion mater=1 order=9 &&
type=Lorentz &&
freq_convention=frequency &&
input_unit=MEEP &&
epsinf=2.05727379912 &&
omega1=2.70630963121 gamma1=0.0792498919692 delta_eps1=0.622486271034 &&
omega2=2.78980009035 gamma2=0.0698148765121 delta_eps2=0.735692163881 &&
omega3=2.88533425743 gamma3=0.0877692173939 delta_eps3=0.764330138351 &&
omega4=3.00784243943 gamma4=0.1224552227370 delta_eps4=0.914575597926 &&
omega5=3.14120289007 gamma5=0.1277355532670 delta_eps5=0.911707698778 &&
omega6=3.43582761159 gamma6=0.1694383912360 delta_eps6=1.719650817200 &&
omega7=3.27736546304 gamma7=0.1298284642990 delta_eps7=1.043230189780 &&
omega8=3.63115274113 gamma8=0.2545018091260 delta_eps8=1.386792385230 &&
omega9=4.09954249395 gamma9=0.3634196648580 delta_eps9=0.778171989294

Here, freq_convention=frequency and input_unit=MEEP mean that horizontal axis
used in our parameter fitting is frequency, and units follow the MEEP covention.
The interface program will convert fitting parameters automatically depending on the
combination of freq_convention, input_unit and the FDTD solver chosent. The user
is only responsible for fitting the experimental data using consistent freq_convention
and input_unit settings.
If the experimental data was using a horizontal axis of angular frequency ω and SI
units the equivalent fdtd_dispersion command would read as follows:

fdtd_dispersion mater=1 order=9 &&
type=Lorentz &&
freq_convention=omega &&
input_unit=SI &&
epsinf=2.05727379912 &&
omega1=5.09774437845e+015 gamma1=1.49279183217e+014 delta_eps1=0.622486271034 &&
omega2=5.25501131267e+015 gamma2=1.31506901563e+014 delta_eps2=0.735692163881 &&
omega3=5.43496439623e+015 gamma3=1.65326623905e+014 delta_eps3=0.764330138351 &&
omega4=5.66572712525e+015 gamma4=2.30662972233e+014 delta_eps4=0.914575597926 &&
omega5=5.91693174711e+015 gamma5=2.40609275112e+014 delta_eps5=0.911707698778 &&
omega6=6.47190206558e+015 gamma6=3.19162891213e+014 delta_eps6=1.719650817200 &&
omega7=6.17341459110e+015 gamma7=2.44551590258e+014 delta_eps7=1.043230189780 &&
omega8=6.83982655196e+015 gamma8=4.79392731643e+014 delta_eps8=1.386792385230 &&
omega9=7.72210964398e+015 gamma9=6.84556021301e+014 delta_eps9=0.778171989294

Note the use of freq_convention=omega and input_unit=SI in this case.
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22.303 fdtd_far_field

parameter data type values [defaults]
do_ffp_only char [no] yes
plane char [void] -y +y -x +x -z +z
data_file char [void] far_field.dat
subtract_source char [no] yes
boxlabel_normalize char [void] Box1
box_point_ll realx2
box_point_ur realx2
distance real [100.0]
range_theta realx2 [0 180] (degrees)
range_phi realx2 [0 360] (degrees)
plane_offset char (um)
ngrid_surfint intgx3
ngrid_theta_phi intgx2 [10 20]

fdtd_far_field is used to calculate the far-field distribution of light scattered from
a device in a FDTD simulation.

Parameters

• do_ffp_only directs the FDTD program to only calculate the far-field pattern
(FFP). With this setting, the FDTD program will just read temporary data
generated by a previous FDTD run and calculate the FFP.

• plane is used to specify the direction of the FFP plane axis. For example,
plane=+y means that FFP will be calculated on a plane perpendicular to y-
axis and the sign specifies the direction of the plane normal. The position of the
plane should be specified by the plane_offset parameter. Note that plane
cannot be specified at the same time as box_point_ll and box_point_ur.

• data_file is the name of a file where FFP information will be stored.

• subtract_source is used to instruct the simulator to substract the contribu-
tion of the incident wave from the FFP result. This directive is useful when
calculating reflectance spectrum from FFP.

• boxlabel_normalize is a user-defined label specifying a monitoring box. This
box is used to record the radiation power or the current source(s) in ordert to
normalize the FFP result. The label must match the one used in the box
declaration in fdtd_monitor_box.
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• box_point_ll and box_point_ur are the lower-left and upper-right corner
points (in APSYS coordinates) of an integration box used in the calculation
of the FFP. The integration box should be large enough to contain the whole
device but must exclude the absorbing boundary.

• distance is the distance between far-field point and the device. In principle,
FFP does not depend on the distance parameter, so users do not have to care
about this parameter.

• range_theta specifies the range of θ, which is the angle measured from Z-axis.

• range_phi specifies the range of ϕ, which is the angle measured from X-axis.

• plane_offset is an offset value of FFP plane from origin of cartesian coordi-
nate. For example, plane=+y and plane_offset=5.0 means that XZ plane
with +y normal direction will be located at y=5.0(um). In case of 2-D, Z-
dimension is zero.

• ngrid_surfint is the grid size used to discretize the integration box. Since
simulator automatically assigns this parameter by counting FDTD cells over
FFP box/plane, users do not have to set this parameter.

• ngrid_theta_phi is the number of divisions for the θ and ϕ angles.

Examples

fdtd_far_field &&
box_point_ll=(0.0 -0.5 0.0) &&
box_point_ur=(5.0 5.5 0.0) &&
range_phi = (0.0 180.0) &&
ngrid_theta_phi = (1 51)
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22.304 fdtd_field_monitor

parameter data type values [defaults]
tag char
target_region_tag char
simulation_space char emptyspace, devicespace
monitor_comp char Ex, Ey, Ez, Efields, Hx, Hy, Hz,

Hfields, all
surface_only char yes,[no]
FFT char [yes], no
interval intg 10
step_start intg 0
step_end intg -9999
resolution realx3 (0.5,0.5,0.5)

The command fdtd_field_monitor instructs the FDTD solver to monitor and
record certain field components for later use. This command only works for CLFDTD.

Parameters

• tag is user-defined name which allows the recorded fields to be referenced
in other commands. This name must be unique and not reused by other
fdtd_field_monitor commands.

• target_region_tag is a region tag from fdtd_define_region which defines
the simulation region being monitored.

• simulation_space specifies which simulation is being monitored: all FDTD
simulations model field propagation in an empty region and in a region where
the device exists.

• monitor_comp specifies which field components are being monitored.

• surface_only directs the program to monitor only the surface of the specified
region.

• FFT directs the program to apply a FFT at each of the monitor points.

• interval is the interval time step used for monitoring.

• step_start controls the start time of the monitoring: t0 = step_start ∗ dt.

• step_end controls the stop time of the monitoring: tf = step_end ∗ dt.
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• resolution specifies the resolution of the monitoring on each axis. This defines
a subset of the FDTD grid points used in the simulation so this parameter scales
between 0.0 and 1.0: for example, resolution=(1.0 1.0 1.0) means that all the
FDTD grid points are being monitored.

Examples

fdtd_fieldmonitor &&
target_region_tag=planeXY &&
simulation_space=devicespace &&
monitor_comp=Ez &&
FFT=no &&
step_start=0 &&
step_end=2000 &&
interval=100 &&
resolution=(0.5 0.5 0.5) &&
tag=field

22.305 fdtd_fourier

parameter data type values [defaults]
input_file_empty_space char
input_file_device_space char
output_file char fdtd_fourier.dat
windowing char [no],yes
field_comp char [Ex],Ey,Ez
time_start real
time_end real
window_center real
window_FWHM real
read_interval intg [0],1,2,3
num_freq intg [100],200,300

The command fdtd_fourier is used to set parameters for the Fourier transform of
E-fields. Amongst other things, this can be used to estimate the resonance frequency
of a high-Q cavity.
All time positions/durations should be specified in the same unit as the MEEP
simulation if it was used to generate the original data. Otherwise, a multiple of the
simulation time step is used in the Acceleware and Crosslight FDTD solvers.
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Parameters

• input_file_empty_space is the name of the file which contains the time
evolution of E-fields for the “empty space” FDTD simulation.

• input_file_device_space is the name of the file which contains the time
evolution of E-fields for the “device space” FDTD simulation.

• output_file is the name of file where the Fourier transformed results will be
stored.

• windowing tells the simulator to apply a Gaussian window to the transform.
This may be useful in limiting aliasing.

• time_start is the start time of the Fourier analysis; this may be set to avoid
the initial transient response.

• time_end is the end time of the Fourier analysis.

• window_center is the center time of Gaussian windowing function.

• window_FWHM is the FWHM of the Gaussian windowing function.

• read_interval is used to specify read interval. This parameter is useful when
user wants to avoid oversampling of the data.

• num_freq is the number of frequency points in the spectrum.

Examples

fdtd_fourier input_file_empty_space=efields_empty.dat &&
input_file_device_space=efields_device.dat &&
num_freq=300

22.306 fdtd_glass_coating

parameter data type values [defaults]
spectrum_file char
fdtd_refl_file char
position char [top]bottom
do_precalc char [no]yes
thickness real 0 (µm)
real_index real 3.2
imag_index real 0.0
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Figure 22.8: First step of simulation with fdtd_glass_coating

fdtd_glass_coating sets parameters for the FDTD simulation with a thick glass
coating. Currently, this command only works for MEEP.
Under normal circumstances, a thick layer would require too much memory and
computational layer for a FDTD simulation since it uses such a small grid size. We
thus use a hybrid approach combining plane wave transfer matrix formalism with
FDTD and split the simulation into two steps.
In the first step, the glass layer is embedded in the FDTD’s PML layer to isolate
the reflection coefficient of the cell (Fig. 22.8). In the second step, this is used to
compute the effective plane wave transfer matrix of the glass layer and create a
transfer function. The glass layer is then removed from the FDTD simulation and a
filtered light spectrum is used to represent its effects (Fig. 22.9).

• spectrum_file is the name of a file which contains complex refractive index
spectrum of the glass. If not specified, constant refractive index given by
real_index and imag_index will be used.

• fdtd_refl_file is the name of the file where the reflection spectrum is recorded
in the precalculation (first step). During the second step, the reflection spec-
trum is read from this file and used to calculate the filtered light spectrum.

• position is the location of the glass layer.
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Figure 22.9: Second step of simulation with fdtd_glass_coating

• do_precalc determines if this simulation will be the first or second step as
outlined above.

• thickness is thickness of the glass layer in µm.

Examples

The example below shows the pre-calculation of reflection spectrum: this is the first
step discussed above. The reflection spectrum is defined by using the fdtd_plane_refl
to define a monitoring plane.

fdtd_glass_coating &&
do_precalc = yes &&
fdtd_refl_file=reflection_precalc.dat &&
real_index=1.57 imag_index=0.0e0 &&
position=bottom thickness=0.5

fdtd_plane_refl center=(0.05 0.05 -0.1) size=(0.1 0.1 0.0)
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22.307 fdtd_group_monitors

parameter data type values [defaults]
tag char
monitor_tagj (j=1..9) char

The command fdtd_group_monitors is used to group together FDTD field mon-
itors. This command only works for CLFDTD.

Parameters

• tag is a user-defined name for this group of FDTD field monitors and which al-
lows it to be referenced by post-processing command such as fdtd_data_analysis.
The tag must be unique and not be reused by either the fdtd_group_monitors
or fdtd_field_monitor commands.

• monitor_tagj(j=1..9) is the label of the jth field monitor that is being
grouped together under the same label. This value is inherited from fdtd_field_monitor.

Examples

fdtd_group_monitors &&
monitor_tag1=influx_monitor &&
monitor_tag2=outflux_monitor &&
tag=flux_monitor_group

22.308 fdtd_model

parameter data type values [defaults]
export_var char [density],flux_x,flux_y,flux_z,total_flux
export_grid char [FEM],ALL,NOBG
export_data char [meep_density.dat]
auto_finish char [no],yes
hdf5out_field char [no],yes
hdf5out_comp char [Ez], Ex, Ey, Hx, Hy, Hz,

EnergyDensity
hdf5tovtk char [no],yes
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parallel char [no],yes
interface char [MEEP], Ax, CLFDTD
subpixel_averaging char [no],yes
use_gpu char [no],yes
wavel_range realx2 (um)
PML_thickness real (um)
fixed_time real [20.0] (unit depends on FDTD in-

terface)
buffer_x realx2 [0.0 0.0] (um)
buffer_y realx2 [0.0 0.0] (um)
buffer_z realx2 [0.0 0.0] (um)
auto_dt real [10.0]
auto_dt2 real
auto_until_ratio real [0.01]
watch_pointk (k=1..9) realx3 (um)
hdf5out_dt real [2.0] (unit depends on FDTD inter-

face)
cell_size realx3 (um)
fdtd_meshdensity real (um)
adjust_xdim real (um)
adjust_ydim real (um)
adjust_zdim real (um)
courant_factor real
nb_wavel intg [100]
nb_mesh intgx3 [20 20 0]
boundary_type intgx3
num_zero_optgen_mater intg [0]
n_zero_optgen_mater intgxn
npe_para intg [1]
iauto_dt_step intg
iauto_dt2_step intg

fdtd_model sets all the parameters for a FDTD (Finite-Difference Time Domain)
simulation using APSYS device data. The FDTD algorithm uses a regular grid (Yee
lattice) so there is a mapping of the device structure and the irregular finite element
data to/from APSYS as shown in Fig. 22.10.
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Figure 22.10: Schematic of the interface between the FDTD program and APSYS
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Figure 22.11: Schematic of auto-finish criterion used in FDTD.
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Parameters

• export_var is the variable to export from FDTD calculation to be used by
device simulator. For standard device simulation, only export_var=density
is acceptable since the photon density S must be used in the optical generation
and stimulated recombination terms. The other settings define flux values
which are only useful for debugging purposes.

• export_grid defines the type of grid data used to export FDTD simulation
results. Since the goal of FDTD simulations is usually to import back the
photon density into APSYS, only the FEM should be used; the other setings
are used for debugging purposes.

• export_data is the file name that the FDTD program outputs for use in the
device simulator. This file name may be used in subsequent APSYS simulations
in the import_fdtd_data statement.

• auto_finish directs the FDTD program to automatically judge if the FDTD
simulation has run long enough to reach a steady state. This situation is
detected using the parameters auto_dt, auto_dt2, auto_until_ratio and
watch_pointk (k=1..9).
To determine if the simulation should end, the FDTD simulation monitors the
magnitude of the electric field at each watch point. The first monitoring period
begins from t = 0 and ends at t = auto_dt. The maximum value of the field
magnitude in the first monitoring period is defined as E1

max.
After the first period, a second monitoring will take place for ∆t = auto_dt2,
and we obtain E2

max. Successive monitoring periods with the same length
continue until En

max becomes smaller than E1
max × auto_until_ratio. A

schematic of this criterion is shown in Fig. 22.11.
Note that auto_finish can only be used in simulations where the fields can
decay properly so if the FDTD simulation uses a single wavelength, then the
time-domain source is a sine wave which goes on forever and auto_finish may
not be used. PML boundaries are also recommended when using auto_finish
as it prevents outgoing waves from traveling back into the simulation domain.

• hdf5out_field is a switch to turn on/off field output in the MEEP solver and
is ignored in the Ax and CLFDTD solvers. The component of the field that
is output is specified by hdf5out_comp parameter. The output is done at
specific time intervals controlled by hdf5out_dt.

• hdf5tovtk is used to convert HDF5 files generated by the MEEP solver to the
VTK format; file conversion will take place at the end of FDTD simulation.
VTK files can be opened by several free programs such as MayaVi, ParaView
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and VisIt. This parameter is ignored when using the Ax and CLFDTD solver
since they natively use the VTK format and do not require conversion.

• parallel is used to enable parallel execution of the FDTD simulation; the
number of parallel jobs is defined by the npe_para parameter. This parameter
is ignored when interface=Ax.
Note that unlike the multi-threaded sparse solver used in the main APSYS
simulation, parallel FDTD relies on the Message Passing Interface (MPI). The
Intel® MPI run-time libraries should be installed on the end-user’s computer
to add the necessary DLL support and the mpiexec launcher: only the free
run-time is needed for end-users, not the paid developer version.
As mpiexec also requires user credentials to launch the parallel FDTD jobs,
default user credentials should also be added to the system prior to running
the .sol file; otherwise, the mpiexec launcher will ask for user credentials before
starting the FDTD simulation. Defining default credentials allows the software
to run unattended from batch files and also avoids incompatibilities with the
display-only view of the output that is used in the SimuAPSYS GUI.
The default user credentials may be encrypted into the Windows registry using
the following syntax, using either a command shell or from “Run” input box
in the Windows start menu:

mpiexec -register

The above step only needs to be run a single time for each computer and should
only be re-run as needed to replace these user credentials; the -remove option
may be also used to delete existing credentials from the registry. We also wish
to warn users that the wmpiconfig program from the start menu WILL NOT
store the user credentials needed for mpiexec: it instead stores the credentials
for the other MPI launcher (wmpiexec) which is not used by APSYS.
Note that MPI-based acceleration is currently incompatible with GPU accel-
eration.

• subpixel_averaging is used to turn on/off the sub-pixel averaging feature of
MEEP. This parameter is ignored in the Ax and CLFDTD solvers.

• wavel_range is the wavelength range the FDTD simulation should cover. It
is related to the FDTD time step by the Nyquist sampling criterion. This range
should be big enough to cover the entire spectrum defined in the light_power
statement.

• PML_thickness is the thickness of the PML layer inside the air buffer. This
should be thick enough to absorb electromagnetic waves completely and so

https://software.intel.com/en-us/intel-mpi-library
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should be at least equal to the maximum value of wavel_range. The axes on
which the PML boundary are defined by the boundary_type parameter.
Note that this parameter is ignored when interface=Ax, since the interface
program for the Acceleware FDTD solver automatically applies a five layer
CPML model.

• fixed_time should be specified in case of auto_finish=no, in which case the
FDTD simulation runs for a predetermined number of time steps.
The units of fixed_time depend on the solver being used. In MEEP, internal
scaling of variables generates a simulation time reference unit of 3.3333333 fs;
this is based on a reference unit length of 1 µm and is a distinct value from the
time step ∆t. As a result, the total simulation time for the FDTD simulation
is fixed_time × 3.3333333 × 10−15 seconds.
In the Ax and CLFDTD solvers, fixed_time acts a multiplier to the ∆t time
step. This value is determined automatically by the cell size and refractive
index and is recorded in the simulation log file.

• buffer_x, buffer_y, buffer_z are used to denote empty space added to
negative (first value) and positive (second value) sides of the simulated device
in the x,y and z directions, respectively (e.g. left/right, bottom/top, etc...).
This sets the effective size of the FDTD simulation so the user must be careful
is choosing a value that is not too big to save on computation time. However,
the PML layer is also contained in this empty space so the buffer must be
large enough to encompass both the PML layer and sufficient empty space to
position monitor points and other reference positions where the outside field is
needed.

• auto_dt and auto_dt2 are the lengths of the averaging periods used in
the auto_finish criterion in MEEP and use the same time reference as the
fixed_time setting. They are shown in Fig. 22.11 as ∆t1 and ∆t2, respectively.
For the Acceleware and Crosslight FDTD interfaces, please use iauto_dt_step
and iauto_dt2_step instead. These values are integer multipliers of the ∆t
time step which are used to define ∆t1 and ∆t2.

• auto_until_ratio is a ratio used to judge if the electric field has decayed
to a sufficiently small value that the FDTD simulation can be terminated.
For example, when auto_until_ratio=0.01, the simulation will finish if the
magnitude of electric field is 100 times smaller than that of first averaging
period.

• watch_point1-9 are the coordinates of “watch points” that are used to mon-
itor the magnitude of electric field for auto finish feature. The coordinates of
these watch points use the same reference as the original FEM mesh so that
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watch points set in the air buffer outside the device may have values which go
out of bounds.

• cell_size is the size of the FDTD simulation cell. The FDTD space(=APSYS
device + empty buffer space) is discretized by a large number of rectangular
cuboid cells (Yee lattice); this array defines the edge length of each cell along
the x, y and z directions. Once the cell size is set, the number of grid points
is determined based on the total size of the FDTD simulation space: if this
space cannot be filled by an integer multiple of cells, the simulator will adjust
the buffer size to fit.
Note that instead of setting the cell size directly fdtd_meshdensity (in
1/µm) may be used to sample the original APSYS data and set the cell size;
this setting does not use the total size of the FDTD space to set the cell size.
The total number of grid points on each axis can also be set manually using
nb_mesh, which has the effect of setting the cell size (=total size/nb_mesh);
users are reminded that some of these points will be used for the air buffer
around the device.
All three methods of defining the FDTD grid size are mutually incompatible:
users should only define one of the above parameters in the .sol file.

• interface is used to switch between the different FDTD solvers available. In
many cases, Crosslight only provides an interface to an existing FDTD solver
library which may be licensed under different terms than APSYS. The options
currently available are:

– MEEP: A free FDTD library that supports MPI acceleration and which
is licensed under the GPL. The source code of the interface program be-
tween APSYS and the MEEP FDTD solver library available on request
to comply with GPL requirements.
http://ab-initio.mit.edu/wiki/index.php/Meep

– Ax: A proprietary FDTD solver library from Acceleware®. The library
must be purchased separately from the vendor, with Crosslight providing
an interface program; supports GPU hardware acceleration.
http://www.acceleware.com/

– CLFDTD: Crosslight’s own FDTD implementation, new to the 2012 ver-
sion of the software. Supports both MPI and GPU acceleration.

Please contact your local Crosslight sales agent to learn more about the differ-
ence between the various solvers and the optional modules required to access
the various FDTD interfaces available through this statement.

• adjust_xdim,adjust_ydim and adjust_zdim are used to adjust the di-
mension of X,Y or Z coordinates of the device structure. Such adjustment is

http://ab-initio.mit.edu/wiki/index.php/Meep
http://www.acceleware.com/
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useful when the APSYS mesh is imported from another source (e.g. CSUPREM)
and there are tiny errors in the mesh.

• courant_factor specifies the Courant factor of the FDTD simulation. The
default value is 0.5.

• nb_wavel is the number of wavelength points for data export. In FDTD sim-
ulation, the wavelength range wavel_range is converted to frequency range,
then divided by nb_wavel. Therefore, data points are distributed uniformly
in frequency space.

• boundary_type represents boundary type along each axis. The only sup-
ported boundaries for FDTD are 0 (PML) and 1 (periodic).
PML boundaries are used to represent an outgoing wave propagating towards
infinity. This Perfectly Matched Layer absorbs the outgoing wave so that it
reaches zero on the edges of the simulation domain but unlike a traditional
absorbing region, there is no refractive index step which would cause a reflection
of the wave back into the simulation domain.
Periodic boundaries are used to sample infinite periodic variations of the di-
electric constant; the outgoing wave on one side becomes an incoming wave on
the opposite side.

• num_zero_optgen_mater is a number of the materials of whose optical
carrier generation rate is forced to zero. The optical energy density in those
materials is also forced to zero. The actual list of material numbers where this
setting is active is given by n_zero_optgen_mater parameter.
This option may prove necessary when defining dispersion curves with fdtd_dispersion.
A poor quality fit may introduce an imaginary component to the refractive in-
dex which would be unphysical. Note that by default, FDTD simulations use
only a single dielectric constant/refractive index so this option is not usually
required.

• use_gpu turns on GPU acceleration of FDTD solvers that support this fea-
ture. This normally requires Nvidia® cards as the solvers are written using the
CUDA™ library. This setting is incompatible with MPI-based acceleration.

Application Notes

FDTD is an algorithm which parallelizes very naturally so using MPI or GPU accel-
erations is strongly recommended. However, the choice of the acceleration method
depends on the situation.
GPUs are known for their large number of cores compared to CPUs, which more than
make up for the slower speed of the individual cores. The downside is that GPU cards
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often have a limited amount of on-board memory compared to the system memory;
this introduces performance penalties (swapping between system RAM and GPU
RAM) if the FDTD grid cannot be stored entirely within GPU memory. Multiple
GPU cards may be used to partially offset this limitation but most workstations
cases and motherboards do not have sufficient space to expand and meet the needs
of larger 3D problems.
MPI parallelism tends to be slower the GPU for smaller problems due to the limited
number of processing cores than can be brought to bear on the problem. However,
regular CPUs can access the entire RAM on the system which makes it more suitable
for larger problems which cannot fit into the GPU memory. MPI technology is also
a base building block for modern supercomputer clusters which allows the FDTD
workload to be split between several computers, thereby expanding the available
memory and the number of processing cores.
Users are therefore advised to estimate the amount of memory required for their
FDTD problem and pick the best parallel solution. Since each grid point stores 6
variables (E and H field components) in IEEE754 double precision, the memory
usage can be approximated based on the total grid size:

Nx ×Ny ×Nz ∗ 48bytes

Total computation time can be harder to estimate since it depends on the number
of time step as well as the number of grid points. The total number of operations
can be approximated by:

Nop = Nx ×Ny ×Nz × fixed_time
∆t

Comparing the run time and number of operations of a small FDTD simulation to
the number of operations in a larger problem can help estimate the run time of this
larger problem.

Examples

The fdtd_model statement below is an example for 2-dimensional FDTD simula-
tion using the MEEP interface. A periodic boundary condition is applied only to
the x-axis.

fdtd_model export_var = density wavel_range = [0.3,2.5] &&
PML_thickness = 1.0 boundary_type = [1,0,0] &&
buffer_y = [2.0,2.0] nb_wavel = 20 nb_mesh = [50,300,0] &&
auto_finish = yes auto_dt = 40 auto_dt2 = 5 &&
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watch_point1 = [2.5,3.0,0] auto_until_ratio=0.1 &&
hdf5out_field=yes hdf5out_comp=Ex hdf5out_dt=5.0 &&
parallel=yes npe_para=4

22.309 fdtd_modify

parameter data type values [defaults]
efields_monitor_file_prefix char
remove_FEM char [yes],no
iauto_dt_step_emptyspace int
iauto_dt2_step_emptyspace int
auto_dt_emptyspace real
auto_dt2_emptyspace real
fixed_time_emptyspace real

The command fdtd_modify provides a way to modify some FDTD control param-
eters.

Parameters

• efields_monitor_file_prefix modifies the prefix string of E-field monitor
file.

• remove_FEM is a switch to direct simulator to disable FFT of E-fields on
APSYS FEM mesh points. This switch is useful to reduce computation time
only when user wants to obtain results other than relative energy intensity
distribution, e.g. resonance frequency analysis.

• iauto_dt_step_emptyspace will override iauto_dt_step for empty space
FDTD simulation (for Acceleware FDTD only)

• iauto_dt2_step_emptyspace will override iauto_dt2_step for empty
space FDTD simulation (for Acceleware FDTD only)

• auto_dt_emptyspace will override auto_dt for empty space FDTD simu-
lation (for MEEP only)

• auto_dt2_emptyspace will override auto_dt2 for empty space FDTD sim-
ulation (for MEEP only)
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• fixed_time_emptyspace will override fixed_time for empty space FDTD
simulation.

Examples

fdtd_modify fixed_time_emptyspace=100.0

Example above modifies fixed_time parameter of fdtd_model only for empty
space FDTD simulation. It is useful to reduce computation time of empty space
simulation, since convergence and propagation in empty space is much faster than
that in device space.

22.310 fdtd_monitor_box

parameter data type values [defaults]
data_file char [void]
label char [void]
monitor_space char [vacuum] device
center realx3 (um)
size realx3 (um)
box_point_ll realx2 (um)
box_point_ur realx2 (um)

fdtd_monitor_box is used to calculate radiation power of current source by in-
tegrating the flux on each side of a monitoring box. This command is useful when
normalizing FFP by source power.

Parameters

• data_file is the name of a file where the integrated source power will be stored.

• label is used to assign a label to the monitoring box. This label can be refered
by the boxlabel_normalize parameter of the fdtd_far_field command.

• monitor_space specifies which FDTD simulation, i.e. vacuum or device, is
to be used as the source power.

• center and size are the center position and the size of the monitoring box.



678 COMMAND SYNTAX

• box_point_ll and box_point_ur are the lower-left and upper-right corners
(in APSYS coordinates) of the monitoring box.

Note that center,size and box_point_ll,box_point_ur are mutually exclusive.

Examples

fdtd_monitor_box &&
center=(3.25 6.05 0.0) size=(0.2 0.2 0.0) &&
label=Box1

22.311 fdtd_output_structure

parameter data type values [defaults]
variable char material_num, real_epsilon,

imag_epsilon, real_index,
imag_index

data_file char
wavelength real 10.0
resolution realx3 (1.0 1.0 1.0)

The command fdtd_output_data is used to output structural data from the
FDTD simulation to a file in the VTK format. This command only works for
CLFDTD.

Parameters

• variable controls the structural data being saved.

• data_file is the name of the VTK file.

• wavelength is used to evaluate wavelength-dependent variables before export.

• resolution specifies the resolution of the structural data on each axis. This
defines a subset of the FDTD grid points used in the simulation so this param-
eter scales between 0.0 and 1.0: for example, resolution=(1.0 1.0 1.0) means
that all the structural data on the FDTD grid points will be output to the data
file.
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Examples

fdtd_output_structure &&
variable=material_num &&
resolution=(1.0 1.0 1.0) &&
data_file=materID

22.312 fdtd_plane_refl

parameter data type values [defaults]
data_file char
center realx3 (um)
size realx3 (um)

The command fdtd_plane_refl defines a plane which monitors the flux of electro-
magnetic waves reflected back to this plane. Results are be stored in a data file as a
reflection spectrum.
Currently, this command only works for MEEP.

Parameters

• data_file is the name of the output data file. If not specified, a file name
“reflection.dat” will be used as default.

• center is the center position of the monitoring plane in APSYS coordinates.
It may take negative values to mean being placed below the device (for y-
direction): the FDTD simulation space must be large enough to accommodate
this.

• size is the size of monitoring plane.

Examples

fdtd_plane_refl center=(2.5 5.5 0.0) size=(5.0 0.0 0.0)
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22.313 fdtd_plane_trans

parameter data type values [defaults]
data_file char
center realx3 (um)
size realx3 (um)

The command fdtd_plane_trans defines a plane which monitors the flux of elec-
tromagnetic waves transmitted through this plane. Result are be stored in a data
file as a transmission spectrum.
Currently, this command only works for MEEP.

Parameters

• data_file is the name of the output data file. If not specified, a file name
“transmission.dat” will be used as default.

• center is the center position of the monitoring plane in APSYS coordinates.
It may take negative values to mean being placed below the device (for y-
direction): the FDTD simulation space must be large enough to accommodate
this.

• size is the size of monitoring plane.

Examples

fdtd_plane_trans center=(2.5 -0.5 0.0) size=(5.0 0.0 0.0)

22.314 fdtd_push_job

parameter data type values [defaults]
job_id char

The command fdtd_push_job is used to schedule an immediate call to the FDTD
solver. Multiple calls to the FDTD solver can be used in the same .sol file by issuing
this command to separate the parameters for each simulation.
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Parameters

• job_id is the label of the FDTD job.

Examples

$ FDTD simulation parameters for job #1 go here
$ .....
fdtd_push_job job_id=job1

$ FDTD simulation parameters for job #2 go here
$ .....
fdtd_push_job job_id=job2

22.315 fdtd_replace_FDTDgrid

parameter data type values [defaults]
file char

The command fdtd_replace_FDTDgrid will replace the FDTD grid data (which
is normally imported from APSYS) by the user-specified data file. Number of grid
points and data ordering should be consistent with other FDTD settings.

Parameters

• data_file is the name of a user-supplied data file.

Examples

fdtd_replace_FDTDgrid file=MyGridData.txt
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22.316 fdtd_replace_mater

parameter data type values [defaults]
op1 intgx2
op2 intgx2
op3 intgx2
op4 intgx2
op5 intgx2
op6 intgx2
op7 intgx2
op8 intgx2
op9 intgx2
x_range realx2
y_range realx2
z_range realx2

The command fdtd_replace_mater will substitute one material number for an-
other within the specified spatial range.

Parameters

• op1-9 are used to specify replace operation.

• x_range specifies spacial range along x-axis.

• y_range specifies spacial range along y-axis.

• z_range specifies spacial range along z-axis.

Examples

fdtd_replace_mater command shown below will replace material number 2 with 1
in y-coordinate ranging from 0.0 to 2.0.

fdtd_replace_mater op1=(2 1) y_range=(0.0 2.0)
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22.317 fdtd_source

parameter data type values [defaults]
component char [void],Ex,Ey,Ez,Hx,Hy,Hz
auto_positioning char [no] yes
auto_side char [above] below
source_type char [dipole],planewave,GaussianBeam
polarization char [void] TM, TE
wavel real
spectral_width real
amplitude realx2 [1.0 0.0] (unitless for MEEP, A/m2

for the others)
center realx3 (um)
size realx3 (um)
auto_rel_pos real [0.5]
limit_x realx2 (um)
limit_y realx2 (um)
limit_z realx2 (um)
dir_planewave realx3 (um)
theta_planewave real (deg.)
phi_planewave real (deg.)
beam_waist real (um)
beam_size real (um)
theta_beam real (deg)
phi_beam real (deg)
beam_points int

The command fdtd_source defines current sources for FDTD simulations. The
FDTD program decides reasonable pulse width/duration based on the spectrum
width, which is specified by the wavel_range parameter of the fdtd_model state-
ment.
Note that multiple sources add up coherently.

Parameters

• component is a component of the current source. Electromagnetic fields in-
duced by this current source depend on the device geometry.

• auto_positioning turns on/off auto-positioning feature of source plane. If
auto_positioning=yes, simulator will put the source plane between device
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and the PML boundary.

• auto_side specifies the side of auto-positioning location. If auto_side=above(below),
source plane will be located above(below) the device. This parameter is effec-
tive only when auto_positioning=yes.

• source_type is the type of current source.

• polarization will set the polarization direction of the plane wave model auto-
matically. This parameter is effective only when auto_positioning=yes.

• wavel is the center wavelength of FDTD current source. If not specified, center
wavelength is automatically calculated from the wavel_range parameter of
fdtd_model.

• amplitude is a complex number specifying amplitude of current source pulse.
It is advised that this is not altered except by FDTD experts.

• center is the center position of current the source in the original FEM coordi-
nates used by APSYS. It may take negative values to mean being placed below
the device (for y-direction). The FDTD simulation space will need to be large
enough to encompass the source region.

• size is the size of current source. User can set various type of current source
(e.g. point, linear shape, planar shape and 3D-box source) by changing the size
parameter. To model a plane wave, we can flatten a 3D box source by setting
one of its dimensions to zero.

• auto_rel_pos is used to specify the relative position of source plane. For
example, auto_rel_pos=0.5 will put source plane at middle position be-
tween device and PML. auto_rel_pos=0.0 and 1.0 correspond to boundary
of device and PML, respectively.

• limit_x is useful when user wants to restrict the x-range of source plane.

• limit_y is useful when user wants to restrict the y-range of source plane.

• limit_z is useful when user wants to restrict the z-range of source plane.

• dir_planewave is a direction vector(k-vector) of for the plane wave model.
User SHOULD NOT specify theta_planewave nor phi_planewave along
with this parameter.

• theta_planewave is an angle θ, i.e. angle measured from z-axis. User
SHOULD NOT specify dir_planewave along with this parameter.
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• phi_planewave is an angle ϕ, i.e. angle measured from x-axis within xy-
plane. User SHOULD NOT specify dir_planewave along with this parame-
ter.

• beam_waist is the waist size of a Gaussian beam. Amplitude and intensity
of Gaussian beam drop to 1/e and 1

e
at beam_waist, respectively.

• beam_size is the size of Gaussian beam source.

• theta_beam is the angle θ, which corresponds to the angle between the Gaus-
sian source plane and z-axis.

• phi_beam is the angle ϕ, which corresponds to the angle between the Gaus-
sian source plane and x-axis.

• beam_points is the number of source points distributed along the Gaussian
source plane.

Examples

fdtd_source component=Ez &&
center=(5.0 2.0 0.0) size = (10.0 0.0 0.0)

The above is a linear current source of width 10 µm with center located at x=5,
y=2.

22.318 fit_gain_wavel

parameter data type values [defaults]
fit_data_file char [fitgain.txt]
fit_density real [2.e24] (m−3)
fit_density_p real [-9999.]
wavel_range realx2 [-9999. -9999.] (µm)
av_index real [3.3]
density_vary real [0.2e24] (m−3)
data_point intg [100]

This command is used in the .gain preview and fits a series of gain curves to the
analytical model shown in Sec. 22.65.
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Parameters

• fit_data_file is the output data file for the fitted parameters.

• fit_density is the electron density at which the fit is made.

• fit_density_p is the hole density at which the fit is made. By default, this
is the same as the electron density.

• wavel_range is the wavelength range of the fit.

• av_index is an average index value used in the gain calculation.

• density_vary is the change in carrier density used evaluate derivatives in the
analytical model.

• data_point is the number of wavelength points used in the fit.

Examples

fit_gain_wavel fit_density=1.5e24

22.319 force_last_barrier_offset

parameter data type values [defaults]
all_complex char [yes], no
value real [0.0] (eV)
complex intg

force_last_barrier_offset forces the conduction band in the last region of a com-
plex MQW to be at a specific position, relative to the first region. This overrides
the normal band alignment rules defined in Sec. 10.1; it also instructs the software
to use other aspects of the quantum well model for that region, such as the carrier
masses.
This statement is only used for the simplified complex library system (c.f. Sec. 3.5.1).

Parameters

• all_complex applies the same correction term to all complex MQWs in the
simulation. It this is set to no, complex must be set to identify the MQW
region affected by this statement.
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• value defines the offset of the last barrier, relative to the leftmost barrier.

22.320 fourier_power

parameter data type values [defaults]
data_file char [void]
input_var char
output_var char
facet char [void] front/back
log_freq char [no]
freq_start real [3.] (decade)
freq_end real [10.] (decade)
scale_lit real [2.]
scale_curr real [2.]
scale_horizontal real [1.]
scale_vertical real [1.]
mode_index intg [1]

The statement fourier_power is used in the post-processing step to obtain the
system frequency response function from transient simulation data. The program
takes the time-dependent input and output variables, makes a Fourier transform of
each and divides their magnitude to obtain the response function.
For example, given Vin(t) and Vout(t) and their respective Fourier transforms, Uin

and Uout, the program computes 20log10

∣∣∣Uout

Uin

∣∣∣.
Parameters

• data_file is the data file name to which ASCII is exported.

• input_var and output_var are the input and output variable names, re-
spectively. Any scan variable defined in Appd. G.1 may be used.

• facet, if defined, indicates which facet power is plotted.

• log_freq indicates whether a logarithmic frequency scale is used in the plot.

• freq_start and freq_end are the starting and ending point of the frequency
axis for the Fourier analysis.
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• scale_lit scales the laser light output for L-I plot. This is useful when scaling
to take into account device symmetry.

• scale_curr scales the current in L-I plot in a laser simulation. This is useful
when scaling to take into account device symmetry.

• scale_horizontal scales the horizontal axis for non-L-I plots.

• scale_vertical scales the vertical axis for non-L-I plots.

• mode_index is lateral mode number.

Examples

fourier_power input_var=current_1 output_var=laser_power &&
freq_start=6. freq_end=10.

22.321 flux_plot

flux_plot is used to plot the light energy flux density distribution within the ray-
tracing device. This statement is used at the post-processing stage after ray-tracing
program is run.
This statement has no parameters.

22.322 freq_control

parameter data type values [defaults]
data_points intg [601]

The statement freq_control is used in PICS3D to define the number of points
in certain curves such as the longitudinal mode spectrum, the ASE and the noise
analysis (e.g. RIN).

Parameters

• data_points is the number of points in spectrum
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22.323 front_index

parameter data type values [defaults]
real_index real [1.]
imag_index real [0.]

front_index is an outside index value used as a boundary condition for optical
pumping. The default value assumes air/vacuum. This command has no practical
effect if front_reflection is used.
See the theory section in front_reflection for more details.

22.324 front_reflection

parameter data type values [defaults]
spectrum_file char void
power_transmission real [1.]
reflection_phase real [0.] (degrees)

front_reflection is used to specify the reflection of light power at the front of a
semiconductor device. It should not be used if the coating layers are defined with
optic_coating or are explicitly included in the layer file.

Theory

Optical pumping defined with light_power defines a series of cut lines across the
mesh defined for the device in order to get the local index profile. For each of
these 1D cuts, a plane wave transfer matrix method is used to calculate the internal
reflections and the light distribution in the device. Regions with a similar index are
grouped together to save computation time and interfaces are defined when there is
a significant change in index values.
The very first interface along the cut lines is defined by front_reflection. If this is
not defined, the index value from front_index will be used as the outside boundary
condition for a Fresnel reflection. If that statement is not used either, the outside
index is assumed to be air (nr = 1). Coating layers defined with optic_coating
will be included between this outside index and the first mesh point of the cut line.
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Conversely, the last interface along the cut line is defined by back_reflection. If
this is not defined, the value of back_index will be used as the outside boundary
condition for a Fresnel reflection. If that statement is not used either, the outside
index is assumed to be the same as that of the last layer so that no reflection takes
place at the interface.

Parameters

• spectrum_file reads the power transmission coefficient from an input file.
The data must be arranged in columns with the first column being the wave-
length in µm and the second the transmission coefficient.

• power_transmission is the power transmission coefficient.

• reflection_phase is the phase of the field reflection coefficient. The field
transmission coefficient is always assumed to be real.

Examples

front_reflection power_tranmission=0.99

The above statement is used to model an effective broadband AR coating. It should
not be combined with any actual coating definitions.

22.325 full_ionization

parameter data type values [defaults]
mater_label char
dopant char [void], donor, acceptor, donorj

(j=1..9), acceptorj (j=1..9)
mater intg

The statement full_ionization may be used to force all shallow dopants of a mate-
rial to be fully ionized. By default, the incomplete ionization model based on Fermi
statistics is used in all materials.
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Parmaters

• mater is the material where the dopants are to be fully ionized. If a label has
previously been defined for this material, mater_label may be used instead.
As of the 2016 version of the software, this parameter is now optional: if no
material is specified, then this command applies to all materials in the device.

• dopant may be used to restrict the effects of the command to one specific
kind of dopant. If this parameter is omitted, all dopants are fully ionized;
we may otherwise study the effects of ionizing either the donors or acceptors.
If multiple species of dopants are used in the simulation, a number may be
appended to the dopant name to identify the species which we want to fully
ionize; all other dopants present in the simulation will be unaffected.

22.326 gain_density

parameter data type values [defaults]
data_file char
include_data char
conc_log_scale char [no], yes
wavel_range realx2 (µm)
conc_range realx2 [1.e23 1.e25] (m−3)
pn_ratio real [1]
av_index real [3.3]
temper_range realx2 [300. 400.] (K)
data_point intg
temper_points intg []

gain_density plots the peak material gain versus carrier density in the active re-
gion. This statement can be used in the gain preview module.

Parameters

• data_file specifies a file name used to save a copy of the plot data.

• include_data includes data files from other gain calculations on the plot for
comparison purposes.

• wavel_range is the wavelength range used to search for the gain peak.
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• conc_range is the electron concentration range in the well used for the plot.

• pn_ratio is the ratio of hole over electron concentrations.

Note that this ratio is set to an arbitrary number in the gain preview in order
to generate a 1-dimensional plot or a family of spectral curves which depend
on a single parameter. In the main solver, this ratio is normally unused and
the gain calculations automatically make use of the local Fermi levels for both
electrons and holes.

• av_index is the estimated average refractive index.

• data_point is the number of data points in the curve.

• conc_log_scale determines if the carrier density points are spaced linearly
or on a logarithmic scale.

• temper_points, if used, instructs the software to plot a family of curves
at various temperatures. This parameter controls how many temperature
points are used; these points will cover a temperature range defined in tem-
per_range.

Examples

gain_density wavel_range=(1.0 1.4) &&
conc_range=(5.e23 5.e24) pn_ratio=1 data_point=20

22.327 gain_module

parameter data type values [defaults]
use_sheet_density char [no]
tilt_imref char [no]
apply_e_field real [0.]
complex_number intg [1.]
complex_well_number intg [1.]

gain_module is used to modify some conditions in a .gain preview simulation.
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Parameters

• use_sheet_density instructs the program to use sheet density in .gain pre-
view simulation. See also band_distance which defines its own sheet density
setting.

• tilt_imref indicates whether the IMREF (inverse of the Fermi level) is to be
tilted in accordance with the applied field.

• apply_e_field is the applied electrical field in V/m.

• complex_number describes which active region or complex MQW is used
for the material gain calculations in the gain preview. By default, .gain uses
the first active region defined in the input or in the included .mater file.

We note that the .gain preview only shows the material gain for a single
quantum-confined region. Gain curves are calculated using the energy separa-
tion and wavefunction overlap of quantum-confined states so even in the case
of a complex MQW, all wells from that complex are included in the material
gain curve.

However, in a full device a MQW region may consist of several simple/complex
wells, not all of which are coupled quantum-mechanically for the purposes of
solving the Schrödinger equation. The material gain preview may thus differ
from the modal gain in a number of significant ways.

To view the total modal gain spectrum, it is therefore recommended to run the
full simulation in the .sol file and use gain_spectrum in the post-processing
stage.

• complex_well_number describes which well inside a quantum-confined MQW
region is used as the reference for the carrier density vs. Fermi level relation-
ship. As of v.2016, this is the well with the smallest bandgap by default; earlier
versions of the software defaulted to the first well inside the complex.

Why is this parameter necessary ? Basic laser theory tells us that the integral
used for the material gain depends on the Fermi level separation. In the full .sol
simulation, this separation is obtained at each mesh point using the transport
models but for .gain, no transport is solved: this value is instead obtained by
defining an input carrier density.

Since no transport is solved in .gain, we assume a single flat Fermi level for the
whole MQW but due to the band profile, even this simple model may lead to
different carrier densities in each well. A reference well number is thus needed
to consistently invert the carrier density vs. Fermi level relationship: we do
not need to know the density in each well to define the Fermi level separation,
we only need to know one.
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Examples

gain_module apply_e_field=1.e6

22.328 gain_spectrum

parameter data type values [defaults]
data_file char
variable char [gain]
units char [void]
user_xlabel char [void]
user_ylabel char [void]
scale real [1.]
wavelength_range realx2 (um)
asespec_latmd intg [1]

gain_spectrum is a post-processing statement used to plot the net modal gain
spectrum at different current/voltage bias points corresponding to data sets previ-
ously defined in the xy_data parameter of get_data.
Since this original use, the command has also been re-purposed to plot additional
spectral properties. In PICS3D, this also include variables from the coupled round-
trip gain method (RTG) and the older analytical AC model described in Sec. 18.6.

Parameters

• data_file is a file name that can be used to export the curve spectrum.

• variable is the variable being plotted:

– gain is the combined net TE/TM gain.
– gain_te is the net TE gain.
– gain_tm is the net TM gain.
– sp.rate is the combined TE/TM spontaneous emission (maximum).
– sp.rate_te is the TE spontaneous emission (maximum).
– sp.rate_tm is the TM spontaneous emission (maximum).
– index_change is the index change away from equilibrium.
– total_sp.rate is the combined TE/TM spontaneous emission (total).
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– total_sp.rate_te is the TE spontaneous emission (total).
– total_sp.rate_tm is the TM spontaneous emission (total).
– cavity_rtg_amplitude is the amplitude of the round-trip gain. It is simi-

lar to the round-trip gain preview data generated by the rtgain_phase
statement except that the photon coupling and imaginary frequency/spontaneous
emission contribution is included. (PICS3D)

– cavity_rtg_phase; as above but displays the phase information instead of
the amplitude. (PICS3D)

– rtg_spectrum is the power spectrum (as defined in Appendix E) in the
PICS3D round-trip gain method. See the appendix for application notes
on the definition on side mode suppression ratio.

– rtg_spectrum_left is similar to rtg_spectrum but is weighed by the field
profile to give the power spectrum on the left side of the cavity.

– rtg_spectrum_right is similar to rtg_spectrum but is weighed by the field
profile to give the power spectrum on the right side of the cavity.

– rtg_asespec is the amplified spontaneous emission in the the PICS3D
round-trip gain method.

– rtg_asespec_left is the amplified spontaneous emission on the left side of
the cavity in the PICS3D round-trip gain method.

– rtg_asespec_left_latmd is the amplified spontaneous emission on the left
side of the cavity in the PICS3D round-trip gain method for a given lateral
mode.

– rtg_asespec_right is the amplified spontaneous emission on the right side
of the cavity in the PICS3D round-trip gain method.

– rtg_asespec_right_latmd is the amplified spontaneous emission on the
right side of the cavity in the PICS3D round-trip gain method for a given
lateral mode.

– rtg_signal_asespec_left is the combined amplified spontaneous emission
+ signal on the left side of the cavity in the PICS3D round-trip gain
method.

– rtg_signal_asespec_right is the combined amplified spontaneous emission
+ signal on the right side of the cavity in the PICS3D round-trip gain
method.

– noise_rin is the relative intensity noise derived from the analytical AC
model in PICS3D.

– noise_fm is the frequency noise derived from the analytical AC model in
PICS3D.

– analytic_am and analytic_amphase are the magnitude and phase (respec-
tively) of the analytical AM response (PICS3D).
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– analytic_fm and analytic_fmphase are the magnitude and phase (respec-
tively) of the analytical FM response (PICS3D).

When plotting a “maximum” value, the software will locate the position with
the maximum light emission in each quantum well (“bright spot”). The spec-
trum is then calculated for each bright spot giving the emission per mesh-local
unit area or volume around that spot. The spectrum is then averaged over all
quantum wells or active regions before plotting.
For the “total” method, the shape of the spectrum is the same as that of the
“maximum” method above. The only difference is that the spectrum is nor-
malized according to the integrated radiative recombination rate which appears
in the drift-diffusion equation. Since the rate is integrated over the whole de-
vice, the units of such a spectrum should be the emission per total simulation
area/volume.

• units may be used to change the way the spectrum data is presented (to
dBm/Åunits)

• user_xlabel and user_ylabel allow the user to change the labeling of the
plot axes.

• scale can be used to artificially scale the spectrum data.

• wavelength_range is the plotting range for the spectrum data.

• asespec_latmd is the lateral mode number used when plotting rtg_asespec_left_latmd
and rtg_asespec_right_latmd.

Examples

gain_spectrum variable=gain

22.329 gain_spon

parameter data type values [defaults]
data_file char
include_data char
wavel_range realx2 (µm)
conc_range realx2 [1.e23 1.e24] (m−3)
pn_ratio real [1]
av_index real [3.3]
data_point intg
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gain_spon plots the peak material gain versus the spontaneous recombination cur-
rent density in the active region. The recombination current is defined as the spon-
taneous combination rate, which is the integration of the spontaneous emission spec-
trum over all wavelengths, times the thickness of the active region. This statement
is only used in the gain preview module.

• data_file is the file to which the graphic data is written in ASCII format.

• include_data includes data files from other gain calculations for the purpose
of comparison.

• wavel_range is the wavelength range within which the peak material gain is
searched.

• conc_range is the electron concentration range in the well.

• pn_ratio is the ratio of hole over electron concentrations. Note that this ratio
can be set to an arbitrary number in the gain preview. In the main solver, this
ratio is automatically determined by the simulator according to the local Fermi
levels.

• av_index is the estimated average refractive index.

• data_point is the number of data points in the curve.

Example(s)

gain_spon wavel_range=(1.0 1.4) &&
conc_range=(5.e23 5.e24) pn_ratio=1 data_point=20
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22.330 gain_wavel

parameter data type values [defaults]
data_file char
include_data char
auto_pn_ratio char [no]
conc_log_scale char [no]
plot_as_abs char [no]
versus_energy char [no]
add_n_and_k_data char
wavel_range realx2 (µm)
conc_range realx2 (m−3)
pn_ratio real [1.0]
av_index real [3.3]
scale_gain real [1.]
hline background_loss real [0.] (1/m)
curve_number intg
data_point intg
zseg_num intg [1]
kp8x8_angle_points intg [0]

gain_wavel is a statement used in the gain preview module (.gain) to plot material
gain curves at various carrier concentrations. It is also used in the initial stages of a
PICS3D simulation (after equilibrium) to estimate the gain and provide the data
required in rtgain_phase.

Parameters

• data_file is the file to which the graphic data is written in ASCII format.

• include_data includes data files from other gain calculations for comparison
purposes.

• auto_pn_ratio is used only in the initial stages of a full PICS3D device
simulation. It indicates if an averaged hole/electron density ratio from the full
drift-diffusion solver is used to compute the gain curves. This parameter, if
enabled, will override pn_ratio.

• conc_log_scale spaces the gain curves so they correspond to concentration
values that are evenly spaced on a log rather than linear scale.
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• plot_as_abs instructs the program to plot the absolute value of the gain.

• versus_energy plots the gain curve as a function of the photon energy rather
than the wavelength.

• add_n_and_k_data allows the user to input a file containing complex re-
fractive index data (n, k) and plot it alongside the computed gain curve.

• wavel_range is the wavelength range.

• conc_range is the electron concentration range. The gain curves correspond
to concentration values that are evenly spaced within this range.

• pn_ratio is the ratio of hole over electron concentration. The gain curve
depends on both the electron and hole concentrations.

• av_index is the estimated average refractive index and is used to compute
the gain integral.

• scale_gain can used to artificially scale the computed gain curve.

• background_loss can be used to add a fixed background loss term to the
computed gain curve.

• curve_number is the number of gain curves.

• data_point is the number of wavelength data points in each gain curve.

• kp8x8_angle_points applies to plotting optical gain based on the 8x8 k.p
theory. It defines the number of angular values that are used for the in-plane
wave vector direction. For each direction, the subband dispersion is calcu-
lated and the optical gain is numerically integrated. The final curve shows the
averaged result.

Examples

gain_wavel wavel_range=(1.0 1.4) &&
conc_range=(5.e23 5.e24) curve_number=5 data_point=100

22.331 gammak_bar

parameter data type values [defaults]
(see) material_par
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The material statement gammak_bar (k=1,2,3) is an active layer macro statement
used to define the Luttinger numbers in the quantum barrier.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.332 gammak_well

parameter data type values [defaults]
(see) material_par

The material statement gammak_well (k=1,2,3) is an active layer macro statement
used to define the Luttinger numbers in the quantum well.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.333 generation_rate

parameter data type values [defaults]
mater_label char void
use_light_profile char [yes],no
use_total_charge char yes,[no]
carrier char [both],electron,hole
rate real [0.] (m−3/s) or (C/s)
xrange realx2 (µm)
yrange realx2 (µm)
mater intg [1]
light_number intg [1]

generation_rate may be used to directly define a carrier generation rate in a given
material region: this may be used to model generation through heavy ion impacts
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or simply to inject carriers without using a contact. Note that a similar effect can
be achieved using the import_gen_rate parameter of light_power.
A more advanced model for heavy ion hits can be found in radiation_heavy_ion.

Parameters

• rate is the generation rate applied to this region. The units of this value are
in m−3/s unless use_total_charge is used. In that case, the units are C/s
and the size of the affected area controls the generation rate density.

• use_light_profile must be used in conjunction with light_power. This
parameter scales the rate value according the relative shape of the light profile.
When multiple light sources are present, light_number identifies the profile
to use.

• xrange and yrange give the area in which the generation rate occurs.

• mater is the material number in which the generation occurs. If a label has
been defined for this material, mater_label may be used instead.

• carrier determines whether the generation will produce electron-hole pairs or
only a single kind of carrier. In the vast majority of applications, the default
setting should be used.

Examples

generation_rate mater_label=poly use_light_profile=no &&
carrier=electron rate=5.e14 use_total_charge=yes &&
xrange=(0.65 0.7) yrange=(0 0.1) light_number=1

22.334 get_active_layer

parameter data type values [defaults]
name char AlGaAs/AlGaAs, etc.
var_name1-9 char void
var_symbol1-9 char
var1-9 real
mater intg [1]
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Similar to the load_macro statement, get_active_layer is used to simultane-
ously assign several material parameters (e.g. bandgap, band offet, etc...) to all
mesh points sharing a material number. Material properties are then evaluated
based on the supplied parameters and certain reserved keywords. Note that this
statement is usually automatically generated by processing the .layer file.
Note that unlike load_macro statement, get_active_layer defines parameters
relating to the optical gain calculations and can also be used without defining the
mesh during the gain preview (.gain file). Because gain calculations can depend on
both well and barrier material parameters, the active macro may override certain
parameters from passive macros of the QW and barrier regions. It is strongly
recommended that users check the consistency of the passive and active macros to
avoid this; when in doubt, statements such as use_bulk_property may be used
to avoid this override.
For more information about macros, consult Appendix B and the comments in the
crosslight.mac and more.mac files. See also use_macrofile to use custom user-
defined macros.

Parameters

• name specifies the name of the macro to be used. The convention for ac-
tive macros is to use mixed-case names such as InGaAs/AlGaAs, AlGaAs,
cx-AlGaAs, InGaAsP/InP, etc... Also by convention, names without a slash
refer to bulk active regions unless prefixed with “cx-” in which case they refer
to a complex MQW macro (multiple layers coupled together quantum mechan-
ically). Macro names with a slash refer to simpler QW macros (symmetric
barrier/well/barrier) with the second name referring to either the barrier or
substrate material.
It is strongly recommended that users review the comments included in text
of each macro to ensure they are using the right material and composition
convention. Failure to do so can result in significantly de-tuned gain curves or
mismatched strain.

• The parameters var_symbol1-9 are the symbolic variable names used as
function arguments in the macro. If defined, they must exactly match the
symbols used in the macro function definitions. If not defined, then the simu-
lator will assume an older macro style is being used: in this case, the order of
the parameters must be the same as in the macro function definitions.
Note that certain variables used in functions are reserved keywords and do not
need to be defined in this manner.

• The parameters var1-9 are the values of the variables appearing in the func-
tions within the macro definition. They are most commonly used to represent
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material composition in ternary/quaternary compounds.

• The parameters var_name1-9 replaces var1-9 when a grading of the macro
parameters is used. It is used in conjunction with the grade_active_mater
statement which describes the spatial variation of the parameters.

• The parameter mater is the material number being linked with this macro.
This number is the same as the material number assigned to polygons in the
.geo file and is inherited by the mesh.

Examples

get_active_layer name=InGaAsP/InP var1=0.467 var2=1. &&
var3=0.202 var4=0.440 mater=3 &&
var_symbol1=xw var_symbol2=yw var_symbol3=xb var_symbol4=yb

A simple active layer declaration defining the composition of both the QW and
barrier

grade_active_mater var_name=a2 variation=function
$ rdist=relative-distance is a reserved internal variable
function(rdist)
0.71+rdist*(0.33-0.71)
end_function

get_active_layer name=cx-AlGaAs mater= 2 &&
var_symbol1=xw &&
var_name1=a2

A more complex graded well profile

22.335 get_data

parameter data type values [defaults]
main_input char
sol_inf char
xy_data intgx2
scan_data intgx2
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The statement get_data is used in the post processor, i.e. it is used only after the
main solution is complete. It is used to get the output data from the main solver.

• main_input is the main input file that was used to drive the main simulation.

• sol_inf is the main simulation output data file which contains the current data,
carrier distribution data, etc. It is produced by the input file main_input.

• xy_data specifies the structural data (i.e., data as a function of position x
and y) to be used by graphic statements to display position dependent data
(e.g., by plot_1d). The starting data set and the ending data set numbers
are defined by this statement. If one would like to plot data set 1 to 3 on the
same plot, one can set xy_data=(1,3).

This parameter is used by any subsequent plot statement that displays struc-
tural data such as electron concentration distribution. Note that each data set
corresponds to one print_step in the scan statement. Not all the bias points
have the full structural data. Also see the scan statement for more detail on
bias points and data sets. The bias voltage or current for each data set can be
found in the message file with extension “*.sol.msg”.

• scan_data defines the beginning and the ending data_set used by any sub-
sequent plot_scan statement. For bias data they allow the user to plot the
specified variable within this range of data sets.

Example(s)

get_data main_input=bulk1d.sol sol_inf=bulk1d.out &&
xy_data=(7,7) scan_data=(1,7)

This causes the position dependent data set number 7 to be plotted while the bias
data (such as I-V data) ranging from data set 1 to set 7 are displayed.

22.336 get_raytrace_data

parameter data type values [defaults]
filebase char
xy_data intgx2
scan_data intgx2
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get_raytrace_data is a post-processing statement which serves the same purpose
as get_data. However, it is exclusively used to load ray tracing simulation results
in the Optowizard program.

Parameters

• filebase is the root filename of the original simulation data, minus the exten-
sion (such as .sol or .out).

• xy_data is the range of data sets available for plotting structural data.

• scan_data is the range of data sets available for plotting bias-dependent scan
data.

Examples

get_raytrace_data filebase=tip xy_data=(2 3) scan_data=(2 3)

22.337 global_model_setting

parameter data type values [defaults]
auger_qw_abrupt_prof char [no]
classical_conc_profile char [no]
range_n real [1.e-3] (Vt)
range_p real [1.e-3] (Vt)

This statement replaces adjust_current as of the 2016 version. It is used to control
some overall current flow characteristics; it only needs to be issued when the user
wants to override the default settings. There are two major models which are affected
by this command.
The first model deals with the switching between the drift-diffusion (DD) current
flow and thermionic emission (TIE) models. In the limit of a heterojunction with
high energy barrier, a full thermionic emission model is used but when the barrier
is low, there is a mixture of DD current and TIE current. This parameter affects
heterojunctions in the whole device.
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The second and more common application of this command is to deal with certain
inconsistencies between the classical and quantum treatment of carriers in quantum
wells. It is rather clean that when using a self-consistent model to compute the
confined carrier states, the envelope of the confined carrier wave function should be
used to account for the charge distribution. However, it is not clear how this same
charge distribution is related to the classical charge distribution in the DD/TIE
transport model.
If we directly use the envelope function for transport (meaning classical_conc_profile=no),
that means some part of carriers under the envelop may spill over the barriers and
become free carriers, just like other unbound carriers: this contradicts with our as-
sumption that they are “confined”. On the other hand, one may argue that there is
good reason to convert the spill-over carriers into free carriers because of the quan-
tum tunneling effect. After all, tunneling transport occurs when a wave function
penetrates a potential barrier and overlaps with the wave function of a free-carrier
state. Such an overlap will certainly happen if an applied field lowers one of the
barriers to near the confined energy level. However, the numerical accuracy of such
a less rigorous quantum tunneling treatment should be the subject of further studies.
The other approach is to force all confined carriers to be within the well (meaning
classical_conc_profile=yes) and let TIE takes care of all the transport. This
approach completely ignores any quantum tunneling effects. Another problem is the
violation of current continuity as far as carrier dynamics is concerned. One can show
that if the Poisson’s equation and the current continuity equations take different
carrier distributions (i.e., n and p are different), the gradient of the total current
(carrier current plus displacement current) will not be zero, thus violating current
continuity in the semiconductor device in a transient or AC simulation.
At this point, we find using the same envelope function carrier distribution in all
equations yields reasonable results if tunneling model is not activated for the poten-
tial barrier involved. On the other hand, if the tunneling model is activated, use of
the same envelope function carrier distribution for transport definitely produces an
overestimation of the transport current. Thus we recommend the following:

• If no tunneling region is defined, use classical_conc_profile=no

• If tunneling through the QW barrier is enabled, use classical_conc_profile=yes

Parameters

• auger_qw_abrupt_prof may be used to force the software to use the clas-
sical concentration profile to compute the Auger recombination rate

• classical_conc_profile is used to indicate whether the classical concentra-
tion profile or the envelope of the confined carrier wave function should be used
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for the transport.

• range_n (range_p) is the electron (hole) barrier height (normalized to ther-
mal voltage Vt = kbT/q) below which a mixture of DD and TIE takes place.

Examples

global_model_setting range_n=0.01 range_p=0.01

22.338 grating_compos

parameter data type values [defaults]
hi_macro_name char [void]
hi_active_macro char [void]
lo_macro_name char [void]
lo_active_macro char [void]
hi_var_symbol1-5 char [void]
hi_avar_symbol1-5 char [void]
lo_var_symbol1-5 char [void]
lo_avar_symbol1-5 char [void]
hi_mater_lib char [void]
lo_mater_lib char [void]
d_high real [0.1 ] (um)
d_fall real [0.] (um)
d_low real [0.1 ] (um)
d_rise real [0.] (um)
hi_var1-5 real
hi_avar1-5 real
lo_var1-5 real
lo_avar1-5 real
grating_order intg [1]
column_num intg [1]

grating_compos is used in the .layer file to generate a grating_model statement
which, combined with the mode profile, is eventually used to define the longitudinal
coupling coefficient κ in DFB/DBR lasers. Please refer to grating_model for help
on most parameters of this statement.
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The main difference between this statement and grating_model is that here, the
index profile is defined using the material macro system and composition parameters
instead of directly defining the index profile. Parameters prefixed by “lo” define the
values for the low-index part of the grating while those that start with “hi” define
values for the high-index part of the grating.
For both regions, both a passive an active macro are defined. Even if there is so
significant loss/gain in the grating, doing so allows the software to compute the
index change away from equilibrium due to injection. The parameters used to de-
fine material macro parameters (and the column number) are similar to those of
layer_mater.
Please note that as of the 2014 version, the “library” material system of Sec. 3.5 may
also be used instead of macros. This will automatically enable gain/loss calculations
and result in a complex coupling coefficient.

22.339 grating_model

parameter data type values [defaults]
real_index_high real
imag_index_high real [0.]
real_index_low real
imag_index_low real [0.]
d_high real [0.1] (µm)
d_fall real [0.] (µm)
d_low real [0.1] (µm)
d_rise real [0.] (µm)
grating_xrange realx2 [0. 5.] (µm)
grating_yrange realx2 [2. 2.1] (µm)
grating_order intg [1]
mode_index intg [1]
use_active_mater intg [0]

grating_model is used to calculate the longitudinal coupling coefficient κ using
the longitudinal index profile defined in this command and the optical field profile
from the main solver.
grating_compos can also be used to define the longitudinal index profile through
material macros and composition parameters rather than index values.
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Parameters

• real_index_high, real_index_high, imag_index_high, real_index_low,
imag_index_low, d_high, d_fall, d_low and d_rise are used to describe
the variation of effective index along the longitudinal direction (z-direction).
They are illustrated in Fig. 22.12.

Index_high

Index_low

d_high

d_low

d_fall d_rise

Index

Z

Figure 22.12: Schematics of the index variation in the longitudinal direction for the
grating_model statement.

IMPORTANT NOTE: The distances specified in this command are only
used to compute the strength of the coupling constant κ using Fourier analysis[121].
These distances should therefore be seen as the relative distances of the high/low
index regions and do not determine the pitch of the grating.

The actual pitch of the grating is normally set using the longitudinal state-
ment. The grating pitch can either be set directly or a reference wavelength
can be used to automatically compute the pitch based on the effective index
at equilibrium. In cases requiring more flexibility, the section statements can
also be used to fix the local grating pitch in different regions of the device.

• grating_xrange and grating_yrange are used to specify the rectangular
cross section on the xy-plane (lateral) of the grating layer. They can be omitted
if this statement is used in the .layer file and the range can be inferred from
the previous layer_mater declaration.

• grating_order is the grating order.
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• mode_index is the lateral mode index used to calculate the coupling coef-
ficient. Mode 1 is the fundamental mode; mode 2 is the 2nd order mode,
etc..

• use_active_mater is used to decide if the index profile is calculated using an
active macro. If zero, the index values should be specified explicitly. Otherwise,
this parameter should be defined as the material number of the active region
used for the calculation.

Examples

grating_model real_index_high=3.31 &&
imag_index_high=-3.27 real_index_low=0.1 &&
imag_index_low=-6.54 d_high=0.18 d_fall=0. &&
d_low=0.12 d_rise=0. &&
grating_xrange=(0. 1.5) &&
grating_yrange=(1.962 2.012) &&
grating_order=2

22.340 grade_active_mater

parameter data type values [defaults]
var_name char
variation char [linear]
grade_from real
grade_to real
grade_points intg [3]

grade_active_mater describes the spatial variation of a material parameter (usu-
ally composition) in a complex MQW macro. The local value of this parameter is
passed as an argument to the various functions inside the macro to define material
parameters.
In many ways, this statement duplicates some of the functionality common to all ma-
terial parameter statements (c.f. Sec. 22.456). However, it operates at a higher level
and is usually automatically generated by Crosslight helper tools like the layer.exe
program.



22.340 grade_active_mater 711

Parameters

• var_name specifies the rule describing the spatial variation of a material
parameter: it must be the same name as in get_active_layer.

• variation defines the shape of the spatial variation: linear, table or function.
All of these options work in the same way as the macro variations in mate-
rial_par.

• grade_from is the starting composition of the grading: from bottom to top
for a horizontal layer and from left to right for a vertically oriented layer.
grade_to is the matching ending composition.

• grade_points is the number of mesh points used to sample the grading and
is mostly used in the mesh-less gain preview mode. This number must be
greater than 1 and a larger number often helps with quantities such as bandgap
with a non-linear composition variation. However, the program slows down
significantly when a large number of grading mesh points is used.

Examples

grade_active_mater var_name=c1 grade_from=0.1 grade_to=0.2 grade_points=5

The above statement linearly grades (by default) the composition c1 from 0.1 to 0.2.
The following statement defines the variation of composition a2 using an analytical
function:

get_active_layer name=cx-AlGaAs mater= 2 &&
var_symbol1=xw &&
var_name1=a2

grade_active_mater var_name=a2 variation=function
$ rdist=relative-distance is a reserved internal variable
function(rdist)
0.71+rdist*(0.33-0.71)
end_function
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22.341 graphene_index_model

parameter data type values [defaults]
mater_label char
fermi_velocity real [5.e5] m/s
internal_bias real [1.] V
mater intg [1]

This statement implements a complex refractive index model[122] for a graphene
layer. Please note that this model is for optical properties only and should be used
with insulator macros as we do not currently model carrier transport in graphene.
The model implements the following formulas:

Ef (V ) = hvf

√
π

q

ϵ

d
|V − V0| (22.17)

where Ef (V ) is the estimate of the Fermi level in the layer, vf is the Fermi velocity
and ϵ = 11ϵ0 is the permittivity of aluminium oxide.
Using this value, the optical conductivity of the layer is given by:

σ(V, ω) = q2

4~
×

sinh
(

~ω
2kBT

)
cosh

(
Ef (V )
kBT

)
+ cosh

(
~ω

2kBT

) (22.18)

and the relative complex permittivity is finally given by:

ϵr(V, ω) = 5.5 + i
σ(V, ω)

ωϵ0 × 3.8 × 10−10 (22.19)

22.342 group1

group1 is not a statement but a dummy name to group all material parameter
statements that use a common set of parameters. See material_par in section
22.456 for examples and further details.

22.343 half_mesh

This statement works the same as double_mesh except that it reduces the mesh
density by one half.
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22.344 heat_flow

parameter data type values [defaults]
joule char [yes]
opt_absorption char [yes]
recombination char [yes]
thomson char [yes]
peltier char [yes]
update_dd_eq_temper char [yes]
j.e_model char [no]
linear_source char [no]
thm_transient char [no]
jtotal_model char [no]
radiation_source char [yes]
rescale_heat_source char [yes]
original_joule_term char [no]
linear_method char [yes]
smooth_temperature char [no]
set_dd_eq_with_average char [no]
peltier_separate_junc char [yes], no
damping_step real [2.] (K)
var_tol real [1.e-5]
res_tol real [1.e-5]
max_temp_incr real [80.] (K)
set_low_temperature char
fit_range real [300.] (K)
temperature_limit real [800.] (K)
set_low_temperature real
heat_source_factor real [1.]
smooth_distance real [1.] (um)
rescale_range realx2 [0.5 2.]
max_iter intg [150]
print_flag intg [2]
joule_mobil_flag intg [1]
mf2_flag intg [1] 0

heat_flow is used to control the solver for the self-heating (non-isothermal) model.
Various heat sources are controlled by this statement. For detailed explanation of
the physical origins of various heat source terms, the user is referred to Chap. 11 and
Ref. [73].
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Since many heating source terms rigorously derived from semiconductor theory are
difficult to compute accurately on a sparse mesh, the heat sources are automatically
re-scaled to match the power supplied by the DC bias. If this scaling strays too
far from unity, the user is advised to check their mesh and other model parameters
relating to the heat flow.
Please note temperature dependence of material parameters is implemented via func-
tions in the macro system and the reserved temper keyword (the local mesh point
temperature). Not all default macros implement this dependence but users may
override these functions and define their own as they see fit.

Parameters

• joule turns on/off the Joule heating term.

• opt_absorption turns on / off the heating term due to optical absorption.

• recombination turns on/off the recombination heating source.

• thomson turns on/off the Thomson heat.

• peltier turns on/off the Peltier heat.

• thm_transient turns on/off the thermal transient simulation.

• update_dd_eq_temper turns on/off the update of the temperature used
in the Drift-Diffusion equations.

• set_dd_eq_with_average uses the average temperature of the device (rather
than the local value) in the Drift-Diffusion equations.

• peltier_separate_junc uses the classical concentration profile to compute
the Peltier heat source, even if the self-consistent wave is used elsewhere in the
model. See global_model_setting.

• jtotal_model switches the numerical model used in the Joule heating source.
The standard Joule heating source term is written as q|jn|2/(µnn)+q|jp|2/(µpp)
which may be unstable in regions of carrier depletion or minority carrier region
with strong diffusion because a small amount of n or p may blow up the numer-
ical expression. This flag turns on a more stable alternative: q|jn + jp|2/(µnn+
µpp). One can show that under the assumption of isotropic conductivity and
small diffusion assumption, this expression is equivalent to the j.e_model.

• original_joule_term would instruct the simulator to use the original form
of Joule term of the form: J2

n

qµn
for electron current, where µ is low field mobility

and n is electron concentration. Such a form as disadvantage of being numerical
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unstable if electron is highly depleted. Setting this parameter to “no” would
allow the use of a modified form to avoid such a problem.

• radiation_source is a cooling term associated with the loss of energy with
emission of photons or it can be a heating term associated with the interband
absorption of incident light. It is written as the photon energy times the nega-
tive of the recombination rate associated with the photon emission/absorption.

• damping_step (in units of degree K) is the step limit used to damp (or
reduce) the correction vector in the Newton solver for the temperature distri-
bution.

• var_tol (in degree K) is the variable (temperature) tolerance for the thermal
equation. If the temperature error is smaller than this tolerance, the thermal
equation solver is considered converged.

• res_tol is the relative error of the residual of the thermal equation. It is an
indication how well the thermal equation is satisfied. If the res_tol is zero, the
equation is perfectly satisfied.

• max_temp_incr is the maximum temperature increase allowed when bias is
changed. If the temperature increase exceeds this limit, the program regards
the solution a failure and will restart the solution procedure with a smaller
bias.

• fit_range is used to determine the range of temperature values at which macro
parameters are to be tabulated. The tabulation is further controlled by the
temperature_dep_macro_table statement.

• max_iter is the maximum number of iteration used in the Newton’s method.

• print_flag is used to flag the printing of the variable and residual errors during
the Newton iteration.

• j.e_model is to indicate the use of an alternative expression of Joule heat in
the form of J · E where J and E are the vectorial forms of current density and
electrical fields. Since this term does not involve division of small numbers, it
is more stable numerically. If non-convergence related to thermal simulation
is encountered, one may wish to use this form of Joule heating source. For
VCSEL simulation or 3D simulation involving rough mesh points, one may
consider this choice. If Joule heating is the dominant heating source, this term
is likely to yield reasonable results since by definition, it should equal to a
simple ohmic resistor heating model.

• linear_source is to indicate the use of a heating source term proportional to
the current. Please also see the statement linear_heat.
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• thm_transient may be used to turn on the thermal transient model.

• joule_mobil_flag indicates which mobility model will be used in computing
the Joule heating source term. If a value of 1 is used, the field dependent
mobility model is used. For a value of 2, the low field mobility is used. The
former is more accurate and the latter is compatible with older versions of the
thermal model (version 2002 and older).

• mf2_flag turns on the multi-frontal linear solver for the thermal equations.
Use of this flag should result in better convergence of the thermal equations
and improves the speed.

• set_low_temperature is related to the fit_range parameter. These two
parameters determine the lower and upper range use to tabulate temperature-
dependent macros.

• temperature_limit is an upper limit beyond which the simulator would ter-
minate the present scan statement.

• rescale_heat_source is used to automatically rescale the heat source to
match the input power. This helps correct inaccuracies in the Joule heat term
due to the sparse mesh. As of the 2012 version, this is scaling turned on by
default. If this is disabled, a manual scaling of the heat sources can be defined
with heat_source_factor.
As of version 2017, rescale_range may be used to put limits on the automatic
scaling factor.

• linear_method completely turns off the non-linear Newton solver for the heat
equation: a single iteration of the underlying linear solver is used instead. This
lowers the accuracy of the thermal results but often improves the convergence
of the overall simulation. As of the 2012 version, this is turned on by default.

• smooth_temperature can be used to artificially smooth the temperature
distribution with a Gaussian and eliminate hot spots which can adversely af-
fect the simulation convergence. While the heat should diffuse naturally while
solving the heat equation, this method provides a way to “fix” an insufficiently
dense thermal mesh without increasing the workload on the drift-diffusion
solver.

• smooth_distance is the smoothing distance applied when smooth_temperature=yes.

Examples

heat_flow opt_absorption=no damping_step=2.
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22.345 heat_flow_simple

parameter data type values [defaults]
model char circuit, [manual]
thm_transient char [yes]
cir_thermal_cond real [10.] (3D: W/K, 2D: (W/m)/K)
cir_extern_temp real [300.] (K)
ref_current real [10.] (3D: A, 2D: A/m)
cir_device_zdim real [100.] (um)
ref_contact intg [1]

heat_flow_simple is a simplified self-heating model, recently updated for the 2015
version. For more accurate results, the full heat_flow model is preferred.

Parameters

• model is used to describe the heat source model:

– manual means the heat source is defined as ref_htsrc ×
(

I
Iref

)2
. The

reference current is defined in ref_current.

– circuit means the heat source is defined as I × V − output_power. The
DC input power is defined using the bias on ref_contact.

• thm_transient enables a transient term to the heat flow equation.

• cir_thermal_cond and cir_extern_temp are identical to the type 3 ther-
mal boundary parameters defined in contact.

• cir_device_zdim is used to scale 2D current values to 3D as necessary.

22.346 heteroj_capture

parameter data type values [defaults]
all_interface char [no]
elec_capture real [1.]
hole_capture real [1.]
interface_mater intgx2
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This statement is used to modify the thermal velocity in the thermionic emission
model governing the current transport across heterojunction interfaces.
The following current transport model across the heterojunction is used for all abrupt
heterojuntions and Schottky metal-semiconductor interfaces.

Jsn = γnv
therm
n (ns − neq), (22.20)

Jsp = γpv
therm
p (ps − peq), (22.21)

A quantum well may be regarded as consisting of two heterostructure interfaces as
far as current transport is concerned.
From the view point of quantum capture and emission, the thermionic model is
equivalent to capture/emission into/out-of the quantum well at thermal velocity
which is a very fast process. The actual process may be slower since for a carrier
in the barrier to loss energy to be thermalized with the confined states in the well,
carrier-phonon/carrier scattering is involved. Phenomenologically, the slower energy
relaxation may be represented by a less than unity coefficient multiplied to the
thermal velocity. This statement is used to define such coefficients.
velocity

• all_interface indicates whether or not the thermionic emission model is to
be modified for all heterostructure interfaces.

• elec_capture is the electron capture coefficient (γn above) multiplied to the
electron thermal velocity.

• hole_capture is the hole capture coefficient (γp above) multiplied to the hole
thermal velocity.

• interface_mater defines the material numbers (or labels) of the two materials
consisting the interface.

Example(s)

heteroj_capture all_interface=yes
elec_capture=0.1 hole_capture=0.1

This statement reduces the thermal velocities of electrons and holes for all interfaces
to ten percent of the thermal veclosity.

heteroj_capture elec_capture=0.2 hole_capture=0.4 interface_mater=[5 6]



22.347 hole_carr_loss 719

The above statement only modifies the thermal velocity for the interface between
materials 5 and 6.

22.347 hole_carr_loss

hole_carr_loss is a passive macro material statement defining the dependence of
the optical loss coefficient on the hole density for a given material. It introduces a
loss term equal to αn = hole_carr_loss× (p−p0) so that hole_carr_loss has units
of m2.
Note that this term is only used for passive regions as active regions have their own
mechanism for carrier-dependent losses; see passive_carr_loss for more informa-
tion.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

Examples

hole_carr_loss value=2.e-21 mater=1

22.348 hole_dos_energy

parameter data type values [defaults]
data_file char
energy_range realx2
data_point intg [50]
subband_valley intg [1]

hole_dos_energy plots the hole density of states (DOS) versus energy. This state-
ment is only used in the gain preview module.

Parameters

• data_file is a user-specified text file containing a copy of the plot data.

• energy_range is the range of energy in eV.

• data_point is number of data points in the plot.
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• subband_valley is the index labeling the subband valley.

Parameters

hole_dos_energy energy_range=(1 1.7)

22.349 hole_mass

hole_mass is a passive macro material statement that defines the hole effective
mass relative to the free electron mass. Note that this mass is the result of average
of density of states (DOS) of light hole and heavy hole masses since only one band
is used for the transport in bulk regions.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.350 hole_mobility

The statement hole_mobility is usually used as part of a passive material macro
and provides a way for the user to define the low field mobility for holes. The user
may input a specific value or use a custom function to model the doping or trap
dependence.
An alternative way to define the low field mobility is to use the following statements
to implement Eq. 5.42 exactly:

• max_hole_mob defines µ2p

• min_hole_mob defines µ1p

• hole_ref_dens defines Nrp

• alpha_p defines αp

Note that using hole_mobility explicitly overrides this alternative method.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.351 hole_ref_dens

See hole_mobility.
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22.352 hole_sat_vel

The material statement hole_sat_vel is used to define the saturation hole velocity
(in m/s). It is used in Eq. 5.38 to define the field-dependent mobility function.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.353 ignore_local_current

parameter data type values [defaults]
mater_label char
mater intg [1]

ignore_local_current forces a material to behave like a perfect insulator: the
current continuity equations will not be solved for this material and the software will
simply set J = 0 for this region.

Parameters

• mater is the material number where the impact ionization is defined. If a
label has previously been defined for this material, mater_label may be used
instead.

22.354 impact_baraff

parameter data type values [defaults]
turn_on_zener char [no]
mater_label char
elec_phonon real [0.063] (eV)
hole_phonon real [0.063] (eV)
elec_lambda0 real [76] (Å)
hole_lambda0 real [58] (Å)
elec_eifactor real [1.5]
hole_eifactor real [1.5]
mater intg [1]
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impact_baraff activates the Baraff impact ionization model described in Sec. 9.1.

Parameters

• turn_on_zener, if active, is the same as using the zener statement.

• elec_phonon are the hole_phonon are the electron and hole phonon ener-
gies (Ep).

• elec_lambda0and hole_lambda0 are the zero temperature electron and
hole optical phonon mean free paths (λ0).

• elec_eifactor, hole_eifactor is the coefficient (for electrons and holes) used
to calculate the ionization energy (EI) as a function of the bandgap.

• mater is the material number where the impact ionization is defined. If a
label has previously been defined for this material, mater_label may be used
instead.

Examples

The following example will take the default impact ionization parameters for mater
number 4:

impact_baraff mater=4

22.355 impact_chynoweth

parameter data type values [defaults]
turn_on_zener char [no]
mater_label char
elec_setj(j=1..3) realx3 [7.03e7 1.231e8 1 ]
fld_range_nj(j=1..2) real [6.e7]
hole_seti(j=1..3) realx3 [7.03e7 1.231e8 1 ]
fld_range_pi(j=1..2) real [6.e7]
elec_setnum intg [1]
hole_setnum intg [2]
optical_phonon real [0.063] (eV)
mater intg [1]
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impact_chynoweth implements Selberherr’s generalization of the Chynoweth [46]
impact ionization model described in Sec. 9.1.
Usually, the above formula is fitted to a specific field range; multiple sets of param-
eters are often needed to cover the field range of interest in a particular simulation.

Parameters

• turn_on_zener, if active, is the same as using the zener statement.

• elec_setj is a set of 3 parameters (α∞
n , Fcn, κn) for the jth field range. It

applies to the electron impact ionization rate. hole_setj serves the same
purpose for holes.

• fld_range_nj is the upper limit of the of field range j+1 for the electrons. If
we divide the problem in N field ranges, there will be N − 1 field values which
serve as boundaries between these regions. No upper value needs to be defined
when only one field range is used since it is ∞ by default. fld_range_pj
serves the same purpose for holes.

• optical_phonon is the optical phonon energy; it is used to account for the
temperature dependence of the parameters via the γ scaling factor described
in Sec. 9.1.

• elec_setnum is the number of parameter sets (or field ranges) for electrons.
If it is one set of fitted data available, there is no need to use any field range
dividers. hole_setnum serves the same purpose for holes.

• mater is the material number where the impact ionization is defined. If a
label has previously been defined for this material, mater_label may be used
instead.

Examples

The following example will take the default impact ionization parameters for mater
number 4:

impact_chynoweth mater=4
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22.356 impact_dopant_dependent

parameter data type values [defaults]
turn_on_zener char [no]
model char baliga,[sze]
mater_label char
elec_a_coef real [1.316e8] (1/m)
baliga_cfield_factor real [4101.] (V/cm)
baliga_cfield_expo real [0.125]
hole_a_coef real [1.818e8] (1/m)
hole_critical_field real [2.036e8] (V/m)
optical_phonon real [0.063] (eV)
doping_range realx2 [1.e21 1.e24] (m−3)
sze_cfield_factor real [4.e7] (V/m)
mater intg [1]

impact_dopant_dependent activates the empirical dopant-dependent impact
ionization model described in Sec. 9.1. This is a variation of the Chynoweth model
so some parameters are similar.

Parameters

• turn_on_zener, if active, is the same as using the zener statement.

• model activates either the Baliga or Sze models for the doping dependence of
the critical field.

• elec_a_coef is equal to α∞
n in the underlying Chynoweth model. hole_a_coef

serves the same role for holes.

• hole_critical_field is the critical field for holes. It is not affected by doping
in this model.

• baliga_cfield_factor and baliga_cfield_expo are the prefactor and ex-
ponent used in the Baliga model for the doping dependence of the electron
critical field. Please note the units which deviate from our usual convention
and follow Baliga: any changes in the exponent will also likely require a change
in the prefactor.

• sze_cfield_factor is the numerator in Sze’s expression for the doping de-
pendence of the electron critical field. It corresponds to a reference value for
ND = 1016cm−3.
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• optical_phonon is the optical phonon energy; it is used to account for the
temperature dependence of the parameters via the γ scaling factor described
in Sec. 9.1.

• doping_range is the range of doping values where the model is used. The
software will not extrapolate but will simply use the extremum values when
doping is outside of this range.

• mater is the material number where the impact ionization is defined. If a
label has previously been defined for this material, mater_label may be used
instead.

Examples

The following example will take the default impact ionization parameters for mater
number 4:

impact_dopant_dependent mater=4

22.357 impact_lackner

parameter data type values [defaults]
turn_on_zener char [no]
mater_label char
elec_a_coef real [1.316e8] (1/m)
elec_critical_field real [1.474e8] (V/m)
hole_a_coef real [1.818e8] (1/m)
hole_critical_field real [2.036e8] (V/m)
optical_phonon real [0.063] (eV)
mater intg [1]

impact_lackner activates the Lackner impact ionization model described in Sec. 9.1.
This is a variation of the Chynoweth model so some parameters are similar.

Parameters

• turn_on_zener, if active, is the same as using the zener statement.
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• elec_a_coef is equal to α∞
n in the underlying Chynoweth model. hole_a_coef

serves the same role for holes.

• elec_critical_field is the critical field Fcn; hole_critical_field is the equiv-
alent term for holes.

• optical_phonon is the optical phonon energy; it is used to account for the
temperature dependence of the parameters via the γ scaling factor described
in Sec. 9.1.

• mater is the material number where the impact ionization is defined. If a
label has previously been defined for this material, mater_label may be used
instead.

Examples

The following example will take the default impact ionization parameters for mater
number 4:

impact_lackner mater=4

22.358 impact_lackner

parameter data type values [defaults]
turn_on_zener char [no]
mater_label char
elec_a_coef real [1.316e8] (1/m)
elec_lamda0 real [1.474e8] (V/m)
hole_a_coef real [1.818e8] (1/m)
hole_lamda0 real [2.036e8] (V/m)
optical_phonon real [0.063] (eV)
mater intg [1]

impact_mean_free_path activates the simplified mean free path impact ioniza-
tion model described in Sec. 9.1. This is a variation of the Chynoweth model so some
parameters are similar.
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Parameters

• turn_on_zener, if active, is the same as using the zener statement.

• elec_a_coef is equal to α∞
n in the underlying Chynoweth model. hole_a_coef

serves the same role for holes.

• elec_lamda0 is the mean free path used to calculate the critical field Fcn;
hole_lamda0 is the equivalent term for holes.

• optical_phonon is the optical phonon energy; it is used to account for the
temperature dependence of the parameters via the γ scaling factor described
in Sec. 9.1.

• mater is the material number where the impact ionization is defined. If a
label has previously been defined for this material, mater_label may be used
instead.

Examples

The following example will take the default impact ionization parameters for mater
number 4:

impact_mean_free_path mater=4

22.359 impact_model

parameter data type values [defaults]
use_fermi_level char [no]
balance_zero_bias char [yes]
subtract_backg_rate char [no]
post_process_only char [no]
elec_vel_factor real [0.7]
hole_vel_factor real [0.7]

The statement impact_model is used to control certain aspects of the impact
ionization model in Crosslight such as the driving force behind the model (electric
field, hot carrier gradient, etc...) and how to balance out the impact ionization rate
at equilibrium so the net generation rate is zero.
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Parameters

• use_fermi_level is used to indicate that the gradient of the Fermi level rather
than the electric field is used to drive the impact ionization (i.e. G = f(∇Efn)).
Since the Fermi level is flat at equilibrium, this guarantees a net zero generation
rate but can cause convergence problems later on where the Fermi level is not
smooth. A mixture of field-driven and Fermi-level-driven impact ionization can
be used based on impact_fermi_factor in the equilibrium statement.

• balance_zero_bias is used to balance out the generation rate at equilibrium
so that the net generation rate is zero. This is the default behavior starting with
the 2011 version and a setting of no recovers the previous model. Crosslight
strongly suggests that the new default model be used.
The exact method used to accomplish this zeroing out of the net generation
rate depends on the subtract_backg_rate setting:

– yes: the background rate at equilibrium (due to the built-in potential) is
calculated and subtracted from the generation rate at other bias values
(G = f(F ) − f(F0)). This model is new to the 2012 version.

– no: the background generation rate is suppressed by subtracting the built-
in field at equilibrium from the driving force of the impact ionization
models (G = f(F − F0)).

• post_process_only is used to simply make the impact ionization rate avail-
able for post-processing printing without actually using it the solver. This
may simplify the convergence in the avalanche region but it obviously leaves
out important physics.

• elec_vel_factor and hole_vel_factor are used in the hot carrier (hydrody-
namic) model to translate the carrier temperature (or energy) into an effective
field which drives the impact ionization (i.e. G = f(Te)). This is the de-
fault model when the hot carrier model is turned on but the actual impact
ionization rate formula must still be activated by using commands such as
impact_baraff .
The conversion between the carrier temperature gradient and the effective field
is given by:

3
2
kB(Te − Tl) = τengfw2fvsatF (22.22)

which states that when a hot carrier travels with an average velocity of fw2fvsat

for a duration of τeng under the electrical field F , it gains extra energy which
raises the carrier temperature Te above the lattice temperature Tl. Here, kB is
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the Boltzman constant and τeng is the energy relaxation time specified in the
hydrodynamic model.

elec_vel_factor and hole_vel_factor correspond to the fw2f parameter
above for electrons and holes, respectively. They should always be between 0
and 1 as they define the average carrier velocity as a fraction of the saturation
velocity.

Examples

impact_model elec_vel_factor=0.7

22.360 impact_okuto_crowell

parameter data type values [defaults]
turn_on_zener char [no]
mater_label char
elec_a_coef real [1.316e8] (1/m)
elec_critical_field real [1.474e8] (V/m)
elec_a_temper_coef real [3.05e-4] (1/K)
elec_cfield_temper_coef real [6.86e-4] (1/K)
elec_a_coef_field_expo real [1.]
elec_a_cfield_expo real [2.]
hole_a_coef real [1.818e8] (1/m)
hole_critical_field real [2.036e8] (V/m)
hole_a_temper_coef real [3.05e-4] (1/K)
hole_cfield_temper_coef real [6.86e-4] (1/K)
hole_a_coef_field_expo real [1.]
hole_a_cfield_expo real [2.]
mater intg [1]

impact_okuto_crowell activates the Okuto-Crowell impact ionization model de-
scribed in Sec. 9.1.

Parameters

• turn_on_zener, if active, is the same as using the zener statement.
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• elec_a_coef and elec_a_temper_coef express the temperature depen-
dence of the prefactor in Eq. 9.15:

a(T ) = a0 (1 + δa(T − T0)) (22.23)

A similar expression for the holes can be written using hole_a_coef and
hole_a_temper_coef.

• elec_critical_field and elec_cfield_temper_coef express the tempera-
ture dependence of the critical field in Eq. 9.15:

Fcn(T ) = Fcn0 (1 + δF (T − T0)) (22.24)

A similar expression for the holes can be written using hole_critical_field
and hole_cfield_temper_coef.

• elec_a_coef_field_expo is the exponent term on the field in the prefactor
of Eq. 9.15. hole_a_coef_field_expo is the equivalent term for the holes.

• elec_a_cfield_expo is the exponent term applied to the critical field in
Eq. 9.15. hole_a_cfield_expo is the equivalent term for the holes.

• mater is the material number where the impact ionization is defined. If a
label has previously been defined for this material, mater_label may be used
instead.

Examples

The following example will take the default impact ionization parameters for mater
number 4:

impact_okuto_crowell mater=4

22.361 import_basic

parameter data type values [defaults]
name char

import_basic imports the underlying passive macro into a material library.
See material_lib and basic_var_symbol for further information.
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Examples

begin_library AlGaAs
import_basic name=algaas
import_complex name=cx-AlGaAs
complex_var_symbol var_lib=x var_complex=xw
end_library

This set of commands defines the “AlGaAs” library as being composed of the “algaas”
passive macro and the “cx-AlGaAs” active macro. The material parameter x used
when invoking the library is translated into the xw parameter of the active macros
and used “as-is” in the passive macro.

22.362 import_complex

parameter data type values [defaults]
name char

import_complex imports the underlying passive macro into a material library.
See material_lib and complex_var_symbol for further information.

Examples

begin_library AlGaAs
import_basic name=algaas
import_complex name=cx-AlGaAs
complex_var_symbol var_lib=x var_complex=xw
end_library

This set of commands defines the “AlGaAs” library as being composed of the “algaas”
passive macro and the “cx-AlGaAs” active macro. The material parameter x used
when invoking the library is translated into the xw parameter of the active macros
and used “as-is” in the passive macro.
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22.363 import_gain_data

parameter data type values [defaults]
file char [void]
extrap_energy char [yes]
extrap_conc char [yes]
extrap_pn_ratio char [no]
extrap_temper char [yes]
all_active_mater char [yes]
active_macro char [void]
extrap_field char [no]
read_auger char [no]
read_density char [no]
set_constant real
mater_active intg
active_and_embedded intg

import_gain_data imports the gain/index/PL data from an ASCII file generated
by the export_gain_data statement. It can also import gain tables from another
source provided they follow the same structure.

Parameters

• file the data file from which the gain data is to be imported. If not specified,
a default file name gain_datafile.txt will be used.

• all_active_mater allows all active layers to use parameters in this statement,
unless a specific material number is defined by active_macro or mater_active.

• active_macro indicates that this statement affects all active layers with the
above active macro name.

• extrap_energy indicates if extrapolation is used when photon energy is out-
side of the range of imported data.

• extrap_conc indicates if extrapolation is used when concentration is outside
of the range of imported data.

• extrap_pn_ratio indicates if extrapolation is used when hole/electron ratio
is outside of the range of imported data.
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• extrap_temper indicates if extrapolation is used when temperature is outside
of the range of imported data.

• extrap_field indicates if extrapolation is used when field is outside of the
range of imported data.

• mater_active if used, will use the imported gain for one particular material.
Otherwise, all active material layers will use the imported data.

• active_and_embedded is the number of active and embedded regions shar-
ing parameters in this statement. If not specified, all active and embedded
regions will use this command.

• set_constant set the imported gain to fixed value rather than importing the
full gain spectrum from a data file.

• read_auger will read computed Auger parameters from the data file. This
can be used in cases where an external gain model also computes Auger recom-
bination rates.

• read_density reads carrier density data from a separate file so that exter-
nal calculations giving the relationship between carrier density, Fermi level,
temperature and external field can be used in the simulation.

Example(s)

import_gain_data

will import data from gain_datafile.txt.

Code Sample

The following Fortran code shows the import procedure. It can be used to generate
compatible tables from another source.

open(61,file=impg(imp)%gainfile_imp)
if(impg(imp)%jdense_loaded.eq.1) then
densfile=’_ds_’//trim(impg(imp)%gainfile_imp)
open(361,file=densfile)
endif

read(61,’(a)’) line80 ! skip a header line
! three 0/1 numbers to indicate gain/index/PL data used.
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read(61,*) impg(imp)%ixg_use_gain
*,impg(imp)%ixg_use_index
*,impg(imp)%ixg_use_spon
*,impg(imp)%ixg_use_auger

read(61,’(a)’) line80 ! skip an info. line
! range of energy (eV) and number of point in energy (uniform)

read(61,*) ev_wvl11, ev_wvl22,npnt

read(61,’(a)’) line80 ! skip an info. line
! range of well concent. in 1/m^3 (bulk value) and number of points (uniform)

read(61,*) an1,an2,ncur

read(61,’(a)’) line80 ! skip an info. line
! range of hole/elec conc. in well and number of points.
! this can be sent to 1. 1. 1 if you always assum hole=electron

read(61,*) impg(imp)%gxi_pn_ratio_range(1)
* ,impg(imp)%gxi_pn_ratio_range(2),impg(imp)%num_pn_ratio_points

read(61,’(a)’) line80 ! skip an info. line
! range of field and number of points (uniform)
! if only one field is available, it is OK. for example:
! 1.e7 1.e7 (V/m) 1 is OK.

read(61,*) impg(imp)%gxi_field_range(1)
* ,impg(imp)%gxi_field_range(2),impg(imp)%num_field_points

if(impg(imp)%num_field_points.gt.1) then
impg_field_dep=1

endif

read(61,’(a)’) line80 ! skip an info. line
! range of temperature and number of points (uniform)
! if only one temperature is available, it is OK. for example:
! 300. 300. 1 is OK.

read(61,*) impg(imp)%gxi_temper_range(1)
* ,impg(imp)%gxi_temper_range(2),impg(imp)%num_temper_points

allocate(impg(imp)%gxi_ev1d(npnt))
allocate(impg(imp)%gxi_conc1d(ncur))
allocate(impg(imp)%gxi_pn_ratio1d(
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* impg(imp)%num_pn_ratio_points))
allocate(impg(imp)%gxi_field(impg(imp)%num_field_points))
allocate(impg(imp)%gxi_temper1d(impg(imp)%num_temper_points))
if(impg(imp)%ixg_use_gain.eq.1) then

allocate(impg(imp)%gxi_gain(npnt,ncur
*,impg(imp)%num_pn_ratio_points
*,impg(imp)%num_field_points
*,impg(imp)%num_temper_points))

endif

if(jread_dense.gt.0) then
allocate(impg(imp)%gxi_elec(

* impg(imp)%num_dense_points
*,impg(imp)%num_field_points
*,impg(imp)%num_temper_points))
allocate(impg(imp)%gxi_hole(

* impg(imp)%num_dense_points
*,impg(imp)%num_field_points
*,impg(imp)%num_temper_points))
endif

if(impg(imp)%ixg_use_spon.eq.1) then
allocate(impg(imp)%gxi_spon(npnt,ncur

*,impg(imp)%num_pn_ratio_points
*,impg(imp)%num_field_points
*,impg(imp)%num_temper_points))
allocate(impg(imp)%gxi_spint(ncur

*,impg(imp)%num_pn_ratio_points
*,impg(imp)%num_field_points
*,impg(imp)%num_temper_points))
endif

if(impg(imp)%ixg_use_index.eq.1) then

allocate(impg(imp)%gxi_index(npnt,ncur
*,impg(imp)%num_pn_ratio_points
*,impg(imp)%num_field_points
*,impg(imp)%num_temper_points))

endif
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if(impg(imp)%ixg_use_auger.eq.1) then

allocate(impg(imp)%gxi_auger(ncur
*,impg(imp)%num_pn_ratio_points
*,impg(imp)%num_field_points
*,impg(imp)%num_temper_points))

endif

impg(imp)%ncur_ixg=ncur
impg(imp)%npnt_ixg=npnt

do ix=1,npnt
impg(imp)%gxi_ev1d(ix)=f_incr(ix,ev_wvl11,ev_wvl22,npnt)

enddo
do ix=1,ncur

impg(imp)%gxi_conc1d(ix)=f_incr(ix,an1,an2,ncur)
enddo
do ix=1,impg(imp)%num_pn_ratio_points
impg(imp)%gxi_pn_ratio1d(ix)=f_incr(ix

*,impg(imp)%gxi_pn_ratio_range(1)
*,impg(imp)%gxi_pn_ratio_range(2)
*,impg(imp)%num_pn_ratio_points)
enddo
do ix=1,impg(imp)%num_field_points
impg(imp)%gxi_field(ix)=f_incr(ix

*,impg(imp)%gxi_field_range(1)
*,impg(imp)%gxi_field_range(2)
*,impg(imp)%num_field_points)
enddo
do ix=1,impg(imp)%num_temper_points

impg(imp)%gxi_temper1d(ix)=f_incr(ix
* ,impg(imp)%gxi_temper_range(1)
* ,impg(imp)%gxi_temper_range(2),impg(imp)%num_temper_points)
enddo

numprn=0
if(impg(imp)%ixg_use_gain.eq.1) then

numprn=numprn+1
endif
if(impg(imp)%ixg_use_index.eq.1) then

numprn=numprn+1
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endif
if(impg(imp)%ixg_use_spon.eq.1) then

numprn=numprn+1
endif
if(impg(imp)%ixg_use_auger.eq.1) then

numprn=numprn+1
endif

! starting read in the data
read(61,’(a)’) line80 ! skip an info line

do ix5=1,impg(imp)%num_temper_points ! number of temperature points
do ix4=1,impg(imp)%num_field_points ! number of field points
do ix3=1,impg(imp)%num_pn_ratio_points ! number of p/n ratio points
do ix2=1,ncur ! number of conc. points
do ix1=1,npnt ! number of energy points

! 1st column is list of energy (eV),
! 2nd column is gain in 1/m^3
! 3rd column is change of real refractive index with respect to
! equilibrium concentration, or index(n)-index(n0) where
! n0=equilibrium well concentration.
! 3rd column is PL data in 1/m^3/s/eV (also in bulk value)

! read(61,’(4e21.12e3)’) xdum,(tmpprn(kk),kk=1,numprn)
read(61,*) xdum,(tmpprn(kk),kk=1,numprn)

numprn=0
if(impg(imp)%ixg_use_gain.eq.1) then

numprn=numprn+1
impg(imp)%gxi_gain(ix1,ix2,ix3,ix4,ix5)=tmpprn(numprn)

endif
if(impg(imp)%ixg_use_index.eq.1) then

numprn=numprn+1
impg(imp)%gxi_index(ix1,ix2,ix3,ix4,ix5)=tmpprn(numprn)

endif
if(impg(imp)%ixg_use_spon.eq.1) then

numprn=numprn+1
impg(imp)%gxi_spon(ix1,ix2,ix3,ix4,ix5)=tmpprn(numprn)

endif
if(impg(imp)%ixg_use_auger.eq.1) then

numprn=numprn+1
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impg(imp)%gxi_auger(ix2,ix3,ix4,ix5)=tmpprn(numprn)
endif

enddo
! there must be a blank line here so that the file is GNUPLOT friendly.
! for example, you can plot the gain in GNUPLOT using command:
! plot "mygainfile.txt" using 1:2
! for index change:
! plot "mygainfile.txt" using 1:3
! etc.

read(61,’(a)’,end=8126) line80

! integral
if(impg(imp)%ixg_use_spon.eq.1) then

impg(imp)%gxi_spint(ix2,ix3,ix4,ix5)=
* f_integr(impg(imp)%gxi_ev1d
* ,impg(imp)%gxi_spon(1,ix2,ix3,ix4,ix5),npnt)
endif

enddo
enddo
enddo
enddo

8126 continue

if(impg(imp)%jdense_loaded.eq.1) then
do ix5=1,impg(imp)%num_temper_points
do ix4=1,impg(imp)%num_field_points

do ix1=1,impg(imp)%num_dense_points
read(361,’(5e21.12e3)’)

* impg(imp)%gxi_qfln(ix1),impg(imp)%gxi_elec(ix1,ix4,ix5)
enddo
read(361,’(a)’) line80

do ix1=1,impg(imp)%num_dense_points
read(361,’(5e21.12e3)’)
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* impg(imp)%gxi_qflp(ix1),impg(imp)%gxi_hole(ix1,ix4,ix5)
enddo
read(361,’(a)’) line80

enddo
enddo
close(361)
endif ! jdense_loaded

close(61)

22.364 import_kp_data

import_kp_data is the reverse of export_kp_data. For other parameters,
please see import_gain_data.

22.365 import_fdtd_data

parameter data type values [defaults]
data_file char

The command import_fdtd_data is used to import FDTD result from a data
file. Since FDTD simulations can be quite lengthy, it can be useful to reimport an
existing simulation and concentrate on the APSYS electrical modeling only.
Also, single wavelength calculation(e.g. IQE spectrum calculation) can be done by
using this command: the FDTD transfer function is reused but the optical pumping
is monochromatic.

Parameters

• data_file is a name of FDTD data file to be imported. If not specified, a file
name “meep_density.dat” will be used as default.

Examples

import_fdtd_data data_file=meep_density.dat
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22.366 import_qcl_gain_para

parameter data type values [defaults]
directory char
file char
escape_fraction real [0.5]
total_active_qw_thick real [0.016] (um)
adjust_resonant_field real [0.] (V/m)
sp.rate_2d_integral real [1.e19] (1/m/s)

import_qcl_gain_para is used during the full simulation of a QCL laser. When
using this approach, the first step is to do a microscopic gain calculations using the
gain preview mode (.gain file) and a single period of the QCL superlattice. These
results are then imported in the larger macroscopic project (.sol) using this statement;
the larger projects includes all the QCL layers and turns on the full Drift-Diffusion
model and other important effects.
This statement requires the use of qc_laser_preview to generate the QCL prop-
erties that will be imported. The full simulation done in the macroscopic project is
similar to the LI curve generated by this preview statement but is more accurate.

Parameters

• directory is the location of the microscopic project which computes the optical
gain.

• file is the file containing the QCL gain parameters.

• escape_fraction is the fraction of the current which escapes the QW region;
this determines the overflow leakage.

• total_active_qw_thick is the total thickness of the QWs belonging to the
active region in one period of the QCL superlattice.

• adjust_resonant_field can be used to manually shift the broadening curve
for the resonant tunneling. This can account for inaccurate values of the field
in the microscopic gain project.

• sp.rate_2d_integral is the total integrated spontaneous emission rate (
∫
rsp(E)).

Unlike typical active regions, this value is not computed alongside the optical
gain in the QCL model.
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Examples

import_qcl_gain_para directory=micro file=qcl_para.txt &&
escape_fraction=0.0002 total_active_qw_thick=0.0163 &&
adjust_resonant_field=0.1e7

22.367 import_raytrace

parameter data type values [defaults]
device_type char [led], pd
mater_label char
mater intg [1]
data_set intg [1]

import_raytrace is used to import the post-processing ray tracing results of a
previous simulation into a new device simulation. This provides increased self-
consistency by importing the photon density into the simulation.

Parameters

• device_type is the type of device, led for a light emitting diode or pd for a
photodetector or solar cell.

• mater is the material number into which the imported photon density is intro-
duced. If a label has previously been defined for this material, mater_label
may be used instead.

• data_set selects which photon density profile is loaded into the simulation.
Since the original data is only available at a few select data sets at which the
post-processing ray tracing was previously performed.

Examples

import_raytrace mater=3 data_set=6
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22.368 include
parameter data type values [defaults]
file char [void]
ignorej (j=1..9) char [void]

include is used to include another file as part of the present input file. It is similar
to

#include

Parameters

• file is the name of the file being included.

• ignorej (j=1..9) are statements in the included file that are to be ignored and
not included in the merged input file.

Examples

include file=laser1.doping

22.369 independent_mqw

independent_mqw is used in .layer file to override the default behavior and assign
different material numbers for active layers with the same composition. The default
simplification is done to speed up the calculations since it allows the Schrödinger
solver to be called only once for each material. Using independent_mqw will thus
increase the computation time.
Overriding the default behavior is nevertheless recommended for self-consistent quan-
tum well calculations. In this case, the shape of the confining potential also depends
on the local field for each well.

22.370 independent_zdir_mqw

parameter data type values [defaults]
zseg_range intgx2 [1 99999]



22.371 index_field_dependence 743

independent_zdir_mqw is equivalent to the independent_mqw statement.
However, it applies to quantum wells defined by stacking mesh planes in the z-
direction rather than those defined in the .layer file.

Parameters

seg_range can be used to restrict the range of application of this command.

Examples

independent_zdir_mqw zseg_range=(4 6)

22.371 index_field_dependence

parameter data type values [defaults]
mater_label char
linear_term real [0.](m/V)
square_term real [0.](m2/V 2)
mater intg [1]

index_field_dependence is used to describe a field-dependent refractive index.

Parameters

• linear_term is the linear term of the field dependence. It is related to the
Pockels constant.

• square_term is the square term of the field dependence. It is related to the
Kerr effect.

• mater is the number assigned to the material affected by this statement. If a
label has previous been defined as an alias, mater_label may be used instead.

Examples

index_field_dependence linear_term=1.e-12 square_term=1.e-19 mater=2
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22.372 index_model

parameter data type values [defaults]
sample_mesh char [no]yes
use_l.w.e.factor char [no]yes
free-carrier char [yes] no
interband char [yes] no
linear_active char [no] yes
linear_passive char [no] yes
free_carr_passive char yes [no]
force_update char yes [no]
eg_fac1 real [10.]
eg_fac2 real [2.]
l.w.e.factor real [1.0]
an_active real [0.0] (m3)
bn_active real [0.0] (m3/K)
ap_active real [0.0] (m3)
bp_active real [0.0] (m3/K)
an_passive real [0.0] (m3)
bn_passive real [0.0] (m3/K)
ap_passive real [0.0] (m3)
bp_passive real [0.0] (m3/K)
p_expo real [1.0]
sample_point intg [200]

index_model is used to calculate the index change with respect to equilibrium. In
effect, the actual index of a material during the simulation is given by the sum of
the value defined by real_index and this index change.
If this statement is not used, the default settings shown above will be used to turn
on most important index change models. This statement should be used to alter this
default selection; for example, to enable free-carrier index change in passive regions.
There are various independent contributions to the index change; these models are
outlined in Sec. 8.4. Some terms can be turned on/off for passive and/or active
regions according to the parameters of this statement.
To enable models which are for active regions only, it is possible to simply modify the
input file so that a region which does not contribute significant gain is still treated
as a bulk active region. This causes the program to perform additional work which
is not useful in terms of the gain but as a result, the index change terms will become
available.
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• sample_mesh is used to compute the index change due to interband tran-
sitions (Kramers-Kronig). If turned on, the index change is computed for all
mesh points. Otherwise only one calculation is used, based on the average
carrier density in the active region.

• use_l.w.e.factor indicates whether or not the user-defined line with enhance-
ment factor (given by the l.w.e.factor parameter) is used to compute the index
change.

• free_carrier and free_carrier_passive indicate whether index change in-
duced by free carrier absorption is included for the active and passive layers,
respectively.

• interband turns on the index change due to interband transitions (Kramers-
Kronig).

• linear_active and linear_passive turn on the linear index change model
for active and passive layers, respectively.

Note that the linear model is not exactly linear as it supports exponent control
on the hole density. The formula is more properly written as:

an ∗ (n− n0) + bn ∗ (p− p0)pexpo (22.25)

where n, n0, p, p0 are the electron and hole carrier densities under bias and at
equilibrium. The a and b coefficients can be defined separately for active and
passive layers.

• force_update is used to force the update of the index change with bias. To
save on computation time, by default only laser simulators like LASTIP and
PICS3D will compute the index change. To force APSYS to have the same
behavior, turn on this option.

• eg_fac1 and eg_fac2 are used to define the energy bounds of the Kramers-
Kronig integral. These upper and lower limits (E01, E02) are defined by:

E01 = MAX[MIN(E_g, E) − eg_fac1Escat, 0] (22.26)
E02 = eg_fac2Eg (22.27)
Escat = ~/τscat (22.28)

where the Eg is the bandgap and E is the photon energy of interest.
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• sample_point is the number of sample points in spectrum used to evaluate
the integrand in the K-K relation. The size of this parameter directly influences
the speed of the integration and therefore the speed of the simulator. Please
note that the K-K relation used to compute the index change due to carrier
injection into the active region involves an integral over the energy range and
is rather time consuming. Turning on this model slows down the simulator
substantially.

Examples

index_model use_l.w.e.factor=yes l.w.e.factor=2

22.373 index_spectrum

parameter data type values [defaults]
spectrum_file char [void]
mater_label char [void]
mater intg [1]

index_spectrum is used to assign experimental complex refractive index data
(n, k) to a material. This is used in combination with light_power to obtain
wavelength-dependent optical generation rate. The primary application of this state-
ment is solar cells.

Parameters

• spectrum_file is the file name containing the refractive index data. The first
number on each line must be the wavelength in µm, while the second and the
third numbers must be the corresponding real and imaginary indices.

• mater is the material number to which the index data is assigned. If the ma-
terial has previous been assigned a label, mater_label may be used instead.

Examples

index_spectrum spectrum_file=solar.silicon mater=1

The first few lines of the file referenced above are shown below:



22.374 index_wavel 747

0.250000E+00 0.137933E+01 0.366056E+01
0.260000E+00 0.172880E+01 0.407596E+01
0.270000E+00 0.207826E+01 0.468393E+01
0.280000E+00 0.295235E+01 0.525848E+01
0.290000E+00 0.416276E+01 0.516935E+01
0.300000E+00 0.452816E+01 0.413007E+01
0.310000E+00 0.489356E+01 0.355234E+01
0.320000E+00 0.495612E+01 0.325949E+01
0.330000E+00 0.502415E+01 0.307249E+01

To avoid any issues with data extrapolation, the user is strongly encouraged to
provide index data for the entire wavelength range used in the simulation.

22.374 index_wavel

index_wavel is the same as gain_wavel except it plots the index change.
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22.375 init_wave

parameter data type values [defaults]
steady_state_photon char [no]
sidemode_enh_model char [no]
power_dep_facet char [],left,right,both
photon_bal_model char [no]
lateral_mode_bal_model char [no]
frozen_gain_thm_model char [no]
point_ll realx2 (µm)
point_ur realx2 (µm)
fld_center realx2 (µm)
init_wavel real (µm)
spon_mode real [1.e-3]
length real [300.0] (µm)
backg_loss real [0.0] (1/m)
wavel_range realx2 [0.5 1.8] (µm)
mirror_ref real [0.3]
prn.gain_range real [-9999. -9999.] (µm)
gain.sat real [0](m3)
photon_fac real [1.e7]
front_back realx2 [-9999. -9999.]
delta_index real [0.3]
n_ubdata realxn
n_lbdata realxn
rtg_omega_scale real [1.e13]
power_dep_coef1 real [0.] (W−1)
power_dep_coef2 real [0.] (W−2)
power_dep_coef3 real [0.] (W−3)
ase_mode_deg_factor real [1.]
boundary_type intgx4 [1 1 1 1]
ubdata_num intg [0]
lbdata_num intg [0]
prn.gain_num intg [50]

The statement init_wave initializes several parameters needed to solve the wave
equation. Note that geometric dependent parameters such as point_ll and point_ur
can be overridden by corresponding parameters in the wave_boundary statement.
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Figure 22.13: Schematics of the boundary condition for the wave equation.

Parameters

• steady_state_photon forces the photon density to stay fixed in transient
simulations (dS

dt
= 0).

• point_ll and point_ur are lower-left and upper-right points of the window
within which the wave equation is solved (see also Fig. 22.13). This window
must be less than or equal to the full device size defined in the .geo input file.

This window must be reduced in certain cases to prevent the mode solver from
finding certain non-lasing optical modes. For example, many designs (such as
gain-guided devices) support modes with a high effective index but with poor
overlap with the active region. These modes will be picked ahead of the actual
lasing mode by the solver since they are sorted in order of decreasing effective
index.

The user should carefully set the window size in these structures to capture the
right lasing modes without perturbing their boundary conditions too much.

• fld_center is the estimated optical mode center. Note that this information
is only used to initialize the wave function and may or may not coincide with
the optical field center in the final solution.
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• init_wavel is the initial (or guess) emission wavelength corresponding to the
peak modal gain. After finding the wave distribution using this wavelength,
the software calculates the modal gain spectrum within wavel_range and
determines the peak gain wavelength. Therefore, init_wavel is used only
once.

• length is the optical cavity length. This is needed to compute the mirror loss
or emission loss in LASTIP. This term is not used in PICS3D and the section
statements are used instead.

• backg_loss is the minimum background loss coefficient assigned by default
to all regions outside the active region. When the absorption statement is
used in a material macro or as an override, the larger of the two values will
take precedence. By default, most Crosslight macros are set up to define zero
absorption so that backg_loss is used for all the cladding layers of a laser.
Additional carrier-dependent loss terms can also be added by the appropriate
statements: this is often important in thermal simulations.

• wavel_range is the search range used to determine the peak lasing gain in
LASTIP.

• mirror_ref is the mirror reflectivity needed to calculate the mirror loss at a
given cavity length in LASTIP. When using asymmetric mirrors, front_back
may be used instead.
When LASTIP is used to model a DFB laser, mirror_ref should be set to an
effective value that will approximate the grating loss. However, it is preferable
to use PICS3D to model these devices.
In PICS3D, this parameter is not used. Mirror boundary conditions are set
using the longitudinal statement.

• prn.gain_range is the wavelength range within which the gain spectral data
are computed and printed at each set of structural data. The default settings
force this parameter to be the same as wavel_range.

• gain.sat is the gain saturation (or gain suppression) coefficient ε given by the
following two-level system formula:

g = g0

1 + ε
∑

i Si

(22.29)

where g and g0 are the optical gain with and without gain saturation, respec-
tively, and Si is the photon density of mode i.
Cross-saturation between optical modes is only supported in PICS3D through
the sidemode_enh_model setting. This enables a special gain saturation
formula that mimics the effects of the standing wave pattern: this is omitted in
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the normal coupled-wave formalism currently used for edge-emitting devices.
When the model is turned on, the gain saturation for mode j is expressed as:

gj = g0
1 + ε

∑
i ̸=j Si

1 + ε
∑

i Si

(22.30)

With this model turned on, the mode which carries the most photons (i.e.
main mode) is subject to the gain suppression to a larger extent than the side
modes. This is expected to degrade the side mode suppression ratio as the bias
increases which may help to explain mode hopping behavior in certain devices.

• photon_fac is the factor used to divide the photon number in the rate equa-
tion so that the order of magnitude is the same as for the other equations. In
PICS3D, the round-trip gain equation is also affected by this parameter.
If the device is very large, the photon number in the laser cavity may also be
very large. In that case, the residue of even a well-converged rate equation may
show a large error in output log (5th column in printout). which can prevent
the solver from converging. Increasing this value gives less weight to the photon
rate equation in the Newton solver and can help fix these convergence issues
at the cost of less precision in the solution for the photon number.

• spon_mode is the fraction of the isotropic spontaneous emission that couples
into the lasing mode inside the laser cavity. It appears in the photon rate equa-
tion and determines how much spontaneous emission couples into the lasing
mode. The coefficient β is often used in textbooks to represent this fraction.

• front_back is used to specify the front and the back facet power reflectivity.
This will override the value in mirror_ref. If only mirror_ref is used, both
the front and back facets are assumed to be the same.

• n_ubdata and n_lbdata are window specifications used to override the de-
fault rectangular window defined by point_ll and point_ur. The format is
(x1 y1 x2 y2 .... xn yn) where x and y are point coordinates and n is the total
number of points in the boundary. The value defined in ubdata_num and
lbdata_num must be equal to 2*n.

• rtg_omega_scale is used to scale the laser frequency variable in the coupled-
RTG method. The laser frequency is converted into a unitless number of the
order of unity via this parameter.

• delta_index is used to describe a boundary where the wave function decays
exponentially by a function:

W (x) = W0exp(−k0 ∗ delta_index ∗ x)
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where k0 is the wave number and delta_index is estimated from the effective
index (which may be unknown before the simulation):

delta_index2 = effective_index2 − local_index2

• boundary_type is the boundary types on the sides of the window. The
boundary type is represented by four integers in the order (lx1,lx2,ly1,ly2).
The corresponding boundary is indicated in Fig. 22.13. The integers can only
take on values of 1, 2, 3 or 5:

– Type 1 is a Dirichlet boundary condition where the wave intensity must
be zero at the boundary. This type is used when the boundary is far
enough away from the optical mode. In the case where the boundary is
a symmetry axis (lx1 in Fig. 22.13), a zero intensity boundary condition
produces an optical mode with odd symmetry.

– Type 2 is a Neumann boundary condition where the slope of the wave
function must be zero at the boundary. This boundary produces modes
with even symmetry so the wave function at point A is the same as at
point B in Fig. 22.13.
In a one-dimensional simulation with semiconductor layers parallel to
the x-direction, the optical mode has translational symmetry in the x-
direction. Therefore, both lx1 and lx2 boundaries should be type 2 while
ly1 and ly2 should be type 1.

– Type 3 is used to represent a truncated wave function that decays expo-
nentially. This type of boundary may be useful in cases where the user
wishes to save some mesh points by cutting a large portion of the device
area out of the wave solution window. In such case, we may assume the
wave decays exponentially at the boundary. This choice works together
with the parameter delta_index.

– Type 5 represents a boundary of perfectly matched layer (PML). Refer to
Sec. 12.6 for details.

• ubdata_num and lbdata_num specify the number of variables used in
n_ubdata and n_lbdata. It must always be equal to twice the number
of points in the matching boundary declaration.

• prn.gain_num is the number of wavelength data points used to compute the
gain and spontaneous emission spectra at each data set.

• power_dep_facet turns on a power-dependent mirror reflectivity model.
The mirror reflectivity is adjusted by ∆R = aP + bP 2 + cP 3 where the a, b, c
coefficients are given by power_dep_coefi,i=1..3.
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• photon_bal_model enables an alternate model for the photon rate equa-
tion PICS3D; this makes the model closer to LASTIP and guarantees energy
conservation.
By default, PICS3D uses the cavity round-trip gain and solves a complex equa-
tion for unity gain and phase matching: RTG = 1 + 0i. When the photon
balance model is turned on, the wavelength of the mode is taken from solution
of the imaginary part of the RTG; the magnitude of the RTG is then used to
compute the effective mirror loss and the photon rate equation compares this
loss term to the integrated stimulated recombination and internal loss rates.
As of version 2017 of the software, this model should be considered experimen-
tal.

• lateral_mode_bal_model serves a similar function to the ignore_phase pa-
rameter of the longitudinal statement but only applies when photon_bal_model=yes.
With this model enabled, the wavelength of the mode is taken from the peak
gain instead of the solution of the RTG equation.
As of version 2017 of the software, this model should also be considered exper-
imental.

• frozen_gain_thm_model is a model intended to improve convergence of
high-power lasers in the thermal roll-over region. When this model is enabled,
the solver will disable the solution of the full drift-diffusion equation at high
temperatures if it detects that the convergence is stalling. When those equa-
tions are disabled using this model, the software will switch to using a simplified
linear equation to model all layers as simple ohmic resistors.

• ase_mode_deg_factor is used to scale the photon density of states for the
amplified spontaneous emission (ASE) propagation model in PICS3D. This
model is mostly used for superluminescent diodes and optical amplifiers.
For cases where only half the structure is modeled, this value should be set of
1
2 to correctly count D(E); if the full width of the device is modeled, this value
should be set to 1. A default of value of 1 is used for pre-v2017 backwards
compatibility purposes.

Examples

For a 1-D structure:

init_wave point_ll=(0., 0.0) point_ur=(1.5, 3.08) &&
fld_center=(0.5, 1.5) length=300 backg_loss=1000. &&
boundary_type=(2 2 1 1 ) init_wavel=1.3 mirror_ref=0.32 &&
wavel_range=(1.2, 1.4)
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For a 2-D structure with lx1 boundary as the symmetry axis:

init_wave point_ll=(0., 0.0) point_ur=(3.5, 3.0) &&
fld_center=(0.5, 1.5) length=300 backg_loss=1000. &&
boundary_type=(2 1 1 1 ) init_wavel=1.3 mirror_ref=0.32 &&
wavel_range=(1.2, 1.4)

For a 2-D structure without any symmetry axis:

init_wave point_ll=(0., 0.0) point_ur=(7.0, 3.0) &&
fld_center=(3.5, 1.5) length=300 backg_loss=1000. &&
boundary_type=(1 1 1 1 ) init_wavel=1.3 mirror_ref=0.32 &&
wavel_range=(1.2, 1.4)

For a generic boundary with 4 corner points:

init_wave ... &&
ubdata_num=8 8_ubdata=(0. 3.16 0.773 3.16 1.5 2.16 6. 2.16)

22.376 inner_bar_gain

The statement inner_bar_gain is used to specify that inner barriers of a complex
MQW region are to be treated like any other quantum-coupled region.
This statement was originally created for historical reasons: the original design of our
MQW model assumed that barrier and well layers alternated in the following pattern:
b/w/b/w/.../b. As such, the optical gain was only calculated in the even-numbered
parts of the complex region which corresponded to the quantum wells.
When this statement is turned on, the pattern may be regarded as being b/w/w/w/..../w/b:
the exact shape, thickness and profile of the outer barriers is still ignored by the
Schrödinger solver as those regions only serve as boundary conditions for the solver.
See Sec. 8.2 and Fig. 8.4 for more details.
Please note that this statement is obsolete when using the “library” (Sec. 3.5) method
of declaring quantum regions: the equivalent of inner_bar_gain is automatically
assumed when declaring a quantum region in this manner.
This statement has no parameters.
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22.377 insert_mesh_order

parameter data type values [defaults]
layer_index intg [1]

insert_mesh_order is used by the geo3d mesh connection tool to decide the order
of connection for the inserted mesh planes, respective to the order to the mask layers
in the GDS files.
This statement is usually created automatically by the MaskEditor GUI program
and loaded into the main simulation via a .zst file.

Parameters

• layer_index is the GDS mask layer number at which additional mesh planes
are added.

Examples

insert_mesh_order layer_index=2

22.378 insert_mesh_plane

parameter data type values [defaults]
xz_data char
loop char yes,[no]
xy_mesh char
side intg

insert_mesh_plane is used to insert additional mesh planes with the geo3d mesh
connection tool and increase the mesh density in a specific region of a z-segment.
This is most often used to added “bent” mesh planes that conform to rounded device
shapes: this is a more economical solution compared to adding traditional mesh
planes.
This statement is usually created automatically by the MaskEditor GUI program
and loaded into the main simulation via a .zst file.
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Parameters

• xz_data is the mesh plane profile in the xz plane. The file name follows a
specific pattern which indicates the mask layer after which the plane is inserted.

• loop specifies that the plane profile in the xz plane forms a closed loop.

• xy_mesh is the mesh triangle information in the xy plane.

• side is a parameter automatically added by the MaskEditor GUI and CSUPREM;
it describes a group of lines corresponding to the same set of inserted mesh
planes.

Examples

insert_mesh_plane xz_data=layer2_ixz33.txt loop=yes &&
xy_mesh=layer2_ixy33.msh

22.379 insert_mesh_range

parameter data type values [defaults]
xrange realx2

insert_mesh_range defines the range of x coordinates where additional mesh
planes are present. This statement is used by the geo3d mesh connection tool.

22.380 integer_func

The command is identical to loop_integer.
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22.381 interface

parameter data type values [defaults]
model char [recomb], charge, trap
trap_type char [donor], acceptor
x_label char [void]
y_label char [void]
within_x1_label char [void]
within_x2_label char [void]
within_y1_label char [void]
within_y2_label char [void]
zplane_label char [void]
upper_lower_cosine char yes,[no]
left_right_sine char yes,[no]
outer_recomb_only char yes,[no]
traplevel_model char [void], gaussian, expo_tail, uniform
traplevel_tail_side char [conduction], valence
within_x realx2 [-1.e5 1.e5] (um)
within_y realx2 [-1.e5 1.e5] (um)
velocity_n real [1.e6] (m/s)
velocity_p real [1.e6] (m/s)
fix_charge real [1.e14] (1/m2)
trap_density real [1.e16] (1/m2)
trap_level real [0.5] (eV)
trap_life_n real [1.e-7] (s)
trap_life_p real [1.e-7] (eV)
x real (um)
y real (um)
traplevel_stddev real [0.1] (eV)
traplevel_tail real [0.05] (eV)
traplevel_width real [0.5] (eV)
surftrap_num intg [1]
upper_lower_mater intgx2
left_right_mater intgx2
zplane_num intg

The interface statement is used to specify semiconductor interface states and the
physical models used by the simulation software. The interface may be between semi-
conductor and vacuum or between different types of semiconductors. This statement
may be used multiple times to define different interfaces.
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Note that the solver internally deals with 3D quantities while this statement uses
2D sheet quantities as inputs. All values are there converted internally by software
by using the local mesh area A and the equivalent interface length d:

ρ3D = σ2D ∗ d
A

Note that for historical reasons (modeling of silicon devices), the default interface
length is obtained by the adding up the triangle edge lengths at the boundaries
between different materials: as per the usual finite volume method, half of the con-
necting triangle edge lengths is assigned to each mesh point. Unless special care is
taken, this convention may lead to corner effects as seen in Fig. 22.14.

(a) (b)

Figure 22.14: Schematic interface representation of the interface length around a
mesh point: the equivalent interface length is outlined in red. Note that the outside
of the mesh is on the right of the figure: this exposed area automatically counts as
a different material. a) interface between two points sharing the same material b)
interface at the corner between two materials

Parameters

• model indicates the type of model to be used to describe the physics of the
interface. The available options are:

– recomb defines surface recombination velocities.
– charge defines fixed interface charge densities.
– trap defines surface traps.

• trap_type is the charge type of the deep surface traps (donor or acceptor).
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• within_x, within_y defines the extent of the interface in the x and y direc-
tions, respectively. Usually, only one of these is used and the other coordinate
is given with a fixed value.

• velocity_n and velocity_p are the surface recombination velocities for elec-
trons and holes, respectively.

• fix_charge is the fixed charge surface density. It can be negative or positive.

• trap_density is the surface trap density.

• trap_level is the trap energy level measured from the conduction band.

• trap_life_n and trap_life_p is the trap life time of minority electrons and
minority holes, respectively.

• traplevel_model may be used to define a continuous distribution of trap
states. If this statement is omitted, then a single energy level is used.

• traplevel_stddev is the trap level standard deviation if the trap level model
is gaussian.

• traplevel_tail is the characteristic decay constant (L) of the exponential tail
model e−E/L. The energy E is measured from either the conduction of valence
band depending on the value of traplevel_tail_side.

• traplevel_width is the energy width for a uniform distribution of trap states.

• x and y are fixed coordinate values that define the position of the interface.
Usually only one of these is used and the other coordinate is specified using a
range.

• surftrap_num is a numeric label used to identify a specific kind of trap for
later use. Multiple traps with different identifiers can coexist in the same
region.

• x_label and y_label are pre-defined labels that can be used instead of the
fixed values in x and y. These labels must be defined using the x_position
and y_position statements. See the help for these statements for details on
how they can be automatically generated.

• within_x1_label, within_x2_label, within_y1_label and within_y2_label
are predefined labels similar to x_label. They control the ranges defined in
within_x and within_y, respectively.

• zplane_num applies the interface settings from this command to entire mesh
plane specified. If a label has previously been defined, zplane_label may be
used instead.
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• upper_lower_mater restricts the interface to the region where these 2 ma-
terial numbers touch. Note that this kind of interface is meant to be used
between horizontal layers, such as in the textures surfaces of a solar cell. Since
there can be different interfaces at the top and bottom of a given layer, the
order of the numbers is important: for example, (2 4) and (4 2) represent
different interfaces.

left_right_mater is similar to the above but may be used for materials that
are in separate columns (e.g. at a regrowth region or at the edges of an etched
mesa). Here again, the order of the materials is important, with the first
number representing the material on the left side of the interface.

• upper_lower_cosine is used to apply a cos() scaling to surface charges/traps
based on the shape of the interface. It can only be used in conjunction with
upper_lower_mater.

left_right_sine is similar but applies a sin() scaling when used in conjunc-
tion with left_right_mater.

• outer_recomb_only modifies the calculation method for the equivalent in-
terface length in Fig. 22.14 so that only the triangle edges exposed to the outer
surface count. This correction eliminates the corner effects mentioned in the
introduction to this command.

Examples

$ For a surface between 0.5 to 2 um, we define a Fermi level
$ pinning acceptor mid-gap trap
interface model=trap trap_type=acceptor &&

within_x=(0.5 2.) within_y=(0.4 0.6) &&
trap_density=1.e16 trap_level=0.8 &&
trap_life_n=1.e-7 trap_life_p=1.e-7 surftrap_num=1

$
$ We can use a surface recombination model here:
interface model=recomb &&

within_x=(0.5 2.) within_y=(0.4 0.6) &&
velocity_n=1.e6 velocity_p=1.e6
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22.382 interface_leakage

parameter data type values [defaults]
add_hopping char yes, [no]
conductance real [1.] (f/m (2D),f (3D))
conductance_hopping real [0.] (f/m (2D),f (3D))
trap_level_depth real [1.2] (eV)
hopping_distance real [1.] (µm, (µm)2)
trap_size_hopping real [1.e-3] (µm)
trap_level_ref real [1.2] (eV)
between_contacts intgx2 [1,2]

interface_leakage defines an additional current term which bypasses the normal
mesh and is added directly to the contacts. This current term may be used to
represent ad hoc leakage effects from interface traps.

Parameters

• add_hopping turns on a trap hopping model for the leakage current, with a
conductance defined by conductance_hopping.
The trap parameters for the hopping model have the same definition as in
trap_assisted_tunneling: trap_level_depth, hopping_distance, trap_size_hopping,
trap_level_ref.

• conductance determines the magnitude of the leakage current.

• between_contacts is a pair of contact numbers where the additional current
term is added.

22.383 interface_mesh

parameter data type values [defaults]
accuracy real [1e-4] (um)

interface_mesh determines the accuracy of statements which define an interface
at a particular location. Some fuzziness is required since the mesh points may not
lie at exactly the desired location.
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Examples

interface_mesh accuracy=1e-3
interface model=recomb y=1.0 &&

velocity_n=1.e6 velocity_p=1.e6

With the default accuracy setting, the software will look for an interface at y=1.0
µm, ± 1e-3 µm.

22.384 interface_trap_capacitor

parameter data type values [defaults]
surf_trap_density real [1.e16] m−2

effective_range real [1.] (µm(2D),µm2(3D))
dft_dv real [1.e-3] (V −1)
between_contacts intgx2 [1,2]

interface_trap_capacitor defines an additional current term which bypasses the
normal mesh and is added directly to the contacts. This current term may be used
to represent ad hoc capacitance effects from interface traps.

Parameters

• surf_trap_density is the density of surface trap states.

• effective_range defines the size of the virtual capacitor plates in this model.

• dft_dv describes the shift in trap occupancy due to the applied voltage.

• between_contacts is a pair of contact numbers used to determine the applied
voltage on the virtual capacitor and on which the additional current term is
added.

22.385 internal_z_xpoint

This statement is similar to internal_xpoint in that it specifies the position of
extra mesh points at heterojunctions. The difference is that it applies to stacked
mesh planes in a 3D simulation rather than to the interface between layers and
columns.
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22.386 integer_func

The command is identical to loop_integer.

22.387 internal_xpoint

parameter data type values [defaults]
all_interfaces char [yes],no
material_label1 char
material_label2 char
auto_mater_priority char [no],yes
turn_off_xp char [no],yes
xp_size real [0.0001] (µm)

The internal_xpoint statement is used to control the internal extra point spac-
ing which defines the sharpness of the heterojunctions. The default behavior of the
software is to always add an extra point slightly offset from the interface at polygon
and contact boundaries. This extra point is necessary because mesh points in the
Crosslight system can only be assigned a single material number so the actual bound-
ary between two materials (and the accompanying change in the material properties)
is mid-way between two neighboring mesh points. Without an extra point at inter-
faces, the position of the boundary and the thickness of certain layers may depend
on the regular mesh spacing and affect the results of the simulation.
See also the put_mesh statement which defines the regular mesh point spacing for
a given polygon edge. If the regular mesh spacing in certain regions is smaller than
the internal point spacing given in this command, the software may decide to omit
the superfluous extra point.
This statement may be used in both the .geo and .layer input files; it may be issued
more than once to define different extra point spacings for various interfaces inside
the device.

• all_interfaces flags whether all material interfaces are affected by this state-
ment.

• material_label1 and material_label2 are used by .layer only. If used, it
indicates that this statement is valid for the interface between these two materi-
als. The labels used here must have been previously defined in a layer_mater
declaration.
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• auto_mater_priority decides which material the extra interface point is as-
signed to. If this parameter is set to no, the material with the lowest material
number will be assigned the extra point. If this parameter is set to yes, the
extra point will be assigned to the semiconductor region whenever a semicon-
ductor/oxide interface is located.

• turn_off_xp may be use to deliberately turn off the creation of the extra
mesh point. This is not usually recommended unless the mesh spacing near
the interface is sufficiently small.

• xp_size is the extra point spacing described above.

22.388 isolate_complex

This statement is used in the .layer file to break a complex MQW region (cx-macro)
into smaller pieces. When used after a layer or column statement, the complex
region will immediately end and a new complex region will begin. This can be used
to add some localization to a thick complex MQW region, much like the indepen-
dent_mqw statement.
However, there is a significant difference:

• independent_mqw will assign a different active region number to each well
in a complex MQW region. The confined level search is done in each well but
the wave function is solved for the entire complex MQW region.

• st:isolate_complex will break up a complex MQW region into smaller pieces
with different active region numbers. The Schrödinger equation and confined
energy levels will be solved separately in each new complex region.

This statement has no parameters.

22.389 isolate_mesh_segment

parameter data type values [defaults]
add_z_space real (um)

This statement is used between z_structure statements to insert a void (un-
meshed) region between these z-segments. This offset also has the effect of cutting
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off mesh connections between these segments, much like the z_connect parameter
of 3d_solution_method.
The primary use of this statement is to treat multiple 2D devices within the same
TCAD simulation. For example, a external circuit simulation using minispice might
have more than one mixed-mode device. Since those devices are not necessarily
monolithically integrated on-chip, adding a spacer region is necessary to prevent
their mutual interaction at the FEM level. The spacer also helps clarify plots of the
various quantities by separating the devices, an added benefit compared to using
z_connect=no.

22.390 jdos_energy

parameter data type values [defaults]
data_file char
energy_range realx2
data_point intg [50]

jdos_energy plots the joint density of states (JDOS) versus energy. This statement
is only used in the gain preview module. It is otherwise identical to elec_dos_energy.

22.391 kane_para_f_bar

kane_para_f_well is an active layer macro parameter which defines Kane’s pa-
rameter F [61, Eq. 2.5] in a barrier region.
This parameter is only used in basic QW macros that contain parameters for both
the well and barrier regions; it is otherwise identical to kane_para_f_well

22.392 kane_para_f_well

kane_para_f_well is an active layer macro parameter which defines Kane’s pa-
rameter F [61, Eq. 2.5] in a quantum well region. This parameter defines the strength
of the interaction between the conduction band and valence band in the zincblende
k · p method; it is also included as a second-order correction to the dipole moments
when calculating the interband transition strength.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
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in section 22.456.

22.393 kp_model_setting

parameter data type values [defaults]
correction_for_8x8 char [no], yes
optical_matrix_para_ep real (eV)
all_material char [yes]
mater_label char
mater intg

kp_model_setting is used to control some of the internal model settings in the
zincblende k · p model.
Note that this command should only be used if the user desires more control over
internal values used inside the Hamiltonian: the default settings should be correct
but depend on correct calibration of macro parameters.

Parameters

• correction_for_8x8 determines whether a correction term is applied to
carrier mass and the Luttinger parameters when solving an 8x8 or block-
diagonalized 4x4 Hamiltonian. If kp_model_setting is not used or if this
parameter is equal to yes, a correction term is applied to account for the fact
that the conduction band states are explicitly solved. In terms of Löwdin per-
turbation theory, the correction occurs because we remove the perturbative
effects of the conduction band by moving it away from class B and into class
A: the existing perturbation term thus needs to be removed from the coupling
coefficients in the Hamiltonian.

When this correction is applied, the following modified parameters are used to
solve the Hamiltonian[66]:
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m0

mc

|modified = m0

mc

− Ep

Eg + 2∆
3

Eg + ∆
(22.31)

γ1|modified = γ1 − Ep

3Eg + ∆
(22.32)

γ2|modified = γ2 − 1
2

(
Ep

3Eg + ∆

)
(22.33)

γ3|modified = γ3 − 1
2

(
Ep

3Eg + ∆

)
(22.34)

where mc is the electron mass, γ1,2,3 are the Luttinger parameters, Eg is the
bandgap, ∆ is the spin-orbit coupling coefficient and Ep is the optical matrix
parameter.
Under this correction approach, the parameters defined in material macros
always refer to the experimental values that appear on the right-hand side of
the above equation. These parameters are also appropriate to use as-is for
lower-order k · p models which only take into account the coupling between
valence bands and where conduction band perturbation effects remain in class
B.
If kp_model_setting is used but correction_for_8x8=no, then no mod-
ification of the parameters occurs inside the software and the parameters from
the macro are used as-is to solve the Hamiltonian. Note that since these pa-
rameters are used as-is for simulations that include conduction band coupling,
their values would not be appropriate to use in lower-order k · p models.
We note that other authors[61] give a different correction term for the Luttinger
parameters:

γ1|modified = γ1 − Ep

3Eg

(22.35)

γ2|modified = γ2 − Ep

6Eg

(22.36)

γ3|modified = γ3 − Ep

6Eg

(22.37)

Therefore, disabling the automatic correction in the software and using the
macro parameters as-is enables users to experiment with these different correc-
tion methods.

• optical_matrix_para_ep, if used, manually defines the value of the opti-
cal matrix parameter (Ep) in the correction formulas above. To explain the
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importance of this parameter, let us recall the definition of Kane’s parameter
(F ) from perturbation theory [61, 66]:

F = 1
m0

Γ5∑
j

|< S|px|X >|2

Ec − Ev

(22.38)

so that the experimentally-measured conduction band mass is given by:

m0

mc

= 1 + 2F + Ep

Eg + 2∆
3

Eg + ∆
(22.39)

When applying the usual correction term for the 8x8 Hamiltonian, the pertur-
bation from the conduction band must be removed and the modified mass used
in the Hamiltonian is thus given by:

m0

mc

|modified = 1 + 2F (22.40)

As we can see from the above, F and Ep are not independent fitting coefficients:
this value is used to define the influence from both class A and class B states
when solving the 8x8 Hamiltonian. While tabulated data may provide both
values[61], for the sake of consistency only one of these parameters should be
used for the entire model.
If optical_matrix_para_ep is not defined or if kp_model_setting is
not used at all, the electron mass defined in the macro is assumed to be the
experimentally-measured mass and the value of F is taken from kane_para_f_well
and kane_para_f_bar. Ep is then obtained by inverting Eq.22.39.
If optical_matrix_para_ep is defined then this value is used for Ep and
both kane_para_f_well and kane_para_f_bar will be ignored.
We note that defining this value has no influence on whether or not the 8x8
correction is applied in the first place: it merely controls what value of Ep is
used for this correction.

• all_material instructs the software to use the same model settings for all
materials in the simulation: this should not be used if this command is used
to define the value of Ep.

• mater applies this command to a single material number; if labels have been
defined for this material, mater_label may be used instead.

Examples

kp_model_setting correction_for_8x8=no optical_matrix_para_ep=22.4 &&
mater=1 all_material=no
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22.394 lastip_compact_model

parameter data type values [defaults]
file char [crosslight_compact.txt]
polarization char [te], tm
active_region_width real [10] (µm)

lastip_compact_model is used to export device-scale simulation results from
LASTIP as a simplified compact model which may be used in other software tools.
This approach is often used to represent a Fabry-Perot laser diode in system-scale
simulations which contain multiple photonic devices.
The format of the compact model may be obtained by simply running this command
and examining the output file (text format). This file contains basic information
about the laser cavity (length, mirror reflectivity, etc...), important simulation inputs
(non-linear gain coefficient, active region width, etc...) and tabulated values for other
key variables (material gain and spontaneous emission spectra, confinement factor,
etc...).
The LASTIP compact model was developed for use in tools by Lumerical. Other
software vendors interested in collaborating on this topic are invited to contact
Crosslight.

Parameters

• file is the output filename used for exporting the compact model.

• polarization determines whether TE or TM data is exported in the compact
model.

• active_region_width is the ridge width of the waveguide.

22.395 lateral_mode3d

parameter data type values [defaults]
sort_modes char yes,[no]
mode_num intg [1]

https://www.lumerical.com/
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lateral_mode3d is used to enable the multi-lateral mode capability in PICS3D:
each lateral mode is propagated so that it has its own set of longitudinal modes. Note
that the mode solver itself must also be configured to find multiple lateral modes.

Parameters

• sort_modes determines the order in which lateral modes are used for PICS3D.
If yes, the lateral mode with highest emission power will always be assigned as
mode number one; otherwise, the lateral mode order in the 3D model will be
the same as that in 2D wave equation solutions.

• mode_num is the total number of lateral modes to be simulated in PICS3D.

Examples

lateral_mode3d sort_modes=no mode_num=2

22.396 lattice_bar

This statement is used to define the unstrained lattice constant a (in Å) in the barrier
region of a wurtzite active structure. See also lattice_c_bar.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.397 lattice_base

This statement defines the lattice constant a (in Å) on which a bulk (passive) wurtzite
region is grown (e.g. strained to match a GaN buffer layer). It is used by the software
as a reference lattice with which to compute the as-grown strain in the layer. See
also lattice_c_base.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.
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22.398 lattice_bulk

This statement is used to define the unstrained lattice constant a (in Å) in bulk
(passive) wurtzite regions. See also lattice_c_bulk.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.399 lattice_c_base

This statement defines the lattice constant c (in Å) on which a bulk (passive) wurtzite
region is grown (e.g. strained to match a GaN buffer layer). It is used by the software
as a reference lattice with which to compute the as-grown strain in the layer. See
also lattice_base.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.400 lattice_c_bar

This statement is used to define the unstrained lattice constant c (in Å) in the barrier
region of a wurtzite active structure. See also lattice_bar.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.401 lattice_c_bulk

This statement is used to define the unstrained lattice constant c (in Å) of a bulk
(passive) wurtzite region. See also lattice_bulk.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.
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22.402 lattice_c_constant

This statement defines the lattice constant c (in Å) on which a wurtzite active region
is grown (e.g. strained to match a GaN buffer layer). It is used by the software as
a reference lattice with which to compute the as-grown strain in the layer. See also
lattice_constant.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.403 lattice_c_well

This statement is used to define the unstrained lattice constant c (in Å) in the well
region of a wurtzite active structure. See also lattice_well.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.404 lattice_constant

This statement defines the reference lattice constant a (in Å) on which an active
region is grown. It also serves as a reference lattice constant to fix the size of the
Brillouin zone for all calculations done in momentum (k) space.
For wurtzite materials, this value is often set to the lattice constant of a GaN buffer
layer; this value is then used by the software to compute the as-grown strain in the
layer. See also lattice_c_constant which defines the lattice constant along the c
axis.
Note that materials grown on AlN for UV applications should not use the value of
GaN as this will not produce the correct strain.
For zinclende materials, the strain is explicitly defined using the strain_well and
strain_bar. This statement therefore does not determine the strain but must still
be specified for other reasons.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.
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22.405 lattice_well

This statement is used to define the unstrained lattice constant a (in Å) in the well
region of a wurtzite active structure. See also lattice_c_well.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.406 lax_mass_bar

lax_mass_bar is similar to tax_mass_bar but defines the longitudinal mass
parallel to the symmetry axis rather than the transverse mass.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.407 lax_mass_well

lax_mass_well is identical to lax_mass_bar but defines the longitudinal/parallel
mass in the well region rather than in the barrier.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.
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22.408 layer

parameter data type values [defaults]
vcsel_type char void
section_tag char void
add_leftmesh char void
d real [0.5]
r real [1.]
angle real [0.]
wj (j=1,2,...,30) real
lower_wj real
upper_wj real
n_dopingj real
p_dopingj real
gaussian_tail real [0.001] (µm)
shift_center real [0.] (fraction)
grading_fromj real
grading_anglej real [90.](degree)
z_gaussian_tail real [0.0] (µm)
n intg [5]
mj intg [1]
use_dbr_period intg [0]

layer defines the dimensions and mesh parameters of a material layer in the .layer
file.
Please note that this statement can only be used to define a material with either
n-type or p-type of doping, not both. To define a material with both types (that is,
compensating doping), the statement layer_mater should be used. Unlike layer,
layer_mater can define both types of doping at the same time.

Parameters

• vcsel_type is used to label the present layer as part of a VCSEL longitudinal
section. Please note that this is only a label to be defined by the user. It
works together with the same parameter in the vcsel_section statement.
section_tag also serves the same purpose.

• add_leftmesh is used to add mesh-generating commands to the left side of
polygons when generating the .geo file. This may be necessary in cases where
there is a gap in the structure and mesh lines do not propagate as they should.
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• d is the thickness of the layer.

• r is the ratio which determines mesh spacing characteristics. See Fig. 22.22 for
details.
shift_center is a related parameter which applies for negative mesh ratios
and symmetric mesh distributions. This parameter is used to adjust the center
of the distribution.

• angle is used in conjunction with upper_w# and lower_w# to specify the
shape of the polygon formed by a column and layer.

– angle is defined as the angle between the y-axis (left side of the column)
and the edge of the material (left side of the polygon), in degrees.

– lower_w# gives the width of the lower edge of a polygon in this layer,
where # is the column number.

– upper_w# gives the width of the upper edge of a polygon in this layer,
where # is the identification number of its column.

• n_doping# and p_doping# define the n-type or p-type doping, respec-
tively, in column #. This will generate a doping profile in the .doping file
which can later be included in the main simulation file (.sol).
Note that only one type of dopant can be used in a given layer: use layer_mater
when both types of dopant need to be defined. Another important note is that
the doping must be specified in SI units (1/m3) rather than the frequently used
1/cm3.

• gaussian_tail is the Gaussian tail (standard deviation) of the doping profile
defined by n_doping# or p_doping#.

• grading_fromj and grading_anglej are used to define linear grading pro-
files in column j. The maximum value of the doping in this layer is given by
n_doping# or p_doping#.
grading_fromj is the relative starting value (e.g. 0.01) of the doping profile.
grading_anglej is the direction of variation of the doping: its value is in
degrees and the reference direction (angle=0) is the +x direction.

• n is the number of mesh lines to be placed in this layer.

• m# can be used to assign a certain material number to the polygon formed by
this layer and column #. This parameter is there for historical reasons only.
For any new simulations, it is recommended to let the software assign material
numbers automatically based on the macro name and composition parameters
in layer_mater.
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• use_dbr_period overrides the thickness parameter d and instead ensures
that the layer thickness is equal to an integer multiple (the value of which is
given in this parameter) of the previously-defined optical DBR period thickness.
This parameter must be used in conjunction with the vertical_dbr_layer_mater
statement to define the individual components of the DBR embedded in this
layer.
For DBRs that consist of a fractional number of pairs (e.g. 30.5 pairs of
AlAs/GaAs), the layer should be split with the leftover fraction of the DBR as
a separate layer with its own single-layer optical section.

• z_gaussian_tail is used to extend the xy doping defined in this layer along
the z-direction. The value defined here corresponds to the z_stddev setting
of the doping statement once the layer file is processed.

Examples

layer d=0.29 n=5 r=1.

22.409 layer_conf

parameter data type values [defaults]
layer_xrange realx2 [0. 5.] (µm)
layer_yrange realx2 [2. 2.1] (µm)
mode_index intg [1]

layer_conf is used as a post-processing statement to calculate the optical confine-
ment factor for a rectangular region (not necessarily the active region).

• layer_xrange and layer_yrange are used to specify the rectangular cross
section on the xy-plane (lateral) for which the optical confinement factor is to
be calculated.

• mode_index is the lateral mode index. Mode 1 is the fundamental mode;
mode 2 is the 2nd order mode, etc..

Example:

layer_conf layer_xrange=(0. 1.5) layer_yrange(1.7 1.85)
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22.410 layer_height_ref

parameter data type values [defaults]
location char [left], middle, right
delta_x_from_left real (um)
delta_x_from_right real (um)

layer_height_ref is used in conjunction with modify_layer_height to define a
reference position on the x-axis where the height is not modified.
This command’s parameters are identical to those of column_position and posi-
tions are defined relative to the last column command that was issued.

22.411 layer_input_convention

parameter data type values [defaults]
layer_unit char [absolute], relative
ignore_active_thickness char yes,[no]
ref_wavelength real [1.] (µm)
ref_temperature real [300.] (K)
set_active_thickness real (µm)
absolute_scale real 1.

This parameter is used in the .layer file to change default behaviors during processing.

Parameters

• layer_unit switches between absolute units for the layer thicknesses and a
value relative to the wavelength.

• ref_wavelength is the reference wavelength when using relative values.

• ref_temperature is the temperature at which relative values are calculated.

• ignore_active_thickness instructs layer.exe not to use the layer thickness as
an input to active region declarations; the thickness defined in set_active_thickness
is used instead. This may be used in devices such as nanowires where quantum
confinement occurs laterally rather than vertically.
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• absolute_scale scales all thicknesses uniformly when processing the layer file.
Unlike the layer_unit setting, the refractive index of the material in the .layer
is ignored when scaling the thickness.

Examples

$ DBR average index=3.2 emission wavelength=0.834
$ For convenience, define reference wavelength=0.834/3.2=0.26

layer_input_convention layer_unit=relative ref_wavelength=0.26
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22.412 layer_mater

parameter data type values [defaults]
macro_name char [void]
active_macro char [void]
solve_wave char [yes] (no)
material_label char [void]
contact_type char [ohmic]
n_impurity char [void]
p_impurity char [void]
zdir_grading char [no]
mater_lib char
var_symbolk(k=1..9) char
avar_symbolk(k=1..9) char
vari(i=1..9) real
grade_from real
grade_to real
avari(i=1..9) real
n_doping real
p_doping real
agrade_from real
agrade_to real
barrier real
work_function real
n_level real (eV)
p_level real (eV)
thick_zdir_grading real (um)
column_num intg [1]
grade_var intg [0]
n_newdoping_index intg
p_newdoping_index intg
agrade_var intg [0]
contact_num intg [0]

layer_mater is used in the .layer pre-processing to define the material in a par-
ticular layer and column. It can also be used to define the doping in that region, a
capability which is partially shared with the layer statement. However, geometric
and mesh properties for a given layer are solely the purview of the layer statement.
When used, layer_mater allows the layer.exe program to detect changes in material
composition and automatically assign material numbers to the various polygons. It
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also generates a .mater file with material macro loading statements that can be used
in the full .sol simulation or the .gain preview.

Parameters

• macro_name is the name of the bulk/passive macro for this material. This
macro contains all information related to the electrical transport properties of
the material and any other useful information which is not related to optical
gain calculations.
The online help or Wizard can list available macro names in the default macros
in the installation but custom macro names can be used provided the corre-
sponding macro is later defined and included in the simulation with use_macrofile.
A few special macro names deserve a bit more explanation:

– void defines a region without any mesh and can be used to create columns
with different numbers of layers. This should not be confused with air or
vacuum macros which define dielectric materials and where mesh points
will be assigned. This can have a strong effect on optical mode solutions
as it changes the position of the wave boundary conditions.

– contact defines the polygon as an equipotential boundary region. This can
be used in place of top_contact and other similar commands in atypical
situations where the contact is not located at the outer edge of the mesh.
It is also used in 3D situations when stacking mesh planes and the contact
area can be defined as an in-plane polygon.
As with all contact declaration, it is also necessary to define the con-
tact_type (ohmic or Schottky) and contact number (contact_num).
For Schottky contacts, the electron barrier height (barrier) or work func-
tion (work_function) must also be defined. It is also recommended to
define large doping concentrations in contact layers to align the quasi-
Fermi levels with neighboring polygons more easily.

• active_macro is the same as macro_name but refers to the active macros
that define the parameters for optical gain calculations. Active macros are
therefore designed so that they can used in the .gain preview mode and are
thus completely independent from the passive macros. This also means that
quantum well active macros define parameters for both the quantum well and
the barrier layers.
Also note that by default, active macro settings will almost always override
passive macro settings for the same parameter (e.g. bandgap). This means
that a quantum well active macro will likely override parameters from the bulk
macro in both the quantum well and barrier layers.



22.412 layer_mater 781

• mater_lib is the same as macro_name and active_macro but it as-
signs material properties to this layer using the combined “library” method
of Sec. 3.5. Using this parameter will generate a material_lib statement
when the .layer file is processed.

• solve_wave is used to exclude a particular region from the optical mode
calculations. This will affect the settings of the wave_boundary statement
that is automatically generated by layer.exe.

• material_label is a user-defined label that can be used to refer to this mate-
rial in other statements.

• var_symbolk,k=1,...,9 are the symbolic variable names used as function ar-
guments in the bulk material macro. With the exception of a few reserved
keywords such as temper, the symbols defined here must exactly match those
in the macro declaration.
Note that all default macros now use the free-from style and thus depend on
the symbol declarations to function properly. However, the older fixed-form
style can still be used with older macros. In this case, the symbol declarations
may be omitted and the software will assume that the order of the variables in
layer_mater matches exactly that of the macro declaration.
A similar set of parameters, avar_symbolk, define the symbols for the active
macro. The same rules for free-form and fixed-form macros apply.

• vari,(i=1,2,...9) defines a fixed value for the ith symbol (free-form style) or
function parameter (fixed-form style) in the passive macro. A similar set of
parameters, avari, define the values for the active macro.

• grade_from and grade_to are the compositions values at the bottom and
top of the layer, respectively, for a linearly graded region. These parame-
ters only affect the passive macro parameter or symbol number specified in
grade_var. Since the composition varies, the corresponding vari declaration
should be omitted.
Note that it is not currently possible to vary two or more parameters at the
same time. However, users may rewrite macros so that all composition param-
eters change according to a single control variable (e.g. z = 1 − x− y).
A similar set of parameters are used to grade active regions: agrade_from,
agrade_to and agrade_var.

• n_doping and p_doping are the doping concentration in this layer/column
polygon. This setting may conflict with the doping definition in the layer
statement so doping should be define in either one statement or the other but
not both. Note that unlike layer, both n and p doping can be defined in the
same polygon.
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Additional doping parameters can also be set here:

– n_impurity and p_impurity define the type of dopant.
– n_level and p_level define the activation energy of the dopant.
– n_newdoping_index and p_newdoping_index are used to identify

a particular set of doping regions so that the doping concentration can be
during the simulation.

All these settings are explained in greater detail in the doping statement,
which is generated automatically by layer.exe.

• column_num is the column number on which the present statement operates.

• zdir_grading is used to indicate that the grading defined in this layer is along
the z direction. This is mostly used when the .layer file serves as an input to
3D mesh generation GUI tools. The thickness of the layer should be indicated
by thick_zdir_grading in this case since size information from layer does
not carry over easily.

Examples

layer_mater macro_name=algaas var1=0.71 column_num=1
layer d=1.35 n=9 r=0.8 n_doping1=1.e24

The above two statements are used to define a layer of AlGaAs (Al=0.71)in column
1 with thickness 1.35 µm and n-type doping of 1 × 1024 1/m3.

layer_mater macro_name=algaas grade_var=1 &&
grade_from=0.71 grade_to=0.33 column_num=1

layer d=0.1462 n=6 r=0.8

The above two statements are used to define a graded AlGaAs with Al varying from
0.71 to 0.33 over a thickness of 0.1462 µm.

22.413 layer_position

parameter data type values [defaults]
label char
hline location char [top]
hline delta_y_from_bottom real [-9999.] (µm)
delta_y_from_top real [-9999.] (µm)
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This statement is used to mark a specific y coordinate for later use. This is use-
ful to automatically track changes to a device structure without having to redefine
coordinates in other commands.
All positions defined by this command are relative to the preceding layer statement.

Parameters

• label defines a variable name that can be reused in other commands to refer
to this position.

• location specifies a specific part of the layer at which the label is to applied
(bottom, top or middle). More control is available by using the “delta” param-
eters below.

• delta_y_from_bottom specifies a point measured from the bottom of the
layer. Positive values point towards the middle of the layer.

• delta_y_from_top specifies a point measured from the top of the layer.
Positive values point towards the middle of the layer.

Examples

layer_mater macro_name=gan column_num=1 n_doping=1.e+24
layer d=0.06 n=5 r=1.
$ n-GaN 1um
layer_mater macro_name=gan column_num=1 n_doping=1.e+24
layer d=1. n=10 r=0.8

$ GaN/AlGaN SL, effective medium
layer_mater macro_name=algan column_num=1 var_symbol1=x var1=0.08 &&

n_doping=1.e+24
layer d=0.28875 n=7 r=1.

layer_position label=nsl_start location=bottom

This defines a position named “nsl_start” at y = 1.06 when the .layer file is pro-
cessed.
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22.414 layer_type

parameter data type values [defaults]
type char (see list)
doped_organic char [no]
ox_use_extern_spec char [yes]
ox_use_exciton_diff char [yes]
dox_triplet char [no]
doxk(k>=2)_triplet char [no]
valley_gamma intg [1]
valley_l intg [4]
valley_hh intg [1]
valley_lh intg [1]
valley_ch intg [1]
mater intg [1]
ox_max_phonon intg [5]
ox_phonon_cloud intg [4]
ox_level_req intg [80]
dox_max_phonon intg [5]
dox_phonon_cloud intg [4]
dox_level_req intg [80]

layer_type is used in active layer macros to denote some general properties. In
general, this statement should only be used by the end-user to design new material
macros.

Parameters

• type activates certain physical models depending on the kind of active region
being modeled in the active macro. It takes one of the following values:

– bulk: thick active region with no confining potential.
– unstrained_well: single QW with symmetric barriers and no strain effects.
– strained_well: single QW with symmetric barriers and possibility of strain

effects depending on composition.
– complex: complex MQW region without strain effects.
– strained_complex: complex MQW region with strain effects.
– wurtzite_well: single QW with strain effects in the wurtzite material

system.



22.414 layer_type 785

– wurtzite_complex: complex MQW region with strain effects in the wurtzite
material system.

– mos_complex: complex MQW region used in Quantum-MOS applica-
tions.

– general_cx_strain: general-purpose complex MQW region with strain
effects. Used when more flexibility in the parameters is required.

– general_bulk: general-purpose bulk active region. Used when more flexi-
bility in the parameters is required.

– bulk_organic: bulk organic semiconductor such as those used in OLEDs.

Refer to Sec. 8.1 for a comparison for the various QW models in Crosslight.

• doped_organic is to an organic material doped with another polymer that
also contributes to the optical properties.

• ox_use_extern_spec indicates whether an experimental or measured EL
spectrum is used instead of Crosslight’s internal EL model for organic light-
emitting regions.

• ox_use_exciton_diff indicates whether exciton diffusion model parameters
are used in the present macro.

• dox_triplet defines whether a triplet-harvesting dopant is present.

• doxk_triplet, k=2..5 defines the presence of additional triple-harvesting
dopants

• valley_gamma is the number of band valley of the Gamma conduction band.

• valley_l is the number of band valleys of the L conduction band.

• valley_hh is the number of band valleys of the HH valence band.

• valley_lh is the number of band valleys of the LH valence band.

• valley_ch is the number of band valleys of the CH valence band.

• mater is the internal material number. This should be omitted when defining
a macro but must be used when overriding macro parameters in the .sol file.

• ox_max_phonon is the maximum phonon occupation number at a lattice
site in the organic crystal. It is part of the internal EL model for organic
semiconductors.
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• ox_phonon_cloud is the number of neighboring lattice sites to be consid-
ered for the construction of a phonon cloud. It is part of the internal EL model
for organic semiconductors.
A phonon cloud is defined as a set of localized excited lattice vibration states to
interact with an exciton state. In the Frenkel exciton theory, a larger phonon
cloud tends to give more accurate description of a realistic exciton state.

• ox_level_req is the number of energy levels requested when solving the
exciton-phonon Hamiltonian. It is part of the internal EL model for organic
semiconductors.

• dox_max_phonon is the maximum phonon occupation number at a dopant
lattice site in the organic crystal. It is part of the internal EL model for organic
semiconductors.

• dox_phonon_cloud is similar to ox_phonon_cloud except it is for the
dopant material.

• dox_level_req is similar to dox_level_req except it is for the dopant
material.

Examples

layer_type type=strained_well valley_gamma=1 valley_l=4 &&
valley_hh=1 valley_lh=1

22.415 layers_for_semicrafter

parameter data type values [defaults]
plane_size_x real [2.0] (um)
plane_size_y real [2.0] (um)
plane_start_x real [0.0] (um)
plane_start_y real [.0] (um)
plane_mesh_x intg [30]
plane_mesh_y intg [30]
column_num intg [1]

layers_for_semicrafter is a .layer pre-processing statement used to generate a
set of CSUPREM mesh generation commands. It is meant to be used as quick
alternative to the SemiCrafter GUI for simple rectangular shapes.
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When used, this statement changes the normal operation of the .layer file. Instead
of defining the structure of an xy mesh plane, the layers now define the vertical
stacking in the z direction with each layer corresponding to a z-segment. The shape
of the structure in the xy plane (i.e. the top view) is a rectangle defined by using
this statement.
See also sym_polygon_for_semicrafter for a more complex version of this com-
mand which allows symmetric polygons in the xy plane.

Parameters

• plane_start_x and plane_start_y determine the position of the lower left
corner of the plane/polygon in the xy plane.

• plane_size_x and plane_size_y determine the extent of the plane/polygon
in the xy plane.

• plane_mesh_x and plane_mesh_y determine the number of mesh points
in the xy plane.

• column_num is the column number of the .layer file which is used to deter-
mine the z-segments.

Examples

layers_for_semicrafter plane_size_x=300 plane_size_y=300 &&
plane_mesh_x=10 plane_mesh_y=10

22.416 lband_bar

parameter data type values [defaults]
(see) material_par

The material statement lband_bar is an active layer macro statement used to define
the L-band energy with respect to the Gamma band (eV) in the quantum barrier.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.



788 COMMAND SYNTAX

22.417 lband_well

parameter data type values [defaults]
(see) material_par

The material statement lband_well is an active layer macro statement used to
define the L-band energy with respect to the Gamma band (eV) in the quantum
well.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.418 led_control

parameter data type values [defaults]
efficiency_model char [void] xy, y uniform
spectrum_all_bias char yes [no]
spon_all_points char [no]
use_intern_refl char [no]
photon_recycle char [no], yes
efficiency real [0.1]
wavelength real (µm)
delta_wavel real [0.1]
refl_x1 real [0.3 ]
refl_x2 real [0.3 ]
refl_y1 real [0.3 ]
refl_y2 real [0.3 ]
group_index real [3.8]
led_xrange realx2 (µm)
led_yrange realx2 (µm)
spectrum_num intg [35]
x_segment intg [30]

The statement led_control is used to control the light emitting diode modeling with
the assumption of simple cubic waveguide structure. Such a simple structure will
allow some reasonable estimate of light power emission given the basic material and
current injection conditions. Please note that this statement works with init_wave
to defined a Fabry-Perot cavity.
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For a more realistic power extraction model for devices different than the idea cubic
waveguide structure, the ray tracing model in combination with the led_simple
should be preferred over led_control.

Parameters

• efficiency_model is used to compute power extraction efficiency. As we have
described in Sec. 14.2, the power emission depends on the available optical
mode density distribution in the directions perpendicular to the direction of
emission. Thus, the power emission depends on if the device is designed to
confine optical modes in a certain direction.

If this parameter takes void, the external emission efficiency is not computed
and is set to the value of the efficiency parameter of this statement.

If efficiency_model=xy, the software assumes a waveguide structure with
well confined lateral / transverse modes as if we are treating an edge type
of semconductor laser. For emission in the z-direction, the lateral modes are
computed in the same way as for a semiconducor laser (i.e., in combination
with multimode statement). For emission in the x-direction we assume 1D
mode confinement in y-direction. For emission in the y-direction, no mode
confinement is assumed.

If efficiency_model=y, the software assumes that there is 1D single mode
confinement in y-direction for emission in both z- and z-directions. Again, no
mode confinement is assume for emission in y-direction.

Finally, if the LED device is not designed to confine modes in any direction,
we set efficiency_model=uniform. Only plane waves are considered when
extraction efficiency is computed for this model.

• spon_all_points indicates whether all mesh points are used to evaluate the
spontaneous emission spectrum. Computation time is longer if all points are
used.

• use_intern_refl is used to turn on the internal reflection model for the 1-
dimensional (or broad-area) emission calculation. Using this model results in
an extraction efficiency lower than realistic values while not using it tends to
overestimate the power extraction. Due to advanced power extraction geo-
metrical design for modern LED’s, the measured power extraction is closer to
the broad-area emission model without internal reflection. Versions of APSYS
before to Sept. 2004 used the internal reflection model as default.

• photon_recycle is used to enable the generation term due to the internal
photon density. In thermal simulations, this setting allows heat to be generated



790 COMMAND SYNTAX

by optical absorption. However, please note that APSYS does not posses a
photon rate equation: it is expected that LEDs operate below transparency.

• spectrum_all_bias indicates whether spontaneous emission spectrum is com-
puted at all biases or only at data set print points.

• wavelength is the estimated peak emission wavelength in microns.

• delta_wavel is the wavelength range to cover the whole emission spectrum.
The total emission power is the integration of the spectrum over this wavelength
range.

• refl_x1 is the power reflectivity of the LED cavity on the left side in the
x-direction.

• refl_x2 is the power reflectivity of the LED cavity on the right side in the
x-direction.

• refl_y1 is the power reflectivity of the LED cavity on the bottom side in the
y-direction.

• refl_y2 is the power reflectivity of the LED cavity on the top side in the
y-direction.

• group_index is the group index of the traveling waves of the LED.

• led_xrange is the range in the x-direction that we consider to be a Fabry-
Perot cavity. If not specified, the program will search the device geometry and
decide the range.

• led_yrange is the range in the y-direction that we consider to be a Fabry-
Perot cavity. If not specified, the program will search the device geometry and
decide the range.

• spectrum_num is the number of points used to evaluate the spontaneous
emission spectrum.

• x_segment is the number of segments in the x-direction that the program
is to sample the material properties and carrier densities for emission in the x
and y directions.

Examples

led_control wavelength=0.437 efficiency_model=uniform &&
refl_y1=0.8 refl_y2=0.4 delta_wavel=0.03 &&
led_xrange=(0 400) group_index=2.9
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22.419 led_eff_distr

parameter data type values [defaults]
data_file char
side char [top]bottom

led_eff_distr plots the LED external efficiency distribution along the x-direction.

• data_file is the file to which the graphic data is written in ASCII format.

• side indicates top or bottom side the efficiency is to be plotted.

Example(s)

led_eff_distr side=top

22.420 led_farfield

parameter data type values [defaults]
data_file char
side char [top]bottom

led_eff_distr plots the relative far field intensity distribution.

• data_file is the file to which the graphic data is written in ASCII format.

• side indicates top or bottom side the efficiency is to be plotted.

Example(s)

led_farfield side=top
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22.421 led_simple

The statement led_simple is a simplified version of led_control which provides
the bare minimum parameters needed to compute the internal quantum efficiency
(IQE) of a LED. All its parameters are explained in the latter statement.
Despite its simplicity, this model is recommended over led_control because it can
be combined with the ray tracing post-processing to obtain a better estimate of the
power extraction from the device.

22.422 led_spectrum

parameter data type values [defaults]
data_file char
total_amount char [yes] no
mode char [mix],te,tm
scale real [1.]
scale_wavelength real [1.]

led_spectrum is a post-processing statement that plots the LED spontaneous emis-
sion spectrum.

Parameters

• data_file can be used to export the spectrum data to a text file

• total_amount indicates whether the total amount (integrated amount) be
plotted.

• mode determines whether the TE, TM or a combined (default) emission spec-
trum is being plotted.

• scale is the scale of the vertical axis.

• scale_wavelength is the scale of the horizontal axis.
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22.423 led_top_coating

parameter data type values [defaults]
number_of_layers intg [1]
real_index_led real [3.5]
real_index_out real [1.5]
thicknessj (j=1...9) real [0.1] (µm)
real_indexj (j=1...9) real [2.2]
imag_indexj (j=1...9) real [0.]

led_top_coating is used as part of the led_control model and specifies an optical
coating on the top of LED. Such a coating is usually applied to improve the extraction
efficiency in the device.
Note that use of this statement overrides the reflection coefficient refl_y2 in led_control.
Instead, a thin-film transfer matrix method (TMM) is used to compute the reflec-
tivity coefficient.

Parameters

• number_of_layers is an actual number of layers in the coating. The coating
can contain up to 9 different layers.

• real_index_led is the real-valued refractive index of the LED material for
the purposes of the TMM.

• real_index_out is the real-valued refractive index of the outer medium. for
the purposes of the TMM.

• thicknessj is the thickness of the j-th layer from optical coating.

• real_indexj is the real part of the refractive index of the j-th layer in the
optical coating.

• imag_indexj is the imaginary part of the refractive index of the j-th layer in
the optical coating.

Examples

led_top_coating number_of_layers=2 real_index_led=3.5 real_index_out=1.5 &&
thickness1=0.15 real_index1=2.05 imag_index1=0. thickness2=0.14 &&
real_index2=2.25 imag_index2=0.002
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22.424 left_contact

left_contact is the same as top_contact except that the contact is placed on the
left side.
One other difference is that the column number is irrelevant. The location of the
contact is given by the last layer statement before the contact definition.

22.425 lifetime_model

parameter data type values [defaults]
dependence char [current], field
mater_label char
ref_elec_current real [1.e5](A/m2)
ref_hole_current real [1.e5](A/m2)
ref_tunnel_field real [1.e7] (V/m)
mater intg

lifetime_model modifies the SRH lifetime of the carriers based on the applied bias.

Parameters

• dependence switches between current and field control of the SRH lifetime.

– If current, the capture cross-section is modified as 1 + I
Iref

: more current
increases the capture coefficient and reduces the SRH lifetime.

– If voltage, the capture cross-section is modified as e
F −F0
Fref where F0 is the

local field value at equilibrium. Therefore a larger applied field reduces
the SRH lifetime.

• ref_elec_current and ref_hole_current are the values of Iref for the elec-
trons and holes, respectively.

• ref_tunnel_field is the value of Fref .

• mater is the number of the material affected by this command. If a label has
previously been defined as an alias, mater_label may be used instead.
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Examples

lifetime_model ref_elec_current=1.e5 ref_hole_current=1.e5 &&
dependence=current mater=5

would define a current dependent lifetime for both electrons and holes.

22.426 lifetime_n

The material statements lifetime_n and lifetime_p define the minority life time
(in seconds) for carriers (_n for electrons and _p for holes) in the SRH recombination
model. The basic mechanism is electron or hole capture by deep level traps. This
statement is therefore related to other trap statements. The relation between lifetime
and other trap quantities are written as:

1
lifetime

= trap density × thermal velocity × capture cross section (22.41)

If the user does not specify a trap distribution but only gives a minority carrier
lifetime, then a uniform distribution of donor mid-gap traps with density of 1010

m−3 is assumed. The carrier capture cross section is given by the above formula.
However, if the user specifies the capture cross section explicitly with trap_ncap_i
or trap_pcap_i, then the minority carrier lifetime is overridden.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.427 lifetime_p

See lifetime_n.

22.428 light_current

parameter data type values [defaults]
data_file char [void]
use_macro char [no]
wavel_range realx2
conc_range realx2 [(1.e23 1.e24)] (m−3)
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pn_ratio real [1.]
conc_log_scale char [no]
init_wavel real [0.83] (µm)
length real [300.] (µm)
mirror_ref real [0.3]
clad_bot realx3 [1. 3.0 500.]
guide_bot realx3 [.1 3.2 500.]
active_layer realx3 [.007 3.33 500.]
guide_top realx3 [.1 3.2 500.]
clad_top realx3 [1. 3.0 500.]
front_back realx2
delta_index real [0.3]
av_index real [3.3]
auger_n real [2.e-42] (m6/s)
auger_p real [2.e-42] (m6/s)
life_n real [1.e-6] (s)
life_p real [1.e-6] (s)
spon_out real [1.e-4]
width real [5.] (µm)
scale_lit real [1.]
scale_curr real [1.]
max_curr real 0.5 (A)
boundary_type intgx4 [1 1 1 1]
well_num intg [1]
data_point intg [30]
mesh_point intg [80]

The statement light_current is a gain preview (.gain) command which allows the
user to solve a simplified laser diode model and obtain the light-current characteris-
tics. The basic recombination model is expressed as:

R = R_spon+R_auger + n/tau_n+ p/tau_p

where the spontaneous emission term is given by the quantum well model.

Parameters

• data_file is a text file use to save the output data
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• use_macro instructs the software to look for model parameters inside avail-
able material macros files.

• wavel_range is a wavelength search range used to find the gain peak for laser
operation. For a device which locks the emission wavelength (e.g. a DFB/DBR
laser or VCSEL), this range should be fixed to a single fixed wavelength.

• conc_range is the electron density range in the well. The hole density is
given by this range and the p

n
ratio defined in pn_ratio.

• conc_log_scale spaces the electron density of conc_range on a logarithmic
rather than linear scale.

• init_wavel is an initial guess of the emission wavelength for the optical
eigenmode solver.

• length is the laser cavity length.

• mirror_ref is the mirror reflectivity in a Fabry-Perot cavity. For a DFB/DBR
laser or for a VCSEL, this value should be set as an equivalent value that
represents the feedback strength from the distributed mirror.
For asymmetric facets (e.g. HR/AR configurations), front_back should be
used to override mirror_ref.

• clad_bot is a triplet pair that defines the thickness (µm), refractive index
and material loss (m−1) of the bottom cladding layer.
Similar triplets are defined for other layers in the simplified structure solved
by this command:

– guide_bot is used for the bottom guiding layer (SCH).
– active_layer is used for the active layer (MQW region). In this simplified

model, the entire MQW region is considered as a block for the optical
mode solver.

– guide_top is used for the top guiding layer (SCH).
– clad_top is used for the top cladding layer.

• delta_index and boundary_type are used to set up the optical solver.
Please refer to the definition of these terms inside the main init_wave state-
ment.

• av_index is the estimated average refractive index.

• auger_n and auger_p are the Auger coefficients C_n and C_p, respec-
tively.
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•

• life_n and life_p are the minority carrier lifetimes for the electrons and
holes, respectively.

• spon_out is the fraction of the isotropic spontaneous emission that couples
into the optical propagating mode; it is often written as β.

• width is the width of the cavity.

• scale_lit and scale_curr are scaling factors for the light and current, re-
spectively; they can be used when modeling half of a laser device to exploit
left/right symmetry.

• max_curr is the maximum injection current.

• well_num is the total number of quantum wells in the active region.

• data_point is the number of data points to be used in the current versus
concentration plot.

• mesh_point is the number of mesh points used in this simplified laser model.
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22.429 light_power

parameter data type values [defaults]
spectrum_file char [void]
light_dir char [top] left right bottom
waveguide_mode char [no] yes
gen_datafile char [void]
gen_datatype char [sorted] random
const_index char [no]
fresnel_reflections char [yes] no
slit_diffr char [no]
ox_pump_only char [no] yes
std_wave char [yes] no
old_tmm char [no] yes
spectrum_field_file char [void] myfile
force_update char [no]
import_gen_rate char [no]
optical_generation real [0.] (m−3)/s
penetration_depth real [1.] (µm)
incident_power real [0.] (W/m2) or W
wavelength real [1.] (µm)
profile realx4 [-1.e8 1.e8 1. 1.] (µm)
fraction_mode2 real [0.]
fraction_mode3 real [0.]
fraction_mode4 real [0.]
fraction_mode5 real [0.]
angle real [0.]
fraction_TE real [0.5]

The statement light_power is used to specify the incident light power in a photo-
sensitive device like a solar cell or an optically pumped laser. The model is based
on thin film multi-layer propagation of plane waves. Based on the structure of the
device, the software will create one or more 1D cut lines across the device in the
direction of the light propagation; these are used to compute transfer matrices and
get the local photon density.
Note that when using light_power, a scan statement must be used to ramp up
the effective light power in the device since the equilibrium calculations assume no
light input. Using

scan var=light value_to=1.0
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will slowly ramp up the relative light input to the value defined in incident_power
or spectrum_file. This can be combined with other scan variables such as time
(for transient pumping) or electrode bias.
Using this model triggers the requirement for the Advanced Optics optional module
which contains and the associated thin film model. A more basic model with simple
exponential decay can still be used for users who do not have this module by explicitly
turning off the Fresnel reflections and standing wave effects.

Parameters

• spectrum_file is used to specify the file name of the data file describing the
incident light power spectrum (e.g. input solar spectrum). The data must be
in a text format with at least 2 columns: the wavelength in µm in the first
column and the power spectral density in W/(m2µm) in the second column.
Other columns will be ignored.
For single-wavelength light input (e.g. a laser), the power and wavelength of
the light input are defined by incident_power and wavelength, respectively.

• light_dir specifies the direction of the incident light.

• waveguide_mode is used to indicate that the incident light is directly cou-
pled to one of the optical modes instead of using the thin film transfer matrix.
In that case, mode solver statements such as init_wave must be used. For
multimode simulations, fraction_modek k=2,...,5 are used to describe the
fraction of the input power which is coupled into the higher-order modes.
Note that this is only used for 2D simulations. For light injection into a photo-
absorbing waveguide or optical amplifier, see waveguide_input to take lon-
gitudinal effects into account.

• gen_datafile, is the name of a text file which contains the incident optical
wave intensity profile. In general, it is preferable to use GnuPlot-compatible
data files. For 2D simulation, the optical intensity profile on x-y plane should
be given in three columns as follows

x y optical\_profile

with x varying the fastest. Please leave a blank line to separate data lines
between different y-coordinates.
For 3D simulation, the data should be arranged in the form

x y z optical\_profile
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with x varying the fastest and y the second fastest. Again, blank lines are used
to separate data lines between different y coordinates.

Note that “optical_profile” should be considered as a relative value: the ac-
tual power used in the simulation will be the local profile value multiplied
by incident_power. For waveguide input problems, it is convenient to set
incident_power to the total input power in W while the profile defines a
normalized intensity distribution in m−2. The local value of the incident power
will therefore be in W/m2 and the integrated value will be in W .

Please note that we use the optical profile here to compute the local en-
ergy/photon density and automatically scale by the group velocity to get units
of W/m2. This value includes standing wave effects and should not be confused
with the power flux density, which does not.

• gen_datatype controls the format of gen_datafile. If set to sorted, the data
order is arranged in a form compatible with GnuPlot with left most column
varies the fastest and with a blank line space separating different drawing line
data. For unsorted data, a simple listing without blank space line is required.

• const_index is used to force the simulator to average the complex refractive
index along the cut line before the transfer matrix is computed. This will
automatically suppress all internal Fresnel reflections and force a uniform ex-
ponential decay of the light. Since this model is highly unphysical, the user is
warned against using this option.

• fresnel_reflections may be used to artificially turn off the internal reflections
between layers of the device. This forces all material interfaces to have 100%
power transmission but unlike const_index, the absorption coefficient is not
averaged and the result will be a piecewise exponential decay of the light.

Since this is unphysical, the user is warned against turning off this effect.
However, it may be necessary to do so for users without access to the Advanced
Optics optional module. It can still provide a reasonable model for devices with
a single material such as silicon solar cells.

Fresnel reflections at the front and back facets may also be artificially defined
using the front_reflection and back_reflection statements. However, op-
tic_coating statements will be useless unless this effect is turned on.

• slit_diffr would enable the single slit diffraction model be used to compute
the optical intensity profile. The single slit would be defined by the first two
numbers of the profile.

• ox_pump_only forces the optical generation to create bound excitons in-
stead of free carriers. This is the expected behavior in organic semiconductors.
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• std_wave determines whether the standing wave component of the transfer
matrix is computed. This term is generated by over-sampling the optical mesh
and averaging fast oscillations over the local mesh point to ensure smoothness
and ensure convergence. Users without the Advanced Optics module will have
to turn this effect off to use light_power.
Note also that for optically pumped VCSELs in PICS3D, this term refers only
to the standing wave of the optical pump: the round-trip gain calculations
automatically include this effect for the laser light.

• old_tmm is used to activate an older transfer matrix model. This parameter
is not recommended.

• spectrum_field_file is used to specify the optical field intensity profile for
different wavelengths when the light source is continuous. The data format
and units are the same as that defined for gen_datafile above, except that a
header line “spectrum_field_file” followed by a line containing the wavelength
(in micron meters) is used to start a field profile for each wavelengths.

• force_update is used to force the update of the optical transfer matrix at
each bias step. This is rarely needed since other conditions in the code often
make this decision on behalf of the user based on self-consistency requirements.

• import_gen_rate tells the software to import the local generation rate in-
stead of the optical wave profile in gen_datafile. This is different from op-
tical_generation defined below which uses the penetration depth to get the
local generation rate profile.

• optical_generation may be used to directly specify the carrier generation
rate at the starting point of the light absorption path. This parameter is used
only when no optical input power is defined: when both incident_power=0
and spectrum_file=void. When used, the actual distribution of the optical
generation rate is calculated by this number multiplied by a attenuation factor
due to the absorption of the semiconductor material.

• penetration_depth is used together with optical_generation only. It is
used to describe the exponential decay of the incident light along the absorption
path.

• profile is the cross section profile of the incident light: (x1, x2, dx1, dx2).
This profile is flat between x1 and x2 and has Gaussian tails on each side (dx1
and dx2) to ensure smoothness.

• angle is the angle of incidence of the light with respect to the surface. It
is used to consider the case of off-normal illumination. To model angled and
textured surfaces, users should use ray tracing or FDTD simulations.
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• fraction_TE is the fraction of TE polarized light; the remainder is assumed
to be TM. Appropriate boundary conditions are used for the plane waves in the
thin film model. The default value of 0.5 was chosen to represent unpolarized
light common in most solar cell applications.

Examples

light_power incident_power=3.29e7 wavelength=0.82 &&
profile=(0.5, 2.0, 0.01, 0.01)

The above statement is used to define an incident light of single wavelength at 0.82
µm with power density of 3.29e7 W/m2. The incident light direction is from the top
(default) and the cross section profile is uniform from 0.5 to 2 µm with a Gaussian
tail of 0.01 µm width on each side.

22.430 light_power_qwip

parameter data type values [defaults]
abs_spectrum_file char [qwip_specfile.txt]
light_dir char [top],bottom
uniform_extraction char [no],yes
gen_datafile char [void]
gen_datatype char [sorted],random
incident_power real [1.e4](W/m2)
wavelength real [5.] (um)
profile realx4 [-9000. 9000. 1. 1.] (um)
power_couple real [0.6]
absorption_coef real [1.e-12](m)
active_layer_depth real [0.](um)
average_index real [3.2]
surf_elec_dens real [2.e15](1/m2)
qwip_period real [0.04](um)
scale_abs_spec real [1.](um)

The statement light_power_qwip is used to specify the incident light power and
other related parameter for a quantum well infrared photodetector (QWIP) .

• abs_spectrum_file is the absorption spectrum file to be imported. Its
format is 3-column with first column being the wavelength in meters, 2nd
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column being the absorption in 1/m, and the 3rd column being the absorption
divided by the surface electron density.

• light_dir is the direction of light.

• uniform_extraction is used to indicate whether uniform or global field is
used to extract the photo-carriers. One possible explanation for uniform field
model is that photo-carriers with higher energies are not well localized and
thus tend to transport with an averaged field instead of the inhomogeneous
local field.

• gen_datafile, if specified, will provide the external input data of incident
optical power flux profile. The format of the data is compatible with the
public domain program GNUPLOT. For 2D simulation, the optical intensity
profile on x-y plane is given in three columns as follows

x y optical\_profile

For 3D simulation, the data are arrange in the form

x y z optical\_profile

The unit of "optical_profile" here depends on the unit used in incident_power.
The program multiplies the "optical_profile" in the data file with incident_power
to provide the actual optical power flux density (in units of Watt/m2). If it
is a problem of 2D waveguide power problem, it is convenient to set inci-
dent_power to the total waveguide power (in Watt) while the data file pro-
vides a normalized intensity distribution (in units of 1/m2 so that the profile
integrates to unity). For problem of incident light, it may be convenient to
let incident_power to represent incident power in units of Watt/m2 while
"optical_profile" being the distribution of power transmission coefficient. In
any kind of arrangements, it is necessary to remember that incident_power
and the figure in data file must multiplied to obtain light intensity in units of
Watt/m2.

• gen_datatype If it is set to "sorted", the data order is arranged in a form
compatible with GNUPLOT with left most column varies the fastest and with
a blank line space separating different drawing line data. For unsorted data, a
simple listing without blank space line is required.

• incident_power is the incident power density.

• wavelength is the wavelength of the QWIP.
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• profile is the cross section profile of the incident light. It is in the format
of (x1, x2, dx1, dx2) for light traveling in the ±y direction, where the light
intensity is assumed to be uniform between x1 and x2 and decay in the left
and right sides with standard deviations of dx1 and dx2, respectively. Similar
explanation applies to light traveling in ±x direction with a format of (y1, y2,
dy1, dy2).

• power_couple is a power coupling coefficient of the incident light into the
device

• absorption_coef is the absorption divided by the surface density. It is not
used if abs_spectrum_file is used.

• active_layer_depth is the depth of the MQW from the exposed surface of
QWIP. This is used to locate the starting point of the MQW layers so that
optical field profile can be established.

• average_index is the average index of the QWIP.

• surf_elec_dens is the estimated density so that the absorption can be cal-
culated to produce the incident light intensity profile. The absorption is cal-
culated by multiplying this parameter with the absorption_coef above.

• qwip_period is the QWIP period.

• scale_abs_spec is used to scale the abspectrum spectrum.

Example(s)

$ power-coupling into absorption mode is treated as fitting parameter for now.

light_power_qwip abs_spectrum_file=qwip_specfile.txt light_dir=top &&
incident_power=1.e4 wavelength=8 surf_elec_dens=1.5e15 &&
qwip_period=0.0376 power_couple=0.1 uniform_extraction=yes

The surface electron density is used to multiply to the 3rd column in spectrum-file
to obtain the absorption which is used to estimate the optical field intensity profile.

22.431 linear_heat

parameter data type values [defaults]
(see) material_par
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The material statement linear_heat is used to define a heating source term pro-
portional to the current density. The unit is Watt/(msAmp). It may also take a
negative value to represent cooling effect.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.432 load_macro

parameter data type values [defaults]
name char
var_namej (j=1...9) char
var_symbolj (j=1...9) char
varj (j=1...9) real
mater intg [1]

As in many other FEM-based software, the device layout in Crosslight is discretized
so that every mesh node is assigned a material number: the load_macro statement
is used to simultaneously assign several material properties (e.g. bandgap, mobility,
etc...) to a given material number. Material properties are then evaluated based on
the supplied parameters and certain reserved keywords. Note that this statement is
usually automatically generated by processing the .layer file.
For more information about macros, consult Appendix B and the comments in the
crosslight.mac and more.mac files. See also use_macrofile to use custom user-
defined macros and get_active_layer which is a similar statement used to load
active macros.

Parameters

• The parameter name is the name of the macro being activated. The usual
convention for passive macro is to use lower-case names.

• The parameters var_symbol1-9 are the symbolic variable names used as
function arguments in the macro. If defined, they must exactly match the
symbols used in the macro function definitions. If not defined, then the simu-
lator will assume an older macro style is being used: in this case, the order of
the parameters must be the same as in the macro function definitions.
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Note that certain variables used in functions are reserved keywords and do not
need to be defined in this manner.

• The parameters var1-9 are the values of the variables appearing in the func-
tions within the macro definition. They are most commonly used to represent
material composition in ternary/quaternary compounds.

• The parameters var_name1-9 replaces var1-9 when a grading of the macro
parameters is used. It is used in conjunction with the mater_var statement
which describes the spatial variation of the parameters.

• The parameter mater is the material number being linked with this macro.
This number is the same as the material number assigned to polygons in the
.geo file and is inherited by the mesh.

Examples

load_macro name=ingaas mater=2 var1=0.32 var_symbol1=x

This statement activates a material macro named ingaas (for InxGa1−xAs) for ma-
terial number 2 with material variable x = 0.32.

mater_var name=c2 variation=linear_y data_num= 4 &&
4_values=[ &&

0.135000000000E+001 0.710000000000E+000 &&
0.149620000000E+001 0.330000000000E+000 ]

load_macro name=algaas mater= 2 &&
var_symbol1=x var_name1=c2

This statement activates the macro named algaas (for AlxGa1−xAs) for material
number 3. The composition (x) is graded according to the rule “c2” which is further
described in the accompanying mater_var statement.

22.433 load_mesh

parameter data type values [defaults]
mesh_inf char
version2002 char [no]
suprem_import char [no]
stl_import char [no]
suprem_cpl_import char [no]
zseg_num intg 1
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load_mesh loads a previously generated mesh file into the device simulation.

Parameters

• mesh_inf is the data file containing the mesh. In practice, this file is gen-
erated by statements such as mesh_output that are automatically added to
the .geo file when the .layer file is processed.

• version2002 is used to accept mesh files generated by versions older than
2002. The older mesh format can also be generated with newer versions of the
simulator with special settings of the internal_xpoint statement in the .geo
file.

• suprem_import is used to import a mesh structure from CSUPREM. If
suprem_cpl_import is used in a 3D simulation, the device simulator will
also load the inter-plane (z) mesh coupling coefficients which can greatly speed
up the simulation time.

• stl_import is used to import a mesh using Standard Tessellation Language
(STL format).

• zseg_num defines the z-segment where the mesh is used. In 3D simulations,
each z-segment can have its own material numbers, geometry and mesh

Examples

load_mesh mesh_inf=bulk1d.msh2
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22.434 longitudinal

parameter data type values [defaults]
fphase_input char [yes],no
layer_exit_model char [refractive_index],reflectivity
ring_mode char [void],cc,cw
length_seg_match char [no]
use_eff_index char [no]
ignore_rtg_phase char [no]
left_phase real [0.] (π)
right_phase real [0.] (π)
left_f_refl real [0.]
right_f_refl real [0.]
ref_wavel real (m)
ref_pitch real (m)
add_overlap real [100.]
bot_real_ind real [1.]
bot_imag_ind real [0.]
top_real_ind real [1.]
top_imag_ind real [0.]
ring_power_exit real [0.1]
round_trip_time_factor real [1.]
ref_active_point real (um)
more_mesh intg [5]
cavity_num intg [1]

The longitudinal statement is used to specify some boundary conditions and control
settings relating to the longitudinal model in PICS3D. For vertical cavities, left/right
should be understood as bottom/top.

Parameters

• fphase_input determines how the residual facet phase is computed. If yes,
the values of left_phase and right_phase are used. Otherwise, the facet
phase is obtained from the length of the laser and the grating period and then
split equally between the left and right facets.

• left_f_refl and right_f_refl are the left and right facet reflectivity (on a
power basis) used as cavity boundary conditions for edge-emitting devices.
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• layer_exit_model determines the cavity boundary conditions for surface-
emitting devices.

– If set to reflectivity, the left and right facet reflectivity defined above are
used for the bottom and top, respectively.

– If set to refractive_index (the default), the refractive index is used to com-
pute the Fresnel reflection coefficient. bot_real_ind and bot_imag_ind
define the outside index for the bottom layer while top_real_ind and
top_imag_ind define the outside index for the top layer.

• ring_mode determines the main injection/propagation direction in a ring
laser cavity. cw means clockwise and cc means counter-clockwise.

• ring_power_exit defines the fraction of power that is extracted at each loop
of a ring laser: this is used instead of the left/right facet reflectivity in this
kind of device since no facets can be clearly defined.

• length_seg_match will force an error message to be printed if the optical
(section) length of the cavity does not match the electrical (z-segment) length.

• use_eff_index is used to determine how the effective index of the propa-
gation constant β is calculated. If this is turned on, the exact value from
the eigenmode solver is used which improves the numerical accuracy when the
wave function is discontinuous and derivative terms become large (e.g. E-field
in vectorial TM mode).

• ignore_rtg_phase is an experimental model added in v. 2015. It is used to
make PICS3D approximate the behavior of LASTIP.

One of the main differences in LASTIP vs. PICS3D is the longitudinal treat-
ment. LASTIP is a 2D model and ignores the phase matching condition; it
assumes that a single longitudinal mode exists and that lasing occurs on the
modal gain peak. This approach is reasonable for Fabry-Perot lasers in which
a large number of closely-spaced longitudinal modes exist near the gain peak.
Some inaccuracies in the 2D model creep up for longer-cavity lasers though,
especially for high-power applications: in that case, longitudinal spatial hole
burning is a real effect which limits device performance.

On the other hand, PICS3D includes modeling of LSHB automatically: using
multiple mesh planes (for edge-emitters), it explicitly calculates the longitu-
dinal propagation and solves for both unity and phase matching conditions.
This means PICS3D will find multiple longitudinal modes and lase at wave-
lengths where the cavity round-trip gain peaks rather than on the peak of the
modal gain curve. This approach works well in DFB/DBR lasers and VCSELs
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but is problematic for Fabry-Perot lasers: without a wavelength-selecting feed-
back mechanism, there are too many longitudinal modes to consider and the
numerical requirements/solver stability often become unmanageable.
Setting ignore_rtg_phase=yes bridges this gap in capability. Instead of
solving for multiple longitudinal modes, PICS3D will search for a single wave-
length which maximises the round-trip gain value: this ignores the phase-
matching condition while still including the effects of LSHB. This hybrid ap-
proach is expected to be especially useful in modeling long-cavity high-power
FP lasers.

• ref_wavel is the reference wavelength which is used to fix the search range for
the longitudinal modes. This is fixed once the coupling of the round-trip gain
equations is turned on so it is important to capture the right set of longitudinal
modes for the simulation. In most laser cavities with a grating, the lasing
mode will be close to the Bragg wavelength so the latter should be used as the
reference wavelength.
ref_pitch may be used instead of the above to directly specify the reference
pitch of the Bragg grating.

• round_trip_time_factor can be used to artificially scale the cavity round-
trip time in transient simulations.

• ref_active_point defines a reference point in the cavity which is used to
compute the round-trip gain. While in theory, this value should be equal
everywhere in the device, numerical evaluation of this quantity can be sensitive.
In general, a point near the middle of the active region or where the photon
density is expected to peak should be used to represent the round-trip of an
“average” photon.
This value is automatically chosen by the software by default; users may
choose to override it if convergence problems occur or if anomalies in the
round-trip gain spectrum are observed. Also note that this parameter replaces
ref_midpoint from older versions of the software and unlike the old method,
absolute coordinates must be used instead of a fraction of the optical cavity.

• add_overlap is used to add a small term (a multiple of 2j/vg) to the expres-
sion dW

dω
which appears in the complex pole expansion of Sec. 18.2. This term

seems to improve the stability of the longitudinal mode solver by preventing
divide by zero errors. It may slightly affect the amount of spontaneous emis-
sion power in ASE simulations such as superluminescent diodes (SLED) and
optical amplifiers (SOA).

• more_mesh is a multiplication factor used to oversample the longitudinal
mesh in order to get more details on the fast oscillations of the standing wave
pattern in VCSELs.
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• cavity_num can be used to specify different longitudinal settings when work-
ing with multiple optical cavities. See also begin_cavity.

Examples

longitudinal ref_wavel=1.55d-6 left_f_refl=0. right_f_refl=0.

22.435 loop_integer

loop_integer serves the same function as loop_real but defines an integer loop
variable. Both statements share the same set of parameters.

Examples

start_loop symbol=%i value_from=1 value_to=5 step=2
loop_integer symbol=%j value_from=2 value_to=6
plot_scan scan_var=voltage_2 variable=total_curr_3 scanline=%i
plot_scan scan_var=voltage_3 variable=total_curr_3 scanline=%j

In the above example, symbol %j is a linear function of the loop variable %i. %i
would vary as 1,3, and 5 while %j would go as 2,4 and 6. The equivalent commands
without the loop are as follows:

plot_scan scan_var=voltage_2 variable=total_curr_3 scanline=1
plot_scan scan_var=voltage_3 variable=total_curr_3 scanline=2
plot_scan scan_var=voltage_2 variable=total_curr_3 scanline=3
plot_scan scan_var=voltage_3 variable=total_curr_3 scanline=4
plot_scan scan_var=voltage_2 variable=total_curr_3 scanline=5
plot_scan scan_var=voltage_3 variable=total_curr_3 scanline=6

22.436 loop_real

parameter data type values [defaults]
symbol char [void]
value_from real [1]
value_to real [2]
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loop_real works together with the start_loop statement. It is used to define a
new real-valued variable which has a linear dependence on the iteration number.

Parameters

• symbol is the symbol used by the new loop variable.

• value_from and value_to are the starting and ending values, respectively,
of the loop variable.

Examples

start_loop symbol=%i value_from=1 value_to=5
loop_real symbol=%vg value_from=0.2 value_to=1.0
scan var=voltage_2 value_to=%vg
end_loop

This means %vg linearly varies with %i. %i would take values of 1,2,3,4 and 5 while
%vg would vary as 0.2, 0.4, 0.6, 0.8 and 1.0. The equivalent commands without the
loop are as follows:

scan var=voltage_2 value_to=0.2
scan var=voltage_2 value_to=0.4
scan var=voltage_2 value_to=0.6
scan var=voltage_2 value_to=0.8
scan var=voltage_2 value_to=1.0

22.437 loopif

loopif is a conditional execution statement used in conjunction with symbolic loop
variables and start_loop.
The end of the conditional block is indicated by endloopif .

Parameters

This statement does not take any formal parameters but expects a logical expression
based on common Fortran syntax:
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.lt. less than

.le. lesser or equal than
.gt. greater than
.ge. greater or equal than
.eq. equal to

The logical expression should be kept as simple as possible: parentheses and other
logical expressions such as .and., .or. and .not. are not supported.

Examples

define_symbol symbol=%mob value=1.
define_symbol symbol=%mfp value=0.1

start_loop symbol=%i value_from=1 value_to=25
integer_func symbol=%k value_from=0 value_to=24
integer_func symbol=%j1 value_from=2 value_to=26
integer_func symbol=%j2 value_from=3 value_to=27
integer_func symbol=%j3 value_from=4 value_to=28

loopif %j1 .le. 25
nonlocal_path y_start_label=active%i_end y_end_label=active%j1_start &&

mobility=%mob mean_free_path=%mfp field_dep_model_id=1
endloopif

22.438 low_field_mobility_model
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parameter data type values [defaults]
el_doping_dependence_model char [void], masetti, arora, uni_bologna
el_carrier_carrier_model char [void], conwell_weisskopf,

brooks_herring
el_degradation_model char [void], enhanced_lombardi,

uni_bologna_inversion
el_philips_unified_model char yes,[no]
hole_doping_dependence_model char [void], masetti, arora, uni_bologna
hole_carrier_carrier_model char [void], conwell_weisskopf,

brooks_herring
hole_degradation_model char [void], enhanced_lombardi,

uni_bologna_inversion
hole_philips_unified_model char yes,[no]
channel_interface_dir char [void], horizontal, vertical
channel_interface_label char
mater intg [1]

This statement is used to implement various contributions to the low-field carrier
mobility model. The mobility is then further enhanced by the field depending on the
velocity models defined in material.
When different contributions are turned on, the total mobility is given by:

1
µ

= 1
µdop

+ 1
µcarr

+ 1
µsurf

(22.42)

where µdop represents bulk impurity scattering, µcarr is the contribution from carrier-
carrier scattering and µsurf defines the mobility reduction from surface effects.
The relationship between the different models can be seen in Fig. 22.15.
Full equations for each of these models will be given below ; in all of these models,
we note that Ni = NA + ND is the total dopant concentration, T is the local mesh
point temperature and T0 is a reference temperature of 300K.

Main Parameters

Since this statement handles a very large number of parameters, only those related
to model selection are described here: see sub-sections below for other model-specific
parameters. Please note that the default values for model-specific parameters are
taken from the literature and apply only for silicon: these models should be re-
calibrated if used for other materials.
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mobility
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Figure 22.15: Relationship between the different low-field mobility models.

• el_doping_dependence_model and el_doping_dependence_model
specify the doping/trap scattering model for electrons and holes, respectively.
If this parameter is void and the unified Philips model is also disabled, the
software will default back to the standard model of Eq. 5.42.

• el_carrier_carrier_model and hole_carrier_carrier_model define the
carrier-carrier scattering model for electrons and holes, respectively.

• el_degradation_model and hole_degradation_model describe the sur-
face degradation model for electrons and holes, respectively.

If a surface degradation model is enabled, then the direction of the interface
must be specified with channel_interface_dir. The position of the interface
must also be set through a position label given in channel_interface_label.
See layer_position and other related commands for details on position labels.

• el_philips_unified_model and hole_philips_unified_model turn on
the unified Philips model for electrons and holes, respectively. If this model is
turned on, the doping dependence and carrier-carrier models will automatically
be disabled in favor of this unified model.
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Parameters For Doping Dependence Models

Masetti

This model implements the following relationship[123]:

µdop = µmin1e
− Pc

Ni +
µmax

(
T
T0

)−ζ
− µmin2

1 +
(

Ni

Cr

)α − µ1

1 +
(

Cs

Ni

)β (22.43)

The other parameters of this model (along with their default values) are defined in
the table below:

symbol parameter name electron value hole value units
µmax umax 0.1417 0.04705 m2/(V s)
ζ exponent 2.5 2.2
µmin1 umin1 0.00522 0.00449 m2/(V s)
µmin2 umin2 0.00522 0 m2/(V s)
µ1 u1 0.00434 0.0029 m2/(V s)
Pc pc 0 9.3E22 m−3

Cr cr 9.68E22 2.23E23 m−3

Cs cs 3.34E26 6.1E26 m−3

α alpha 0.68 0.719
β beta 2.0 2.0

Note that the parameter names are abbreviated here for the sake of convenience.
When the Masetti model is activated, an el_mase_ (for electrons) or hole_mase_
(for holes) prefix must be added to the name shown in the table.

Arora

This model implements the following relationship[124]:

µdop = µmin + µd

1 +
(

Ni

N0

)A∗ (22.44)

The other parameters for this model (along with their default values) are defined in
the following equations and table:



818 COMMAND SYNTAX

µmin = Amin

(
T

T0

)αm

(22.45)

µd = Ad

(
T

T0

)αd

(22.46)

N0 = AN

(
T

T0

)αN

(22.47)

A∗ = Aa

(
T

T0

)αa

(22.48)

symbol parameter name electron value hole value units
Amin umin 0.0088 0.00543 m2/(V s)
αm alpha_m -0.57 -0.57
Ad d 0.1252 0.0407 m2/(V s)
αd alpha_d -2.33 -2.23
AN n 1.25E33 2.35E23 m3

αN alpha_n 2.4 2.4
Aa a 0.88 0.88
αa alpha_a -0.146 -0.146

Note that the parameter names are abbreviated here for the sake of convenience.
When the Arora model is activated, an el_ar_ (for electrons) or hole_ar_ (for
holes) prefix must be added to the name shown in the table.

University of Bologna

This model implements the following relationship[125]:

µdop = µ0 + µL − µ0

1 +
(

ND

Cr1T
γr1
n

)α
+
(

NA

Cr2T
γr2
n

)β − µ1

1 +
(

ND

Cs1T
γs1
n

+ NA

Cs2

)−2 (22.49)

where Tn = T
T0

and:

µL = µmaxT
−γ+cTn
n (22.50)

µ0 = µ0dT
−γ0d
n ND + µ0aT

−γ0a
n NA

NA +ND

(22.51)

µ1 = µ1dT
−γ1d
n ND + µ1aT

−γ1a
n NA

NA +ND

(22.52)
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The other parameters for this model (along with their default values) are defined in
the following table:

symbol parameter name electron value hole value units
µmax umax 0.1441 0.04705 m2/(V s)
c c 0.07 0.0
γ gama 2.45 2.16
γ0d gama_0d 0.6 1.3
µ0d u_0d 0.0055 0.009 m2/(V s)
γ0a gama_0a 1.3 0.7
µ0a u_0a 0.0132 0.0044 m2/(V s)
γ1d gama_1d 0.5 2.0
µ1d u_1d 0.00424 0.00282 m2/(V s)
γ1a gama_1a 1.25 0.8
µ1a u_1a 0.00735 0.00282 m2/(V s)
γr1 gama_r1 3.65 2.2
Cr1 C_r1 8.9E22 1.3E24 m−3

γr2 gama_r2 2.65 3.1
Cr2 C_r2 1.22E23 2.45E23 m−3

γs1 gama_s1 0.0 6.2
Cs1 C_s1 2.9E26 1.1E24 m−3

Cs2 C_s2 7E26 6.1E26 m−3

α alpha 0.68 0.77
β beta 0.72 0.719

Note that the parameter names are abbreviated here for the sake of convenience.
When the University of Bologna model is activated, an el_uni_bolo_ (for electrons)
or hole_uni_bolo_ (for holes) prefix must be added to the name shown in the table.

Parameters For Carrier-Carrier Scattering Models

In this section, n and p are the carrier densities.

Conwell-Weisskopf

This model implements the following relationship[126]:

µcarr =
D
(

T
T0

) 3
2

√
np

[
ln

(
1 + F

3
√
np

(
T

T0

)2)]−1

(22.53)
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The other parameters for this model (along with their default values) are defined in
the following table:

symbol parameter name electron value hole value units
D D 1.04E16 1.04E16 m−1V −1s−1

F F 7.452E17 7.452E17 m−2

Note that the parameter names are abbreviated here for the sake of convenience.
When the Conwell-Weisskopf model is activated, an el_con_wei_ (for electrons) or
hole_con_wei_ (for holes) prefix must be added to the name shown in the table.

Brooks-Herring

This model implements the following relationship[127]:

µcarr =
c1
(

T
T0

) 3
2

ϕ (η0)
√
np

(22.54)

ϕ (η0) = ln (1 + η0) − η0

1 + η0
(22.55)

η0 = c2

NcF− 1
2

(
n

Nc

)
+NvF− 1

2

(
p

Nv

) ( T
T0

)2
(22.56)

where Nc, Nv are the densities of state for the electrons and holes, respectively,
and F− 1

2
is the derivative of the usual Fermi-Dirac integral of order 1/2. The other

parameters for this model (along with their default values) are defined in the following
table:

symbol parameter name electron value hole value units
c1 c1 1.56E15 1.56E15 m−1V −1s−1

c2 c2 7.63E25 7.63E25 m−3

Note that the parameter names are abbreviated here for the sake of convenience.
When the Brooks-Herring model is activated, an el_bro_her_ (for electrons) or
hole_bro_her_ (for holes) prefix must be added to the name shown in the table.
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Parameters For Philips Unified Model

This model combines dopant and carrier scattering effects using the following relationship[128]:

1
µ

= 1
µL

+ 1
µDAeh

(22.57)

where µL = µmax

(
T
T0

)−θ
describes the effects from phonon scattering and µDAeh

includes all other bulk mechanisms (free carriers, ionized dopants, etc...):

µDAeh = µN

(
Nsc

Nsc,eff

)(
Nref

Nsc

)α

+ µc

(
n+ p

Nsc,eff

)
(22.58)

with:

µN = µ2
max

µmax − µmin

(
T

T0

)3α−1.5
(22.59)

µc = µmaxµmin

µmax − µmin

(
T

T0

)0.5
(22.60)

The scattering center density is given by:

Nsc =

N∗
D +N∗

A + p for electrons
N∗

D +N∗
A + n for holes

(22.61)

while the effective scattering center density follows:

Nsc,eff =

N
∗
D +G (Pe)N∗

A + p
F (Pe) for electrons

N∗
D +G (Ph)N∗

A + n
F (Ph) for holes

(22.62)

In the above equations, N∗
A and N∗

D are modified dopant concentrations which ac-
count for clustering effects at very high concentrations1:

N∗
X = NX

1 + 1
cX

(
NX

NX,ref

)2
 for X=A,D (22.63)

while screening effects are represented by the analytic functions F and G:
1The original reference indicates that the ionized dopant concentration should be used here; for

the sake of simplicity, Crosslight uses the total dopant concentration as of the 2014 version. This
approximation should hold for shallow dopants at room temperature.
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F (Pi) =
0.764P 0.6478

i + 2.2999 + 6.5505m∗
i

m∗
j

P 0.6478
i + 2.3670 − 0.8552m∗

i

m∗
j

(22.64)

G (Pi) = 1 − ag[
bg + Pi

(
m0
m∗

i

T
T0

)αg
]βg

+ cg[
Pi

(
m0
m∗

i

T
T0

)α′
g

]γg (22.65)

where i = e, h for either electrons or holes, m∗
i

m0
is a fitting parameter related to the

relative effective mass and m∗
j

m0
is the matching fitting parameter for the other carrier.

The argument Pi of these functions is a screening parameter defined as a weighed
harmonic mean of the Brooks-Herring and Conwell-Weisskopf approaches:

Pi =

 fCW

3.97 × 1013N
− 2

3
sc

+ fBH

1.36×1026

n+p

m∗
i

m0

−1 (
T

T0

)2
(22.66)

The other parameters for this model (along with their default values) are defined in
the following table:

symbol parameter name electron value hole value units
µmax umax 0.1417 0.04705 m2/(V s)
µmin umin 0.00522 0.00449 m2/(V s)
θ theta 2.285 2.247
Nref e_ref 9.68E22 2.23E23 m−3

α alpha 0.68 0.719
ND,ref d_ref 4E26 4e26 m−3

NA,ref a_ref 7.2E26 7.2e26 m−3

cD c_d 0.21 0.21
cA c_A 0.5 0.5
m∗

e me 1.0 1.0
m∗

h mh 1.258 1.258
m0 m0 1.0 1.0
fCW fcw 2.459 2.459
fBH fbh 3.828 3.828
ag ag 0.89233 0.89233
bg bg 0.41372 0.41372
cg cg 0.005978 0.005978
αg alpha_g 0.28227 0.28227
α′

g alpha_g2 0.72169 0.72169
βg beta_g 0.19778 0.19778
γg gamma_g 1.80618 1.80618
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Note that the parameter names are abbreviated here for the sake of convenience.
When the Philips unified model is activated, an el_phili_ (for electrons) or hole_phili_
(for holes) prefix must be added to the name shown in the table.

Parameters For Surface Degradation Models

These models are mainly used in MOSFET applications where high transverse elec-
tric fields cause the carriers to strongly interact with the semiconductor/oxide in-
terface. These effects are highly localized and throughout this section, a scaling
parameter D = e

− distance
lcrit is used to turn off the mobility degradation away from the

interface. Surface effects also cause anisotropic mobility and throughout this section,
F⊥ is defined as the transverse electric field normal to the interface.
As such, it is not recommended to combine the surface degradation models of this
section with the mobility_xy statement. Crosslight’s recommendation is to use
the surface degradation models for MOSFET/transistor applications (especially in
silicon) while the mobility_xy model is better suited to scale the mobility in nano-
structured materials such as superlattice blocking layers or VCSEL DBR mirrors.

University of Bologna Inversion Layer

This model combines the scattering effects from Coulombic effects (µcb), surface
acoustic phonons (µac) and surface roughness (µrough) using the following relationship[129]:

1
µsurf

= 1
µcb

+ D

µac

+ D

µrough

(22.67)

The Coulomb term and screening effects are given by:

µcb = µbulk

[
D (1 + f τ

sc)
1
τ + (1 −D)

]
(22.68)

fsc =
(

N1

NA +ND

)η Nmin

NA +ND

(22.69)

where Nmin is the minority carrier concentration.
The surface scattering terms are defined as:

µac = c
(
T

T0

)−γc (NA +ND

N2

)a

F−δ
⊥ (22.70)

µrough = d
(
T

T0

)γd (NA +ND +N3

N4

)b

F−γ
⊥ (22.71)
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The other parameters for this model (along with their default values) are defined in
the following table:

symbol parameter name electron value hole value units
N1 n1 2.34E22 2.02E22 m−3

N2 n2 4E2 7.8E21 m−3

N3 n3 1E23 2E21 m−3

N4 n4 2.4E24 6.6E23 m−3

c c 1.8 0.5726 m2/(V s)
γc gamac 1.6 1.3
d d 5.80E15 7.82E11 m2/(V s)
γd gamad 0 1.4
τ tau 1.0 3.0
η eta 0.3 0.5
a a 0.026 -0.02
b b 0.11 0.08
lcrit lcrit 1E-8 1E-8 m
δ delta 0.29 0.3
λ lambda 2.64 2.24

Note that the parameter names are abbreviated here for the sake of convenience.
When the University of Bologna Inversion Layer model is activated, an el_uni_boloinve_
(for electrons) or hole_uni_boloinve_ (for holes) prefix must be added to the name
shown in the table.

Enhanced Lombardi

This model is an enhanced version of the Lombardi model found in mobility_xy.
It combines the scattering from surface acoustic phonons (µac) and surface roughness
(µrough) using the following relationship[130]:

1
µsurf

= 1
µbulk

+ D

µac

+ D

µrough

(22.72)

The acoustic phonon contribution takes the form:

µac = B

F⊥
+
C
(

Ni

N0

)λ

F
1
3

⊥

(
T
T0

)k (22.73)

while the surface roughness term is defined by:
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1
µrough

= 1
δ

(
F⊥

Fref

)A∗

+ F 3
⊥
η

(22.74)

A∗ = A+ α⊥(n+ p)
(

Nref

Ni +N1

)v

(22.75)

with a reference field of Fref=1 V/cm and a reference doping density of Fref=1 cm−3.
The other parameters for this model (along with their default values) are defined in
the following table:

symbol parameter name electron value hole value units
B B 4.75E5 9.925E4 m/s

C C 0.26921 1.36788 m
5
3 s−1V − 2

3

N0 n0 1E6 1E6 m−3

N1 n1 1E6 1E6 m−3

λ lambda 0.125 0.0317
k k 1.0 1.0
δ delta 5.82E10 2.0546E10 m2/(V s)
A A 2.0 2.0
α⊥ alpha 0.0 0.0 m3

v v 1.0 1.0
η eta 5.82E32 5.82E32 m−1s−1V 2

lcrit lcrit 1E-8 1E-8 m

Note that the parameter names are abbreviated here for the sake of convenience.
When the Enhanced Lombardi model is activated, an el_lombard_ (for electrons)
or hole_lombard_ (for holes) prefix must be added to the name shown in the table.

Examples

low_field_mobility_model mater=1 &&
el_philips_unified_model = yes el_phili_umax=0.1417

This statement activates the unified Philips model for electrons in material #1 and
the parameter umax in the function is specified as 0.1417 m2/(V s).
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22.439 lplot_xy

parameter data type values [defaults]
data_file char [vttek]
variable char (see list)
n_variables charxn
integration char [no]
x_from_label char [void]
y_from_label char [void]
x_to_label char [void]
y_to_label char [void]
math_oper char [void]
xy_from realx2
xy_to realx2
xrange realx2
yrange realx2
z real
integration_start real [0.0](um)
integration_length real [1.e5](um)
var_num intg [1]
mode_index intg [1]
trap_index intg [1]

lplot_xy is a post-processor statement used to plot data along a 1D cut line. It
is similar to plot_1d and lplot_xyz. Depending on the 2D/3D nature of the
simulation, the following rules should guide the choice of plotting command:

• 2D simulations: use plot_1d

• 3D cylindrical simulations with one mesh plane: use plot_1d

• xy cut of a 3D simulation: use lplot_xy

• z cut of a 3D simulation: use lplot_xyz

Parameters

Most parameters for this function are similar to the ones for plot_1d and are
omitted for the sake of brevity. The following parameters are specific to lplot_xy:
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• z, in conjunction with xy_from and xy_to, defines the beginning and ending
points of the 1D cut line. Note that xrange and yrange also provide an
alternate way to define the extent of the cut line in the mesh plane.

Unlike plot_1d, parameters related to plotting of the QW states are not available
in this function. Use lplot_xy_qw_states instead.

Examples

lplot_xy variable=wave_intensity xy_from=(0.5 1.1) &&
xy_to=(0.5 1.9) z=200.

22.440 lplot_xy_qw_states

parameter data type values [defaults]
data_file char [void]
xrange realx2
yrange realx2
qw_wave_ht real [0.1] (eV)
length_below_qw real [-9999.]
length_above_qw real [-9999.]
cond_subband intg [1] 2
val_subband intg [1] 2 3
zseg_num intg [1]
complex intg [1]

lplot_xy_qw_states is a variation of lplot_xy. However, instead of plotting a
1D cut line from a 3D simulation, it plots the QW states on the band diagram.

Parameters

• data_file is the name of a text file in which a copy of the plot data will be
saved.

• xrange and yrange can be used to define the plot region.

• qw_wave_ht is the height of the quantum wave amplitude as plotted on the
band diagram. However, the simulation must first have been run using the
self_consistent statement. It is also necessary to output the QW wave data
using more_output.
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• length_below_qw and length_above_qw extend the plotting region be-
yond the QW. This can make it easier to observe the spatial extent of wave
functions.

• cond_subband is used when qw_wave= 1 to indicate which conduction
band is being plotted. The main condition band valley (Γ) is equal to 1 while
2 represents the side valley (L,X).

• val_subband is used when qw_wave= 1 to indicate which valence band is
being plotted. Values of 1, 2 and 3 are used to represent the HH, LH and CH
bands, respectively.

• zseg_num defines the z-segment number of the region being plotted. This
value should match what is defined in the corresponding z_structure state-
ment.

• complex is the number of the complex MQW region being plotted.

22.441 lplot_xyz

parameter data type values [defaults]
data_file char [vttek]
variable char (see list)
n_variables charxn
integration char [no]
math_oper char [void]
xy_point realx2
z_from real
z_to real
xrange realx2
yrange realx2
integration_start real [0.0](um)
integration_length real [1.e5](um)
qw_wave_ht real [0.1] (eV)
var_num intg [1]
mode_index intg [1]
trap_index intg [1]
qw_wave intg [0] 1
cond_subband intg [1] 2
val_subband intg [1] 2 3



22.442 makebend_dome 829

lplot_xyz is a post-processor statement used to plot data along a 1D cut line.
It is similar to lplot_xy and plot_1d. Depending on the 2D/3D nature of the
simulation, the following rules should guide the choice of plotting command:

• 2D simulations: use plot_1d

• 3D cylindrical simulations with one mesh plane: use plot_1d

• xy cut of a 3D simulation: use lplot_xy

• z cut of a 3D simulation: use lplot_xyz

Parameters

Most parameters for this function are similar to the ones for plot_1d and are
omitted for the sake of brevity.

• xy_point defines the position of the cut line in the xy plane. If the cut line
is not parallel to the z axis, xrange and yrange may be used to define the
extent of the cut line in the mesh plane.

• z_from and z_to define the extent of the 1D cut line along the z direction.

Examples

lplot_xyz variable=elec_conc xy_point=(2.5 0.4) &&
z_from=0. z_to=50

22.442 makebend_dome

parameter data type values [defaults]
xy_center_1st_plane realx2 [0. 0.] (µm)
height_1st_plane real [0.1] (µm)
diameter_1st_plane real [1.] (µm)
xy_center_last_plane realx2 [0. 0.] (µm)
height_last_plane real [0.1] (µm)
diameter_last_plane real [1.] (µm)
zseg_num intg [1]
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Figure 22.16: 2D cut of spherical dome bending

This statement is used to bend xy mesh planes in the z direction to form a spherical
dome. The curvature of the first and last mesh planes in the segment are specified
and the bending is interpolated for intermediate layers.

Parameters

The parameters for this statement can be more easily understood by examining
Fig. 22.16. The spherical dome is shown by a 2D cut through the maximum bending
area and the highlighted section of the circle represents the edge of the bent plane.

• xy_center_1st_plane are the in-plane coordinates of the center of curvature
for the first plane in the segment.

• height_1st_plane is the maximum bending height on the first plane. A
value of zero means no bending in the z direction.

• diameter_1st_plane is the diameter of a circle in the x-y plane formed by
intersecting the dome and original unbent mesh plane. It is an indirect way of
specifying the solid angle represented by the bent plane.

• xy_center_last_plane is the same as xy_center_1st_plane for the last
mesh plane in the segment.
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• height_last_plane is the same as height_1st_plane for the last mesh
plane in the segment.

• diameter_last_plane is the same as diameter_1st_plane for the last
mesh plane in the segment.

• zseg_num is the segment in which the bending is applied.

Examples

makebend_dome zseg_num=1 &&
xy_center_1st_plane=(0.5 0.5) &&
height_1st_plane = 0.0 &&
diameter_1st_plane = 1.0 &&
xy_center_last_plane=(0.5 0.5) &&
height_last_plane = 0.2 &&
diameter_last_plane = 1.0

22.443 makebend_rectangle_based_pyramid

parameter data type values [defaults]
xy_center_1st_plane realx2 [0. 0.] (µm)
height_1st_plane real [0.1] (µm)
x_width_1st_plane real [1.] (µm)
y_width_1st_plane real [1.] (µm)
xy_center_last_plane realx2 [0. 0.] (µm)
height_last_plane real [0.1] (µm)
x_width_last_plane real [1.] (µm)
y_width_last_plane real [1.] (µm)
zseg_num intg [1]

This statement is used to bend xy mesh planes in the z direction to form pyra-
mids. The bending is specified for the first and last mesh planes in a segment and
interpolated for intermediate planes.

Parameters

The parameters for this statement can be more easily understood by examining
Fig. 22.17. The pyramid is shown in a projection view with h being the height of
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wx
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Figure 22.17: Projection view of pyramidal bending

the pyramid in the z direction and wx,wy are the widths of the pyramid base in the
x and y direction.

• xy_center_1st_plane are the in-plane coordinates of the center of curvature
for the first plane in the segment.

• height_1st_plane is the maximum bending height on the first plane. A
value of zero means no bending in the z direction.

• x_width_1st_plane and y_width_1st_plane are the widths of the pyra-
mid base in the x and y direction.

• xy_center_last_plane is the same as xy_center_1st_plane for the last
mesh plane in the segment.

• height_last_plane is the same as height_1st_plane for the last mesh
plane in the segment.

• x_width_last_plane and y_width_last_plane are the same as x_width_1st_plane
and y_width_1st_plane for the last mesh plane in the segment.

• zseg_num is the segment in which the bending is applied.

Examples

makebend_rectangle_based_pyramid zseg_num=1 &&
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xy_center_1st_plane=(0.5 0.5) &&
height_1st_plane = 0.0 &&
xy_center_last_plane=(0.5 0.5) &&
height_last_plane = 0.2 &&

22.444 makebend_tilt

parameter data type values [defaults]
fixed_xy_1st_plane realx2 [0. 0.] (µm)
theta_1st_plane real [0.] (degrees)
phi_1st_plane real [0.] (degrees)
fixed_xy_last_plane realx2 [0. 0.] (µm)
theta_last_plane real [0.] (degrees)
phi_last_plane real [0.] (degrees)
zseg_num intg [1]

This statement is used to tilt xy mesh planes in a particular direction. The direction
of the plane normal vector is specified for the first and last planes in a segment and
interpolated for intermediate planes.

Parameters

• fixed_xy_1st_plane is a point of the mesh plane that is on the tilt axis: it
is not affected by the transformation.

• theta_1st_plane and phi_1st_plane are the angles describing the direc-
tion of the plane normal vector in the spherical coordinate system.

• fixed_xy_last_plane is the same as fixed_xy_1st_plane for the last
mesh plane in the segment.

• theta_last_plane and phi_last_plane are the same as theta_1st_plane
and phi_1st_plane for the last mesh plane in the segment.

• zseg_num is the segment in which the transformation is applied.

Examples

makebend_tilt zseg_num=1 &&
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xy_center_1st_plane=(0.5 0.5) &&
phi_1st_plane = 0.0 &&
xy_center_last_plane=(0.5 0.5) &&
phi_1st_plane = 45.0

22.445 mass_density

parameter data type values [defaults]
(see) material_par

The material statement mass_density is used to define the density (in kg/m3) of
the semiconductor material.
The use of this parameter and related examples are given under material_par in
section 22.456.

22.446 mass_gamma_bar

parameter data type values [defaults]
(see) material_par

The material statement mass_gamma_bar is an active layer macro statement
used to define the relative effective mass of the Gamma band in the quantum barrier.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.447 mass_gamma_bulk

parameter data type values [defaults]
(see) material_par



22.448 mass_gamma_well 835

The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.
It is the conduction bane effective mass in direction along the c-axis. This statement
is applicable for wurtzite structure bulk region [1].
[1] S. L. Chuang, “Optical Gain of Strained Wurtzite GaN Quantum Well Lasers",
IEEE J. Quantum Electron., VOL. 32, NO. 10, OCTOBER 1996, p. 1791

22.448 mass_gamma_well

parameter data type values [defaults]
(see) material_par

The material statement mass_gamma_well is an active layer macro statement
used to define the relative effective mass of the Gamma band in the quantum well.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.449 mass_l_bar

parameter data type values [defaults]
(see) material_par

The material statement mass_l_bar is an active layer macro statement used to
define the relative effective mass of the L-band in the quantum barrier.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.450 mass_l_well

parameter data type values [defaults]
(see) material_par
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The material statement mass_l_well is an active layer macro statement used to
define the relative effective mass of the L-band in the quantum well.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.451 mater_var

parameter data type values [defaults]
name char
variation char linear_x, linear_y
n_values realxn
rotation_angle real (degrees)
reference_point realx2 (µm)
data_num intg

mater_var works in conjunction with the load_macro statement to define the
spatial variation of a user-defined variable. The local value of this variable is passed as
an argument to the various functions inside the macro to define material parameters.
In many ways, this statement duplicates some of the functionality common to all ma-
terial parameter statements (c.f. Sec. 22.456). However, it operates at a higher level
and is usually automatically generated by Crosslight helper tools like the layer.exe
program.

Parameters

• name is a unique identifier used to identify the spatial variation. It should be
the same as var_name in load_macro in order to correctly link the variation
to the right symbol/macro variable.

• variation defines how the variable varies with distance:

– linear_x means that the physical quantity linearly depends on the position
in the x-direction. This must be used in conjunction with the parameters
data_num and n_values.

– linear_y is the same as linear_x except it is in the y-direction.
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– linear_xy is a linear variation in an arbitrary direction specified by rota-
tion_angle and reference_point.

– function means a mathematical function of the form:

function(variable1, variable2, ...)
......
end_function

All lines in a function except the last one must end with a semicolon
(;) to suppress the line output. The output of the last line is the value
returned by the function. The rules for mathematical functions are further
explained in Appendix B.

– table is used for tabulated data. Multi-dimensional data may be used but
a column-wise variation with the left-most index varying the quickest is
needed as shown below:

table(x,y)
x(1) y(1) matrix(1,1)
x(2) y(1) matrix(2,1)
x(3) y(1) matrix(3,1)

x(1) y(2) matrix(1,2)
x(2) y(2) matrix(2,2)
x(3) y(2) matrix(3,2)
............
end_table

• rotation_angle is effective when variation=linear_xy. It is the angle from
the y-axis.

• reference_point is (x,y) coordinate of the reference point of the rotated
grading region. It is effective when variation=linear_xy. In listing of coordi-
nate/composition in n_values above, the coordinate is the distance from this
reference point for a rotated grading region.

• n_values specifies data points used for the linear interpolation when varia-
tion=linear_x. The format is n\_values=(x1,f1,x2,f2,x3,f3, ...) where
x_i and f_i are the x-coordinate and function value of the ith point. A similar
format is used with the other linear variation formats.

• data_num is the number of data values in n_values. It is equal to twice
the number data points since coordinates must also be included in n_values.
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Examples

mater_var name=In variation=linear_y 4_values=(0. 0.14, 0.3, 0.2) &&
data_num=4

22.452 material
parameter data type values [defaults]
type char [semicond]
el_vel_model char constant, 2.piece,[beta],n.gaas
hole_vel_model char constant, 2.piece,[beta],n.gaas
trapleveli_model char gaussian, expo_tail
trapleveli_tail_side char conduction, valence
trapleveli_charge_type char donor, acceptor
band_valleys realx2 [1 1]
mater intg [1]
group_index real [3.56]

material is a passive macro statement that defines various model parameters for a
specific material.

Parameters

• type is the type of material. It takes one the following:

– semicond refers to a normal semiconductor like Si or InP.
– insulator is a special material type where the current is exactly zero.
– resistor is a special material type used for metals. See Sec. 5.3.
– wurtzite refers to semiconductors like GaN and ZnO which have the wurtzite

crystal structure.
– organic refers to organic semiconductors.
– super_struc_type is a complicated layer structure which is usually simu-

lated separately in a smaller sub-project.

• mater is the index of the material being described. This is omitted when the
statement is used in a macro file.

• el_vel_model and hole_vel_model are the field-dependent mobility mod-
els from Sec. 5.1.6. Each parameter can take on the following:



22.452 material 839

– 1. constant
– 2. 2.piece
– 3. beta. This is the default for most devices.
– 4. n.gaas. This model shows the negative differential resistance typical of

GaAs and applies to electrons only.
– 5. poole_frenkel. This model is used for organic semiconductors.
– 6. modified_transf_elec. This corresponds to a mixture of the “beta”

or Canali model and a modified transferred-electron model: it applies to
electrons only. See beta_mte for details.

A user-defined mobility model can also be used.

• band_valleys is the number of equivalent conduction band valleys and valence
band peaks. This is needed to compute the density of states from the effective
masses.

• group_index is the group index of the 2D cross section being simulated. The
group index is used to measure the velocity of the photon energy and it appears
in the photon rate equation and in stimulated emission terms.

• trapleveli_model, trapleveli_tail_side and trapleveli_charge_type
are a set of parameters defining traps that are always a part of the mate-
rial being defined in a particular macro. This provides an alternate means of
defining traps in the software besides the use of the doping statement. Refer
to Sec. 5.5 for the rules governing traps when both sets of statements are used.
The significance of these parameters and the values allowed is the same as for
the similarly-named parameters in the doping statement. Note that “i” is
an identifying label (i=1..9) so different traps species can coexist in the same
material.

Examples

material band_valleys=(6 1) &&
el_vel_model=beta hole_vel_model=beta

This is used for Si.

material type=semicond band_valleys=(1 1) &&
el_vel_model=n.gaas hole_vel_model=beta

This is used for GaAs.
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22.453 material_3d

parameter data type values [defaults]
global char [yes], no
intern_spon_par char [yes], no
spon_par real [1.7]
dkdn_real real [0.] (m2)
dkdn_imag real [0.] (m2)
dkdn_nref real [2.e24] (m−3)
dndn_type2 real [-1.e-28] (m3)
dgdn_type2 real [1.e-22] (m2)
dgdw_type2 real [0.0]
dkdj_real real [0.] (m/A)
dkdj_imag real [0.] (m/A)
dkdj_jref real [0.] (A/m2)
sec_num intg [1]

material_3d is primarily used in PICS3D in conjunction with passive_3d to
describe how the real and imaginary parts of the propagation constants vary in un-
meshed passive regions. Other parameters relating to the Green’s function analysis
are also set here so this command may also be used to override internal defaults for
that model.

Parameters

• global determines whether this statement applies to all optical sections. If
not, only the section defined in sec_num is affected.

• dkdn_real and dkdn_imag are the derivatives of the real and imaginary
parts of the propagation constant with respect to the carrier density; dkdn_nref
is the reference carrier density. dkdj_real, dkdj_imag and dkdj_jref im-
plement a similar model using a reference current. These values are used in
the longitudinal transfer matrix code.

• dndn_type2, dgdn_type2 and dgdw_type2 are derivatives of the refrac-
tive index and optical gain with respect to the carrier density (n) and frequency
(w). These values are used in the small-signal and noise analysis.

• intern_spon_par determines whether the internally calculated value of the
population inversion factor nsp (as defined in Eq. D.124) is used in the Green’s
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function model. If global=no, this setting must be the same in all sections of
the device.
If intern_spon_par=no, a hard-coded value defined in spon_par is used
in all integrals that depend on gnsp; typical values for AlGaAs and InGaAsP
lasers are 2.6 and 1.6, respectively. If intern_spon_par=yes, nsp is obtained
from the gain value at each bias step and Eq. D.124.
From the round-trip gain formulation of Green’s function theory, we know that
the imaginary component of the optical frequency represents the contribution
of the spontaneous emission to the propagation so that changes in nsp will be
reflected in that value. Such changes will thus affect multiple aspects of the
model including the emission spectra, noise and linewidth analysis, the shape
of the L-I curve near threshold, the photon number in each mode, etc...
We note that this term is a key component of the Green’s function model
and is not always fully understood: in the model, the optical gain, the pho-
ton density of states and the amount of spontaneous emission coupling into
the longitudinal modes are all interconnected; the latter term includes both
lateral coupling of the emission due to the waveguide shape/index profile and
longitudinal coupling due to shape of the longitudinal mode solutions. While
a quantum mechanical relationship exists based on material gain properties
(c.f. Chap D), we must also consider how optical losses in the cavity affect the
population inversion in the device under operating conditions.
Additionally, if intern_spon_par=no then the integrated spontaneous emis-
sion rate in each mode is also replaced by the averaged value over each mode;
this is done for historical reasons and to support regions defined using pas-
sive_3d statements. As can be seen in Sec. E, this modification can have
strong effects on the shape of the emission spectrum and the definition of
the side mode suppression ratio. For this reason, the default setting of in-
tern_spon_par=yes is strongly recommended: numerical testing shows the
spectrum shape does not match experiment if intern_spon_par=no.

22.454 material_label_define

parameter data type values [defaults]
label char
mater intg [1]

material_label_define is used for import/export purposes with CSUPREM and
assigns a specific user-defined label to a material number.
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Parameters

• label is the user-defined label.

• mater is the material number associated with that label.

22.455 material_lib

parameter data type values [defaults]
name char
var_namei(i=1..9) char
var_symboli(i=1..9) char
type char [basic], complex
vari(i=1..9) real
mater intg [1]

material_lib is the equivalent of the load_macro statement for the “library”
material system described in Sec. 3.5. It associates a certain library name and its as-
sociated parameter with a material number. This statement is usually automatically
generated by layer.exe.
See complex_var_symbol for further information.

Parameters

• name is the name of the library.

• var_symboli, with i=1..9, is the variable name (.e.g. “x” for composition) of
variable #i. This symbol must be associated with the value of the variable in
vari or otherwise link with a grading function name in var_namei.

• type determines whether this library will only use the passive part of the
underlying macro (simple) or also invoke the complex MQW active macro
(complex). In general, this parameter is automatically set by the layer.exe
program for those layers tagged as being part of a quantum-confined region.

• mater is the material number being linked to this material library.
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Examples

material_lib name=AlGaAs mater= 1 &&
var_symbol1=x var1= 0.7100E+00

22.456 material_par

parameter data type values [defaults]
variation char linear_x,linear_y,function,[constant]
var_namej (j=1..9) char [void]
varj(j=1..9) real
var_symbolj(j=1..9) char void
mater_label char void
value real
n_values realxn
mater intg [1]
data_num intg [0]
var_num intg [1]

material_par is not a statement that can be processed by the software. It is
simply a stand-in name for all the material macro statements that use the same
set of parameters. For example, the parameters of the table above apply equally to
band_gap and hole_mass. The parameters described here are also collectively
referred to as group1 parameters which are common to most physical quantities of
the simulation program.
The statements in group1 are most often found in material macro files but can also
be used in other input files to manually define parameters or override default macro
values.

Parameters

• variation defines how the physical quantity varies with position. There are
several options for this parameter:

– constant means that a fixed value is used everywhere in the material to
define a physical quantity.

– linear_x means that the physical quantity linearly depends on the position
in the x-direction. This must be used in conjunction with the parameters
data_num and n_values.
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– linear_y is the same as linear_x except it is in the y-direction.
– function means a mathematical function of the form:

function(variable1, variable2, ...)
......
end_function

All lines in a function except the last one must end with a semicolon
(;) to suppress the line output. The output of the last line is the value
returned by the function. The rules for mathematical functions are further
explained in Appendix B.

– table is used for tabulated data. Multi-dimensional data may be used but
a column-wise variation with the left-most index varying the quickest is
needed as shown below:

table(x,y)
x(1) y(1) matrix(1,1)
x(2) y(1) matrix(2,1)
x(3) y(1) matrix(3,1)

x(1) y(2) matrix(1,2)
x(2) y(2) matrix(2,2)
x(3) y(2) matrix(3,2)
............
end_table

• var_name1-9 is used when variation=function and the user-defined variable
varies in space according to the matching definition in mater_var. The local
mesh value of the variable is passed to the macro functions as an argument.
This parameter must be paired with var_symbol1-9 to define the symbol of
the function argument in free-style macros.
This is often used to define composition gradings.

• var1-9 is used when variation=function and the user-defined variable is a
constant. This constant is passed to the macro functions as an argument. This
parameter must be paired with var_symbol1-9 to define the symbol of the
function argument in free-style macros.

• var_symbol1-9 is the symbolic variable name used as function argument in
the macro. If symbols are defined by the user, then they must exactly match
the function arguments in the macro. If they are omitted, then the software
assumes the older fixed-form is being used for the macro and the order of
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the parameters in var1-9 or var_name1-9 must exactly match that of the
function arguments in the macro.

• mater_label is a user-defined label that can be used to refer to this material
in other commands.

• value is the value of the statement or physical quantity if variation=constant.

• n_values specifies data points used for the linear interpolation when varia-
tion=linear_x. The format is n\_values=(x1,f1,x2,f2,x3,f3, ...) where
x_i and f_i are the x-coordinate and function value of the ith point. A similar
format is used when variation=linear_y.

• mater is the material number of the material being described. This is omitted
within the scope of a macro file but must be specified when overriding default
macro values elsewhere in the simulation.

• data_num is the number of data values in n_values. It is equal to twice
the number data points since coordinates must also be included in n_values.

• var_num is the number of function arguments used when variation=function.
it is obsolete for newer free-style macros.

Examples

band_gap value=1.425 mater=2

dielectric_constant variation=linear_y data_num=6 &&
6_values=(0. 10.5, 0.5 11.4, 0.9 12.)

electron_mass variation=function var1=0.3
function(x)
0.4&+0.2&*x
end_function

22.457 max_electron_mob

See electron_mobility
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22.458 max_hole_mob

See hole_mobility.

22.459 mesh_output

parameter data type values [defaults]
mesh_outf char
order char [yes],no

The mesh generation statement mesh_output defines the mesh output data files.
This statement is used after the placement of mesh lines on the edges of the polygons.

Parameters

• mesh_outf is the mesh output file.

• order specifies the format of the mesh output. If the mesh output is to be used
by the solver, yes should be chosen; that is, ordering of the mesh is required
to interface with the solver. If the mesh is to be further manipulated after this
statement, a no value should be chosen.

Examples

mesh_output mesh_outf=bulk2d.msh order=yes

22.460 microcavity_model

parameter data type values [defaults]
fdfd_vectorial char [yes],no
set_wavelength real (µm)

microcavity_model solves the wave equation directly (i.e. without doing a sepa-
ration of variables) using an eigenvalue method.
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In order to force the outgoing wave (which normally extends to infinity) to decay to
zero within a fixed simulation domain, Perfectly Matched Layer boundaries (PML)
are applied to the output facet using the microcavity_exit statement. The output
power vs. bias is then obtained by integrating the power loss in the PML region:
this value is equal to the power which would have travelled to infinity if a free space
region had been used instead of the PML.
As of v.2016, this model is available for Fabry-Perot-like 2D edge emitters and
VCSELs, with a particular focus on surface relief applications. As of v.2017, a
new vectorial mode solver is available for VCSELs and is used as the new default;
edge emitting devices should manually enable the previous scalar mode solver.

Parameters

• fdfd_vectorial enables a finite difference frequency domain (FDFD) vectorial
mode solver for the microcavity model. The FDFD mesh is rectangular and
uniformly-spaced in any given direction. The spacing of this mesh is obtained
from the smallest of the following criteria:

– the minimum mesh spacing in a given direction
– the Courant stability condition typically used in the related field of finite

difference time domain (FDTD) simulations ( λ
10n

)
– an internally-set minimum of 5 points in the radial direction and 100

points in the vertical/propagation direction

Material properties and mode profiles are interpolated to/from the irregular
FEM mesh used for the drift-diffusion model and the FDFD grid.

• set_wavelength sets the wavelength used to solve the wave equation.

22.461 microcavity_exit

parameter data type values [defaults]
below_y real (µm)
above_y real (µm)
left_x real (µm)
right_x real (µm)
power_refl real [0.0]

microcavity_exit sets up the position of PML boundary conditions used for the
microcavity_model command.
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Parameters

• below_y sets the position of the bottom horizontal boundary. If omitted, no
PML boundary is set on that side of the device.

• above_y sets the position of the top horizontal boundary. If omitted, no PML
boundary is set on that side of the device.

• left_x sets the position of the left vertical boundary. If omitted, no PML
boundary is set on that side of the device.

• right_x sets the position of the right vertical boundary. If omitted, no PML
boundary is set on that side of the device.

• power_refl is a power reflection coefficient applied to the wave before hitting
the PML boundary.

22.462 min_electron_mob

See electron_mobility

22.463 min_hole_mob

See hole_mobility.

22.464 minispice

parameter data type values [defaults]
circuit_file char
spice_device_to_tcadmesh char
spice_source_to_tcadbias char
scan_variable char
contactj_to_spice_node (j=1..109) char
spice_source_node_scan char
z_dim real [10] (µm)
spice_node_scan intg
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minispice is new to the 2013 version of Crosslight and enables a full-fledged mixed-
mode (SPICE + TCAD) simulation. It replaces and enhaces the external_cir
statement used to define external circuits in previous versions.
This statement may be used in one of two ways: to define a sub-circuit attached to
a particular contact or to substitute one or more SPICE devices in a larger circuit
with TCAD devices. The first mode replicates the functionality of external_cir
and may be used multiple times to attach different sub-circuits to different electrodes.
The second approach is more typical of mixed-mode simulation and may be used to
model a larger integrated circuit. In this mode, the TCAD device is defined inside
the SPICE circuit file using a placeholder element, with the Drift-Diffusion model
replacing the usual SPICE compact model of the device during the full mixed-mode
simulation. This second approach is more powerful and should be used for all new
simulations.
Note that if multiple devices in the same circuit must be replaced by TCAD devices,
then more_tcadmesh must be used to define the extra placeholder elements in the
circuit file.
As of the 2014 version, transient simulations and DC parameter sweeps are supported
in mixed-mode simulations. Small-signal AC modeling is new to the 2015 version
of the software but still under development. See ac_voltage for examples of the
currently-available functionality.

Parameters

• circuit_file is the name of the SPICE layout file (.cir) defining circuit (or
sub-circuit) for this command. For those users not familiar with SPICE layout
rules, a convenient manual may be found at http://www.freeda.org/doc/
SPICE/spice.pdf.

If the sub-circuit mode of minispice is used, then multiple circuit files may
be defined (one for each contact) by repeatedly using this command. In that
case, node numbers may be repeated in each layout file as they are independent
from each other.

Please note that following normal SPICE convention, node zero (0) of the
layout should be the circuit’s electrical ground; however, this convention may
be ignored in the sub-circuit mode of minispice.

• spice_device_to_tcadmesh, is the name of a circuit entity in the above
layout file which is replaced by the TCAD meshed device. As an example,
a simple diode or MOSFET model from a standard library can be used as
a placeholder to draw the circuit layout with a third-party GUI tool. The
actual mixed-mode simulation will then be performed using the TCAD device’s

http://www.freeda.org/doc/SPICE/spice.pdf
http://www.freeda.org/doc/SPICE/spice.pdf
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own geometry, doping profiles, trap settings, etc... rather than the model
parameters from the SPICE library.

This parameter is not used in the sub-circuit mode of minispice.

• contactj_to_spice_node associates the mesh boundary #j (j=1..109) (i.e.
the contact boundary for the TCAD device) with a given SPICE node label
in the circuit layout file. If the sub-circuit method is used, then only one such
statement may be used in each minispice command, in which case it associates
a SPICE sub-circuit with a particular electrode.

If spice_device_to_tcadmesh is used though, then each mesh electrode/contact
number that connects with a SPICE element must be associated with its equiv-
alent SPICE node label.

• spice_node_scan is used to define where the scan bias control variable (e.g.
voltage_1 ) is applied in the SPICE circuit or sub-circuit. An illustration of
this can be found in the examples below.

Note that the control variables always follow the usual rules of the scan state-
ment: at equilibrium, the voltage and net current are all zero. Afterwards, the
bias voltage stays constant and always inherits the value of the previous scan
unless it is explicitly scanned or a current boundary is used.

Please note that although the control variables from the scan statement are
assigned to a particular SPICE node, the software will usually print the bias
values for the internal bias point (electrode) in the simulation log file.

• scan_variable may be used to associate the electrode number of the scan
control variable with the node number of spice_node_scan. For exam-
ple, specifying scan_variable=voltage_1 means that the voltage applied at
spice_node_scan is V1.

However, this approach should be considered obsolete and contactj_to_spice_node
is the preferred method of assigning a sub-circuit to a particular electrode.

• As an alternative to directly driving the SPICE sub-circuit with APSYS bias
controls, spice_source_to_tcadbias may be used to drive an existing volt-
age or current source in circuit layout file using a transient simulation or a
DC parameter sweep; in the scan statement, the corresponding variables for
this are time and virtual_time, respectively. In this case, the SPICE source
connected at the node label defined in spice_source_node_scan is scanned.

• zdim is the omitted dimension in the z-direction used in 2D simulations to
convert units (e.g. Amperes to A/m). It is not used in 3D simulations.
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Sub-Circuit Example: Series Resistor

Consider a simple diode with a parasitic 100 Ohm resistance connected in series
(res.cir):

#comment line
r 0 1 100

The simulation file for the diode invokes this external circuit using the following
commands:

minispice circuit_file=resistor.cir &&
contact2_to_spice_node=0 spice_node_scan=1

....

scan var=voltage_1 value_to=-0.7 &&
init_step=0.01 min_step=1.e-5 max_step=0.02

Here the sub-circuit (resistor) is connected to electrode #2 of the device. Inside the
sub-circuit, SPICE node 0 is connected to the device electrode while SPICE node
1 is used to apply the bias voltage voltage_2. Since the scan statement applies to
electrode #1, a value of -0.7V is applied directly to the device since there is no sub-
circuit on that side of the device. On the “+” side of the device, voltage_2 stays
at 0V throughout the simulation since it is never scanned; the internal voltage of
electrode #2 is left floating and depends on the current flow in the resistor.

Sub-Circuit Example: Multiple Series Resistors

minispice circuit_file=res1.cir &&
contact2_to_spice_node=0 spice_node_scan=1

minispice circuit_file=res2.cir &&
contact1_to_spice_node=0 spice_node_scan=1

.....

scan var=voltage_1 init_step=0.01 value_to=-3. min_step=1.e-5

Here two sub-circuits are defined and are attached to electrodes #2 and #1, respec-
tively, where each of the two circuit files is similar to the one in the previous section.
As can be seen in Fig. 22.18 within each layout file, the electrode is connected to
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01

Contact #2

voltage_2

(a)

01

Contact #2

voltage_2

0 1

Contact #1

voltage_1

(b)

Figure 22.18: Sub-circuits attached to one (a) or two (b) contacts. SPICE node
numbers in each sub-circuit are reused

the local SPICE node #0 and the scan bias variables (voltage_1 and voltage_2 ) are
applied to local SPICE node #1. As before, scan variable voltage_2 stays at 0V
throughout the simulation; however, the voltage of both electrodes is now floating.
Note that different resistor values may be used in each circuit file and the sub-circuits
may also have completely different elements.

Sub-Circuit Example: Parallel Resistor

This is a trick question2: it is not possible to use a sub-circuit approach to represent
a resistor or capacitor connected in parallel with a TCAD device. By definition,
a sub-circuit is only attached to one electrode and a parallel resistor would connect
two different electrodes. Resistors and other SPICE devices may be connected in
parallel but only within the same sub-circuit.
To model this kind of situation, a complete layout file for the whole circuit must
be used along with spice_device_to_tcadmesh. The next example describes a
more complex version of the same concept.

2Previous version of the manual was in error
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QIGBT

Figure 22.19: Circuit layout for a IGBT switching test circuit

Integrated Circuit Example: External Bias

Let us consider the circuit shown in Fig. 22.19 and defined in the file “IGBT_switching.cir”
below:

# A switching test circuit
VG 1 0 pulse(0 15 1e-6 1e-9 1e-9 0.5e-6 1e-6)
RG 1 2 40
Zigbt 3 2 0 IGBT
Lstray 3 4 0.02u
Dfwd 4 5 FWD 1e-5
Lload 3 5 0.5u
VDD 5 0 100
.MODEL FWD D(AF=1 BV=1200 CJO=0. EG=1.11
+ FC=0. IBV=1.E-10 IS=1.E-14
+ KF=0 M=0.5 N=1 RS=1e-10 TT=1e-6
+ VJ=1.0 XTI=3.00E+00)
.TRAN 5n 2.5u
.PROBE
.END

In this setup, we replace the IGBT device with our meshed TCAD device. We also
note that this circuit contains an external transient source term (Vg) in addition
to a DC bias (VDD). By using the minispice and scan statements below, we can
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control both of these sources in the simulator: the normal scan variables (voltage_1 )
are not used.

minispice circuit_file=IGBT_switching.cir z_dim=1e6 &&
spice_device_to_tcadmesh=zigbt &&
contact1_to_spice_node=0 &&
contact2_to_spice_node=2 &&
contact3_to_spice_node=3

....

scan var=virtual_time value_to=1 init_step=0.01 min_step=1e-5 &&
max_step=0.1

...

scan var=time value_to=1.0e-6 init_step=1e-9 min_step=1e-14 &&
max_step=1e-7

During the simulation, virtual_time controls all of the DC sources simultaneously:
it acts a scaling factor for the value defined in the SPICE layout with a initial value
of zero to match the equilibrium conditions required for TCAD modeling. After this
initial biasing, the transient pulse source Vg is activated by increasing the wall clock
of the simulation (time).

22.465 mmb_gaintable

parameter data type values [defaults]
directory char [void]
use_gain_spec char [yes]
use_index_spec char [yes]
use_spon_spec char [yes]
active_regnum intg [1]

The statement mmb_gaintable is used to activate an interface to import the mi-
croscopic many-body material data base of Univ. of Arizona (or Non-linear Control
Strategy Inc.). The data base consists of quantum well optical gain, refractive index
and spontaneous emission computed at a limited number of temperatures and carrier
densities. The assumption in the data base is that there is equal amount of elec-
trons and holes in any quantum wells. This statement simply imports the gain and
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index data from the mmb-data base and interpolates between data files to obtain a
continuous gain spectrum useful for simulation. To make the simulation compatible,
we have to average the amount of electrons and holes in the well to come up with a
single value of density to compare with the data files in the mmb-data base.

• directory is the name of the directory where the data files of mmb-data is
stored. This directory must be located in the current directory of the input
files of the simulation.

• use_gain_spec instructs the simulator to import the gain spectrum data
from the mmb-data.

• use_index_spec instructs the simulator to import the refractive index spec-
trum data from the mmb-data.

• use_index_spec instructs the simulator to import the spontaneous emission
spectrum data from the mmb-data.

• active_regnum is the active region number this statement takes effect.

Example(s)

mmb_gaintable directory=mmb_data use_gain_spec=yes use_index_spec=yes
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22.466 mobility_xy

parameter data type values [defaults]
dir char [y],x
elec_field_model char [void],intel1,intel2,lombardi
hole_field_model char [void],intel1,intel2,lombardi
use_elec_hv_expo_factor char [no]
use_hole_hv_expo_factor char [no]
mater_label char
factor_elec real [1.]
factor_hole real [1.]
elec_intel1_beta real [0.5]
elec_intel1_e_crit real [4.2e6] (V/m)
elec_intel2_alpha real [1.02 ]
elec_intel2_e_univ real [5.71e7] (V/m)
hole_intel1_beta real [0.5 ]
hole_intel1_e_crit real [3.e6] (V/m)
hole_intel2_alpha real [0.95]
hole_intel2_e_univ real [2.57e7] (V/m)
elec_lombardi_b real [4.75e7] (cgs unit)
elec_lombardi_alpha real [1.74e5] (cgs)
elec_lombardi_beta real [0.125]
elec_lombardi_delta real [5.82e14] (cgs)
hole_lombardi_b real [9.93e7] (cgs)
hole_lombardi_alpha real [8.84e5] (cgs)
hole_lombardi_beta real [0.0317]
hole_lombardi_delta real [2.05e14] (cgs)
elec_hv_critical_field real [5.e7] (V/m)
elec_hv_expo_field real [1.e7] (V/m)
elec_hv_minfac real [0.5]
hole_hv_critical_field real [5.e7] (V/m)
hole_hv_expo_field real [1.e7] (V/m)
hole_hv_minfac real [0.5]
mater intg [1]

This statement defines an anisotropic mobility on the x-y plane. This may be useful
for an effective medium approximation of multiple layers (such as DBR mirrors in a
VCSEL) or for vertical field-dependent mobility in a MOSFET channel.
For mobility reduction due to transverse field under the MOSFET channel, we have
implemented the following mobility models:
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• intel1 is based on the PISCES-2ET manual[131] and defines a factor to reduce
the mobility under the channel:

rperp = (1 + E⊥/Ecrit)−β (22.76)

where E⊥ is the field perpendicular to the SiO2/Si interface.

• intel2 is the same as above with the following formula for the reduction factor:

rperp = [1 + (E⊥/Euniv)α]−1 (22.77)

• lombardi sums up the contributions to mobility from different sources as follows[132]:

1
µ

= 1
µac

+ 1
µsrf

+ 1
µ0

(22.78)

where µ0 is the mobility due to longitudinal field/hot-carrier effect.
The other terms are as follows:

µac = B

E⊥
+ αNβ

TLE
1
3
⊥

(22.79)

µsrf = δ

E2
⊥

(22.80)

Optionally, an additional mobility reduction factor of the following form is used:

fhv =

1 if E⊥ ≤ Ecr

fmin + (1 − fmin)e− (E⊥ − Ecr)/Eexp if E⊥ > Ecr

(22.81)

This additional reduction is used to describe quasi-saturation effect in high voltage
(HV) MOSFET where strong suppression of mobility due to high vertical field (or
high Vg) has been reported.

Parameters

In the following description, we only define parameters for electrons; those for holes
are completely similar.

• dir is the direction in which the mobility is modified by a factor.

• elec_field_model specifies the model used for electron mobility. If set to
void, a constant factor is used to modify the default mobility.
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• factor_elec is a constant scaling factor applied to the electron mobility.

• elec_intel1_beta, elec_intel1_e_crit are parameters for the intel1 model
described above.

• elec_intel2_alpha, elec_intel2_e_univ are parameters for the intel2 model
described above.

• elec_lombardi_b, elec_lombardi_alpha, elec_lombardi_beta, elec_lombardi_delta
are parameters for the Lombardi model described above. Please note that to
keep the same formulas as in the original paper, we use CGS units for these
values.

• use_elec_hv_expo_factor enables the additional mobility reduction factor
fhv. elec_hv_critical_field,elec_hv_expo_field and elec_hv_minfac
are the Ecr, Eexp and fmin values for this model.

• mater is the number of the material affected by this statement. If a label has
previously been defined, mater_label may be used instead.

Examples

mobility_xy dir=y factor_elec=0.6 mater=3

The above statement decreases the electron mobility in y-direction by a factor of 0.6
in material number 3.

22.467 mode_srch

parameter data type values [defaults]
adjust_range char [no], yes
force_yrange char [no], yes
omega_xrange real [8.]
omega_yrange real [4.]
omega_ymin real [1.e3]
wavel_xrange real (m)
sample_x intg [391]
sample_y intg [101]
cavity_num intg [1]

mode_srch sets parameters relating to the longitudinal mode search in PICS3D.
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Parameters

• adjust_range turns on/off the option to search for the position of the dom-
inant mode; when turned on, the program will attempt to put the dominant
mode in the middle of the frequency range. This search is done prior to the
onset of the coupling; once photon coupling is turned on, the same set of lon-
gitudinal modes will be used throughout the simulation.

• omega_xrange defines a range of optical frequencies (ℜω) for the longitudinal
mode search and is expressed as a multiple of the Fabry-Perot mode spacing
for this cavity (2πc

nL
). This range is defined around the frequency corresponding

to the reference wavelength defined in the longitudinal statement.

• omega_yrange is similar to omega_xrange but defines the maximum value
for the imaginary part of the frequency, as defined in Sec. 16.4. This param-
eter must be limited since with enough additional spontaneous emission, any
wavelength can be made to satisfy the round-trip gain equation: we must limit
the analysis to mode of importance with sufficient cavity feedback.

• wavel_xrange (in unit of meter) is the wavelength search range for the lon-
gitudinal modes. If this is defined, it will override the search range define by
omega_xrange but the latter should still be used to allocate sufficient storage
for the mode search.

• force_yrange is used to force the y-range (ℑω) for mode search on the com-
plex omega plane. If this is not forced, the range used in the mode search is
determined by a quick search on both ends of the x-range. This option may be
used to ensure all modes are found within a certain y-range.

• omega_ymin is used so that ℑω never dips below a certain minimum amount.
Since this quantity is related to the amount of additional power provided by the
spontaneous emission, it has a tendency to go to zero as the mode starts to lase
and the photon number goes up. However, a certain amount of spontaneous
emission is always present, even above threshold.

• sample_x and sample_y is the number of sample points in the complex
frequency plane that are used for the mode search.

• cavity_num can be used to specify different longitudinal settings when work-
ing with multiple optical cavities. See also begin_cavity.

Examples

mode_srch omega_xrange = 20
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22.468 modify_bias_output

parameter data type values [defaults]
radiative_qw_only char [yes],no

modify_bias_output changes the way certain bias-dependent variables are com-
puted.

Parameters

• When radiative_qw_only=yes, only radiative emission from the QW re-
gions contributes to the internal quantum efficiency (IQE) calculations.

22.469 modify_bulk_macro

parameter data type values [defaults]
variable char
mater_label char
add_to_value real [0.0]
scale_value real [1.0]
mater intg [1]

modify_bulk_macro provides a convenient way of modifying an existing or pre-
viously defined bulk macro variable.

Parameters

• variable is the macro variable being altered by this statement.

• add_to_value adds a certain value to the specified variable.

• scale_value multiplies the specified variable by a certain value.

• mater is the material number where the variable should be modified. If a label
has previously been defined as an alias, mater_label may be used instead.
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Examples

modify_bulk_macro variable=affinity add_to_value=0.2

The above command would shift the affinity, and thus the band alignment, by 0.2
eV.

22.470 modify_gain

parameter data type values [defaults]
positive_only char yes,[no]
add_bulk_absorption_to_qw char yes,[no]
add_bulk_abs_spectrum char yes,[no]
enforce_index_spectrum char [no],yes
bulk_abs_eg real [1.] (eV)
bulk_abs_wavelength real (µm)
scale_bulk_abs real [1.]

modify_gain is used to modify the gain spectrum that is computed by the software.

Parameters

• positive_only truncates the negative part of the gain curve.

• add_bulk_absorption_to_qw can be used to add an imported gain or
absorption spectrum to the gain curve. This can important in QW or QDOT
solar cell applications which require accurate broad-band absorption, including
the inter-valley transitions. Since the internal gain model in Crosslight is only
valid for interband transitions near the Γ point, experimental absorption data
can be imported to bridge the gap between the two spectral domains.

When using this parameter, it is assumed that spectrum data has been im-
ported using the index_spectrum statement or that absorption has been
set to a non-zero value.

• add_bulk_abs_spectrum is used in conjunction with add_bulk_absorption_to_qw.
When used, the bulk absorption is added to the full spectrum and not merely
to the local values (at each mesh point).
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• enforce_index_spectrum instructs the software to ignore the default in-
ternal gain spectrum calculations and completely use the imported data from
index_spectrum for the gain curve of this active region. Note that for pas-
sive regions, merely using index_spectrum already forces the software to use
the specified absorption data: this parameter is only necessary for cases where
a region is declared as an active material for other reasons, such as enabling
photon recycling models.

• bulk_abs_eg is the bandgap of the bulk material, used for cut-off of the
absorption. bulk_abs_wavelength may be used to define this using the
wavelength instead but only one of these parameters should be used.

• scale_bulk_abs may be used to artificially scale the bulk absorption spec-
trum before adding it to the QW. This can be used to account for uncertainties
in the bulk effective mass.

Examples

modify_gain add_bulk_absorption_to_qw=yes

22.471 modify_layer_height

parameter data type values [defaults]
curve_data_file char
location char top, [middle], bottom
bottom_shaping char [uniform], gradual
top_shaping char [uniform], gradual
delta_y_from_bottom real (um)
delta_y_from_top real (um)
relative_yrange realx2 [-1.e9 1.e9] (um)

modify_layer_height is used to modify the height of one or more layers when
defining the device structure in the .layer file. This is shown schematically in
Fig. 22.20.
A reference point (yref ) must be defined where the layer height is left unchanged:
this is done using the location parameter for the y-position and layer_height_ref
for the x-position.
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yrange1
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Figure 22.20: Visual representation of the parameters to modify_layer_height

Parameters

• curve_data_file is the name of the data file containing the profile/shape
function used to alter the height of the layers. Note that only the shift away
from the reference point is used to alter the profile: the absolute value of the
reference curve is not used.

• bottom_shaping and top_shaping defines how the interfaces on each side
of the reference point are altered. If set to uniform, the same y-shift is applied
to all the interfaces; if set to gradual, the shift is linearly scaled so it becomes
zero at the end of the range.

• location, delta_y_from_bottom and delta_y_from_top are used to
define the reference y-position where the layer height is not modified. These
parameters are used in the same way as those of layer_position and positions
are relative to the last layer command issued.
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• relative_yrange selects the interfaces that are affected by this command. It
should be understood as an absolute position range with yref acting as the zero
reference.

Examples

modify_layer_height curve_data_file=myshape_function_data.txt

This will modify all interfaces in the layer file according to the shape function.

modify_layer_height curve_data_file=myshape_function_data.txt &&
relative_yrange=(-0.5 0.5) location=middle

This will set y reference to be middle of the preceding layer and modify the shape of
all layer interfaces within yref ± 0.5µm.

modify_layer_height curve_data_file=myshape_function_data.txt &&
relative_yrange=(-0.5 0.5) location=middle
bottom_shaping=gradual top_shaping=gradual

This is the same as the previous example except that the layer distortion is strongest
at the reference point and goes to zero for interfaces close to the ends of the y-range.

22.472 modify_light_spectrum

parameter data type values [defaults]
light_filter char [no]
incident_power real [0.] (W/m2) or W
wavelength real [1.] (µm)
filter_range realx2 [-9999.0 -9999.0] (µm)

This statement is used to facilitate the modeling of the external quantum efficiency
(EQE) of individual cells in a multi-junction solar cell. It allows the user to define
a band-stop filter to prevent all absorption in a given cell (thereby making that cell
current-limiting) and add a secondary monochromatic light source to probe the cell
response.
modify_light_spectrum works in conjunction with the light_power statement
and is often used as part of a series simulation to change the wavelength of the light
probe.
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Parameters

• light_filter activates a virtual band-stop filter on the incoming light spectrum.

• incident_power is the incident power of the secondary light source. It follows
the same rules as in light_power.

• wavelength is the wavelength of the secondary light source.

• filter_range is the spectrum range of the virtual band-stop filter. By default,
it blocks out the entire light spectrum.

Examples

modify_light_spectrum light_filter=yes filter_range=(0.3 0.8) &&
incident_power=1.e5 wavelength=0.56

22.473 modify_opt_gen_rate

parameter data type values [defaults]
factor_file char [no] yes

modify_opt_gen_rate offers a way to modify the optical generation rate by a
factor for different wavelengths.

• factor_file is the data file containing a 2-column data with first column being
the wavelength in microns and the 2nd column being the factor to scale the
optical generation rate profile.

modify_opt_gen_rate factor_file=my_scale_factor

22.474 modify_plot
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parameter data type values [defaults]
surface_bottom char [yes]
show_data_points char [no]
watt_to_candela char [no]
qdot_wave_carrier_type char [electron,hole]
longitudinal_mode intg [1] 2 3
elec_conc_valley intg [1] 2
hole_conc_valley intg [1] 2 3
elec_conc_subb intg [1] 2 3 4
hole_conc_subb intg [1] 2 3 4
light_source intg [1] 2 3 4
pics3d_lateral_mode intg

modify_plot is a post-processor statement used to modify the appearance and
content of subsequent plots.

Parameters

• surface_bottom affects surface plots to indicate whether a color bottom
contour will be plotted to indicate different materials.

• show_data_points turns on/off plotting of individual data points in the
graph.

• longitudinal_mode sets the index of longitudinal mode for the plotting state-
ments related to 3D laser devices. This parameter is only used in PICS3D. Note
that the lateral mode index is controlled separately, usually in the 2D plotting
command itself.

• elec_conc_valley and hole_conc_valley are used to specify which band
valley is used in the plotting of carrier concentrations.

• elec_conc_subb and hole_conc_subb are used to specify which subband
is being plotted for the carrier concentrations.

• light_source can be used when multiple input light sources are defined in a
simulation.

• pics3d_lateral_mode can be used in certain cases to sum up the power in
all the longitudinal modes corresponding to a specific PIC3D lateral mode.
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• watt_to_candela changes plots to display luminous intensity (SI unit of
candela) instead of optical power (Watt). This is primarily used for LEDs
emitting at optical wavelengths.

• qdot_wave_carrier_type is used when plotting the 3D (or cylindrical 2D)
wave function from quantum dots and controls the carrier type that is plotted.
The sub-band number may be accessed through the mode index parameter,
similar to what is done to plot optical mode profiles.

Parameters

modify_plot surface_bottom=no

The above statement suppresses the plotting of material region at the bottom of a
surface plot.

22.475 modify_qw

parameter data type values [defaults]
confine_left char [no] yes
use_bulkmass char [no] yes
kp_pot_sym char [yes] no
gain_num_integr char [no]
all_active_mater char [yes]
active_macro char [void]
tail_dos_n char [no]
tail_dos_p char [no]
kp88_cond_parab char [no]
use_av_pmass char [yes]
remove_above_line char [no]
lower_bound_label char [void]
upper_bound_label char [void]
complex_start_label char [void]
mb_pf_model char [no] yes
mater_label char
new_kp char
boundary_condition char [dirichlet], periodic
type2_detect char [no], yes
subhh_levelk(k=1..5) real [0.0]
sublh_levelk(k=1..5) real [0.0]
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subhh_mxfack(k=1..5) real [1.0]
sublh_mxfack(k=1..5) real [1.0]
left_mesh real (um)
right_mesh real (um)
more_cond_energy real [0.](eV)
more_val_energy real [0.](eV)
dip_factor_pump real [1.]
tail_energy real [0.](eV)
tail_state_scale real [1.]
tail_bulk_ref real [0.02]eV
mb_damping_factor real [1.0]
set_kp8x8_angle real
max_kp8x8_angle real [90.]
scale_mb_screen_length real [1.]
max_mb_screen_length real [1.e16] (um)
mb_pf_expo_factor real [1.]
kp_search_offset real [0.1] (eV)
mater intg
kp_points intg [35]
kp_bands intg [2]
qlevel_once intg [0],1
kp_extra intg [10]
number_period intg [1]

modify_qw can be used in the gain preview (.gain) or main simulation (.sol) to
modify quantum well model parameters.

Parameters

• confine_left is used to handle the special case of unconfined quantum states.
In a self-consistent model of a quantum well, it may happen that the external
bias is large such that right side (or the top side if well plane is horizontal) of
the barrier is lowered to form another potential well which is made possible by
the infinite potential wall at the right-most (or top-most) boundary. Solving
the wave equation in such a coupled two-well system may result in many states
being confined to the secondary right-well.
These states are unrealistic and exist only because we impose an infinite poten-
tial wall by forcing the wave function to be zero at the right-most (or top-most)
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boundary. Thus, we should filter out those unrealistic states while keeping the
ones confined in the primary well on the left side (or lower side). The param-
eter confine_left is used to select the confined states in the primary well on
the left. It is useful for quantum-MOS model when the gate bias is so large as
to lower the oxide barrier potential to a level below that of the left barrier.

• use_bulkmass is to instruct the simulator to use bulk macro effective single-
band mass when computing unconfined carrier density. We recall that the bulk
macro provides effective mass for a single band model. For example, the heavy
hole and light hole bands are combined to form an effective single valence band
for convenience. One the other hand, the active layer macro for quantum well
(or active region) computes the carrier density according to a multi-band model
(with distinct HH and LH bands, for example).
It is not always possible to reconcile the single-band and multi-band models.
For example, if there is a split between the HH and LH levels as a result of
strain, the equivalent single band model does not exist. In such a case, the
simulator uses the multi-band model to override the single-band one for both
confined and unconfined states within the active region.
This may become a problem for the unconfined states since the model for the
barrier region near a quantum well (in a self-consistent model, both well and
barrier belong to the same active region) is different from that for the bulk
region adjacent to it. We may see a discontinuity in background bulk (or un-
confined) carrier density. Typically, if we plot the total carrier density, we may
see the confined carrier density decays nicely to zero whereas there may be a
discontinuity in the background bulk density. This behavior may destroy solu-
tion convergence causing frustration for users. The parameter use_bulkmass
may be used to avoid such a situation. Please note that use of this parameter
does not affect the discrete quantum states which are the most important in
the active region.

• kp_pot_sym is used to indicate if symmetric potential is used to calculate
the subband structure in the k.p theory.

• gain_num_integr is to indicate whether numerical integration is used to
obtain the optical gain for the active region. By default, the free carrier optical
gain is done by piece-wise analytical formulas. It is switched to numerical
integration if many-body gain model is activated. One may choose to use
numerical integration for the purpose of fair comparison with many-body gain.
Also, in the limit of large kp_points, numerical integration produces the
most accurate optical gain because direct integration is performed without any
analytical fitting approximations.

• all_active_mater allows all active layers to use parameters in this statement,
unless a specific material is defined by active_macro or mater.
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• active_macro indicates that this statement affects all active layers with the
above active macro name.

• tail_dos_n assigns the DOS tail (due to inhomogeneous broadening) to the
conduction band. This works with the tail_energy parameter.

• tail_dos_p assigns the DOS tail (due to inhomogeneous broadening) to the
valence band. This works with the tail_energy parameter.

• kp88_cond_parab sets parabolic conduction band for 8x8 valence mixing
model. This parameter may be used to study the effect of non-parabolicity due
to the conduction band.

• use_av_pmass instructs the simulator to use effective mass with average
weighted by the envelop wave function for the purpose of computing optical
gain. This parameter will have a significant effect if the barrier and well masses
are substantially different.

• remove_above_line This parameter should be understood using a band
diagram of quantum well with envelop function drawn at the confined energy
levels. This parameter instructs the program to remove all quantum states
which are centered above a line with connects the left-most and right-most
points of the band diagram.

• lower_bound_label, if defined, is used by the program to set a lower bound-
ary point in a 1-D potential distribution so that if the wave is localized outside
of this lower limit, the state will be eliminated. This position label must be
predefined in a .layer or .mater file. Note that this only applies to the full
solution (.sol) since the .gain preview file does use the regular mesh.

• upper_bound_label is the same as lower_bound_label but sets an upper
bound.

• complex_start_label must be defined if either or both of lower_bound_label,
upper_bound_label are used. It is a position label for the bottom of the
first quantum well of the MQW-complex being studied.

• mb_pf_model would turn on the Poole-Frenkel field dependence for the
exciton model.

• subhh_level_j,j=1..5 is the amount of modification made to the level of
heavy hole subband j. “level” is measured downwards from the top of the
corresponding bulk valence band.

• sublh_level_j,j=1..5 is the amount of modification made to the level of light
hole subband j. “level” is measured downwards from the top of the correspond-
ing bulk valence band.
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• subhh_mxfac_j,j=1..5 is the factor multiplied to the in-plane heavy hole
mass of subband j.

• sublh_mxfac_j,j=1..5 is the factor multiplied to the in-plane light hole mass
of subband j.

• tail_energy is the parameter Etail describing an exponential tail of the joint
density of states (JDOS) extending into the energy bandgap. The JDOS near
the bandgap is written as JDOS = ρrexp[(E − Eedge)/Etail], where Eedge is
the energy of the band edge or the quantum subband edge, ρr is the reduced
density of states at the band edge which is constant for a quantum well. This
tail is associated with inhomogeneous broadening.

• tail_bulk_ref is for bulk active layer for which the reduced density of states
is energy dependent. The exponential tail of the JDOS starts at a value (from
the band edge) determined by this parameter.

• tail_state_scale may be used to scale the JDOS tail states described in the
statement of tail_energy above.

• left_mesh, if defined, is the outer barrier thickness on the left side of a MQW
region. This outer barrier is used to solve the Schrödinger equation and indi-
cates the position of the zero-wave boundary condition; a convenient way to
picture this is to imagine an infinite potential well encompassing the MQW
region we are trying to solve.

If this parameter is omitted then by default, a value of three times the quantum
well width is used.

• right_mesh is the same as left_mesh but the defines the outer barrier thick-
ness on the right-hand side of the MQW region.

• boundary_condition defines the boundary conditions used to solve the Schrödinger
equation:

– The default Dirichlet boundaries impose a zero-wave boundary condition
as described in left_mesh above.

– The periodic boundary conditions impose periodicity on the wave, with
the total period length equal to the MQW thickness (including the outer
barriers defined using left_mesh and right_mesh).

• type2_detect enables a model which automatically detects the position of
the “well” and “barrier” layers in a MQW. This detection is necessary to work
with type II superlattices and periodic boundaries but is disabled by default as
it interferes with self-consistent quantum well regions and Dirichlet boundaries.
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• more_cond_energy is used to extend the search of conduction subband
energy levels up into the unbounded states. The densely populated energies
in the extended unbound states can be used to treat optical transitions from
bound-unbound states. Please note that the distribution of the unbound states
depends on the boundary condition of the quantum mechanical wave equation.
Only works when finite difference method is used for solving QW states (for
non-symmetric QW, complex-MQW or self-consistent model).

• more_val_energy same as more_cond_energy except for the valence
band.

• dip_factor_pump is the dipole factor affecting only the optical pumping
wavelength.

• kp_points determines how many points in the k-axis will be included in the
k.p valence mixing model. A smaller kp_points value results in a faster run-
time but with a loss in precision.

• kp_bands is number of band valleys (such as HH, LH, SO) used in the k.p
theory for zincblende material system. For wurtzite, see modify_wurtizte.
The total order of the k.p matrix is twice the parameter value to take into
account spin degeneracy:

– 2: 4x4 k.p theory taking into account HH and LH bands.
– 3: 6x6 k.p theory taking into account HH, LH and SO bands.
– 4: 8x8 k.p theory taking into account the conduction, HH, LH and SO

bands.

• mb_damping_factor is used to artificially scale the many-body effects con-
tained in the gain/absorption spectrum. Please note that this parameter con-
trols the magnitude and shape only. The bandgap renormalization can be
scaled by scale_mb_screen_length.

• set_kp8x8_angle is the angle of k-vector with respect to the kx axis in the
k.p theory. If new_kp=no, this parameter only affects 8x8 k.p calculations.
If this parameter is not specified, the Hamiltonian is averaged over a range
from zero to max_kp8x8_angle before it is solved. Note that this is not the
recommended averaging procedure and when using gain_wavel to average
the gain, this angle is internally set. Users are thus advised to be careful
when examining band dispersion results and transition dipole moments for
8x8 calculations: plotted values will not correspond to values from “proper”
averaging.
If new_kp=yes, the default setting of this value turns on the block-diagonalization
procedure so that k.p results are independent of the in-plane angle, thereby
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avoiding the averaging issue above. Setting a specific value instead forces the
Hamiltonian to be solved at a specific in-plane angle: the axial approximation
must also be disabled to use this feature.

• scale_mb_screen_length is used to artificially scale the screening length
in the many-body theory and control the amount of bandgap renormalization.

• max_mb_screen_length is the maximum screening length used in the
many-body theory gain model.

• mb_pf_expo_factor is a Poole-Frenkel field dependence factor used to ac-
count field dependence in the exciton model. This model assumes that external
field alters the coulomb potential of the exciton in much the same way as in
Poole-Frenkel style ionization. The formula we use is as follows:

field factor = exp(−qEshift/kT ) (22.82)

where

Eshift =
[
Fq

πε0ε

](Pf /2)
(22.83)

The mb_pf_expo_factor is the parameter Pf above.

• max_kp8x8_angle is the maximum angle used in averaging the k.p Hamilto-
nian if set_kp8x8_angle is not used. If new_kp=yes, this parameter may
be used for all supported number of subbands; otherwise, only 8x8 calculations
use this parameter.

• mater is the material number of the quantum well being modified. If a la-
bel has previously been defined for this material, mater_label may be used
instead.

• qlevel_once forces the simulator to evaluate the quantum subbands only
once in order to save on computation time. This parameter should not be used
for self-consistent simulations since the multiple evaluations of the quantum
subbands are the source of the self-consistency the user is trying to achieve.

• new_kp turns on a improved version of the zincblende k.p code. This version
supports the following features for all supported subband settings:

– block-diagonal mode with/without symmetric potential setting
– explicit in-plane averaging of the in-plane angle (no-block diagonalization)

Setting new_kp=yes is necessary to use non-common-atom interface effects
in type II superlattices. See nca_deltapot for details.
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• kp_search_offset controls some of the details of the eigenvalue search when
new_kp=yes. The code searches for all eigenvalues ≤ E0 and after the first
kt iteration, this search offset is added to the highest found eigenvalue when
starting a new search.

This value also serves to detect type II band alignment situations when con-
duction band is coupling is considered; in that case, the search windows for
eigenvalues may accidentally overlap and the number of search roots may need
to be increased.

• kp_extra controls some of the details of the eigenvalue search when new_kp=yes.
This is the number of extra search roots added to those found by a 1-band/parabolic
solution of the Schrödinger equation. These extra search roots are necessary to
improve the convergence of the “good” eigenvalues that are solutions of interest
to the k.p Hamiltonian.

• number_period may be used if periodic boundary conditions are used to
solve the Schrödinger equation and defines the total number of periods (N)
in the superlattice. Note that this parameter does not repeat the MQW layer
structure before the equation is solved: instead, multiple calls (n = 0..N − 1)
to the eigensolver are made, each with boundary conditions that impose a
different phase shift to the wave function:

Ψ(z + Lp) = Ψ(z) ∗ eiqLp

q = 2πn
NLp

where Lp is the total period length, measured from the edges of the MQW
solution domain (including left_mesh and right_mesh).

Because only a single period is solved, the wave inside each period is normalized
to 1

N
: this allows the gain curve to have the same maximum value for a single

period and a superlattice. The number of periods parameter may be seen
as merely providing a broadening of the transition energies by introducing
additional near-degenerate solutions to the Schrödinger equation.

The main advantage of this method (vs. simply repeating the MQW structure)
is speed: eigensolvers tend to have a complexity greater than O(N2) so making
repeated calls on a smaller problem makes the eigensolver solution time scale
linearly. However, the user should keep in mind that the number of transitions
will still scale as O(N2), no matter which method is used: this means that the
gain calculations are always slower for a superlattice than for a single quantum
well.
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Examples

modify_qw sublh_level1=-0.01 sublh_mxfac1=1.5

To introduce an exponential tail in the joint density of states for optical transition
in the active layer, you may use the following:

modify_qw tail_energy=0.06 tail_states_scale=1

22.476 modify_taper_height

parameter data type values [defaults]
bottom_data_from char
hline top_data_from char
hline bottom_data_to char
hline top_data_to char
hline region_ref_x real [0.] (um)
hline from_segment intg [1]

modify_taper_height modifies a taper line by defining a vertical offset in the
mesh connection scheme. This can enhance the accuracy of a 3D simulation if, for
example, the position of a QW region shift significantly and there is poor overlap
between the two mesh planes during the 3D connection process. If this problem
were allowed to persist, carriers could not freely flow along the longitudinal direction
inside the QW and the connection would only be made indirectly, via other mesh
points.
An alternate method of solving this kind of problem would be to define additional
mesh planes and sample the longitudinal variation more precisely. However, this
would increase the computational workload.
See taper_between_segments and Sec. 6.3 for a more complete description of
the 3D modeling process and how tapers are defined in Crosslight.

Parameters

• bottom_data_from and top_data_from are data file names which define
(x,y) pairs for the bottom and top of the taper region at the beginning of the
taper. bottom_data_to and top_data_to are the matching parameters
for the end of the taper.

• from_segment is the z-segment number immediately before the taper.
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22.477 modify_vector_plot

parameter data type values [defaults]
vector_flag intg [2]

modify_vector_plot is a post-processor statement used to modify vector plots
(such as current flow plots).

Parameters

• vector_flag flags different shapes of arrows used in the plot.

22.478 modify_wurtzite

parameter data type values [defaults]
fit_mass char [no],yes
mass_model char [average],small_k,large_k
simple_field_profile char [no],yes
barrier1_top_label char
mater_label char
c_axis_theta real [0.]
c_axis_phi real [0.]
psi_wurtz real [90.]
angle_ridge_c_axis_proj real
hex_lattice_a0 real [3.189] Å
hex_lattice_c0 real [5.185] Å
barrier1_top real
fit_mass_k_range real [0.08]
growth_plane_miller_index intgx4
mater intg
qw_plane_miller_index intgx4

modify_wurtzite is used to modify various parameters related to the wurtzite
material system. Refer to Chap. 13 for additional theoretical background.
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Parameters

• fit_mass indicates whether parabolic fitted masses are used for the valence
band. If not, analytical mass models are used as explained in the mass_model
parameter. The fitting range is defined by fit_mass_k_range which is a
fraction of the Brillouin zone 2π

a
.

• mass_model indicates which analytical mass model is to be used. For a value
of small_k, the zone center mass is used. Caution: zone center masses can
be negative in some material compositions, especially with tensile
strain. This may cause numerical trouble because of parabolic band
fitting approximations. For a value of large_k, a large k-range is considered
for the analytical model. average is an average of the above two cases.

• simple_field_profile turns on a simple 1D Poisson solver which can be com-
bined with self-consistent quantum well calculations. This parameter is only
used for gain preview calculations in the .gain file: in the full device simulation,
the Poisson equation is solved over the full FEM mesh.

• barrier1_top_label and barrier_top are currently unused. They are in-
tended to locate (using a position label or an absolute coordinate), the material
corresponding to the first barrier and extract material properties for the sim-
plified 1D Poisson solver in the gain preview mode.

• c_axis_theta and c_axis_phi are rotation angles θ and ϕ which define the
orientation of the growth plane normal with respect to the original hexagonal
coordinate system for wurtzite. By default, no rotation is defined which corre-
sponds to the typical polar (c-plane) growth. Refer to Sec. 13.6 and Fig. 13.9
for more details.

• psi_wurtz is the in-plane rotation angle ψ which specifies the direction of the
TE mode. This is needed to define the anisotropic refractive index that may
arise in non-polar and semi-polar wurtzite orientations. angle_ridge_c_axis_proj
is the complement of this angle and defines the waveguide propagation direc-
tion: only one of these these values needs to be defined. Refer to Sec. 13.6 and
Fig. 13.9 for more details.

• growth_plane_miller_index can be used to specify the direction of the
growth plane normal using the Bravais-Miller indices (hkil) instead of using
θ and ϕ. The lattice constants hex_lattice_a0 and hex_lattice_c0 must
be provided to calculate the vector direction. Note that the direction of the
waveguide (ψ) must still be defined.

• qw_plane_miller_index is similar to growth_plane_miller_index but
specifies the direction of the quantum confinement rather than the growth
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plane. This is often used in GaN nanowires where confinement occurs in the
side walls rather than in the growth direction.

• mater may be used to specify different wurtzite settings for different material
numbers in the simulation. For example, the side walls of a GaN nanowire may
each have different properties. If a label has previously been assigned to this
material, mater_label may be used instead.

Examples

modify_wurtzite fit_mass=no mass_model=average

22.479 modu_bias

parameter data type values [defaults]
section1 real [1.]
section2 real [1.]
section3 real [1.]
section4 real [1.]
section5 real [1.]
n_sections realxn
sec_num intg [-1]

modu_bias is used in the older AC model described in Sec. 18.6 to specify which
section of the laser is modulated for the analytic AM and FM responses. In general,
the fully coupled AC model in the post-processing stage should be preferred.

Parameters

• sectioni (i=1,2,3,4,5) gives the relative modulation bias current at section i.
This can be used to define push-pull (out-of-phase) modulation or simply to
adjust the amplitude of the modulation.

• n_sections can be used to list certain sections that share the same modulation
bias and will override the above sectioni setting. The number of items in that
list is given by sec_num.
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Examples

modu_bias section1=1 section2=3

modu_bias sec_num=3 3_sections=(1 3 2)

22.480 monitor_emission

monitor_emission is used to plot the emitting light power in mesh points. It
provides viewing the emission process for the “mesh_points” emission model. This
statement is used at the post-processing stage after ray-tracing program is run.
This statement has no parameters.

22.481 more_dos_fermi_output

parameter data type values [defaults]
near_xyz realx3 [0 0 0] (um)
conduction_band_valley intg
valence_band_valley intg

more_dos_fermi_output exports the density of states curve (DOS(E)) and
quasi-Fermi level for a specific mesh point of the device.
See also plot_more_dos_fermi which is used to plot the resulting curve in the
post-processing stage.

Parameters

• near_xyz specifies the coordinates of the mesh point for the data export.

• conduction_band_valley is the conduction band valley number for the ex-
port.

• valence_band_valley is the valence band valley number for the export.
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22.482 more_output

parameter data type values [defaults]
ac_data char [no], yes
qw_states char [no], yes
ac_light_input char [no], yes
elec_mobility char [no], yes
hole_mobility char [no], yes
trap_information char [no], yes
minimum char [no], yes
rcled_information char [no], yes
impact_ionization char [no], yes
organic_exciton char [no], yes
space_charge char [no], yes
light_reflection char [no]
pics3d_ase char [no]
nonlocal_current char [no]
split_qw_states char [no]
pics3d_longitudinal char [yes]
qdot_conc char [no]
stress char [no]
heat_flux_density char [no]
polar_spectrum char [yes]
polar_vector char [no]
pics3d_noise char [no]
wave_phase char [no], yes
spectrum_print char [yes], no
mixmode_ac_data char [no], yes
mesh_detail char [no], yes
peltier_heat_related char [no],yes
pics3d_photon_bal_ac char [no], yes
elec_conc_subb intg [0]
hole_conc_subb intg [0]
cond_valley_prop intg [0]
val_valley_prop intg [0]
sum_space_charge_mater intg [0] 1 2..

The statement more_output is used to instruct the simulator to print additional
data which is not normally included in the output files. This statement will affect
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all scan statements that follow and should therefore be included at the beginning of
the .sol file.

• ac_data generates the data necessary for small-signal AC analysis in the post-
processing stage.

• qw_states enables the printing of quantum well subband wave functions. This
may only be used if self-consistent MQW option is activated.

• ac_light_input is used in conjunction with ac_data to obtain the small-
signal response of a photo-sensitive device in the post-processing stage.

• elec_mobility and hole_mobility print the carrier mobility distribution.

• trap_information enables the printing of trap information such as trapped
electrons and trap levels.

• minimum may be used save on disk space by printing only the minimum
amount of data sufficient to keep the main solver running. As a result, many
quantities may not be available for plotting during the post-processing.

• rcled_information enables the printing of RCLED related information, such
as optical cavity standing power distribution.

• impact_ionization enables the printing of data related to the impact ioniza-
tion (II) model such as the II rate distribution.

• organic_exciton enables the printing of organic exciton diffusion profiles.

• space_charge enables the plotting of the space charge distribution.

• light_reflection turns on data related to light reflected by the transfer matrix
model (TMM) used by the optical pumping code.

• pics3d_ase prints data related to the amplified spontaneous emission model
(ASE) in PICS3D. This is primarily used in amplifiers (SOAs) and superlumi-
nescent diodes (SLEDs).

• nonlocal_current prints data for the non-local transport model used in
q_transport and other similar commands.

• split_qw_states prints data for the split-state model in the q_transport
statement.

• pics3d_longitudinal prints data that can be plotted along the optical lon-
gitudinal axis in PICS3D rather than the electrical z-axis imported from the
mesh planes. This is necessary to use plot_longitudinal in the .plt file.
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• qdot_conc enables plotting of the concentration inside embedded quantum
dots.

• stress enables plotting the stress profiles which can be imported from CSUPREM
or defined manually in APSYS.

• heat_flux_density prints data related to the heat flow for use in statements
such as plot_2d.

• polar_spectrum enables plotting of the TE and TM spontaneous emission
spectra.

• polar_vector enables plotting of the polarization vector in piezoelectric ma-
terials. It is related to the polarization_charge command.

• wave_phase is used in PICS3D to print the phase shift seen by the output
light of an amplifier (SOA) or modulator (EAM).

• pics3d_noise enables plotting of noise spectrum terms in PICS3D such as
relative intensity noise (RIN) and frequency modulation (FM) noise.

• spectrum_print may be used to disable optical gain and spontaneous emis-
sion spectrum data in order to speed up a simulation.

• mixmode_ac_data enables the use of the small-signal AC model for external
circuit elements during the post-processing stage.

• mesh_detail enables printing of special detailed information about mesh
points, such as the equivalent interface length at material boundaries or the
local area around mesh points. Printing of this data may be useful to convert
back and forth between 2D and 3D quantities on surfaces or to manipulate the
raw data produced by raw_output.

• peltier_heat_related enables printing of key derivatives and gradients used
in the calculations of the Thomson/Peltier heat source.

• pics3d_photon_bal_ac is only used when ac_data=yes. When enabled,
this statement instructs PICS3D to export an AC Jacobian based on the photon
balance model described in init_wave instead of the usual round-trip-gain
(RTG) model.
Note that if the photon balance model is turned on in init_wave, this pa-
rameter should not be used as the AC data will already in the photon balance
format. This parameter should only be enabled in cases where the RTG model
is used for DC simulations but the user wishes to use the photon balance model
in the AC post-processing.
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• elec_conc_subb and hole_conc_subb determine how many quantum well
subbands are available when plotting carrier concentration in the post-processing.

• cond_valley_prop and val_valley_prop determine how many properties
for each band valley (e.g. mobility or effective mass) are stored in the output
file. See the various variations of condj_valley_propk and valj_valley_propk
for details.

• sum_space_charge_mater enables printing of the integrated net space
charge for a given material number. This parameter must match the mate-
rial number defined when loading the macros and may usually be found in the
.mater file.

Examples

more_output ac_data=yes qw_states=no

22.483 more_spectrum_output

parameter data type values [defaults]
variable char [gain]
mode char [te],tm
mater_label char
wavel_range realx2 [.5 1.5]
diffuse_length real [0.2] (µm)
diffuse_center_depth real [0.2] (µm)
mater intg [1]
point_num intg [99]
tunnel_region intg
set_lateral_mode intg

more_spectrum_output can be used to generate additional spectrum output
that would be otherwise unavailable for plotting. See also plot_more_spectrum.

Parameters

• variable is the spectral variable being exported. See the online Wizard in
SimuCenter for a full list of supported variables.
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• mode specifies whether the TE or TM spectrum data is being printed.

• wavel_range is the wavelength range over which the variable is exported.
The number of data points in this range is given by point_num.

• diffuse_length and diffuse_center_depth are used in Optowizard to give
a very rough approximation of the effects of diffusion current on the quantity
being exported. In this program, the current transport equations are not solved
so a makeshift diffusion constant (diffuse_length) is used to smooth out
the results; the maximum value is assumed to be at a certain fixed position
(diffuse_center_depth).

Variables affected by this artificial broadening have a “diffuse” in their name.

• mater is the material number corresponding to the variable being exported.
If a label has previously been defined for this material, mater_label may be
used instead.

• tunnel_region defines the tunnel region number corresponding to the variable
being exported. These regions are numbered according to the order in which
the tunneling commands appear in the input file.

• set_lateral_mode fixes sets the lateral mode for the variable being saved
(e.g. for modal gain).

22.484 more_sym_polygon

parameter data type values [defaults]
polygon_center_x real [1.0] (um)
polygon_center_y real [1.0] (um)

The statement more_sym_polygon creates another copy of a polygon defined
previously with sym_polygon_for_semicrafter

• polygon_center_x and polygon_center_y are the (x,y) center coordi-
nates of the new polygon.
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22.485 more_tcadmesh

parameter data type values [defaults]
name char
contactj_to_spice_node (j=1..109) char

more_tcadmesh expands the minispice statement and allows for multiple SPICE
entities in the same integrated circuit to be replaced by TCAD devices. more_tcadmesh
should be repeated as many times as necessary when replacing multiple devices in
the same circuit file, the first replacement being done by the minispice statement
itself.
One important point to understand for multi-device simulation is that the Poisson
and Drift-Diffusion equations for all the devices must be solved simultaneously. This
means that all of the TCAD devices are part of the same simulation and a three-
dimensional mesh is required: this can mean multiple 2D devices (1 mesh plane per
device) or multiple 3D simulations for each device (each device represents a subset
of the total number of mesh planes).
Either way, while the TCAD devices must all be solved at the same time, it does
not necessarily mean that those devices are monolithically integrated. That is, even
if multiple devices co-exist within the same sparse matrix in the Newton solver, this
does not imply that there is current flow between “neighboring” devices. A helpful
way of separating the devices is the isolate_mesh_segment command: this cuts
off the FEM connection (current flow and potential) between devices.
Please note that Crosslight supports setting up each TCAD device in its own separate
project folder. This allows for initial device-level simulation before modeling the
integrated circuit. Statements such as set_include may be used to simplify the
integration of multiple project files.

Parameters

• name is the name of the SPICE entity being replaced by a meshed TCAD
device.

• contactj_to_spice_node associates a specific contact number (“j”) with
the given spice node.

Examples

minispice circuit_file=dio.cir &&
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spice_device_to_tcadmesh=Ztcad1 &&
contact1_to_spice_node=1 &&
contact2_to_spice_node=2

22.486 more_trap_output

parameter data type values [defaults]
tag char
x_label char
y_label char
zplane_label char
near_x real [0.] (µm)
near_y real [0.] (µm)
zplane_num intg [1]

This statement will output trap information near a specified point. This information
is output only during normal printing of mesh-related data (e.g. band diagrams) and
is not available for all bias steps.

Parameters

• tag is a user-defined label which links this command with plot_more_trap.

• x_label, y_label and zplane_label are position labels used to identify the
coordinates of the data export. near_x, near_y and zplane_num serve
the same purpose but rely on the x,y coordinates and mesh plane number (for
3D simulations)..
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22.487 multimode
parameter data type values [defaults]
sort_modepeak char [void]
sort_modespan char [void]
initialize_bpm char [no] yes
mode_num intg [1]
boundary_type1 intgx4
boundary_type2 intgx4
pick_xmode intg [0]
pick_ymode intg [1]
ymode_num intg [1]
polar_num intg [1]

The statement multimode is used to control the multi-lateral mode solutions. In
general, the wave equation has two types of boundary conditions if the device is
symmetric and only the right half is simulated. The two types are symmetric and
anti-symmetric wave functions with respective to the axis of symmetry (usually lo-
cated on the left hand side). Please see the definition of boundary conditions in the
statement init_wave. If the whole device is simulated, only one type of boundary
condition is sufficient.
If there are n modes required and there are two types of boundary conditions, the
first n/2 modes are solutions obtained with the first type of boundary condition and
the last n/2 modes are those with the second type.
Using the effective index method, the simulator is capable of solving for the optical
power of more than one lateral (x-mode) mode. However only one transverse (y-
mode) mode is selected.
Please note that by default, the optical modes are numbered according to the modal
index, starting from number one for the highest index. Sometimes, it is desirable to
order the modes according to their geometries or shapes.

• sort_modepeak may take void, +x, +y -x or -y. If not void, it is used to
instruct the program to sort the lateral optical modes according to the positions
of the mode peak. For example, a parameter value of +x will result in modes
being sorted such that mode peaks are located increasingly towards the +x
direction with increasing mode number.

• sort_modespan may take void, +x, +y -x or -y. If not void, it is used to
instruct the program to sort the lateral optical modes according to the span
(or width) of the mode. For example, a parameter value of +x will result in
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modes being sorted such that the mode half width in the x-direction increases
with increasing mode number.

• initialize_bpm indicates whether a multiple mode solution is used to initialize
a BPM calculation.

• mode_num is the number of lateral modes to be included in the simulation.

• boundary_type1 is the first type of wave equation boundary. Its definition
is identical to boundary_type in the the statement init_wave.

• boundary_type2 is the first type of wave equation boundary. Its definition
is identical to boundary_type in the the statement init_wave.

• If pick_xmode is zero, the program will solve all modes from mode number
1 to mode number mode_num (specified above) in the x-direction (lateral
mode). If greater than zero, the program will solve only for mode number
pick_xmode. For a device with multi-mode solution, it is recommended that
all lateral modes be solved pick_xmode=0.

• pick_ymode must be a non-zero integer so that one mode in the transverse
direction (y-direction) is selected for the simulator. Please note that the optical
modes are numbered according to the modal index, starting from number one
for the highest index.

• ymode_num is the number of y-modes.

• polar_num is number of polarizations (TE/TM) involved in the simulation.

Example(s)

multimode mode_num=6 boundary_type1=(2 1 1 1) &&
boundary_type2=(1 1 1 1)

In this example, six lateral modes are required. The device has a symmetric axis
located on the left hand side (i.e. lx1, please see init_wave). The first three modes
belong to symmetric (or even parity) modes of the first boundary type while the
last three modes correspond to the second type with anti-symmetric (or odd parity)
modes.
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22.488 multimode_detect

parameter data type values [defaults]
detect_ratio real [1.]
mode_num intg [1]

The statement multimode_detect is used to specify the difference in power detec-
tion from different lateral modes. Usually, the laser power measurement equipment
covers a limited angular range and higher order lateral modes will be detected with
less amount of power.

• detect_ratio is a factor proportional to the power detected for a certain
lateral mode.

• mode_num is the lateral mode index being affected.

Example(s)

multimode_detect front_back=0.7 mode_num=2

In this example, the 2nd order lateral mode detected is 70 percent of the fundamental
mode which has a default detection factor of 1.
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22.489 multimode_mirror

parameter data type values [defaults]
front_back realx2
mode_num intg [1]

The statement multimode_mirror is used to control the multi-lateral mode mirror
reflectivity. Without this statement, mirror reflectivities are assumed to be the same
as set by statement init_wave. It allows setting of different reflectivities for different
lateral modes.

• front_back is used to define both front and back facet (or left and right)
power reflectivity.

• mode_num is the lateral mode index being affected.

Example(s)

multimode_mirror front_back=(0.2 0.2) mode_num=2

In this example, the 2nd order lateral mode is set to experience a mirror reflectivity
of 20 percent while the fundamental mode is still defined by statement init_wave.

22.490 nca_deltapot

nca_deltapot is an active layer macro statement that defines “non common atom”
(NCA) effects at the interface of a quantum well. As explained in the literature[133],
the standard k · p theory used to derive the Hamiltonian for zincblende structures
assumes the existence of certain symmetries and under certain conditions this ap-
proximation breaks down. For example in the case of InAs/GaSb superlattices, there
is no shared atom between the two regions so when looking at the location of the
atomic bonds, the [110] and [110] directions are no longer equivalent.
In order to continue using our usual k · p theory, a correction term must be added
to the Hamiltonian. Unlike other k · p coupling terms which depend on the in-plane
kinetic energy, this correction term breaks the symmetry of the potential profile and
takes the following form:

V = HAB
XY a0δ(z)Θ −HBA

XY a0δ(z − L)Θ (22.84)
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where HXY is the strength of the interface effect (in eV), a0 is the lattice constant
and δ(z) is the Dirac delta function which localizes the interface peaks on either side
of the QW. Θ is the k ·p matrix coupling the different hole basis functions and which
is given in [133]: unlike the usual well/barrier potential terms, the NCA correction
does not go into the diagonal of the Hamiltonian.
The value defined by nca_deltapot gives the strength of HAB

XY on the left side of
the QW with nca_deltapot_right giving the value on the right side; the minus
sign of Eq. 22.84 is already built into the program for the right side. If either of
these statements is omitted, the corresponding HXY is set to zero; in the absence of
both statements, the default (no NCA effects) k · p theory is recovered. Since the
literature indicates that both parameters seem to have a complimentary effect, we
expect that most users will only use nca_deltapot as a fitting parameter and leave
HBA

XY = 0 by omitting nca_deltapot_right.
Note that as of the 2014 version of APSYS, we follow [133] and assume atomically
sharp interfaces in the correction term: the coupling matrix Θ reflects this. If there
is sufficient user demand, graded interfaces may be added at a later date by mod-
ifying the coupling matrix and adding additional fitting parameters; please consult
Crosslight if you need to include these effects in your models.
We also note that because of the shape of the coupling matrix Θ, the correction
term is not compatible with k · p calculations using the block-diagonalization theory
pioneered by S.L. Chuang[15, 33, 63]. As a result, plots of the subband dispersion
relations and/or the transition dipole moments will only include NCA effects if the
axial approximation is disabled in set_active_reg and a specific in-plane angle
is specified in modify_qw. However, NCA effects will be included as part of an
optical gain/absorption calculation if explicit averaging of the in-plane angle is used
in lieu of block-diagonalization; see gain_wavel.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.491 nca_deltapot_right

See nca_deltapot.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.
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22.492 negf_model

parameter data type values [defaults]
add_to_dd_current char [yes],no
phonon_scat char yes,[no]
use_contact_imref char yes,[no]
model_type char [quantum_well], quantum_wire
charge_couple_model char [dd_conc_inject], add_negf_conc,

mix
carrier char [electron], hole
division real [5.e-4] (µm)
phonon_energy real [0.062] (eV)
phonon_elast_rate real [1.08e-2] (eV 2)
phonon_inelast_rate real [0.0147] (eV 2)
max_tunnel_factor real [1.e10]
scale_current real [1.]
solve_schr_num intg [10]
subband_num intg [2]
tunnel_contact_from intg [1]
tunnel_contact_to intg [3]

negf_model is new to the 2013 version of Crosslight and implements a Non-
Equilibrium Green’s Function (NEGF) transport model[134]; currently, only elec-
tron transport is considered in this model. This command works in conjunction with
tunneling to define the range over which the NEGF transport operates.
See also negf_plot which is used to visualize output from this model.

Parameters

• add_to_dd_current controls whether the NEGF current is added to the
classical drift-diffusion current. There are two reasons for adding the NEGF
current to the classical drift-diffusion current:

1. NEGF treats only the coherent quantum ballistic transport which incoher-
ent drift-diffusion does not include: for structures with a potential barrier,
adding the NEGF contribution recovers the current that is missing from
the classical model.

2. The NEGF model in Crosslight is only applied to a subset of the whole
device (both in terms of energy and geometry) in order to save on com-
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putation time. Adding the NEGF model to the classical drift-diffusion
allows for a proper model of the entire device.

The downside to this approach is that there will be double-counting for the part
of the current above the barrier which is already included via thermionic emis-
sion in the classical drift-diffusion model. For devices without significant tun-
neling potential barriers, add_to_dd_current=no may therefore be more
accurate.

However for most devices where non-equilibrium/ballistic transport occurs,
add_to_dd_current=yes is recommended since it may be important to
include the incoherent diffusion process which is not included in the NEGF.
Please note that the DD current can easily be adjusted through the mobility
and the saturation velocity settings.

• charge_couple_model determines how the NEGF charge is coupled into
the Poisson equation. This carrier charge can either be the one from the
standard drift-diffusion model, the one for the NEGF model or a mixture which
progressively switches to the NEGF model at high current densities. This
parameter may affect convergence.

• phonon_scat turns on the phonon scattering model in the NEGF calcula-
tions. The LO phonon energy (~ω0) for the material is given by phonon_energy
while the elastic and non-elastic collision rates are defined using phonon_elast_rate
and phonon_inelast_rate, respectively. These rates correspond to the D0
coefficient often found in the literature:

Σin(El) = D0 [(N + 1) ·Gn(El + ~ω0) +N ·Gn(El − ~ω0)] (22.85)
Σout(El) = D0 [(N + 1) ·Gp(El + ~ω0) +N ·Gp(El − ~ω0)] (22.86)

• division is the sampling interval along the transport direction used to solve the
Schrödinger equations. This value should be less than the quantum mechanical
wavelength or the NEGF current may be overestimated.

• max_tunnel_factor is used to limit the tunneling coefficient and avoid ac-
cidental numerical blow-ups in the calculations.

• scale_current is a fudge factor that may be used to artificially scale the
NEGF current.

• solve_schr_num is the number of Schrödinger equations being solved. The
computation time will rise linearly with this number.
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• subband_num is the number of sub-bands (confined states) considered in
the model. To save on computation time, it is assumed that only the first
few sub-bands are populated enough to significantly contribute to the NEGF
current.

• model_type determines whether the carriers are confined in 2D (quantum
well) or 1D (quantum wire). The 1D model may be appropriate in certain
MOSFET channel designs.

• tunnel_contact_from and tunnel_contact_to are the contact numbers
which serve as the boundary conditions for the Green’s function. At these
points, the carrier populations are assumed to be at equilibrium and follow
normal Fermi-Dirac statistics.

use_contact_imref also controls this behavior by determining where the
equilibrium boundary is located: either at the mesh points where the contact’s
ohmic/Schottky boundary is defined or at the start/end points of the NEGF
region in the highly-doped source/drain region. Minute differences in the po-
sition of the Fermi level at these two points may lead to convergence issues so
using the Fermi level/IMREF at the edges of the NEGF region is likely to lead
to better results.

• carrier determines whether this command defines electron or hole transport.
Note that at present, our NEGF model is still unipolar even if both carrier
types are available.

Examples

$ this is for ballistic transport along the channel.
tunneling direction=x carrier=electron barrier_type=propagation_matrix &&

x1_label=x1 y1_label=y1 x2_label=x2 y2_label=y2
negf_model division=2.e-4 solve_schr_num=10 add_to_dd_current=yes &&

phonon_scat=no
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22.493 negf_plot

parameter data type values [defaults]
variable char
log_conc char yes,[no]
view_xrot real [0.] (degrees)
view_yrot real [0.] (degrees)
valley intg [1]
subband intg [1]

negf_plot is a post-processing command used to plot data related to the Non-
Equilibrium Green’s Function (NEGF) model.

Parameters

• variable can show either:

– band_structure: a surface plot of the conduction band used for NEGF
transport

– elec_conc: a surface plot of the electron concentration
– current_spectrum: a plot of the NEGF current vs. energy
– elec_density_spectrum: a plot of the carrier density vs. energy
– quantum_level: is a 1D plot of the sub-band energy level vs. position

• log_conc determines whether carrier concentrations are shown on a linear or
log scale.

• view_xrot and view_yrot are angles of rotation applied to 3D plots for
viewing purposes.

• valley is the band valley number for which the NEGF calculations have been
performed.

• subband is the confined sub-band number for which the NEGF calculations
have been performed. It must be consistent with subband_num from negf_model.

22.494 new_inset_planes

This command is for internal use only.
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22.495 newton_freeze_carrier

parameter data type values [defaults]
freeze_electron_mater intg
freeze_hole_mater intg
unfreeze_electron_mater intg
unfreeze_hole_mater intg
freeze_both_mater intg

The usage of newton_freeze_carrier is similar to that of newton_par and it
defines parameters for the non-linear iterations in Newton’s method. It should be
used before the scan statement it intends to control.

Parameters

• freeze_electron_mater would freeze the electron profile for the material it
specifies.

• freeze_hole_mater would freeze the hole profile for the material it specifies.

• unfreeze_electron_mater would unfreeze the electron profile for the mate-
rial it specifies.

• unfreeze_hole_mater would unfreeze the hole profile for the material it
specifies.

• freeze_both_mater would freeze both the electron and hole profile for the
material it specifies.

Examples

newton_freeze_carrier freeze_hole_mater=3

The above command would freeze the hole distribution for material number 3. This
can be set in the middle of a simulation when hole profile is not important.

22.496 newton_par

parameter data type values [defaults]
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search_gainpeak char [full]
extrapolate char [yes], no
change_variable char yes, [no]
limit_elem char yes, [no]
update_tunneling char [yes], no
update_mqw char [yes], no
update_lateral_mode char [yes], no
negative_stimulate char [yes], no
recover_prev_mqw char yes, [no]
rescale_poisson char [yes], no
change_var_type char [both], n, p
update_rc_extraction char [yes],no
freeze_carrier char [void], electron, hole, both
update_index_change char [yes],no
update_macro char [yes],no
update_index_change char [yes], no
update_macro char [yes], no
turnoff_update_lightprof char [no], yes
update_rtg_phase char [yes], no
stall_restart char [yes], no
lateral_mode_perturbation char [no], yes
linear_matrix char [no], yes
damping_step real [2.0]
var_tol real [1.e-5]
res_tol real [1.e-5]
min_lit real [0.]
rate_damp real [1.e-5]
scale_eqn_n real [1]
scale_eqn_p real [1]
impact_damp real [1.e-9]
var_fac real [1.e3]
ratio_max real [-0.5]
huge_elem real [1.e10]
density_tol real [1.e16]
step_decrease real
step_increase real
back_refine_error_scale real [1.]
max_iter intg [50]
opt_iter intg [15]
stop_iter intg [15]
print_flag intg 1, [2], 3



898 COMMAND SYNTAX

loopback intg [0]
converge_test intg [2]
gainsearch_num intg [30]
iter_flag intg [0] 1 2
iter_step intg [5]
mf_solver intg 0, 1, 2, [3], 4
mf_md_flag intg [1] 0
mf_pivot_update intg [64]

The statement newton_par controls the non-linear Newton solver used in our soft-
ware. The parameters of this statement may be used to improve the convergence
rate of difficult problems.
For more details on the equations being solved and the numerical techniques involved,
please see Chapters 5 and 6. Additional advice on troubleshooting convergence issues
can be found in Chap. 4.
Note that the nonlinear variables are internally normalized to the order of 1-100.

Examples

• search_gainpeak is used to pick the wavelength of the lateral mode. Since
many spectral quantities go into the non-linear equations, this can have an
influence on convergence.

– full means the peak of the modal gain, integrated over all mesh points.
This is the default method except for PICS3D.

– one_point means the peak of the material gain at a chosen mesh point.
This is the fastest but least numerically stable method.

– long_mode means the wavelength is determined by the longitudinal mode
solver. This is the default method for PICS3D.

• extrapolate turns on/off the solution extrapolation used to improve the initial
solution guess in the non-linear Newton solver. In most situations, this should
be enabled. However, in low temperature simulations using carrier concentra-
tions as solver variables, this should be disabled to avoid numerical overflow.

• change_variable is used to change the variables of the device simulator from
quasi-Fermi levels to carrier densities. This can be helpful in carrier-blocking
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structures or other low-current regimes where even large changes in the quasi-
Fermi levels still produce very small carrier densities. For examples of such
situations, see Chap. 4.
Note that change_var_type can be used to restrict the change of variables to
only one type of carrier. However, this is not usually recommended in practice.

• limit_elem is used to set a upper limit to the off-diagonal elements in the
Jacobian matrix. If set to yes, the parameter huge_elem will be used as
the upper limit. When using carrier densities as the variable of solution, the
off-diagonal elements may be so large that the computer can not handle it and
may give an overflow error (printed as NaN). In such a case, it may help to set
this parameter.

• update_tunneling can be used to update the tunneling model at every bias
step.

• update_mqw can be used to update the quantum well subband calculation
model at every bias step.

• update_lateral_mode is used to update the lateral mode eigensolver at
every bias step. If lateral mode switches cause the main simulator to diverge,
one may wish to switch this off so that a more stable (but less self-consistent)
solution may be obtained.

• negative_stimulate controls whether or not the stimulated recombination
term may become negative.
To clarify the meaning of this parameter, it is important to note that car-
rier generation (G) and stimulated recombination (Rstim) are usually separate
terms in the Crosslight model. The first term usually comes from an external
light source and is used in solar cells or optically-pumped lasers; the second
term comes the optical gain calculations and is used for internally-generated
light propagating through a waveguide. These two terms often involve very
different wavelength ranges and must thus be treated separately.
If negative_stimulate=yes, stimulated recombination may give rise to a car-
rier generation term but in common laser designs, transparency occurs before
the current crosses threshold so this case can often be neglected (i.e. S ≈ 0
when gain is negative). However in structures with strongly non-uniform local
gain profiles, neglecting this term may create kinks in the L-I curve: one part
of the active region structure may provide enough gain to cross threshold and
support a large photon density while another part of the active region is still
absorbing.
On the other hand, gain curves below transparency are also known to have very
large negative values away from the bandgap: this can lead to numerical over-
runs during the wavelength search of the peak if negative_stimulate=yes.
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Turning this effect off may thus be seen as a convenient way to avoid numerical
difficulties.
In general, negative_stimulate=yes represents the correct physics and should
be used in most cases. If users observe the numerical overruns described above,
it is recommended to restrict the wavelength search range in init_wave in-
stead of using the =no setting.

• recover_prev_mqw is used to modify the behavior of the self-consistent
quantum well solver when a bias step in scan fails. When this parameter is
enabled, the program solves and recovers the QW solution for the previous
successful step to ensure that the previous convergence condition (including
QW solution) can be reproduced. This recovery action involves more numerical
solutions and takes more computation time. Otherwise the simulator does not
recover previous QW solution and simply reduces the bias step in the hopes
that this produces a convergent solution. In general recovery action increase
convergence and accuracy of the simulation at the cost of extra computation
time.

• rescale_poisson indicates that whether the Poisson’s equation is to be scaled.
This may affect converge.

• update_rc_extraction updates the resonant cavity extraction coefficient
from the RCLED model at every bias step. This parameter can improve the
smoothness of the L-I curve in these cases.

• freeze_carrier stops the update of the specified carrier distribution in all
materials. Note that a related command can be used to stop the update for a
specific material: newton_freeze_carrier.

• update_index_change turn on the updates to the refractive index (i.e. the
change from its equilibrium value) at every bias step.

• update_macro turn on the updates to various material macro parameters at
every bias step.

• turnoff_update_lightprof turns off the update of the light profile when
using optical pumping.

• update_rtg_phase works similarly to the ignore_rtg_phase of the lon-
gitudinal statement. However, instead of completely ignoring the imaginary
part of the round-trip gain equation (i.e. the wavelength of the mode) this
parameter instructs PICS3D to stop solving this equation, thereby freezing the
value of the mode wavelength.

• stall_restart controls the behavior of the software when a scan command
loses convergence. If this parameter is enabled, the software will move on to
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the next scan command in the input file (if any) instead of terminating the
program.

IMPORTANT NOTE: This restart behavior can have unexpected side ef-
fects on device simulations. Unless otherwise specified, the software automat-
ically uses the bias conditions at the end of the preceding scan as the initial
conditions at the beginning of a scan command. If a scan is terminated early
because of a stall, a stall restart will cause the initial conditions of the next
scan to be different than what the user expected them to be.

• lateral_mode_perturbation instructs the software not to make repeated
call to the eigenmode solver for the optical mode. Instead, the initial optical
mode shape and refractive index perturbations are used to update the effective
index.

• linear_matrix instructs the software to make a single linear solver step inside
the Newton method. It is strongly recommended to limit the size of the bias
step in the scan command so that the initial guess is close enough to converge
to the specified tolerance using that single iteration of the Newton method.

• damping_step puts a limit on the size of the solution update between Newton
iterations. Smaller values yield slower but more reliable convergence; larger
values can converge quicker but may lead to solution oscillations in difficult
problems.

This option is similar (in principle) to many globally convergent Newton algo-
rithms but a fixed limit is used instead of an automatically determined optimal
update size.

• var_tol is the convergence criterion for the solver variables. Below this thresh-
old, the solution can be considered “stable”. Similarly, res_tol is the conver-
gence criterion for the equation residues. Below this threshold, the equations
can be considered as being “satisfied”.

The overall convergence criterion for a non-linear Newton step is a combina-
tion of these two criterion. Depending on the value of converge_test, the
following conditions need to be met:

– 1 Either var_tol or res_tol is satisfied.

– 2 Both var_tol or res_tol are satisfied.

– 3 var_tol is satisfied.

– 4 res_tol is satisfied.

The default value (2) ensures that the solution is both accurate and stable.
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• min_lit is the minimum normalized light power, used to prevent the solution
from accidentally approaching unphysical zero or negative values. It may be
useful in transient simulations.

• rate_damp is the damping coefficient for the rate equation at steady state.
The larger the coefficient, the more stable the solution to the rate equation,
but the solution becomes less accurate. For transient simulation, no damping
is used.

It is not recommended to use a large rate_damp if a steady state simulation is
to be connected to a transient simulation because the large difference between
the damped and undamped rate equations may cause convergence problems
for the transient step.

• scale_eqn_n and scale_eqn_p are the scaling factor for the electron and
hole continuity equations, respectively.

• impact_damp is a small number used to control or damp the impact ioniza-
tion term. The exponential impact ionization term tends to negative infinity
if the local field is zero. This parameter is used to prevent such an infinity.

• var_fac is the variable factor used to normalize the carrier densities if change_variable=yes.

• ratio_max is the maximum ratio (or fraction) of change allowed for the carrier
density during each Newton iteration. It is effective if change_variable=yes.

• density_tol is a reference value representing a small carrier concentration
(1/m3) in the solution when change_variable=yes. The program uses this
value to decide if the carrier concentration is to be considered small numerically.

• step_decrease is a factor less then unity used to alter the bias step size if a
bias step fails. Similarly, step_increase is a factor greater than unity used
when the bias step succeeds.

By default, neither valued is used and the solver heuristically determines the
step size based on the suggested number of iterations in opt_iter and the
actual number of iterations needed to achieve convergence.

• back_refine_error_scale is used to scale the error term in the iterative
refinement method of the linear solver step. Although this may affect the
convergence of the refinement method, this parameter should not normally be
used by the end user.

• max_iter is the maximum number of nonlinear iterations. If the required
number of iterations is greater than this value, the software will give up, auto-
matically reduce the bias step and start the nonlinear iteration again.
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• opt_iter is an estimate of the optimal number of nonlinear iterations. The
software will always try to force convergence to occur within this number of
iterations, increasing the bias step if the solution requires few iterations and
decreasing it if more are required.
The optimal value of this parameter can be difficult to set for even the most
experienced user: there is always a tradeoff between a large bias steps which
may fail and require many retries and small bias steps which converge reliably
but take a long time to achieve the desired bias. The default value has produced
good results for a large class of problems.

• stop_iter is used to examine the convergence trend and, if necessary, prema-
turely terminate the non-linear iteration before max_iter is reached. In many
cases, it is preferable to terminate a large bias step which has little chance of
reaching convergence and try again with a smaller step.

• print_flag controls how much information is printed during program execu-
tion.

• loopback is the number of loopback iteration used to update numerical equa-
tions (such as tunneling, optical wave, heat flow) decoupled from the main
drift-diffusion solver after the normal updating procedure. Use of this param-
eter will increase the self-consistency but requires more computation time.

• gainsearch_num is the number of points used in search the lateral modal
gain peak in a laser diode simulation. The simulator performs a uniform search
of modal gain peak within the wavelength range specified by the init_wave
statement. This initial search is followed a golden section search to refine the
results; this is skipped if the input value is negative.

• iter_step is the number of GMRES iteration used if the CG method is spec-
ified in mf_solver.

• mf_solver determines which linear solver is used at every iteration of the
non-linear Newton solver:

– 0 Conventional sparse matrix solver: slow but reliable.
– 1 Combined GMRES iterative method with multi-frontal LU decomposi-

tion.
– 2 Multi-frontal LU decomposition with iterative refinement. Somewhat

slower than GMRES but more reliable.
– 3 Parallel multi-threaded multi-frontal solver. In newer version of the

software, the number of threads is determined automatically based on the
number of available processing cores. See also parallel_linear_solver
for alternate solver accessible with this option.
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– 4 A parallel solver which can make use of graphical processing units
(GPUs). This is built using the CUDA™ technology from NVidia®.
Note that when using the GPU solver, parallel_linear_solver must
not be used as it forces mf_solver=3.

• mf_md_flag takes 0 or 1, indicating different versions of minimum degree
reordering method for the multi-frontal sparse solver.

• mf_pivot_update is the pivotal matrix size to update the F matrix from the
C-matrix. For details, please see Ref: “An unsymmetric-pattern multifrontal
method for sparse LU factorization", T. A. Davis and I. S. Duff, Tech. Report
TR-94-038, University of Florida, November, 1994.

Examples

newton_par damping_step=2 var_tol=1.e-5 res_tol=1.e-4 &&
max_iter=40 opt_iter =12 stop_iter=10 print_flag=2 &&

To take the defaults,

newton_par print_flag=3

22.497 no_auto_workfunction

parameter data type values [defaults]
mater_label char
mater intg [1]

Prior to version 2013 of the software, the affinity defined in a metal macro was used
at heterojunctions so that combined with the default thermionic emission bound-
ary a Schottky contact was effectively formed. Starting with the 2013 version, the
work function of metals is automatically adjusted to match the Fermi level of the
neighbouring highly-doped region and form an ohmic contact.
no_auto_workfunction is used to recover the previous behavior by disabling this
automatic adjustment.

Parmaters

mater is the material number of the macro affected by this command. If a label has
previously been defined for this material, mater_label may be used instead.
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22.498 nonlocal_path

parameter data type values [defaults]
y_start_label char
y_end_label char
model char [use_mobility], use_tau
carrier_type char [electron], hole
xrange realx2 (um)
yrange realx2 (um)
mobility real [0.1] (m2

V s
)

tau real [1.e-12](s)
mean_free_path real [0.01] (um)
zseg_num intg [1]
field_dep_model_id intg

nonlocal_path defines a non-local transport path between two arbitrary points.
See also nonlocal_transp_model which controls additional parameters for the
non-local transport path.

Parameters

• y_start_label y_end_label are y-position labels defining the non-local
transport path. Absolute coordinates can also be used with xrange and
yrange.

• model changes the way the current along the non-local path is computed.

– use_mobility uses an equivalent mobility model based on the value of
mobility.

– use_tau uses an equivalent lifetime based on the value of tau.

• carrier_type determines the type of carrier which travels along the non-local
path.

• mean_free_path scales the current depending on the path length, following
a Drude-like approximation.

• zseg_num is the z-segment number in which the non-local path is located.

• field_dep_model_id is a label identifying a matching nonlocal_transp_model
statement.
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Examples

define_symbol symbol=%mob value=1.
define_symbol symbol=%mfp value=0.1

start_loop symbol=%i value_from=1 value_to=25
integer_func symbol=%k value_from=0 value_to=24

nonlocal_path y_start_label=active%k_end y_end_label=inj%i_start &&
model=use_tau tau=1.e-13

nonlocal_path y_start_label=inj%i_start y_end_label=inj%i_end &&
mobility=%mob mean_free_path=%mfp field_dep_model_id=1

....

end_loop

nonlocal_transp_model field_dep_file=field_dep_mob.txt &&
field_dep_model_id=1

22.499 nonlocal_transp_model

parameter data type values [defaults]
qcl_mobility_per_period char yes,[no]
qcl_mfp_per_period char yes,[no]
use_density_matrix_model char yes,[no]
field_dep_file char [field_dep_mob.txt]
field_dep_model_id intg

nonlocal_transp_model defines additional models for the transport properties of
non-local transport paths.

Parameters

• field_dep_file is a user-specified text file containing the field dependence of
the mobility for the non-local path.

• qcl_mobility_per_period determines if the equivalent mobility used in
nonlocal_path is proportional to the number of QCL periods.
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• qcl_mfp_per_period determines if the mean free path used in nonlo-
cal_path is proportional to the number of QCL periods.

• field_dep_model_id is a label identifying a matching nonlocal_path
statement.

• use_density_matrix_model uses a relationship between the field and the
non-local transport velocity that is derived from density matrix theory[135].

Examples

See nonlocal_path.

22.500 nonlocal_transp_region

parameter data type values [defaults]
region_label char [void]
point1_near realx2 (um)
point2_near realx2 (um)
distance1 real [0.01](um)
distance2 real [0.01](um)
ref_interface_mater intgx2
zseg_num intg [1]

nonlocal_transp_region is used to define a region across which non-local trans-
port (such as tunneling) can occur from one side of the region to another, relative
to a material interface. This is useful when such a region is not rectangular or when
we wish to define a region relative to a irregular material interface. It is preferred
that the material interface follows a line that is approximately straight so that the
direction of the non-local transport can be certain. Please refer to Fig. 22.21 for
details.

Parameters

• region_label is a user-specified label identifying this region in other com-
mands.

• point1_near and point2_near are two reference points near the reference
material interface and which are used to define the extent/width of the non-
local transport region.
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A

B

distance2

distance1

point2_near

point1_near

Non-local transport (or tunneling)

from side A to B

Ref. material

interface

Figure 22.21: Schematic to explain the definition of a non-local transport region

The position does not need to be exact: the software will try to locate nearby
mesh points on the specified interface.

• distance1 and distance2 are perpendicular distances away from the interface
which determine the start and end points of the non-local transport region.

Positive values are as defined in Fig. 22.21 but negative values may also be
entered to put some end points on the opposite side of the interface.

• ref_interface_mater is a pair of material numbers (defined in .mater files)
used to identify the a material interface. This interface is then used as a
reference to define the non-local transport region.

• zseg_num is the z-segment number for 3D simulation.

Examples

nonlocal_transp_region region_label=%junc1 &&
point1_near=(0. 11.16) point2_near=(6. 11.16) ref_interface_mater=(3 4) &&
distance1=0.019 distance2=-0.001

The above command would define a region some distance from a reference interface
between material 3 and 4.
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22.501 norm_field

parameter data type values [defaults]
(see) material_par

The material parameter norm_field is added to the list of parameters in the ma-
terial library. It is used if “n.gaas" is chosen as the type of field-dependent mobility,
as the normalizing field (F0n) (see the User’s Manual). It allows the user to specify
more accurate electron mobility as a function of field in III-V or II-VI materials,
where the Gamma to L and Gamma to X bands cause the velocity vs. field relation
to exhibit a negative slope.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.502 ohmic_junction

parameter data type values [defaults]
between_mater intgx2

The statement ohmic_junction may be used to set the current transport model
across a heterojunction to an ohmic model: that is, the current is proportional to
the carrier density times the gradient of quasi-Fermi levels. By default, thermionic
emission model is used for all heterojunctions. We may call this model a Schottky
type junction model because it is capable of rectifying the current by promoting it
in the forward direction.

Parameters

• between_mater is used to specify two material numbers representing two
materials between which the heterojunction is forced to behave like a ohmic
junction. Like in the usual drift-diffusion model, the current is expressed as
proportional to the local carrier density times the gradient of the quasi-Fermi
levels.
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Examples

ohmic_junction between_mater=[1 2]

The above statement forces the heterojunction between materials 1 and 2 to behave
like an ohmic junction. The material numbers can be found in the .mater files.

22.503 oled_control

parameter data type values [defaults]
wavelength real (µm)

The statement oled_control activates the organic LED (OLED) model. Its use is
similar to statement led_control.

• wavelength is the estimated peak emission wavelength in microns.

Example(s):

oled_control wavelength=0.51

22.504 optic_coating

parameter data type values [defaults]
spectrum_file char [void]
thickness real [0.01] (µm)
real_index real [3.2] (µm)
imag_index real [0.] (µm)
segment_from real [-1.e7] (µm)
segment_to real [1.e7] (µm)
layer_num intg [1]
segment_num intg [1]

optic_coating defines an optical coating that affects the optical pumping of the
device but is not part of the FEM mesh solved by the software.
See front_reflection for an overview of the relevant model but take care not to
combine the two statements.
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Parameters

• spectrum_file defines a text file containing the n, k optical constants of the
coating.

• thickness defines the optical coating thickness.

• real_index and imag_index define fixed n, k values for the coating. It is
preferable to use spectrum_file if a broadband light spectrum is used (e.g.
solar cells).

• layer_num is used to define a multi-layer coating. The layers are numbered
from the starting point of the light path to the ending point. For example, if
the light is incident from the top, then layer number 1 is the topmost layer.

• segment_num is used to define regions in the x-direction which have different
coatings. This is analogous to defining columns in the layer file and should
not be confused with the segment number used to define the z-mesh in 3D
simulations.

• segment_from and segment_to work in conjunction with segment_num
to define the x-range where a specific coating is applied. These parameters
should not be confused with the z-segment range used to define the position of
mesh planes in a 3D simulation.

Examples

optic_coating thickness=0.147 real_index=2.05 imag_index=0.

22.505 optical_axis

parameter data type values [defaults]
ref_angle real [0.] (degrees)
aniso_index_factor real [1.]
aniso_index_polar intg [0]

optical_axis (previously called polarization) is used to specify the orientation of
the optical axis with respect to the waveguide. Note that with the 2013 version,
material properties which depend on the TE/TM orientation of the electric field are
both calculated automatically by the software.
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This command enables the use of birefringent materials; see delta_real_index_caxis
Note that using this setting overrides the TE/TM mode setting in the active_reg
statement.

Parameters

• angle is the angle of the electric field with respect to the QW plane. For a TE
waveguide, this angle is 0; for TM, it is 90 degrees.

• aniso_index_factor is used in birefringent materials and defines the pro-
jection of the extraordinary axis on the polarization axis (TE or TM) being
considered.

• aniso_index_polar applies the index difference on the extraordinary axis
to one of the polarizations (1=TE, 2=TM). If zero (the default), this index
difference is ignored.

Code Notes

sn=rldx(node)+delindx(ku)
if(janiso_index_polar.gt.0) then

if(jpolar.eq.janiso_index_polar) then
sn=sn+delta_rldx_caxis(node)*aniso_index_factor

endif
endif

Examples

optical_axis angle=45.
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22.506 optical_field

parameter data type values [defaults]
profile char [gaussian], effective_index
y.data char [void]
update char no
standing_wave char no
uniform_stdwave char no
gainguiding_stdwave char no
x_prof realx4 x1,x2,dx1,dx2 (µm)
y_prof realx4 y1,y2,dy1,dy2 (µm)
x_segment intg 40

optical_field defines the solution of the optical field for the lateral mode of a
waveguide. This statement can be used in conjunction with multimode if multiple
lateral modes are present.
This statement has two main modes of operation: it can either define a basic
Gaussian-shaped optical profile or use an 1D effective index method to solve the
mode profile.

Application Notes

Because of the restrictions in the optical_field algorithm, this command is the
preferred lateral mode solver for 1D simulations (without lateral mesh variations) and
broad-area devices (with many lateral mesh points but without a lateral structural
variation).
For devices with a lateral structural variation, direct_eigen should be used. Since
the algorithm used inside optical_field can only solve 1D problems, the effective
index of 2D structures is found using successive cuts along the y and x directions, with
the x direction assumed to have a slowly-varying refractive index. Such an approach
is significantly less accurate than a direct solution of the 2D wave equation.
The iterative SOR method in use_sor can also be used to refine the accuracy of
the solution provided by optical_field. However, the SOR algorithm is considered
obsolete and Crosslight strongly recommends using direct_eigen in 2D cases.
Conversely, direct_eigen is not recommended for use in the situations where op-
tical_field excels; please refer to the application notes section of that command.
Note that these two commands should not be used together.
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Parameters

• profile is the profile of the user-defined optical field:

– gaussian instructs the software to use a roughly Gaussian shape, based
on the settings in x_prof and y_prof.

– effective_index activates a 1D solution of the effective index as explained
above, with the x direction as the slowly-changing index direction.

• y.data is a user-supplied data file for the optical field distribution in the y-
direction. This allows the optical field in the y-direction to be imported from
a data file instead of generated by the self-consistent optical field solver.
This method is of particular interest in multimode simulations where we wish
for all higher-order modes to be in the x direction while the y direction stays
in its fundamental mode.

• update determines if the optical mode defined by this statement is updated
at all bias steps. If set to no, the mode is only updated at the start of each
scan command.

• x_prof specifies the profile of the Gaussian-shaped mode defined in profile.
This parameter is defined as a set of four values: x1, x2, dx1, dx2. The mode is
defined as constant in the [x1, x2] interval and decays with Gaussian tails with
standard deviations dx1 and dx2 on either side.

• y_prof is identical to x_prof but defines the beam shape in the y direction.

• standing_wave is used to turn on an analytical model for the lateral standing
wave in a broad-area device. The mode in the x direction will vary according
to a sin(β(x− x0)) shape.
This option is useful in devices where the lateral dimension is in order of several
hundred microns and the lateral mesh spacing is coarser than the standing wave
period.

• uniform_stdwave forces the use of a uniform magnitude in the x direction
instead of a sine wave when standing_wave is used.

• gainguiding_stdwave partially overrides the normal decoupling of the lat-
eral (xy) and longitudinal (z) wave in PICS3D edge-emitter simulations. The
normal behavior is to use the modal gain in the longitudinal propagation con-
stant so that the whole mode sees the same amplification factor. When this
parameter is yes however, a small correction to the round-trip gain is added so
that regions with a higher local gain (i.e. “hot spots”) in the lateral standing
wave have a stronger amplification than the rest of the device.
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• x_segment is the number of points used in the x direction when using the 1D
effective index model. This number can be kept small for 1D cases but should
be increased for broad-area devices in order to sample the lateral standing
wave.

Examples

optical_field profile=effective_index update=yes

22.507 organic_exciton_diff

parameter data type values [defaults]
add_oxd_memory real [0.] (MB)
heteroj_scrn_factor real [0.1]
el_frac_non_active real [0.9]

organic_exciton_diff enables organic exciton diffusion model. The exciton dif-
fusion across a heterojunction follows the thermionic emission model: excitons with
thermal energy may emit from barrow bandgap to larger bandgap material. Simi-
lar to thermionic emission model in electrons, the following flux density is used for
exciton (S) flowing from wider bandgap material 2 to material 1:

J = Vth{S2 − S1exp[−γs(Eg2 − Eg1)/kBT ]} (22.87)

where V + th is thermal velocity of the exciton. γs is a screening factor less than
unity. Since excitons are charge neutral, they should experience less crystal field
potential than charged particles and thus the bandgap difference they experience
should be less than electrons or holes. The screening factor is used to denote this
effect.

• add_oxd_memory is used to add memory to the sparse solver for the
diffusion equations.

• heteroj_scrn_factor is the heterojunction screening factor above.

• el_frac_non_active is the fraction of excitons in non-active (or undoped
layers) that are eventually harvested by dopants.

Example(s):
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organic_exciton_diff el_frac_non_active=0.85

The above statement directs 85 percent of excitons in undoped (non-active) layers
be collected by dopants to emit light.

22.508 outer_section

parameter data type values [defaults]
core_radius real (um)
indexi,i=1..9
sec_num intg [1]

outer_section is used to inform the program of the termination of a VCSEL section
with an insulator (e.g. outside air). It is only used in .vcsel files.

Parameters

• core_radius is the radius of core region, which indicates to the simulator that
this VCSEL section is terminated by an insulator layer on the outside.

• indexi,i=1..9 is the outer refractive index matching one or more DBR layers
in the core region of the VCSEL.

• sec_num is a section number.

Example(s)

outer_section core_radius=6.0 sec_num=7

22.509 output

parameter data type values [defaults]
sol_outf char

output defines the base name of the output data files; extensions are added to this
name automatically to account for the data set set number and the type of output
information the file contains.
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Examples

output sol_outf=bulk2d.out

22.510 output_suprem_mesh

This statement instructs the layer.exe to generate SUPREM mesh declarations in-
stead of the .geo format used in APSYS, LASTIP and PICS3D. It is outside the
scope of this manual.

22.511 ox_dopant_el_transfer

parameter data type values [defaults]
transfer_from_host char [no]
transfer_fraction real [0.]
efield_ref real [1.e8] (V/m)
mater_from intg [1]
mater_to intg [1]
dopant_index_from intg [1]
dopant_index_to intg [1]

ox_dopant_el_transfer is used to enable the transfer of exciton energy from one
type of dopant to another type. This reveals itself in the shift of color from shorter
to longer wavelengths.
The formula used a factor factor = 1 − frac − F/Fr on the shorter wavelength
dopant EL where frac is the transfer fraction. F is the electric field and Fr is a
reference field. Similarly a factor factor = 1 + frac + F/Fc is used for the longer
wavelength EL.

• transfer_from_host would let the energy be transferred from the host in-
stead of from a dopant.

• transfer_fraction is the fraction of exciton transferring from one type of dopant
to another.

• efield_ref is the reference electrical field above.

• mater_from is the material index from which energy transfer originates.
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• mater_to is the material index to which energy transfer arrives.

• dopant_index_from is the dopant index (for multiply dopants) from which
energy transfer originates.

• dopant_index_to is the dopant index (for multiply dopants) to which energy
transfer arrives.

Example(s):

ox_dopant_el_transfer mater_from=5 mater_to=4 &&
transfer_fraction=0.2 efield_ref=-4.e8

22.512 ox_el_weight

parameter data type values [defaults]
(see) material_par

The material statement ox_el_weight is used to define the electroluminescent
spectrum weight for the host organic material. This is useful when there is dopant
in the system so that one has to define the relative contribution from host and the
dopant.
For EL spectrum model when there is dopant, two approaches are used, depending
on whether exciton diffusion equations are solved. If exciton transport is solved by
organic_exciton_diff, dopant and host spectra at each mesh point are simply
mixed by local exciton density, divided by their respective life times, and weighted
by this factor. If exciton transport is not considered, their respective bimolecular
recombination rates are used along with this factor to determine the relative contri-
butions.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)

ox_el_weight value=0.8 mater=1
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22.513 ox_exciton_eg

parameter data type values [defaults]
(see) material_par

The material statement ox_exciton_eg is the exciton bandgap of the organic ma-
terial.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)
ox_exciton_eg value=1.9 mater=2

22.514 ox_extern_spectrum

parameter data type values [defaults]
(see) material_par

The material statement ox_extern_spectrum is used to define the electrolumi-
nescent (EL) spectrum of the host material imported from an external source. This
may be based on experimental data or on a different type of model. If table format is
used, the program expects a 2-column uniformly spaced data with first column being
the wavelength in micron meters. The unit of the EL is arbitrary and the program
will normalize it.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)

ox_extern_spectrum variation=table
table(wavelength)

0.488524E+00 0.309522E-01
0.499601E+00 0.421672E-01
...

end_table
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22.515 ox_gaussian_sdj

parameter data type values [defaults]
(see) material_par

The material statement ox_gaussian_sdj is the standard deviation (in unit eV) of
the Gausian function used to broaden the exciton transition energy. If more than one
Gaussian function is used in different energy range, this parameter works with param-
eter ox_gaussian_div(k=1...) as follows: For example, the spectrum is broad-
ened with N parameters: ox_gaussian_sd(j=1...N). Then ox_gaussian_sd(j)
acts on an energy range defined between ox_gaussian_div(j-1) and ox_gaussian_div(j).
Please note thta ox_gaussian_div(0) equals zero and ox_gaussian_div(N)
equals infinity.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)
ox_gaussian_sd1 value=0.12 mater=2

22.516 ox_gaussian_divj

parameter data type values [defaults]
(see) material_par

The material statement ox_gaussian_divj is the division in energy (in unit eV)
for different Gausian function to be used to broaden the exciton transition energy.
If more than one Gaussian function is used in different energy range, this parameter
works as follows: For example, the spectrum is broadened with N Gaussian function
of parameters: ox_gaussian_sd(j=1...N). Then ox_gaussian_sd(j) acts on an
energy range defined between ox_gaussian_div(j-1) and ox_gaussian_div(j).
Please note thta ox_gaussian_div(0) equals zero and ox_gaussian_div(N)
equals infinity.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.
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Example(s)
ox_gaussian_div1 value=2.21 mater=2

22.517 ox_hopping_energy

parameter data type values [defaults]
(see) material_par

The material statement ox_hopping_energy is the hopping integral (in units of
the vibrational quanta) describing the nearest-neighbor interaction of the exciton (as
quasiparticle) in a tight-binding model.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)
ox_hopping_energy value=0.6 mater=1

22.518 ox_life_field_dependence

parameter data type values [defaults]
increase char [yes]
triplet char [yes]
mater_label char
pf_lifetime_expo real [0.5]
efield0_pf real [2.e8] (V/m)
mater intg [1]

ox_life_field_dependence is used to enable a field-dependent model for the or-
ganic exciton lifetime. As with many other field models for organic semiconductors,
we assume a Poole-Frenkel-like dependence:

τox = τ0e
±(F/Ft0)α (22.88)



922 COMMAND SYNTAX

Parameters

• increase determines whether to choose positive or negative sign for the above
formula.

• triplet indicates whether the model applies to singlet or triplet diffusion.

• pf_lifetime_expo is the exponent α in the above formula.

• efield0_pf is the threshold field Ft0 in above formula.

• mater is the material number affected by this statement. If a label has previ-
ously been defined as an alias, mater_label may be used instead.

Examples

$ field-dep lifetime needed to tune blue color change
ox_life_field_dependence increase=yes triplet=no &&

pf_lifetime_expo=0.5 efield0_pf=1.e8 mater=2

22.519 ox_peak_abs

parameter data type values [defaults]
(see) material_par

The material statement ox_peak_abs is the absorption peak in units of 1/m of
the organic material.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)
ox_peak_abs value=1.e7 mater=2

22.520 ox_vib_quanta

parameter data type values [defaults]
(see) material_par
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The material statement ox_vib_quanta is the organic molecular vibrational quanta,
or phonon energy unit, in eV.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)
ox_vib_quanta value=0.16 mater=1

22.521 ox_xp_coupling

parameter data type values [defaults]
(see) material_par

The material statement ox_xp_coupling is the exciton-phonon (XP) coupling co-
efficient. It is a dimensionless number with its square equal to the vibrational relax-
ation energy (Franck-Cordon energy) divided by the vibrational quanta (or molecular
phonon quanta).
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)
ox_xp_coupling value=1.0 mater=1

22.522 oxd_diff_length

parameter data type values [defaults]
(see) material_par

The material statement oxd_diff_length is used to define the exciton diffusion
length in micron meters for organic material.
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The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)

oxd_diff_length value=1.e-2 mater=2

22.523 oxd_lifetime

parameter data type values [defaults]
(see) material_par

The material statement oxd_lifetime is used to define the exciton diffusion life
time in seconds for organic material.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)

oxd_lifetime value=1.e-6 mater=2

22.524 oxd_quench

parameter data type values [defaults]
mater_label char
tau real [1.0] (s)
elec_factor real [0.0] (m3/s)
hole_factor real [0.0] (m3/s)
biex_factor real [0.0] (m3/s)
mater intg [1]

oxd_quench is used in organic semiconductor simulations to define the quenching
term τq used in the exciton diffusion equation (Eq. 14.73) for singlets.
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The quenching term depends on several terms:

S

τq

= S

τ
+ AnS +BpS + 1

2
CS2

where n,p and S are the free electron, free hole and exciton concentrations. The
other terms are defined below.

Parameters

• tau is the fixed quenching term τ defined above. It is usually slow enough that
other terms dominate.

• elec_factor is A in the above formula.

• hole_factor is B in the above formula.

• biex_factor is the bi-exciton quenching term C in the above formula. This
term is usually zero for singlet states.

• mater is the material number affected by this statement. If a label has previ-
ously been defined as an alias, mater_label may be used instead.

Examples

oxd_quench tau=10.e-6 mater=2

22.525 oxd2_diff_length

parameter data type values [defaults]
(see) material_par

The material statement oxd2_diff_length is used to define the diffusion length of
the 2nd type (triplet) of exciton in micron meters for organic material.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)

oxd2_diff_length value=1.e-2 mater=2
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22.526 oxd2_lifetime

parameter data type values [defaults]
(see) material_par

The material statement oxd2_lifetime is used to define the diffusion life time of
the 2nd type of exciton (triplet) in seconds for organic material.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

Example(s)

oxd2_lifetime value=1.e-6 mater=2

22.527 oxd2_quench

oxd2_quench is identical to oxd_quench except that it defines the quenching
term for triplet exciton states.
Unlike singlets, the triplet-triplet bi-exciton quenching term is usually not zero.



22.528 para_extract 927

22.528 para_extract

parameter data type values [defaults]
file char [extract.txt]
append_data char [no]
type char [intercept]
fit_hori_from real [-1.e49]
fit_hori_to real [1.e49]
fit_vert_from real [-1.e49]
fit_vert_to real [1.e49]
vert_intercept real
hori_intercept real
xy_hori_from real [-1.e49]
xy_hori_to real [1.e49]
xy_vert_from real [-1.e49]
xy_vert_to real [1.e49]
xy_product_scale real [1.]
add_vert_intercept real [0.]
add_hori_intercept real [0.]
scale_fit_slope real [1.]
scale_fit_inv_slope real [1.]
vt_search_range realx2 [0 1.e49], 0. 10,1. 3.,-10. 0.

para_extract is used in .plt file in order to extract data curve characteristics gen-
erated by the next plot_scan statement issued after this command. Only one set
of parameters can be extracted from each figure so multiple sets of para_extract
and plot_scan commands may be needed to extract all of the relevant information
from a curve.

Parameters

• file is the output file name where the extracted parameters are saved (in ASCII
text format). An existing file will be overwritten unless append_data is used;
this point is of special importance when generating series and doing Design of
Experiments analysis as all of the extracted parameters need to be extracted
to the same output file.

• type is the type of data extracted from the curve:

– intercept - finds the intercept point with the x/y axis or with an arbitrary
vertical/horizontal line.
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– fit_line - fits a set of data to a straight line.

– xy_product_search - searches for an interpolated data point which maxi-
mizes the x*y product.

– hori_max_search - searches for a data point with maximum x-value.

– vert_max_search - searches for a data point with maximum y-value.

– vt - used in Id-Vg transistor curves, searches for the threshold voltage.

Please note that in the above, x & y refer to the horizontal and vertical axes
of the graph and not spatial coordinates.

• fit_hori_from and fit_hori_to is the horizontal fitting range used to fit
data to a straight line. A matching set of parameters for the vertical fitting
range is given by fit_vert_from and fit_vert_to. These parameters are
used when type=fit_line.

• vert_intercept defines the x value of an arbitrary vertical line. It is used
when type=

• intercept.

• hori_intercept defines the y value of an arbitrary horizontal line. It is used
when type=

• intercept.

• xy_hori_from, xy_hori_to, xy_vert_from and xy_vert_to define the
search range in the horizontal and vertical directions when type= xy_product_search.

• xy_product_scale may be used to artificially scale the maximum x*y prod-
uct found during the extraction.

• add_vert_intercept may be used to artificially offset the vertical line in-
tercept result. Similarly, add_hori_intercept may be used to offset the
horizontal line intercept result.

• scale_fit_slope may be used to artificially scale the slope when type=fit_line.
Similarly, scale_fit_inv_slope may be used to artificially scale the inverse
of the slope.

• vt_search_range is the horizontal (voltage) search range used to find the
threshold voltage on a Id-Vg plot when type=vt.
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Examples

The following statement fits the L-I curve above 1 mW to a straight-line so that
threshold current can be found as an intercept with the horizontal axis; it also finds
the drive current at 8 mW. Results of the parameter extraction is written to file
extract.txt by default.

para_extract type=fit_line fit_vert_from=1 &&
hori_intercept=8.

plot_scan scan_var=current_1 variable=laser_power

The following command finds the maximum power from an I-V curve, a type of
analysis often used in solar cell simulations:

para_extract type=xy_product_search xy_hori_from=0 xy_vert_from=0
plot_scan scan_var=voltage_1 variable=current_2

22.529 parallel_linear_solver

parameter data type values [defaults]
solver char [mumps], pardiso
pardiso_iterative char [void], cgs, outer_loop
mumps_workspace intg [] (percent)

parallel_linear_solver may be used to specify alternate parallel sparse Newton
solvers. Using this statement also forces mf_solver=3 in newton_par.

Examples

• solver is used to specify the Newton solver. Available choices are:

– MUMPS: public domain solver available at http://graal.ens-lyon.fr/
MUMPS/

– PARDISO: originally developed at http://www.pardiso-project.org/,
the version included in our software is licensed as part of the Intel Math
Kernel Library ™.

The PARDISO solver has poor convergence properties for the problems solved
in Crosslight and is not recommended.

http://graal.ens-lyon.fr/MUMPS/
http://graal.ens-lyon.fr/MUMPS/
http://www.pardiso-project.org/
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• pardiso_iterative can be used to turn on an iterative solver method in PAR-
DISO and specifies the preconditioning algorithm. The sparse matrices encoun-
tered in Crosslight are badly conditioned and do not generally respond well to
iterative methods so these options are not recommended.

• mumps_workspace exposes an internal setting of the MUMPS solver and
allows users direct control over the amount of extra memory used for fill-in:
by default the MUMPS solver uses 20% of the sparse matrix size but this may
prove insufficient in certain problems.

Please note that as of the 2015 version, the software will analyse MUMPS error
messages and automatically attempt to retry solver calls that fail due to a lack
of memory. The main benefit of setting this variable explicitly is to avoid the
extra time associated with this retry.

22.530 passive_3d

parameter data type values [defaults]
index real
intern_loss real (1/m)
carrier_conc real (1/m3)
sec_num intg

In the coupled RTG method of PICS3D, optical properties for the longitudinal prop-
agation are usually provided through interpolation of mesh plane data from the
electrical problem. However, it is also possible to define optical parts of the cavity
which are not meshed and are purely passive: external cavities, fiber pigtails, etc...
passive_3d is used to define these regions.

Parameters

• index is the refractive index of the passive section.

• intern_loss is the internal loss of the passive section.

• carrier_conc provides a reference carrier concentration for plotting only. It
is otherwise unused in current versions of the software.

• sec_num is the section number (or section index) of the corresponding optical
section.
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22.531 passive_carr_loss

parameter data type values [defaults]
mater_label char
ncarr_loss real [0] m2

pcarr_loss real [0] m2

two_photon_loss real [0] (m2)
two_photon_carr real [0] (m5)
mater intg [1]

passive_carr_loss is used to specify in the .sol file the free carrier absorption in
regions other than those which have been assigned an active macro; for those regions,
equivalent settings are available in active_reg. The free carrier loss is expressed
as:

α = ncarr_loss × (n− n0) + pcarr_loss × (p− p0) (22.89)

Note that the same functionality can also be achieved using elec_carr_loss and
hole_carr_loss; these statements are meant to be used inside a material macro
but may also be used in the .sol as a material parameter override.
It is also important to mention that unlike the gain/index change calculations used
in active regions, no attempt is made by the software to reconcile this parameter
with the carrier-dependent index change mechanism defined in index_model. This
command is meant to be used for experimental/empirical coefficients so it is the user’s
responsibility to provide values which obey the Kramers-Kroenig relationship.

Parameters

• ncarr_loss is the coefficient of free carrier absorption for electrons. elec_carr_loss
may also be used.

• pcarr_loss is the coefficient of free carrier absorption for holes. hole_carr_loss
may also be used.

• two_photon_loss is a two-photon absorption term in S2. two_photon_loss
may also be used.

• two_photon_carr is a free carrier loss coefficient related to the two-photon
absorption process: these two effects combine to create an S3 loss term. See
two_photon_carr for details.
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• mater is the material number. If a label has previously been defined for this
material, mater_label may instead be used.

Examples

passive_carr_loss ncarr_loss=2.e-21 pcarr_loss=1.e-21 mater=1

22.532 passive_fiber

parameter data type values [defaults]
intern_loss real [5.e-5] (1/m)
index_core real [1.8]
index_cladding real [1.3]
core_radius real [8.] (um)
group_index real [1.48]
sec_num intg [1]
bessel_order intg [0]

passive_fiber may be regarded as a special case of passive_3d. In addition, fiber
scalar modes are computed within the fiber section.

• intern_loss is the internal loss of the fiber section.

• index_core is the core index of the fiber.

• index_cladding is the cladding index of the fiber.

• core_radius is the core radius of the fiber.

• group_index is the group index of the fiber.

• sec_num is the section number of the fiber section.

• bessel_order is the Bessel function order used to represent the scalar lateral
modes within the fiber section. The fundamental mode order is zero.

Example(s)

passive_fiber intern_loss=4.6e-5 sec_num=4 &&
index_core=1.5 index_cladding=1.496 core_radius=9.
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22.533 pc_led_model

parameter data type values [defaults]
top_emission char [yes]
surface_y_label char [void]
rectangle char [no]
surface_y real (um)
grating_height real [0.1](um)
grating_dia_ratio real [0.2](dia/period)
x_range realx2 (-9999. 9999.)(um)
height_range realx2 [0.1 1.](um)
surface_mater intg [1]
model_points intg [10]

The statement pc_led_model is used to define model parameters for photonic
crystal LED (PhCLED) model which is treated as a post-processor module.

• top_emission indicates whether the LED emits from the top.

• surface_y_label is a position label for the material interface of the (air/semiconductor)
LED.

• rectangle indicates whether the air holes of the PhC is rectangle or hexagonal.

• surface_y is the absolute y-coordinate for the material interface of the (air/semiconductor)
LED.

• grating_height is the height of the air-hole grating.

• grating_dia_ratio this ratio of the air-hole diameter over the period (or the
real space lattice vector constant) of the photonic crystal.

• x_range is range in x over which the current spreading effect is taken into
account for the calculation of distribution of extracted power emission.

• height_range is the range of air-hole height over which the LED emission
properties are to be evaluated.

• surface_mater is the semiconductor material number over which the air-holes
of the photonic crystal are to be made.

• model_points is the number of spacing divisions over the x_range for the
calculation of spatial variation of LED properties.
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Example(s):

pc_led_model top_emission=yes surface_y_label=air_hole &&
grating_height=0.3 grating_dia_ratio=0.5 surface_mater=1 &&
model_points=20 x_range=(50 200)

22.534 pf_model_setting

parameter data type values [defaults]
min_shift_vt real [0.03] (eV)
bias_dependent char [no]

pf_model_setting controls various aspects of the Poole-Frenkel incomplete ion-
ization model.

Parameters

• min_shift_vt is used to adjust the Poole-Frenkel formula.

The standard form of Sec. 5.1.4 indicates that the ionization energy would
shows no shift at zero bias; however, the derivative vs. field also becomes
infinite at this point which causes problems for the Jacobian used to solve the
Drift-Diffusion equations self-consistently.

To solve the problem, the following formula is used instead:

∆EP F =
√
q
F + F0

πϵ0ϵ
−
√
q
F0

πϵ0ϵ
(22.90)

where min_shift_vt is the second term on the right-hand side.

• bias_dependent determines if the energy shift is calculated only once (at
equilibrium) or updated throughout the simulation.

22.535 piezo_d11

piezo_d11 and related commands are a set of parameters use to define the piezo-
electric properties in SAWAVE.
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It is important to note that these parameters are different from the piezoelectric
parameters defined in e15_bulk and other related commands. Using the strain-
charge form, the two sets of coefficients are related by:

dij = ∂Di

∂Tj

(22.91)

eij = ∂Di

∂Sj

(22.92)

where D is the electric displacement, T is the stress and S is the strain. The two
sets of commands therefore differ in that eij shows the effect of built-in strain while
dij shows the effect of external stress: in SAWAVE, the acoustic wave propagation
is described by such a stress term.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.536 piezo_d22

See Sec. 22.535.

22.537 piezo_d33

See Sec. 22.535.

22.538 piezo_d31

See Sec. 22.535.

22.539 piezo_d32

See Sec. 22.535.

22.540 piezo_d24

See Sec. 22.535.
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22.541 piezo_d15

See Sec. 22.535.

22.542 plot_1d

parameter data type values [defaults]
data_file char [vttek]
variable char (see list)
n_variables charxn
integration char [no]
x_from_label char [void]
y_from_label char [void]
x_to_label char [void]
y_to_label char [void]
math_oper char [void]
nonloc_esc_cap_path char yes,[no]
nonloc_fly_over_path char yes,[no]
from realx2
to realx2
xrange realx2
yrange realx2
integration_start real [0.0](um)
integration_length real [1.e5](um)
qw_wave_ht real [0.1] (eV)
var_num intg [1]
mode_index intg [1]
trap_index intg [1]
qw_wave intg [0] 1
cond_subband intg [1] 2
val_subband intg [1] 2 3

plot_1d is a post-processor statement used to plot data along a 1D cut line. It
is similar to lplot_xy and lplot_xyz. Depending on the 2D/3D nature of the
simulation, the following rules should guide the choice of plotting command:

• 2D simulations: use plot_1d

• 3D cylindrical simulations with one mesh plane: use plot_1d
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• xy cut of a 3D simulation: use lplot_xy

• z cut of a 3D simulation: use lplot_xyz

Parameters

• data_file is the name of a text file in which a copy of the plot data will be
saved.

• variable is the physical quantity to be plotted. A detailed list of available
variables is given in App. G.2. Additional data may also be presented for
certain variables. For example, plotting “wave_intensity” prints the value of
the optical confinement factor.

• n_variables is used to plot several variables simultaneously.

• integration can be used to tell the solver to perform a numerical integration
of the plotted variable. The results of the integration will be printed in the
.plt.msg file.

• x_from_label, y_from_label, x_to_label, and y_to_label are used to
define the beginning and end points of the cut line using position labels. These
labels must have been previously defined by using x_position or y_position.
The latter statements are often generated automatically in the layer file pre-
processing stage.

Using position labels has the advantage that the plotting commands will au-
tomatically adjust to changes in device geometry. It is no longer necessary to
find the absolute coordinates before plotting.

• math_oper, if defined, modifies the variable being plotted so it shown on a
log10 or power10 scale. Note that some variables are already plotted on a log10
scale by default (e.g. carrier and dopant concentrations) and in some cases,
there may be a predefined alternate variable name to plot the same value on a
linear scale.

• from and to are the (x,y) coordinates which determine the beginning and end
of the 1D cut line. In the 3D variations on this command, xy_from and
xy_to serve the same purpose. Note that xrange and yrange also provide
an alternate way to define the extent of the cut line.

• integration_start and integration_length are used to define the integra-
tion range when integration is used. The two values are defined relative to
the abscissa of the 1D cut line.
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• qw_wave_ht is the height of the quantum wave amplitude as plotted on the
band diagram. This parameter is only useful when qw_wave= 1.

• var_num is the number of variables to be plotted when using n_variables.

• mode_index specifies the number of the lateral mode for the quantity being
plotted. If only the fundamental mode is of interest, the default value should
be used.

• trap_index identifies the trap (SRH) recombination center.

• qw_wave enables plotting of the quantum well wave functions on the band
diagram when qw_wave= 1. However, the simulation must first have been
run using the self_consistent statement. It is also necessary to output the
QW wave data using more_output.

• cond_subband is used when qw_wave= 1 to indicate which conduction
band is being plotted. The main condition band valley (Γ) is equal to 1 while
2 represents the side valley (L,X).

• val_subband is used when qw_wave= 1 to indicate which valence band is
being plotted. Values of 1, 2 and 3 are respectively used to represent the HH,
LH and CH bands or their wurtzite equivalents.

• nonloc_esc_cap_path and nonloc_fly_over_path are helpful when view-
ing the results of a q_transport simulation or any other simulation which has
defined non-local current transport paths. When turned on, these parameters
add lines to the band diagram that explicitly show the carrier capture/escape
and fly-over non-local paths, respectively.

Examples

plot_1d variable=elec_conc from=(0.5, 0.) to=(0.5, 1.9)

plot_1d 2_variables=(elec_conc hole_conc) var_num=2 &&
from=(0.5, 0.) to=(0.5, 1.9)

plot_1d variable=recomb_aug from=(0.5 0.) to=(0.5, 3.)
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22.543 plot_ac_curr

parameter data type values [defaults]
data_file char [void]
variable char [void]
imag_part char [no]
input_file char [void]
from realx2
to realx2

plot_1d__ac_curr is used to plot the AC current distribution in a 1D slice. It
works with the statement of ac_voltage assuming a unit AC voltage signal in the
input electrode.

• data_file is the file to which the graphic data is written in ASCII format.

• input_file is the input file containing the AC analysis results to be plotted.

• variable is the variable being plotted. Its value takes the format “type_curr_d",
where type may be one of “elec", “hole",“disp" or “total", standing for electron,
hole, displacement, and total current components. “d" can take “x" or “y" for
directions.

• imag_part indicates whether imaginary part of the current is plotted.

from is the starting point of the 1D slice.

to is the starting point of the 1D slice.

Examples

plot_1d_ac_curr variable=elec_curr_y imag_part=no input_file=test.ac &&
from=(0.5 0.) to=(0.5 2.5)

The above statement plots 1D distribution of real part of AC current from test.ac
file.
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22.544 plot_2d

parameter data type values [defaults]
variable char (see list)
data_file char
mater_boundary char [no]yes
point_ll realx2 (µm)
point_ur realx2 (µm)
xrange realx2
yrange realx2
maxvector_scale real [1.]
grid_sizes intgx2 [20, 20]
level intg [10]
mode_index intg [1]
trap_index intg [1]
overlap_with_mode intg

plot_2d is a post-processor statement used to plot structural data on a 2D plane.
The software will automatically switch between the vector fields and contour plots
according to variable selected.
Other related commands exist and should be used depending on the 2D/3D nature
of the original simulation results. The following rules apply:

• 2D simulations: use plot_2d

• 3D cylindrical simulations with one mesh plane: use plot_2d

• xy plane from a 3D simulation: use cplot_xy for contour plots of scalar
variables, splot_xy for 3D surface plots of scalar variables or vplot_xy for
vector variables.

• xyz plane from a 3D simulation: use cplot_xyz for contour plots of scalar
variables, splot_xyz for 3D surface plots of scalar variables or vplot_xyz
for vector variables.

Parameters

• variable is the variable to be plotted. See App. G for a full list of available
variables.
data_file is the name of a text file in which a copy of the plot data will be
saved.
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• maxvector_scale is used to scale the maximum length of a 2D vector field.
A vector field is plotted by drawing only the vectors of length between the
minimum and maximum vector length. Vectors of lengths below the minimum
are not plotted. Vectors of lengths above the maximum are plotted with the
same vector size. Increasing this parameter generates a plot with many small
size vectors. Decreasing this value magnifies the smaller vectors while leaving
the large ones with the same size.

• mater_boundary is used to indicate if material boundaries are plotted.

• point_ll is the lower-left corner point of the 2D plotting window.

• point_ur is the upper-right corner point of the 2D plotting window.

• xrange specifies a range for the x-axis.

• yrange specifies a range for the y-axis.

• grid_sizes are the grid sizes of the 2D plot. The physical variable being
plotted is interpolated from the original mesh onto this regular grid.

• level is the number of divisions in the contour plot.

• mode_index is the index of the lateral mode in a multi-lateral mode sim-
ulation. If only the fundamental mode is concerned, the default value of one
should be used.

• The parameter trap_index has been added for SRH recombination, so that
the user can specify which trap center is being plotted.

• overlap_with_mode will calculate and print the overlap between the mode
specified in mode_index and the mode specified by this parameter.

Examples

plot_2d variable=total_cur xrange=(0. 1.5) yrange=(0. 3.)
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22.545 plot_3d

parameter data type values [defaults]
variable char (see list)
data_file char [vttek]
integration char [no]yes
point_ll realx2 (µm)
point_ur realx2 (µm)
view_xrot real [0.]
view_zrot real [0.]
xrange realx2
yrange realx2
zrange realx2
integration_xrange realx2 [-1.e4 1.e4](µm)
integration_yrange realx2 [-1.e4 1.e4](µm)
grid_sizes intgx2 [20, 20]
mode_index intg [1]
trap_index intg [1]

plot_3d is a post-processor statement used to plot two-dimensional scalar variable
data in a 3D view.

• variable is the variable to be plotted. The variable listing is given in App.
G.2.

• data_file is the file to which the graphic data is written in ASCII format.

• integration indicates whether integration is performed for the physical vari-
able being plotted. If "yes", the results of the integration will be printed in
.plt.msg file.

• point_ll is the lower-left corner point of the 2D window.

• point_ur is the upper-right corner point of the 2D window.

• view_xrot rotates the plot around the x-axis.

• view_zrot rotates the plot around the z-axis.

• xrange specifies a range for the x-axis.

• yrange specifies a range for the y-axis.
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• zrange specifies a range for the z-axis.

• integration_xrange specifies a x-range for numerical integration. (see also
integration parameter above).

• integration_yrange specifies a y-range for numerical integration. (see also
integration parameter above).

• grid_sizes are the grid sizes for the 3D plot.

• mode_index is the index of the lateral mode in a multi-lateral mode simu-
lation. If only the fundamental mode is concerned, the default value of one
should be used.

• The parameter trap_index has been added for SRH recombination, so that
the user can specify which trap center is being plotted.

Example(s)

plot_3d variable=hole_conc point_ll=(0., 0.) &&
point_ur=(2., 3.)

22.546 plot_3dcolor

parameter data type values [defaults]
data_file char
connect_planes char [yes]
variable char (see list)
new_gnuplot char [no]
xrange realx2
yrange realx2
zrange realx2
view_xrot real [0.]
view_zrot real [0.]
mode_index intg [1]
trap_index intg [1]
plane_range intg [1 9999]
exclude_materi(i=1..5) intg

plot_3dcolor is a post-processor statement used to plot 3-dimensional scalar vari-
able data in a 3D color view.
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Parameters

• variable is the variable to be plotted; the list of available variables is given in
App. G.2.

• data_file is a filename that can be used to export the data in ASCII format.

• connect_planes connects the mesh planes.

• new_gnuplot generates a plotting format supported only by newer versions
of GnuPlot.

• xrange, yrange and zrange define the plotting range.

• view_xrot and view_zrot rotate the plot around the x and z axes, respec-
tively.

• mode_index is the index of the lateral mode in a multi-lateral mode sim-
ulation. By default, the fundamental mode (#1) is plotted which may not
necessarily be the lasing mode.

• trap_index specifies the recombination center being plotted.

• plane_range restricts the plotting to a specific set of mesh planes.

• exclude_materi(i=1..5) can be used to exclude a specific material number
from the plot.

Examples

plot_3dcolor variable=hole_conc

22.547 plot_3dmesh

parameter data type values [defaults]
data_file char [void]
connect_planes char [yes]
xrange realx2
yrange realx2
zrange realx2
view_xrot real [0.]
view_zrot real [0.]
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plot_3dmesh is a post-processor statement used to plot 3-dimensional mesh.

• data_file is the file to which the graphic data is written in ASCII format.

• connect_planes connects the planes with mesh lines.

• xrange specifies a range for the x-axis.

• yrange specifies a range for the y-axis.

• zrange specifies a range for the z-axis.

• view_xrot rotates the plot around the x-axis.

• view_zrot rotates the plot around the z-axis.

Example(s)

plot_3dmesh connect_planes=yes

22.548 plot_3dvtk

parameter data type values [defaults]
variable char (see list)
vtk_file char [vttek]
xrange realx2
yrange realx2
zrange realx2
mode_index intg [1]
trap_index intg [1]
grid_sizes intgx3 [20 20 20]

plot_3dvtk is a post-processor statement used to output 3-dimensional scalar vari-
able data in VTK format. VTK format file can be visualized by another softwares
such as MayaVi and ParaView.

• variable is the variable to be plotted. The variable listing is given in App.
G.2.
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• vtk_file is the file to which the 3D grid data is written in VTK format. If
vtk_file is not supplied, variable will be used for the naming of output file.

• xrange specifies a range for the x-axis.

• yrange specifies a range for the y-axis.

• zrange specifies a range for the z-axis.

• mode_index is the index of the lateral mode in a multi-lateral mode simu-
lation. If only the fundamental mode is concerned, the default value of one
should be used.

• The parameter trap_index has been added for SRH recombination, so that
the user can specify which trap center is being plotted.

• grid_sizes specifies the grid size in each axis of 3D space.

Example(s)

plot_3dvtk variable=optical_energy grid_sizes=[50 50 50]

22.549 plot_ac_curr

parameter data type values [defaults]
data_file char [void]
input_file char [void]
scale_2 char [linear],log
variable char [void]
input_f2 char [void]
n_variables charxn
xrange realx2
yrange realx2
factor_vertical real [1]
var_num intg [1]

plot_ac_curr is used to plot the AC current responses and related AC character-
istics produced as the result of 1V of applied AC bias. The AC data must have been
previously generated by ac_voltage.
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Parameters

• data_file is the file to which the graphic data is written in ASCII format.

• input_file is the input file containing the AC analysis results to be plotted.

• scale_2 is used to control the scale of the AC characteristics being plotted
(the ordinate).

• factor_vertical is a factor scaling the vertical axis of the plot.

• variable is the variable being plotted. It is defined as follows:

Variable definition
n_real_k (k=1,2,...) Real part of electron AC current at kth

electrode.
n_imag_k
(k=1,2,...)

Imaginary part of electron AC current at
kth electrode.

p_real_k (k=1,2,...) Real part of hole AC current at kth elec-
trode.

p_imag_k
(k=1,2,...)

Imaginary part of hole AC current at kth
electrode.

d_real_k (k=1,2,...) Real part of displacement AC current at
kth electrode.

d_imag_k
(k=1,2,...)

Imaginary part of displacement AC current
at kth electrode.

t_real_k (k=1,2,...) Real part of total (electron + hole + dis-
placement) AC current at kth electrode.

t_imag_k (k=1,2,...) Imaginary part of total (electron + hole +
displacement) AC current at kth electrode.

n_magn_k
(k=1,2,...)

Magnitude of electron AC current at kth
electrode.

p_magn_k
(k=1,2,...)

Magnitude of hole AC current at kth elec-
trode.

d_magn_k
(k=1,2,...)

Magnitude of displacement AC current at
kth electrode.

t_magn_k
(k=1,2,...)

Magnitude of total (electron + hole + dis-
placement) AC current at kth electrode.

ratio_ik/ij
(k=1,2,...)
(j=1,2,...)

Ratio of the total AC current magnitudes
at the kth and jth electrodes.
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∣∣∣∣∣ikij
∣∣∣∣∣
v1

ratio_i_real_k/ij
(k=1,2,...)
(j=1,2,...)

Ratio of the real part of the AC current
at the kth electrode over the AC current
magnitude at the jth electrode.

ratio_i_imag_k/ij
(k=1,2,...)
(j=1,2,...)

Ratio of the imaginary part of the AC cur-
rent at the kth electrode over the AC cur-
rent magnitude at the jth electrode.

ratio2_ik/ij
(k=1,2,...)
(j=1,2,...)

Ratio of the total AC current magnitude
at the kth electrode in response to the AC
voltage defined in input_file to the total
AC current magnitude on the jth electrode
in response to the AC voltage defined in
input_f2. To generate the two AC data
input files, ac_voltage must be used for
each electrode.

|ik|v1

|ij|v2

conductance_k
(k=1,2,...)

Conductance at kth electrode, obtained
from the real part of the total AC current
on that electrode.

capacitance_k
(k=1,2,...)

Capacitance at kth electrode, obtained
from the imaginary part of the total AC
current on that electrode.

Units in the above will be changed depending on the 2D/3D nature of the sim-
ulation. For example, 2D simulation give currents in A/m and 3D simulations
will use Amperes directly.

• input_f2 is the 2nd AC input data file when variable=ratio2_ik/ij.

• n_variables may be used to list more than one variable so that more that
one variable may be plotted on the same graph.

• xrange and yrange specify the axis plotting range.

• var_num is the number of variables being plotted and if used, must match
the prefix in n_variables.
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Examples

plot_ac_curr input_file=pmosB.ac variable=capacitance_3
plot_ac_curr input_file=pmosB.ac variable=conductance_3

The above two statements are used to plot capacitance and conductance at electrode
3 in response to the AC voltage response saved in the pmosB.ac file.

plot_ac_curr scale_2=log variable=ratio_i3/i4

The above statement plots the current ratio at electrode 3 over that at electrode 4.
The AC data is automatically obtained from a preceding ac_voltage statement.

ac_voltage output_file=pmosB.ac log_freq1=6. log_freq2=12. &&
contact_num=4 freq_point=20

ac_voltage output_file=pmosB.ac2 log_freq1=6. log_freq2=12. &&
contact_num=3 freq_point=20

plot_ac_curr input_file=pmosB.ac scale_2=log variable=ratio2_i3/i3 &&
input_f2=pmosB.ac2

The above statements generate two sets of AC responses on electrodes 3 and 4. The
final plot shows the AC voltage ratio or voltage amplification by showing the current
ratios on electrode #3.

22.550 plot_ac_laser

parameter data type values [defaults]
data_file char [void]
input_file char [void]
facet char [void] front, back
xrange realx2
yrange realx2

plot_ac_laser is used to plot the power response of a laser diode.

• data_file is the file to which the graphic data is written in ASCII format.

• input_file is the input file containing the AC analysis results to be plotted.
If this is not defined, an internal data filename will be assigned.
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• facet, if specified, is the facet where the power is calculated. If not specified,
the total power will be computed.

• xrange specifies a range for the abscissa.

• yrange specifies a range for the ordinate.

Examples

plot_ac_laser facet=front

The above statement plots frequency response of front facet power.

22.551 plot_ac_minispice

parameter data type values [defaults]
data_file char [void]
variable char [voltage], current, conductance, ca-

pacitance
node char [void]
element char [void]
scale_2 char [linear], log
imag_part char [no],yes
xrange realx2 [] (log10)
yrange realx2 []
factor_vertical real [1.]

plot_ac_minispice is used to plot AC results in external circuit elements from a
mixed-mode (minispice) simulation.

Parameters

• data_file can be used to save the graphic plot data in ASCII format.

• variable is the AC variable being plotted; when appropriate, imag_part
controls whether the real or the imaginary part of this variable is being plotted.

• node is the SPICE node number or node name used for an AC voltage plot.
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• element is the SPICE element name used to plot AC current. Since conductance
and capacitance values are extracted from AC current (see ac_voltage), this
parameter also affects these variables.

• scale_2 is used to control the scale of the AC characteristics being plotted
(the ordinate).

• xrange and yrange are used to zoom the plot. As the abscissa is usually a
frequency axis, the x-range is given using a logarithmic scale.

• factor_vertical is an artificial scaling factor that can be applied to the ordi-
nate.

Examples

See ac_voltage.

22.552 plot_ac_modal_gain

parameter data type values [defaults]
data_file char [void]
input_file char [void]
xrange realx2
yrange realx2

plot_ac_modal_gain is used to plot the modal gain of a wave guided device. Here
modal gain is defined local material gain averaged over optical power distribution of
all lateral modes, assuming no interference effects between different modes.

• data_file is the file to which the graphic data is written in ASCII format.

• input_file is the input file containing the AC analysis results to be plotted.
If this is not defined, an internal data filename will be assigned.

• facet, if specified, is the facet where the power is calculated. If not specified,
the total power will be computed.

• xrange specifies a range for the abscissa.

• yrange specifies a range for the ordinate.
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22.553 plot_ac_parameters

parameter data type values [defaults]
data_file char [void]
input_file char [void]
scale_vertical char [linear] log
parameter_type char [s], y, h
smith_chart char [yes] no
touchstone_export char [void] myfile.s2p
touchstone_freq_units char [ghz]hz,khz,mhz,ghz
touchstone_format char [ma]ma,db,ri
char_impedance real [50] (Ohm)
zdim real [10] (um)

plot_ac_parameters is used to plot the AC 2-port parameters produced by the
AC analysis defined in ac_parameters.

Parameters

• data_file can be used to save the graphic plot data in ASCII format. Unlike
other plotting commands, multiple columns of data are printed as a result
of this command. The first column corresponds to the frequency (or bias,
depending on the type of AC analysis that was performed) and subsequent
columns each correspond to one of the graphs that was produced as a result of
this command.

To output the results of a frequency analysis, the touchstone_export com-
mand should be preferred over data_file.

• input_file is the input file containing the AC analysis results to be plotted.
If this is not defined, an internal data filename will be assigned.

• scale_vertical is used to control the scale of the AC characteristics being
plotted (the ordinate).

• parameter_type defines the type of 2-port analysis plotted: s, h or y.

• smith_chart is applicable only when parameter type is s and specifies that a
Smith chart should be used to plot the results. If negative, the S-parameters
will be plotted against frequencies in the conventional way.
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• touchstone_export instructs the program to export data in http://en.
wikipedia.org/wiki/Touchstone_fileTouchstone .s2p format. The frequency
units used in this file are specified by touchstone_freq_units.

The format of the data and the representation of the complex numbers is
specified by touchstone_format:

– RI for a cartesian (real and imaginary) representation

– MA for an polar (magnitude and angle) representation

– dB for a decibel-angle representation commonly used in electronics text-
books.

See also the following http://vhdl.org/ibis/connector/touchstone_spec11.
pdflink for a more complete description of the Touchstone format.

• char_impedance is the characteristic impedance of the high frequency sys-
tem.

• zdim is valid for 2D simulations only. It is the omitted third dimension (per-
pendicular to the 2D simulation mesh) which is needed to compute the absolute
impedance of the device being simulated.

Examples

plot_ac_parameters parameter_type=y zdim=10

The above statement plots Y11, Y21, Y12, and Y22 parameters as functions of
frequencies.

plot_ac_parameters parameter_type=s zdim=10 smith_chart=no

The above statement plots S11, S21, S12, and S22 parameters as functions of fre-
quencies.

plot_ac_parameters parameter_type=s zdim=10 smith_chart=yes

The above statement plots S11 and S22 in a Smith chart and S21 and S12 in a polar
plot.

http://en.wikipedia.org/wiki/Touchstone_file
http://en.wikipedia.org/wiki/Touchstone_file
http://vhdl.org/ibis/connector/touchstone_spec11.pdf
http://vhdl.org/ibis/connector/touchstone_spec11.pdf
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22.554 plot_bias

parameter data type values [defaults]
data_file char [void]
variable char [void]
n_variables charxn
start real [0.]
end real [1.]
scale_x real [2.]
scale_y real [1.]
scale_power real [2.]
var_num intg [1]
curve_math intg [0], 1
dataset_start intg [1]
dataset_end intg [99]

The post-processor statement plot_bias is used to plot many important physical
variables as a function of bias.

• data_file is the data file where the graphic data is to be stored.

• variable can be one of following:
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delta_freq Main long. mode frequency deviation from
the reference frequency.

power_left Main long. mode power emission from the
left facet.

power_right Main long. mode power emission from the
right facet.

sms_ratio Side main suppression ratio.
linewidth_spon Linewidth due to spontaneous emission.
linewidth_carrier Linewidth due to carrier fluctuation.
linewidth_cross Linewidth due to cross correlation between
carrier and photon density.
linewidth_sidemode Linewidth due to side long. mode.
linewidth_total Linewidth from all of the above.
linewidth*power_left Linewidth power product.
effective_alpha Effective alpha αeff .
real_freq_# Real part of the complex frequency of the

long. mode number #.
imag_freq_# Imaginary part of the complex frequency

of the long. mode number #.
shd_# Second harmonic distortion due for chan-

nel number #.
power_left_lm_i Left facet emission power of lateral mode

(lm) number i.
power_right_lm_i Right facet emission power of lateral mode

(lm) number i.
power_total_lm_i Total (left+right) facet emission power of

lateral mode (lm) number i.

• n_variables takes more than one of the variables tabulated above.

• start is the starting bias point in the plot.

• end is the relative ending bias point in the plot.

• scale_x is used to scale the horizontal axis (i.e., the current). By default,
we assume that only one half of the symmetric device is simulated. Thus, a
default scale of 2 is needed to recover the current for the whole structure.

• scale_y is used to scale the vertical axis of the bias plot for variables other
than laser power.

• scale_power is used to scale the vertical axis of the light vs. current plot. A
default of scale 2 is used to recover the current for the whole structure.
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• var_num is the number of variables listed in n_variables.

• curve_math is used to indicate whether or not there is mathematical op-
eration between different curves (e.g., whether or not they should be added
together). For a value of 0, no math operation is done between the curves. If it
takes a value of 1 all the curves on the same plot is added together to produce
an additional curve.

• dataset_start and dataset_end are used to set the starting and ending
data sets used in the plot. If dataset_end exceeds the existing number of
data sets, the last data set will be used.

Example(s)

plot_bias variable=power_left
plot_bias variable=power_right
plot_bias variable=sms_ratio
plot_bias variable=shd_1

22.555 plot_data

parameter data type values [defaults]
plot_device char [postscript]

plot_data determines how data is plot during the post-processing stage (.plt file).
The following plot_device settings are available:

• postscript generates postscript files (.ps) through a GnuPlot script.

• windows displays the plots through a series of GnuPlot windows.

• data_file merely writes the data to text files without displaying any figures

Note that in addition to these options, interactive plotting of figures is also supported
through the CrosslightView GUI.
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22.556 plot_longitudinal

parameter data type values [defaults]
data_file char
variable char [wave_total_peakmode]
select_lateral_mode intg [1]

plot_longitudinal is used in the post-processing (.plt) of PICS3D results to plot
data on the optical longitudinal mesh defined in the section statements.
Unlike lplot_xyz and other conventional plotting statements, this command does
not gather data directly from the (electrical) mesh planes. This distinction is im-
portant since it allows plot_longitudinal to plot data from passive un-meshed
sections.

Parameters

• data_file is a file name used to save the plot data.

• variable is the variable being plotted. It must be one of the following:

– ase_density: amplified spontaneous emission profile
– photon_density
– photon_density_allmode
– wave_total: |L(z)|2 + |R(z)|2; total envelope of the optical wave
– wave_left
– wave_right
– wave_total_use_phase: |L(z)+R(z)|2; total optical wave including stand-

ing wave pattern. A dense optical mesh is required to resolve these oscil-
lations clearly.

– wave_total_peakmode
– wave_left_peakmode
– wave_right_peakmode
– alpha_l_over_2: imaginary part of the β propagation constant, normal-

ized to cavity length; corresponds to a gain/absorption term. The factor
of 2 shows this is the value applied to the optical field and not the photon
flux.
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– delta_beta_l: real part of the β propagation constant, normalized to
cavity length; only the deviation away from the β0 used for the expansion
is shown.

– density_mode_average: average density in the active region, weighed by
the longitudinal mode profile.

– kappa_l_real: grating strength ℜκL

– kappa_l_imag: grating strength ℑκL

– phase_index: effective index of each mode; goes into the β calculations.
This value is calculated on the first mesh plane of each segment: use
multiple z-segments to increase the sampling of this value.

• select_lateral_mode selects the lateral mode number for the plot.

Examples

plot_longitudinal variable=photon_density

22.557 plot_mesh

parameter data type values [defaults]
mesh_infile char
plot_device char
xrange real (µm)
yrange real (µm)

plot_mesh is used by the mesh generator to plot the generated mesh.

Parameters

• mesh_inf is the input meshfile, not ordered.

• plot_device is the Gnuplot device used for the output (e.g. “postscript”).

• xrange and yrange allow the user to define an area of the mesh to zoom in
on.



22.558 plot_minispice 959

Examples

plot_mesh mesh_inf=pn.msh plot_device=x11 &&
xrange=(0.15 0.3) yrange=(0.8 1.2)

22.558 plot_minispice

parameter data type values [defaults]
data_file char
variable char [voltage],current
node char
element char
set_scan_var char [void], virtual_time, time
hori_variable char
hori_node char
hori_element char
variable2 char
node2 char
element2 char
hori_scale char [linear],log
vert_scale char [linear],log
scan_var_range realx2 (sec)
hori_range realx2
vert_range realx2
circuit intg [1]
scan_num_range intgx2 [0 99]

plot_minispice is new to the 2013 version and is used to plot the results of a
mixed-mode simulation (see minispice.

Parameters

• data_file is the name of a text data file which can be used to export the plot
data.

• variable indicates whether the voltage at a SPICE node or the current through
an element should be plotted:

– voltage: the voltage at the specified node value is plotted
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– current: the current through the specified element is plotted. A node
parameter connected to this element must also be given to set the sign of
the current: by convention, current flowing into a node is positive.

• variable2 is a second variable plotted on the same plot; node2 and element2
serve the same purpose as their normal counterpart for this new variable.

• set_scan_var sets whether variables are shown as a function of the transient
simulation time or the virtual_time used in the scan statement; the latter is
used for DC sweeps.

• hori_variable is similar to scan_var in plot_scan. If this parameter is
used, then instead of showing (e.g.) V1(t) the plot will show V1(t) vs. V2(t)
where V2 is the variable defined as the horizontal variable.
For this horizontal variable, hori_node and hori_element serve the same
purpose as their normal counterpart in variable.

• hori_scale and vert_scale control the linear/log scaling of the horizontal
and vertical axis, respectively.

• scan_var_range may be used to restrict the time or virtual_time variable
to a certain range in the plot. If using a horizontal variable to plot rather than
this time variable, hori_range and vert_range may be used to restrict the
horizontal and vertical ranges.

• circuit refers to a specific external circuit file used in the simulation. These
files are numbered following the order of the minispice statements in the .sol
input file.

• scan_num_range may be used to restrict which data sets are used in the
plot.

Examples

The following plots the voltage at node 1; the x axis will correspond to either the
time in a transient simulation or the “virtual_time” used for a SPICE DC sweep.

plot_minispice variable=voltage node=1

For the next example, assume the following declarations in the .cir layout:

R1 1 2 10k
R2 1 2 1k
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To plot the different currents flowing through the two parallel branches, the following
commands should be used:

plot_minispice variable=current element=R1 node=1
plot_minispice variable=current element=R2 node=1

22.559 plot_more_dos_fermi

parameter data type values [defaults]
data_file char
energy_range realx2 (eV)

plot_more_dos_fermi is a post-processing statement that plots additional data
previously generated by a more_dos_fermi_output statement.

Parameters

• data_file is user-specified text file containing a copy of the plot data.

• energy_range is abscissa range of the DOS(E) plot.

22.560 plot_more_spectrum

parameter data type values [defaults]
data_file char
variable char [more_spectrum1],

more_spectrumi(i=1..29)
user_xlabel char
user_ylabel char

plot_more_spectrum is a post-processing statement that plots additional data
previously generated by a more_spectrum_output statement.
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Parameters

• data_file is user-specified text file containing a copy of the plot data.

• variable is the variable being plotted. The names of these variables (more_spectrumi(i=1..29))
correspond to the order of the more_spectrum_output commands in the
input file.

• user_xlabel and user_ylabel are user-defined labels added to the plot.

22.561 plot_more_trap

parameter data type values [defaults]
data_file char
tag char
trap_index intg [1]

plot_more_trap is a post-processing statement used to plot additional trap infor-
mation generated by more_trap_output. This statement will plot the distribu-
tion of trap states relative the energy bands along with their occupancy.

Parameters

• data_file is user-specified text file containing a copy of the plot data.

• tag is a user-defined label that is used to link this command with the appro-
priate more_trap_output statement.

• trap_index identifies the species of traps being plotted.

22.562 plot_multilayer_optics

parameter data type values [defaults]
variable char [reflection], transmission, absorp-

tion
data_file char
wavelength_range realx2 [-9999. 9999.] (µm)
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plot_multilayer_optics is a post-processing statement used to get results from
the multi-layer transfer matrix model (TMM) used for light_power. This value is
averaged from the cut lines used in the TMM but it is not weighed by the input light
profile. For full-spectrum simulations, it plots the spectrum of the coefficient. For
single-wavelength pumping, a single value will be output in the simulation window.
This statement is typically used in solar cells to verify the spectral response of the
device.

Parameters

• variable is one of the outputs from the TMM model: reflection, absorption or
transmission.

• data_file is a file where the plot data can be saved.

• wavelength_range can be used to restrict plotting to a part of the spectrum.

Examples

plot_multilayer_optics variable=absorption

22.563 plot_qw_raw_data

parameter data type values [defaults]
complex intg [1]
cond_band intg [1]
val_band intg [1]

plot_qw_raw_data may be used to plot the band structure, levels and wave
functions directly from the Schrödinger solver rather than in a band diagram sampled
from the finite element mesh.
For example, if the self-consistent MQW model is turned off, the software will use
a flat-band model to obtain the QW levels. Under these conditions, this command
will show the flat bands in the QW and barrier while the usual band diagram would
show the potential distorted by the applied potential.
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However if the self-consistent model is turned on, then after an initial iteration using
flat band conditions, the potential for the Schrödinger solver is sampled using a single
cut line across the QW region. Under these conditions, plot_qw_raw_data will
then show that sampled potential while the usual band diagram would show the
potential at the cut line specified by that plotting command.

Parameters

• data_file is the name of a text file in which a copy of the plot data will be
saved.

• complex is the complex MQW region number being plotted. cond_band is
the number of the conduction band valley (Γ=1). cond_band is the number
of the valence band valley (HH=1, LH=2, CH=3).

22.564 plot_rtgain

parameter data type values [defaults]
plot_device char [void]
rtgain_data char [void]
standing_wave char [void]
std_wave_range realx2

The statement plot_rtgain is used as a preprocessing tool to plot the round trip
gain and standing wave pattern within a LD or a VCSEL. It takes the data ( .rtd
file) from PICS3D running a .sol file on a statement rtgain_phase.

• plot_device is the Gnuplot device used for the output (i.e. “postscript”).

• rtgain_data is the .rtd file as a result of running rtgain_phase statement
in .sol file.

• rtgain_data is the .rtd file as a result of running

• standing_wave is the file (.stw file) containing standing wave in a VCSEL.
This will be generated for a VCSEL by the rtgain_phase.

• std_wave_range specifies the wave range to be plotted.

Example(s)
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plot_rtgain rtgain_data=jim.rtd standing_wave=jim.stw &&
plot_device=postscript

22.565 plot_scan

parameter data type values [defaults]
data_file char [vttek]
scale_1 char log, [linear]
scale_2 char log, [linear]
scan_var char (see table below)
variable char (see table below)
n_variables charxn
include_data char [void]
facet char [void] front back
user_xlabel char [void]
user_ylabel char [void]
user_title char [void]
user_label1 char [void]
user_label2 char [void]
user_label3 char [void]
merge_next char [no] yes
filter_name char [void]
plot_slope char [no] yes
set_grid char [no] yes
show_points char [no] yes
scan_label char [void]
parallel_circuit char [void]
oscillation_smooth char [no]
series_circuit char [no]
save_as_excel_csv [char] []
csv_col_labeli(i=1...9) char []
scale_lit real 2.
scale_curr real 2.
xrange realx2
yrange realx2
xy_label1 realx2 [0. 0.]
xy_label2 realx2 [0. 0.]
xy_label3 realx2 [0. 0.]
scale_horizontal real [1.]
scale_vertical real [1.]
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filter_value real [0.]
horizontal_power real []
vertical_power real []
parallel_resistor real [50.0] (ohm*m | ohm)
series_resistor real [50.0] (ohm*m | ohm)
var_num intg [1]
mode_index intg [1]
trap_index intg [1]
scanline intg
scan_num intg

plot_scan is a post-processor statement used to plot “scan” data as a function of
the applied bias on the device. This should be contrasted with “xy” (structural)
data which is plotted as a function of the local mesh points.
The data sets plotted by this command are specified in the preceding get_data
statement.

Parameters

• data_file is the name of a text file in which a copy of the plot data will be
saved.

• scale_1 is used to indicate linear or log scale on the abscissa.

• scale_2 is used to indicate linear or log scale on the ordinate.

• scan_var is the scanned variable (on the abscissa). Refer to App. G for a full
list of scan variables.

• variable is the scanned variable (on the ordinate). Refer to App. G for a full
list of scan variables.

• n_variables is a group of variables to be plotted on the ordinate.

• include_data is the name of a text file containing data to be added to the
plot. This can be used, for example, to add experimental data to a figure and
compare with the simulation results.
The expected format of the text file is that the first line defines the number of
points while all the other lines are x-y pairs. The following may be used as an
example:
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3
0.1 0.5
0.2 0.8
0.5 1.2

• facet is a LASTIP-only parameter used to determine whether the laser output
power corresponds to the front or back facet (or both). Note that the power is
also scaled by scale_lit to account for the symmetry of the device.

• user_xlabel, user_ylabel and user_title are user-defined labels for the
abscissa, ordinate and plot title, respectively. White spaces are not supported
and should be replaced with an underscore (_). The upper limit on the number
of characters in the string is 20 except for user_xlabel which allows for 68
characters.

• user_label1, user_label2 and user_label3 are user-defined labels which
can be added at certain coordinates of the plot. These coordinates are defined
by xy_label1, xy_label2 and xy_label3, respectively.
The same rules as for user_title apply concerning the content and length of
the user-supplied string.

• merge_next is used to instruct the program to not to plot this curve but to
transfer the data and merge the curve into the next plot statement.

• filter_name, if used, is the name of a control variable used to filter plotting
results. For example, this can be used to plot some quantity p1 vs. p2 with the
condition that only results that match the condition p3=value are included.
This control value is set by filter_value.

• plot_slope will cause the statement to plot the slope instead of the original
quantity.

• set_grid turns on the display of the plot grid.

• show_points shows the data points of the plot instead of just the lines.

• parallel_circuit defines a resistor in parallel to an electrode. This is different
from a more complex external circuit which would be defined in the .sol file
with the minispice statement.
Instead, this parameter merely adjust the value of the current being plotted
by adding or subtracting a component ∆I = V

R
. The resistor value is defined

by parallel_resistor.

• oscillation_smooth tells the software to try to smooth the plot.
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• series_circuit is similar to parallel_circuit circuit above but defines a re-
sistor connected in series with the device. The resistor value is defined by
series_resistor.

• save_as_excel_csv, if used, is a file name used to export the plot data in
a comma-separated values (CSV) format; the .csv extension is automatically
added. Column headers for this file may be defined using the csv_col_labeli(i=1...9)
parameters.

• scale_lit and scale_curr are LASTIP-only parameters used to to scale the
output power and current (respectively) to account for the symmetry of the
device. In previous versions of the software, a default value of 2 was used to
account for implied symmetry; this is no longer the case as of the 2012 version.

• xrange and yrange specify value ranges for the abscissa and ordinate, respec-
tively.

• horizontal_power and vertical_power are used to scale the abscissa and
ordinate, respectively, by applying a power rule of the form xn.

• var_num is the number of variables to be plotted when using n_variables.

• inc_curve is the number of curves in the file specified with include_data.

• mode_index specifies the number of the lateral mode for the quantity being
plotted. If only the fundamental mode is of interest, the default value should
be used.

• trap_index identifies the trap (SRH) recombination center.

• scale_horizontal and scale_vertical are user-supplied scaling factors for
the abscissa and ordinate, respectively. This can be used, for example, to scale
to other units or to compute average current densities. It is recommended to
provide user-specific axis labels when scaling the results in this manner.
Note that this is different from LASTIP-specific scaling provided by scale_lit
and scale_curr

• scanline is used to group together all data sets generated from a single scan
statement and limit the plot data to these particular data sets.
The data generated from the equilibrium statement is counted as scanline=1
and every scan statement afterwards increases this value by 1 so scanline=2,3,4,etc...
Note that the plotting is still restricted to the data sets specified in the pre-
ceding get_data statement. The scanline mechanism merely provides a way
to narrow the plot data further.



22.566 plot_spectrum 969

• scan_num is the same as scanline except that the count starts at zero. scan
statements after equilibrium are thus numbered as scan_num=1,2,3,etc...

• scan_label works in the same way as scanline but allows the scan to be
selected using a user-defined label instead of the automatic numbering scheme.
This label must be supplied in the original scan statement.

Examples

plot_scan scan_var=voltage_1 variable=current_1

This would plot all the I-V data for data collected by the get_data command.

plot_scan scan_var=voltage_1 variable=current_1 scan_num=3

This would plot all the I-V data for data produced by the 3rd scan.

22.566 plot_spectrum

plot_spectrum is identical to gain_spectrum.

22.567 pml

parameter data type values [defaults]
gain_correction char [yes]
pure_index_loss char [no ]
permittivity_real real [1.0]
permittivity_imag real [0.1]
pml_length real [6.0](um)
pml_mesh intg [10 ]

The statement pml is used to activate the perfectly matched layer (PML) boundary
model. This is a special type of boundary condition for the lateral optical mode
solver which absorbs radiative waves from a leaky waveguide structure. An effective
anisotropic PML method is used in the simulator.
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• gain_correction may be used to enable the optical gain in the rate equation
to be corrected for radiation loss. When set to “no”, the simulator will calculate
the modal gain by a weighed averaging of the local material gain with the wave
intensity.

• pure_index_loss. There are two ways to estimate the modal radiative loss at
the PML boundary. The first is the pure index method in which all imaginary
material indices are set to zero throughout the device. The imaginary part of
the wave equation eigenvalue is then the modal loss due to radiation. The other
method involves comparing the total waveguide loss given by the eigenvalue
with a weighed averaging of the local material gain with the wave intensity.
The first method is more numerically stable while the second method is more
accurate.

• permittivity_real is the real part of permittivity in the absorbing PML
material, relative to the material being matched. The recommended value is
around unity.

• permittivity_imag is the imaginary part of permittivity in the absorbing
PML material, relative to the material being matched. The recommended
value is between 0.01 and 0.1.

• pml_length is the length (or thickness) of the PML layer used for the ab-
sorption.

• pml_mesh is the number of mesh lines within the PML layer.

Examples

pml permittivity_real=1.0 permittivity_imag=0.02 pml_mesh=50 &&
pure_index_loss=no

22.568 point

parameter data type values [defaults]
label char
xy real (µm)

point defines a point in 2D space.

• label labels a point.
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• xy are the coordinates of the point.

Example(s)

point label=a xy=(0.4, 0.5)

22.569 poisson_ratio

poisson_ratio defines Poisson’s ratio for the acoustic wave propagation model in
SAWAVE.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.570 polarization

In the 2013 version, this statement has been renamed to avoid confusion and to reflect
the fact that TE/TM material properties are now both computed automatically. See
optical_axis for the new command used to set the orientation of the waveguide.
For interface polarization charges (e.g. wurtzite), see set_polarization or polar-
ization_charge.

22.571 polarization_charge

This statement is used in the material macro files to define the polarization vec-
tor magnitude (P (z) in the literature) for piezoelectric materials such as GaN and
ZnO. This command defines the total polarization including both the spontaneous
and strain-induced components so some assumptions must be made regarding the
growth conditions of the material to define the strain and provide relevant formulas.
By default, the macros included with the software assume a base lattice constant
matching that of GaN; for materials grown on AlN or other substrates, these macro
formulas should be revised. As an alternative to this command, spont_charge may
be used to define a model where the strain-induced component of the polarization
vector is computed automatically using piezoelectric tensor elements.
We also note that a reduction of the interface charge due to screening by defects
and other effects is often reported experimentally; while it is possible to include
this effect in the macro formula, we do not recommend this approach. Instead,
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the polarization_charge_model command which activates this model provides
built-in parameters to control screening and the effects of plane orientation.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.572 polarization_charge_model

parameter data type values [defaults]
mater_label char
input_piezo_param char [yes], no
screening real [0.5]
vector realx3 [0. 1. 0.]
growth_plane_normal realx3 [0. 1. 0.]
hex_lattice_a0 real [3.189] (Å)
hex_lattice_c0 real [5.185] (Å)
growth_plane_miller_index intgx4
mater intg
between_mater intgx2

polarization_charge_model works in conjunction with either the polarization_charge
or the spont_charge macro statements. When used in the .sol file, this allows the
charge from piezoelectric materials to be used in the simulation but only if the
matching material macros define these quantities.
This command is new to the 2011 version of the software and is intended to eventually
replace set_polarization. Do not use both methods as this will double-count the
interface charge. The code to use piezoelectric tensor elements to account for the
strained-induced polarization was added in the 2013 version.
Note that polarization_charge_model is implemented as a 3D charge distribu-
tion at the level of Poisson solver while set_polarization implements a 2D charge
via the interface statement. Integrating the 3D distribution should give the same re-
sult as the 2D interface charge since both methods implement the Bernardini[117] for-
mulas by default. However, the 3D charge distribution is very narrow so a fine inter-
face mesh may be required to integrate it properly; the statement internal_xpoint
may be used to control this.
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Parameters

• screening is a screening coefficient to represent the fraction of the theoretical
interface charge observed experimentally due to compensation by defects and
other effects. If set 1, the full value of the interface charge is used; at a value
of 0, no interface charges are present. The exact value to use in any given
application is the subject of much controversy but values near 0.5 are commonly
reported in the literature.

• vector is used to define the orientation of the polarization vector when polar-
ization_charge is positive. Typically, this means the c-plane Ga-face growth
direction so it corresponds to [0 1 0] (+y) for a 2D simulation.

• input_piezo_param controls whether the strain-induced component of the
polarization vector is computed by the software using the piezoelectric tensor
elements. If yes, the tensor elements are used alongside the spontaneous com-
ponent of the polarization vector defined in spont_charge. Otherwise, the
total (spontaneous and strain-induced) polarization vector formula defined in
the polarization_charge statement is used to compute the charge.

• growth_plane_normal indicates the direction of the growth according to
the simulation axes. In a normal 2D simulation, this is +y [0 1 0] while in a 3D
simulation, +z [0 0 1] would be typical. More complex situations may occur in
nanowires.

This parameter is used in conjunction with growth_plane_miller_index
to indicate the crystal orientation ((h k i l) notation) that is being grown. Both
parameters are optional and are an alternate means of defining the orientation
of the vector parameter.

In order to calculate the orientation of the polarization vector, the crystal
lattice parameters a and c must also be defined using hex_lattice_a0 and
hex_lattice_c0. The default values are those of GaN.

• mater may be used to define different orientations of the polarization vector for
different materials of the device. This may occur in the side walls of nanowires.

• between_mater defines the polarization charge only at the interface between
these two specific materials. This may be used to quickly and easily ignore all
other passivated interfaces in the device.

Examples

polarization_charge_model screening=0.5 vector=(0 1 0)
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22.573 polygon

parameter data type values [defaults]
name char
4_points realx4
3_points realx3
material intg
boundary_i charx2
limits_i realx2 (µm)

polygon is used in the mesh generator to define the geometry of the device.

• name is the name of the polygon.

• 4_points are the labels of the four points used to define a polygon. The points
should be arranged in counterclockwise order starting from the reference point,
which is equivalent to the (0,0) point of a rectangle.

• 3_points are the labels for the three points used to define a triangle. The
points should be arranged in counterclockwise order starting from the reference
point, which is equivalent to the (0,0) point of a rectangle.

• material is the material number of the polygon being described.

• boundary_i (i=1,2,...) contains the labels of two corner points. These two
points define an edge where the ith boundary is to be defined.

• limits_i contains the starting and ending points of the ith boundary along
the edge defined by boundary_i. The reference direction is along the coun-
terclockwise direction.

Example(s)

polygon name=rect1 4_points=(a b c d) boundar_1=(a b)
limits_1=(0. 0.7)

22.574 previous_layer

parameter data type values [defaults]
file char [void]
auto_sequence char yes, [no]
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This statement is used in a .layer file when that file is used to represent a single
x-y plane of a larger 3D structure. Since the layer.exe processing of the file assigns
material numbers to each region, it must be made aware of the previously-declared
layers (in other files) to increment these materials number correctly.

Parameters

• file is the name of the .layer file representing the previous z-plane in the 3D
structure (starting from the bottom at z=0).

• auto_sequence, if enabled, will automatically take the name of the previous
.layer file from a temporary file created by the previous layer.exe call.

Examples

previous_layer file=test1.layer

22.575 print_active_layer

parameter data type values [defaults]
mater_label char
mater intg [1]

print_active_layer is used in the gain preview mode to print the active layer
material macro in the .gain.msg output file. The material affected by this command
is either specified through its number (mater) or a label (mater_label) if one has
previously been defined.

22.576 print_macro

parameter data type values [defaults]
mater_label char
mater intg [1]
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print_macro is used in the gain preview mode to print the bulk material macro in
the .gain.msg output file. The material affected by this command is either specified
through its number (mater) or a label (mater_label) if one has previously been
defined.

22.577 print_optowizard_data

parameter data type values [defaults]
more_data char [no]

print_optowizard_data is used to force the Optowizard program to generate
output data files (.out, .std) used by other Crosslight simulation programs. This
allows the use of plotting tools such as CrosslightView.

22.578 print_sparse_matrix

parameter data type values [defaults]
stop_after_print char [yes]
print_solution char [no]
line_scan intg [2]
bias_point intg [1]
iteration intg [1]

print_sparse_matrix is primarily used for testing and debugging of the software.
It exports (to a text file) the sparse matrix (A) and RHS vector data (b) for the
AX = b problem being solved at a given iteration of the non-linear Newton solver.

Parameters

• stop_after_print terminates the solver after the export.

• print_solution also prints the solution vector from the sparse matrix solver
during the export step.
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• line_scan .... in the scan statement.

• bias_point is the bias step number where the data export will occur.

• iteration is the non-linear Newton iteration where the data export will occur.

22.579 prop_constant_model

parameter data type values [defaults]
precalculated_gain char [no]
precalculated_index char [no]
zseg_num intg [1]

By default, PICS3D uses tabulated gain and index values only during the round-trip
gain (RTG) preview (c.f. Sec. 21.2 for details). This command extends the use of
tabulated values to the full calculations of the RTG during the scan statements. This
is occasionally helpful to deal with convergence problems (e.g. noisy gain curves) or
to speed up the simulation when the normal gain calculations take too much time.

Parameters

• precalculated_gain turns on or off the use of tabulated gain values.

• precalculated_index turns on or off the use of tabulated index values.

• zseg_num is the segment number where this command will take effect.

Examples

prop_constant_model precalculated_gain=yes
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22.580 put_mesh

parameter data type values [defaults]
polygon char
edge charx2
point_from real (µm)
point_to real (µm)
number intg
ratio real
shift_center real [0.] (µm)

put_mesh places mesh lines on a polygon edge. This statement is automatically
generated when the layer and [st:column]column statements from the .layer files
are processed to create .geo files or when defining mesh directly in the GeoEditor
GUI.

Parameters

• polygon is the name of the polygon to be affected.

• edge is the edge where mesh lines are defined.

• point_from and point_to are the beginning and ending of the mesh point
allocation region. Distances are measured relative to the edge, in counter-
clockwise order.

• number is the number of mesh lines to be placed.

• ratio is the ratio of mesh point intervals between neighbors. A schematic
diagram illustrating the effect of various ratios is given in Fig. 22.22.

1. ratio = 1 Uniform mesh
2. ratio > 1 Mesh interval increases with distance, starting from point_from.
3. 0 < ratio < 1 Mesh interval decreases with distance, starting from

point_from.
4. −1 < ratio < 0 Mesh interval decreases with distance, starting from a

symmetric point.
5. ratio <= −1 Mesh interval increases with distance, starting from a sym-

metric point.
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Figure 22.22: Effects of different ratio on putting mesh points on an edge (a b).

• shift_center may be used when mesh lines are allocated around a symmet-
ric point: that is, when ratio is negative. When used, this parameter shifts
the symmetric point away from the center. The input value is relative so for
example, 0.2 means a shift of 20 percent of the total length.

Examples

put_mesh polygon=p1 edge=(a b) point_from=0. point_to=1.4
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22.581 q_transport

parameter data type values [defaults]
n_side_down char [yes],no
sequential_model char [yes],no
optic_pumped_escape char [no],yes
optic_pumped_fly char [no],yes
well_barrier_transport char [thermionic], trap_detrap_tau,

hot_auger_thermionic,
hot_auger_direct,
hot_auger_indirect

set_q_trap_landing char [yes], no
use_drude_model char [no],yes
sequential_capture char [no],yes
collective_capture char [no],yes
split_qw_states char [no] yes
temp_dep_tau_model char [no] yes
scale_elec_fly_over real [1.]
scale_hole_fly_over real [1.]
scale_elec_capture real [1.]
scale_hole_capture real [1.]
set_elec_mean_fp real [0.01] (um)
set_hole_mean_fp real [0.01] (um)
drift_away real [0.01] (um)
bottom_drift_away real (um)
top_drift_away real (um)
q_trap_tau real [1.e-12] (s)
q_elec_trap_tau real (s)
q_hole_trap_tau real (s)
landing_point real [0.5]
split_b_coef real [1.e-16](m3/s)
temp_dep_tau_t0 real [20.] (degK)
hot_auger_cn real [0.], 1.e-42, 1.e-44 (m6/s)
hot_auger_cp real [0.], 1.e-42, 1.e-44 (m6/s)
hot_auger_threshold real [1.e24] m−3

hole_drift_away real [0.01] (um)
hole_bottom_drift_away real (um)
hole_top_drift_away real (um)
spread_top_drift_away real (um)
sequential_neigbor intg [1]
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The statement q_transport uses non-local transport technique to modify the be-
havior of the default drift-diffusion model in a quantum well or quantum dot struc-
ture.

22.581.1 Default drift-diffusion transport model

By default Crosslight uses drift-diffusion (DD) theory with a thermionic emission
model as the boundary condition for heterojunctions. A quantum well is treated
as having two back-to-back heterojunctions and transport is mesh-point sequential:
carriers from the left barrier must first drop into the well before they jump to the
right barrier.
The basic assumption here is that carriers are treated as fluid-like continuous medium
where the current flow goes from one mesh point to the nearest neighbor when solving
the DD partial differential equations. Put another way, imagine a 1D discretized set
of equations: the DD model creates equations which couple mesh point j with its
immediate neighbors j−1 and j+1. However in a real device, carriers make discrete
random thermal motions before scattering with lattice and other carriers. In the 1D
model, this means mesh point j may need to directly couple with a far-away point
j + n which introduces terms away from the diagonal in the sparse matrix solver.
If the feature size of the device is less than or comparable to the mean free path
(MFP) of the carriers, the fluid-like model may become inaccurate on a microscopic
scale. When dealing with nitride-based devices where the QWs are thin (2nm) and
the barriers are high, this assumption may cause inaccuracies and high voltage drops
not seen in experiments. This command attempts to find a solution to model this
kind of structure.

22.581.2 Carrier trapping with non-local transport

A. Theoretical Basis

The non-local carrier trapping theory is based on a modified version of the drift-
diffusion equation where quantum wells/dots boundaries are treated as carrier traps.
We therefore aim to write a trapping rate similar to that of phonon scattering theory
in the form:

Rqw = (n− n0)/τ (22.93)

where τ is believed to be in the order of picoseconds.
It is important to note that this trapping describes how the 3D states of the barrier
are confined to 2D confined states in the quantum well (and vice versa). It is therefore



982 COMMAND SYNTAX

the goal of this section to explain how the normal heterojunction boundary conditions
and Rqw are formulated at a quantum well interface. For convenience, we only discuss
electrons here; the case for holes is similar.
The carrier capture rate can be written as [136]:

Rqw =
∫ ∞

Eb

dE3D

∫ ∞

Eqw

dE2Dg2D(E2D)g3D(E3D)S(E2D, E3D)×f3D(E3D)(1−f2D(E2D))

(22.94)
where S is the transition probability between 3D to 2D states and the gi are densities
of states. The integrand in the above is usually a complicated function of Fermi levels
and 2/3D carrier energy. To simplify the above, we make a few approximations.
The first is to ignore the dependence of S(E2D, E3D) on E3D and let it equal to the
conduction band energyEc of the barrier. Noting that n3D =

∫
dE3Dg3D(E3D)f3D(E3D),

the above can be rewritten as:

Rqw = n3D

∫ ∞

Eqw

dE2Dg2D(E2D)S(E2D, Ec)(1 − f2D(E2D)) (22.95)

We also assume that most carriers are at located at the bottom of the QW so that
g2D ≈ δ(E2D − Eqw). This gives us:

Rqw = n3DS(Eqw, Ec)(1 − f2D(Eqw)) (22.96)

It is reasonable to expect that the transition probability S depends on the injection
conditions. However, it is convenient for implementation to replace it with a single
time constant τ . We also have the restriction that we expect to have Rqw = 0 when
no bias is applied so that the equilibrium condition of zero current is maintained.
We therefore rewrite the above as:

Rqw =
(
n3D − n3D,0

τ

)
(1 − f2D(Eqw)) (22.97)

where n3D,0 is the bulk (barrier) carrier density at equilibrium.
We again stress that Rqw is a re-statement of the same thermionic emission boundary
conditions that are used everywhere else in the drift-diffusion model. However, this
formulation allows for an explicit time constant to be easily set and override this
boundary condition.

B. Implementation in Drift-Diffusion solver

The main difference between this model and the default DD theory is that this model
allows carriers to directly flow over the quantum well as if it did not exist: the well
interface only contributes a trapping/escape term. Carriers which flow over the QW
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can be considered to not follow the normal thermalization rules and this may be
considered as a form of hot carrier transport; further theoretical justifications will
be given below.
The potential profile of a quantum well can be of complex shape and distorted by
internal and external electrical fields (see Fig. 22.23). Given the finite size and
arbitrary shape of the QW in general, the question arises what happens to the
carriers that do not get trapped but fly over the quantum well. Where do they
land after the flight? Thus we introduce a “landing-point” to describe the non-local
nature of this problem.
Crosslight supports two models to determine the landing-point for the fly-over car-
riers. The first is based on mean-free-path (MFP landing-point). In this approach,
we assume the carriers can fly as far as the MFP allows. Since MFP scales with
τ , variation of this parameter should affect the landing-point. Thus, this approach
has only τ as independent variable once relationship between MFP and τ has been
calibrated. This model corresponds to setting set_q_trap_landing=no.
Another model is based on the energy division line between bound and unbound
states. In the self_consistent statement, the wave_range has been used to choose
an end point in the energy band profile: the landing point can be made to coincide
with this value. Within this picture, the unbound carriers fly above the energy divi-
sion line AB and lands at landing point B (see Fig. 22.23). This model corresponds
to setting set_q_trap_landing=yes.
As a reference, the simple Drude model may be used to obtain some indicative values
of the MFP. It can be written as:

λDrude = vthτDrude (22.98)

where

τDrude = µm/q (22.99)

vth =
√

kT

2mπ
(22.100)

where m is the carrier mass, µ the carrier mobility, q the electronic charge and vth

the thermal velocity. For convenience, the following formula may be used for a quick
estimate:

λDrude = 1.35 × 10−7µ
√
m∗ (22.101)

where µ is in m2/(V.sec), m∗ is the relative mass and the MFP is in unit of me-
ters. A typical value is in the range of 50-100 Å. This model corresponds to setting
use_drude_model=yes.
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Figure 22.23: Schematic diagram explaining the quantum trapping model.

C. Mean free path-adjusted non-local transport model

This model should be regarded as a numerical approach to take into account discrete
scattering events in a fluid-like DD solution. The basic physics is based on the
classical DD model with thermionic emission as boundary.
The basic idea (Dr. Z.M. Simon Li, Crosslight, private communication 2009) is that
when mesh size or QW size is less than the MFP of the scattering events, it is possible
for the transport to occur non-locally to a remote mesh point, with a probability of:

exp(−distance

MFP
)

This correction becomes negligible if the mesh size and/or QW size are much larger
than MFP. In this case, the continuous fluid-like behavior of drift-diffusion can be
expected.
Another explanation on why such approach should work is based on the argument
(Dr. Z.M. Simon Li, Crosslight, private communication 2004, also in [137]) that due
to strong disturbance from the abrupt potential profiles of the MQW, carriers deviate
from the ideal Fermi distribution, or the carriers are not being thermalized to local
Fermi levels. Those non-thermal carriers are responsible for the flyover and non-local
capture/escape processes. However, such interpretation is more difficult to quantify
without more advanced tools such as Monte-Carlo simulation or non-equilibrium
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drift-away drift-away

Backward links

Figure 22.24: Schematic diagram explaining the sequential transport model.

Green’s function (NEGF).
The implementation of this method in Crosslight is to add extra mesh point con-
nections to those already defined by the DD model. Non-local transport is allowed
to occur from barrier to barrier (over the quantum well) and between the well and
barrier (for carriers with sufficient energy). In other words, we express the current
density in the same way we usually use to solve the DD equations; the only difference
is that the discretized current density is scaled by a factor

scale× exp(−distance

MFP
)

where scale = 1 by default. The MFP value may be set by user (with a default of 100
Å) or can be computed from the simple Drude model if use_drude_model=yes.
Ideally, this MFP based non-local transport model is non-sensitive to the remote
mesh location due to the exponential scaling. Therefore, it is sufficient to pick a
mesh point in the middle of the barrier (landing-point). This model supports two
modes: sequential and collective (non-sequential) non-local transport.
The sequential model allows transport to occur between the adjacent well/barriers.
(see schematic in Fig. 22.24). The collective transport model allows the flow directly
to from and to a emitter and collector on both sides of the MQW system (see
schematic in Fig. 22.25). An interpretation of the collective injection model is
that non-local transport is more favored for those carriers coming from the emitter
because they do not experience the many potential barriers within the MQW.
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capture

drift-away drift-away

d_nl d_nl

escape

Backward links Forward links

Figure 22.25: Schematic diagram explaining the non-sequential or collective trans-
port model.

D. Relationship to hot carrier theory

Non-local transport with a mean free path can be related to hot carrier theory. By
software implementation, we define scale_elec_fly_over as a scaling factor for
the current component that directly flies over the QW to the next barrier without
falling into the QW: this can be interpreted as the proportion of QW carriers which
are “hot”. Similarly, scale_elec_capture is to scale the current that is directly
captured from or escaped to (two reversible processes in the software) the barrier
non-locally. Again, this would be interpreted as the hot carrier fraction in the QW.
For simplicity, we imagine a situation where the transporting carriers are thermalized
on the left barrier upon injection. When reaching the QW, part of the carriers fall
into the QW via the trapping rate derived in the first part of this subsection and get
thermalized to the lattice temperature while the rest are regarded as non-local hot
carriers.
We start with the hot carrier theory developed by Azoff[2]. The current density in
the hot carrier theory is written as:

Jn = µn[n(Te)∇Ec + ∇(n(Te)Te) − (3/2)nTe∇ln(mn)] (22.102)
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where Te is the electron temperature (W = (3/2Te) in Azoff’s notation. To simplify
our derivation, we assume the gradient of Te can be ignored within the QW and also
there is no composition grading.
It is a common practice (see also Appendix C) to introduce a parameter:

γf = NcF [(Ec − Efn)/kTe]/exp[−(Ec − Efn)/kTe] (22.103)

so that the electron density within the well can be written in a simple exponential
form:

n(Te) = Ncγfexp[−(Ec − Efn)/kTe] (22.104)
and the current flow can be expressed as:

Jn = µnNcγfexp[−(Ec − Efn)/kTe]∇Efn (22.105)

We treat (Te − T )/T as a small quantity and expand the electron concentration
around the lattice temperature to get a correction term due to hot carriers:

n(Te) = Ncγfexp[−(Ec − Efn)/kT ] + βNcγfexp[−(Ec − Efn)/kT ] (22.106)

where the scaling factor
β = (Ec − Efn)(Te − T )

kT 2 . (22.107)

Therefore the current flow can be separated into two terms:

Jn = Jloc(T ) + β(Te)Jnl(T ) (22.108)

where the first term is the usual current determined by local gradient of Fermi level
and expressed as a function of local band edge and local lattice temperature.
The second term is also written mathematically as a function of local lattice tem-
perature but the it is no longer suitable to use local quantity such as band edge Ec.
The reason is that hot carriers have higher energies and do not experience scattering
by local energy barriers contained in Ec, which is defined at equilibrium for carriers
with lattice temperature. Thus we treat Jnl using a different and higher band edge.
A phenomenological approach is to define a split higher band edge and assume the
hot carriers fly without scattering to a distance of the mean free path (the landing
point).
In Crosslight, the scaling factors for the non-local current are interpreted as the β
factor above.

E. Hot Auger Models

One recent but controversial theory for the origin of droop in GaN LEDs is that the
Auger recombination process creates hot carriers which can more easily leak over
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blocking layers[138, 139]. For example in the CCCH process, the recombination of
the electron-hole pair transfers an energy of Eg to a second electron and it takes a
certain amount of time for that carrier to relax through a phonon emission process.
Depending on how fast this process occurs, the carriers may or may not be at the
lattice temperature by the time they reach the current blocking layers.
Such a model can only be properly handled within a framework that describes the
carrier energy transport. At present, our hydrodynamic model does not include
the necessary terms to represent this effect although Crosslight is also currently
developing a Non-Equilibrium Green’s Function (NEGF) model which will hopefully
include this mechanism.
While it is not possible to represent the energy transport without these additional
equations, we can attempt to represent the additional carrier leakage terms associ-
ated with hot Auger processes: these are added to the standard thermionic emission
process at the well/barrier boundary. Starting with the 2014 version, three different
models are offered.

Thermionic This model attempts to formulate the additional leakage current in
the form of an effective emission velocity:

J

q
= veffnabove barrier (22.109)

Converted to current, the Auger rate has the form:
J

q
= cnn

2
wellpwell × well_thickness ≈ cnn

3
well × well_thickness (22.110)

To write the equivalence between the two terms, we write nabove barrier ≈ βnwell where
β is a fraction which we treat as constant. Using this approximation, we get:

veff = cn

β
n2

well × well_thickness (22.111)

This model is thus controlled by the parameter cn

β
which we treat as a constant.

However, by numerical experiment, we find that β is a bias-dependent parameter
which reaches around unity when droop sets in at higher bias. For information
purposes, APSYS prints outs the β value in the simulation log:

==>Special report on hot_auger_thermionic model
Ratio of density_emission/density_at_well= 0.103595E+01

This model may be regarded as a mixture of thermionic and hot-Auger electron mod-
els (hence the name). Physically, it means that only those carriers excited above the
barrier are free to leak through the Auger process which explains the smooth droop
this model produces. The major disadvantage of this model is the bias dependent β
which may also be structure-dependent.
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Auger direct escape This model assumes the full amount of confined electrons
in the well are free to escape. It is then trivial to show that

veff = cnn
2
well × well_thickness (22.112)

However, experimental observations of droop suggest that the Auger process does not
contribute at low bias values. This can be understood by the fact that if the electrons
are not sufficiently accelerated, the phonon emission will relax the hot carriers before
they reach the blocking layers and the situation will not differ significantly from the
cold-carrier model. APSYS therefore assumes the existence of some sort of threshold
density for the hot Auger process and veff is scaled by:

fonset = nwell

nwell + nthreshold

(22.113)

In numerical experiments, threshold densities around 1.e24 to 4.e24 m−3 would give a
smooth droop similar to experimental observation. However, the initial zero efficiency
from this model is somewhat odd: it may simply be unrealistic to assume confined
carriers in the well are free to emit at any time.

Auger indirect escape This model is a combination of the two models above and
attempts to remove the uncertainty in the β coefficient:

veff = cn
n3

well

nabove barrier + nthreshold

× well_thickness (22.114)

This model is recommended since the rate is identical to the common Auger rate at
higher injection. By adjusting nthreshold, a smooth droop can be achieved.

Notes on equilibrium balance In all of the above models, a balancing term
accounting for the equilibrium contribution is included. This is similar to the normal
case where Raug = cnn(np−n2

i ) and the local carrier density at equilibrium balances
out the net recombination rate. In the case of a non-local link, the balancing term
must come from the remote point; it must also ensure that the Fermi level difference
between these remote points is zero at equilibrium (i.e. no net current).

22.581.3 Split-state local carrier trapping model

A. Current Theory

In the non-local model previously described, carrier trapping/escape occurs only
at well boundaries and exchanges occur between bulk 3D states in the barrier and
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confined 2D states in the QW (“left-right”). Carriers flow locally in the quantum
well by following a certain Fermi level and carriers which are allowed to escape/fly
over the quantum well do so by deviating from normal Fermi statistics.
A different implementation of this idea is more commonly found in the literature
and uses a split-state solution to describe carrier trapping in quantum wells. In
this model, carrier trapping occurs continuously in the QW and not just at the
barrier interfaces. Instead, an artificial band of bulk 3D states is created above the
quantum well which has its own Fermi level, separate from that of the confined 2D
states below. Carrier trapping/escape occurs at all mesh points inside the QW and
allows exchange between these two states (“up-down”). Carriers from the barrier are
no longer injected directly into the QW but instead first flow into the upper band
(3D ⇔ 3D) and are only confined in 2D states via this exchange mechanism.
This model has the advantage of being easier to understand since all current com-
ponents are strictly local, from one mesh point to its neighbor, just like the classical
drift-diffusion model. The only deviation from standard DD theory is that one has
to construct an artificial upper conduction band (see Fig. 22.26): in a MQW region
with a distorted potential (e.g. from piezoelectric effects), the choice of upper con-
duction affects the transport behavior significantly. Our current implementation to
simply use a straight-line connection between two barrier reference points to form
the upper conduction band.
The current model in the 2014 version of the software is to assume that given a
certain quasi-Fermi level Efn, the total carrier density at any given point is the same
in the split-state and regular cases: ntot = n2D + n3D. What is needed then is a way
to determine the ratio between the 2D and 3D populations.
As we discussed above, we assume that all current pumping is done through the 3D
split band and that QW states are populated only through a local capture/escape
mechanism: from this, we can deduce that for every mesh point, the recombination
from QW states must be equal to the net capture rate from the split band. As seen
in Ref. [136], the net capture rate must have the form:

Rcap = n3D

τ
(1 − f2D) − n3D,0

τ
(1 − f2D,0) (22.115)

where f2D is the 2D QW state filling factor (required due to the Pauli exclusion
principle) and n3D is the 3D carrier concentration in the upper state; we can see that
this formulation is quite close to that of Rqw above. Due to our assumption on the
total carrier density, we write f2D ≈ n2D

ntot
.

For the recombination of the QW states, we currently assume that it is dominated
by a spontaneous emission term: R2D = B(n2Dp2D − n2D,0p2D,0). Under a further
assumption of charge neutrality (n = p), we can write an analytical formula to
determine the split ratio f :
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Figure 22.26: Schematic diagram explaining the split-state local trapping model.

B(n2
totf

2 − n2
2D,0) = ntot

τ
(1 − f 2) − n3D,0

τ

(
1 − n2D,0

n2D,0 + n3D,0

)
(22.116)

The 2D Fermi level is then adjusted numerically to match the target value of n2D;
we assume the same ratio of 2D to 3D states in both n and p carrier populations.
This is done after each bias step, after the main Newton solver has converged so the
split ratio is only periodically updated: use loopback iterations in newton_par
to get more frequent updates.

B. Improved Theory

As seen in the previous subsection, the previous split-state model has several flaws.
Aside from the arbitrary energy position of the upper split band, assuming that all
current flow occurs in the upper split band requires that the Fermi level of the 2D
states be flat, something which is not guaranteed by enforcing a ratio between split
and confined QW densities.

Proof. When separating the 2D and 3D states, the steady-state current continuity
equation for electrons is written as:

∇ · Jn = R3D +R2D (22.117)

where R3D and R2D are the total net recombination from the 2D and 3D bands.
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If we consider the two bands separately, then two governing equations appear:

∇ · Jn,3D = R3D +Rcap (22.118)
∇ · Jn,2D = R2D −Rcap (22.119)

so that the net capture/exchange rate is invisible to the overall discretization (Jn =
Jn,3D + Jn,2D).
Enforcing the condition that all current flow occurs in the 3D band requires that
Jn,2D = 0 so that as above, R2D = Rcap. However, since Jn = nµ∇Efn, it also means
that Efn for the QW states must be a constant and that the entire quantum-confined
region shares a uniform Fermi level. In other words, only the 3D (split-state) Fermi
level may have a gradient since it is the one driving the drift-diffusion current.

Due to time constraints for the 2014 release, this improved model is not yet available;
please contact Crosslight if you require it. Interested users should also inquire as
to the availability of our Non-Equilibrium Green’s Function (NEGF) model which
should eventually render the entire split-state approach obsolete.
As the improved split-state model is not ready yet and the older version has an
obvious flaw, users should consider our existing implementation of the split-state
model as extremely experimental.

22.581.4 Parameters

• n_side_down lets the program to recognize which is the n-doping side. The
program assumes that the model operates under forward bias and thus needs
to know the direction of flow based on the position of the n-side.

• sequential_model indicates the quantum well transport happens from one
well to the next instead of collectively or coherently from all the wells to
the drift-away distance. For a comparison of the collective and sequential
escape/capture models, please see Figs. 22.24 and 22.25.
For the sequential model, only the forward links are active and there is no
scaling of the non-local transport terms. For the collective model, all links are
active but the non-local transport terms are scaled via the MFP so interactions
from distant wells is less likely to occur.

• well_barrier_transport replaces an older parameter called q_trap_model
and indicates how the trapping occurs at well/barrier interfaces. The following
models are available:

– thermionic: default thermionic emission theory
– trap_detrap_tau: Rqw based on q_trap_tau, as described above
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– hot_auger_thermionic
– hot_auger_direct
– hot_auger_indirect

• optic_pumped_escape is used to describe a non-equilibrium process where
bound carriers are excited by optical pumping and acquire momentum to escape
the quantum well. Specifically, this is used to model optical generation process
in QWIP. The details are as follows: optical pumping causes bound carriers to
become unbound carriers with density Nub.
The Nub are estimated based on the following theory: within one period of the
QWIP, optical pumping causes unbound carriers to escape quantum confine-
ment with the thermal velocity vth. It can be shown that

Nub = pumping_rate× period

vth

Given unbound carrier density, it is easy to estimate the total QWIP photo-
current by drift-diffusion theory: like the pumping rate, the quantum escape
term is proportional to the light intensity.

• set_q_trap_landing is used only when with trap_detrap_tau. If set to
no, the MFP is used to set the landing point and drift-away distance. Oth-
erwise, the landing point and drift-away will be set by landing_point and
drift_away, respectively.

• use_drude_model would set the MFP according to the simple Drude model.

• sequential_capture and collective_capture are used to turn on/off the
backward nonlocal mesh links as indicated in Figures 22.24 and 22.25. These
parameters were previously labeled sequential_back_links and collective_back_links.
Numerical experiment indicates that sequential transport is more directional
and more localized so it would make sense to turn off the backward mesh links
to keep the current flowing unidirectionally. However, the collective model is
more non-local and backward links are needed for injection; it is recommended
to keep the links active in that case.

• split_qw_states would turn on the split-state local trapping model and dis-
able all the non-local current components. The drift-away parameter is used
to find the end points of the upper split band in the barrier regions.

• split_b_coef is used to estimate the Fermi level split between the bulk 3D
states and the QW 2D states, for a given τ constant.

• scale_elec_fly_over, or scale_hole_fly_over is a parameter to scale the
direct fly-over current for electrons or holes.
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• scale_elec_capture, or scale_hole_capture is a parameter to scale the
non-local electron or hole current between barrier and well.

• set_elec_mean_fp, or set_hole_mean_fp is used to set the electron or
hole mean free path. For the quantum-trapping model, this is used to set the
landing point and drift-away distance if set_q_trap_landing=no. For the
MFP non-local transport model, these are used for the exponential factor to
control the non-local current flow intensity.

• drift_away is the distance from the first and last QW at which the non-
local fly-over and capture/escape current would be directed towards. This
setting would be overridden by the MFP if set_q_trap_landing=no in
the quantum trapping model. This parameter would have similar meaning as
landing_point except it also serves as emitter and collector point for the
transport processes.
This parameter applies to both carriers by default. However, a separate pa-
rameter for holes is available: hole_drift_away.

• bottom_drift_away, if defined, is the bottom drift-away distance. Please
use drift_away instead.
This parameter applies to both carriers by default. However, a separate pa-
rameter for holes is available: hole_bottom_drift_away.

• top_drift_away, if defined, is the top drift-away distance. Please use drift_away
instead.
This parameter applies to both carriers by default. However, a separate pa-
rameter for holes is available: hole_top_drift_away.

• spread_top_drift_away modifies top_drift_away for electrons. If used,
the landing point for non-local carriers is spread over the length defined by this
parameter: this length is split equally in each direction.

• q_trap_tau is the time constant for the trapping model. It is used in both the
calculation of Rqw and Rtrap. q_elec_trap_tau and q_hole_trap_tau
can be used to set different times for the electrons and holes.

• landing_point is the landing-point of the fly-over non-local current after
capture by the QW or QD. Another interpretation of this landing point is that
energy level intercepting this landing-point in the band diagram would be used
to define the band-edge for the unbound carriers. This parameter is expressed
as a fraction of the barrier width with zero locating at the left (or bottom) side
of the barrier.
For the quantum-trapping model, this parameters affects the voltage drop of
the MQW since a far landing point means current can flow without resistance
for a longer distance.
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• temp_dep_tau_t0 corresponds to the term t0 in the following formula:

1
τ

= 1
τ300

exp
(

−T − 300
t0

)

This is used to modify the trapping time constant as a function of the temper-
ature; the default value is defined at 300 K.

• hot_auger_cn represents either cn or cn

β
depending of which hot Auger model

is used. hot_auger_cp is the matching parameter for the hole current.

• hot_auger_threshold is the threshold density used in some of the hot Auger
models.

• sequential_neighbor is the farthest neighbors to which the sequential trans-
port model allows the carriers to make a quantum leap with a mean free path.

22.581.5 Examples and recommended usage for InGaN/GaN
devices

For new users, the following default setting may suffice:

q_transport

Another common usage is the non-sequential model with the quantum trapping
model:

q_transport sequential_model=no q_trap_model=yes

In this model, the user may need to fit the time constant (default of 1 ps) to affect
the amount of carriers being trapped into the QW/QD. For a longer tau (i.e. less
trapping):

q_transport sequential_model=no q_trap_model=yes &&
q_trap_tau=1.e-11

The landing point may also be adjusted from the default value of 100 Å(0.01 µm):

q_transport sequential_model=no q_trap_model=yes &&
set_elec_mean_fp=0.015 set_hole_mean_fp=0.015
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22.582 q_transport_mqw_bundle

parameter data type values [defaults]
bundle_tag char mqw1
mater_label char
mater intg 1

The statement q_transport_mqw_bundle works in conjunction with the q_transport
statement. It is used to bundle (group) together different sets of quantum wells
which share the same orientation and confinement direction: this allows the software
to correctly set the non-local transport path between the different wells.

22.582.1 Parameters

• bundle_tag is a user-defined label shared by all quantum-confined regions
that are part of the same bundle.

• mater is the material number of the region being added to the bundle. If a
label has been defined for this material, mater_label may be used instead.

22.583 qc_laser_preview

parameter data type values [defaults]
export_property char void
search_wavelength char [no], yes
current_range realx2 [1.e-3 1.] (A)
waveguide_loss real [5000] (m−1)
confinement real [0.5]
mirror_refl_2facets realx2 [0.32 0.32]
cavity_length real [1360] (µm)
group_index real [3.8]
laser_width real [15] (µm)
injection_threshold real [0] (A/m2)
field_current_ratio real [1.] ( A

V m
= A/m2

V/m
)

wavelength_range realx2 [5. 10.] (µm)
current_points intg [50]
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This statement defines a basic rate equation model for a Fabry-Perot laser. It is
used in the gain preview mode (.gain) in conjunction with the qcl_3level_model
statement to model the lasing behavior of a quantum cascade laser (QCL).
The macroscopic rate equations for the laser are quite simple:

dN

dt
= I

qV
−Rsp − vggnetS −Rnr

dS

dt
= vggnetS − S

τp

+ βRsp

In more recent versions of the software, a full device model is also available based
on [135]. See the tutorial examples in the LASTIP or PICS3D installation directory
for details.

Parameters

• export_property is a file name used to save certain parameters from the
QCL model such as those from qcl_3level_model.

• current_range is the range of current values at which the rate equation model
is solved.

• active_area is the area of the active region (width × thickness).

• waveguide_loss is the optical loss coefficient.

• confinement is the waveguide confinement factor (Γ).

• mirror_refl_2facets is the two mirror facet reflectivities.

• cavity_length is the length of the laser cavity.

• group_index is the group index (ng).

• laser_width is the width of the laser. It should be the same as the thickness
used in active_area.

• injection_threshold can be used to artificially offset the threshold current
to match experiments.

• field_current_ratio converts the applied current into the effective field value
which is used in the 3 level QCL gain model.

• current_points is the number of data points used to sample current_range.
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• search_wavelength controls how the lasing wavelength is determined. If
=no, it is determined by the energy of the confined levels used in qcl_3level_model.
If =yes, it is determined by the peak of the gain spectrum inside the wave-
length_range limits.

Examples

qc_laser_preview current_range=(10.e-3 500.e-3) &&
waveguide_loss=13000 &&
confinement=0.5 &&
mirror_refl_2facets=[0.32 0.32] &&
cavity_length=1360 &&
group_index=3.8 &&
active_area=18. &&
laser_width=14

22.584 qc_laser_vs_current

parameter data type values [defaults]
data_file char void
qc_variable char
label_horizontal char
label_vertical char
scale_horizontal real 1.
scale_vertical real 1.

qc_laser_vs_current plots various quantities generated by the quantum cascade
laser (QCL) rate equation model (gain preview only) versus the bias current.

Parameters

• data_file may be used to export the plot data to a text file.

• qc_variable is the variable being plotted. It must be one of the following:

– laser_power_2facets, the total laser power output.
– laser_power_left, the laser power output from the left facet.
– laser_power_right, the laser power output from the right facet.
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– conc_injection_layer, the carrier concentration in the injection layer.
– conc_active_level1, the carrier concentration in level 1.
– conc_active_level2, the carrier concentration in level 2.
– conc_active_level3, the carrier concentration in level 3.
– peak_net_modal_gain, the peak of the net modal gain.
– slope_eff_per_period, the L-I slope efficiency divided by the number of

QCL periods.

• label_horizontal and label_vertical may be used to define user labels on
the plot axes.

• scale_horizontal and scale_vertical may be used to scale the axes of the
plot.

Examples

qc_laser_vs_current qc_variable=laser_power_2facets

22.585 qc_net_gain_spectrum

parameter data type values [defaults]
data_file char void
wavelength_range realx2 [5. 10.] (µm)
current_range realx2 [100.e-3 200.e-3] (A)
current_points intg [5]
spectrum_points intg [80]

qc_net_gain_spectrum plots the net modal gain spectrum generated by the
quantum cascade laser (QCL) rate equation model.

Parameters

• data_file is a file name used to save a copy of the plotted data

• wavelength_range is the wavelength range of the plot.

• current_range controls the bias current of the various curves in the plot.
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• current_points is the number of points used to sample current_range. It
controls how many curves are plotted.

• spectrum_points is the number of points used to sample spectrum_range.
It controls the spectral resolution of the plot.

Examples

qc_net_gain_spectrum &&
wavelength_range=[2 12] &&
current_range=[10.e-3 500.e-3] &&
current_points=10 spectrum_points=200

22.586 qcl_3level_model

parameter data type values [defaults]
complex_start char void
active1_start_label char void
active1_end_label char void
active2_start_label char void
active2_end_label char void
qc3_gain_tau real 2.5e-13 (s)
qc3_tau21 real 0.4e-12 (s)
qc3_tau31 real 12.3e-12 (s)
qc3_tau32 real 7.3e-12 (s)
qc3_injection_tau real 8.e-12 (s)
qc3_extraction_tau real 7.e-12 (s)
thick_qc_period real 0.051 (µm)
average_qc_index real 3.47
total_sheet_density real [1.6e15] (m−2)
equil_3lev_density real [0.4e15] (m−2)
qc3_gain_adjust real [0.] (1/m)
level3_saturation_conc real [3e15] (m−2)
thick_inj_barrier real [3.e-3] (um)
detuning_field_fwhm real [5.e7] (V/m)
resonant_field_temp_dep real [-1.e4] (V/m)/K
state_broadening real [3.e-22] (J)
shift_active_levels intg [0]
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Figure 22.27: Energy levels and lifetimes used in the microscopic rate equation model
of the QCL

This statement activates a 1D 3-level rate equation model used to describe the active
region of a quantum cascade laser (QCL). It can be used in gain preview mode to
compute the material gain and a rough estimate of the L-I curve or more recently, to
provide data for a full device simulation. Our model is based on [140] and developed
in more detail in [135].
For a given period of the QCL, we solve for all quantum states. Based on the shape
and location of the wave functions and their respective energy levels, we identify the
states that belong to the active region and those that belong to the injection region.
Coupled microscopic rate equations then determine the population of three critical
levels in the active region: from this, we can calculate the transition strengths and
the optical gain.
Figure 22.27 shows the various levels and lifetimes involved in the quantum cascade.

Parameters

• complex_start is a position label that defines the start of the search region
for quantum states: this position may lie outside the active region.

• active1_start_label and active1_end_label are the labels used to define
the beginning and end positions of the first active region.

• active2_start_label and active2_end_label are the labels used to define
the beginning and end positions of the second active region.
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• qc3_gain_tau is the broadening constant used in the gain calculations.

• qc3_tau21 is the time constant of the transitions between levels 2 and 1 of
the active region.

• qc3_tau31 is the time constant of the transitions between levels 3 and 1 of
the active region.

• qc3_tau32 is the time constant of the transitions between levels 3 and 2 of
the active region.

• qc3_injection_tau is the time constant of the transition between the injec-
tion region and level 3 of the active region.

• qc3_extraction_tau is the time constant of the transition between level 1
of the active region and the injection region.

• thick_qc_period is the period of the quantum cascade.

• average_qc_index is the average refractive index in the active region: this
is used to calculate the gain.

• shift_active_levels is used to shift up the selection of the three levels for
the quantum cascade if level 1 of the active region is not the lowest well level.

• total_sheet_density is the total sheet density at which the material gain is
computed.

• equil_3lev_density is the sheet density at equilibrium and can be estimated
from the doping.

• qc3_gain_adjust can be used to artificially adjust the material gain.

• level3_saturation_conc is the level 3 sheet density at which gain saturation
starts to occur.

• thick_inj_barrier is the thickness of the injection barrier.

• detuning_field_fwhm is the full width at half maximum of the Lorentzian
detuning field. The peak frequency is further adjusted with the temperature
based on resonant_field_temp_dep.

• state_broadening is used to broaden the energy level (Γ).
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Examples

qcl_3level_model qc3_gain_tau=2.5e-13 &&
active1_start_label=active1_start active1_end_label=active1_end &&
active2_start_label=active2_start active2_end_label=active2_end &&
complex_start=complex_start_well &&
qc3_injection_tau=7.e-12 qc3_extraction_tau=5.e-12

22.587 qcl_lo_phonon_scattering

parameter data type values [defaults]
phonon_energy real [0.035] (eV)
diel_inf_minus_static real [-3.0]
upper_level_k_factor real [10.]

qcl_lo_phonon_scattering enables LO phonon scattering in the quantum cas-
cade laser models.
This model is used in QCL devices with high k-space lasing[141]; in these devices, lo-
cal minima in k-space (“electron pools”) may create competitive alternate transition
paths where the LO phonon scattering occurs before the optical transition.

Parameters

• phonon_energy is the LO phonon energy.

• diel_inf_minus_static is the difference between the relative dielectric con-
stant at ω = ∞ at the static value at ω = 0.

• upper_level_k_factor denotes the position of the high k-space local minima
as a multiple of the LO phonon energy: in other words, this is the average
number of phonon events that occur prior to the optical transition.

22.588 qcl_period_location

parameter data type values [defaults]
y_start_label char
y_end_label char
yrange realx2 (um)
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qcl_period_location defines the range of one superlattice period in a QCL struc-
ture.
The range can be defined using either position labels (y_start_label and y_end_label)
or absolute coordinates (yrange).

22.589 qcl_qw_region

parameter data type values [defaults]
property char [active], injection
mater_label char
mater intg [1]

qcl_qw_region identifies the role a particular QW layer serves in a QCL structure.
The layer can be part of either the active (gain) region or part of the injection region.
The layer tagged in this fashion must be identified by either its material number or
a previously defined label alias.

22.590 qcl_temperature_model

parameter data type values [defaults]
backfill_tau real [1.e-12] (s)
gain_tau_temp_coef real [0.001] (1/K)
lo_phonon_energy real [0.1] (eV)

qcl_temperature_model defines parameters which control the temperature de-
pendence of the QCL gain model[135].

Parameters

• backfill_tau is the backfill time constant τbf .

• gain_tau_temp_coef is the coefficient (Ag) controlling the temperature
dependence of the gain broadening time constant τg.
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• lo_phonon_energy is the LO photon energy ELO.

22.591 qdot_individual

parameter data type values [defaults]
tau_broaden real [0.6e-13] (s)

qdot_individual is used to turn on a stand-alone model in which the drift-diffusion
model is solved (along with the 3D Schrödinger equation) in an isolated quantum
dot region such as in the tip region of a GaN nanowire.
Note that this model is different than our older approach using qdot_material,
in which quantum dots are declared as an embedded material inside a larger-scale
wetting layer. The older model merely solves Schrödinger equation using a separate
sub-project to provide extra confined states that affect the calculation of the optical
gain/spontaneous emission spectra of the main device simulation. The QDOT region
is thus ignored for most other purpose, including carrier transport.
On the other hand, qdot_individual allows for a more tightly coupled solution
of the dot region but it completely ignores the behavior of the rest of the device.
This model should thus be used when circumstances dictate that the QDOT region
behaves differently than the rest of the device.

Parameters

• tau_broaden is a broadening time constant with the same meaning as in
qdot_material.

22.592 qdot_layer_mater

parameter data type values [defaults]
macro_name char [void]
active_macro char [void]
var_symboli(i=1..9) char [void]
avar_symboli(i=1..9) char [void]
vari(i=1..9) real [-9999.]
avari(i=1..9) real [-9999.]
mater_lib char [void]
column_num intg [1]
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qdot_layer_mater is used to indicate the presence of quantum dots (QDOTs) in
a certain layer. It must be used after the layer_mater statement describing the
wetting layer in which the quantum dots are embedded.
Please note that in general, the .layer format is used to define the device layout on
a macroscopic scale (several µm): as the QDOTs are much smaller objects, they are
not directly represented in the .layer file. Instead, the .layer format declares them
as being an “embedded” material to be declared later. The full device simulation
thus requires a preliminary step of finding the 3D quantum levels of the dots using a
separate project file. Once these levels are available, they can be imported into the
main device simulation.

Parameters

All parameters for this command are the same as in layer_mater.
Please note that if you are using the “macro” system instead of the “library” system
to declare material parameters, a complex MQW macro (typically prefixed by “cx-”)
must be used; see Sec. 3.5 for details.

Examples

qdot_layer_mater macro_name=ingan active_macro=cx-InGaN &&
var_symbol1=x avar_symbol1=xw var1=0.450 avar1=0.450 &&
column_num=1 height=0.005
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22.593 qdot_material

parameter data type values [defaults]
import_dir char [void]
import_qdot_data char [void]
import_diri, i=2...19 char [void]
import_qdot_datai, i=2...19 char [void]
surface_density real [1.e15] (m−2)
tau_broaden real [0.6e-13] (s)
wetting_area_ratio real [0.1]
set_cond_level1 real
set_cond_level2 real
set_cond_level3 real
set_hh_level1 real
set_hh_level2 real
set_hh_level3 real
set_lh_level1 real
set_lh_level2 real
set_lh_level3 real
set_ch_level1 real
set_ch_level2 real
set_ch_level3 real
weight real [100.]
weight2-19 real [0.]
tau_broaden2-19 real [0.6e-13]
dos_reduction_factor real 1.
mater_active intg
coupled_dots intg [1]

qdot_material defines the properties of one type of quantum dot (QDOT) material.
This QDOT material must be defined as an embedded (or mildly active) material
inside a quantum well region which serves as the wetting layer. The structure of the
quantum dot is defined using a separate sub-project and the properties of this dot
are loaded back into the main macroscopic simulation using this command.
For more details on embedded active materials, please see statement active_reg.



1008 COMMAND SYNTAX

Parameters

• import_dir is a directory containing a sub-project for an isolated quantum
dot region; inside this sub-project, the Schrödinger solution is solved and the
confined states are loaded back into the main macroscopic simulation using a
data file specified by import_qdot_data.
If multiple species of QDOTs are present in the same device, multiple directories
may be loaded using import_diri and import_qdot_datai, with i as a
placeholder number for the ith species of dot.

• surface_density is the surface density of the quantum dots inside a given
layer. If multiple species of QDOTs are present, this value defines the total dot
density and the density of individual dots is derived through relative weighing
parameters in weight and weighti, i=2...19.

• tau_broaden and tau_broadeni, i=2...19, are the energy broadening time
constants used to broaden the spectrum. This parameter lumps together differ-
ent effect including inhomogeneous broadening (due to size/composition fluc-
tuation) and intraband scattering.
Please note that different type of QDOTs may be associated with different time
constants.

• wetting_area_ratio is a parameter related to the surface area of the quan-
tum well material vs. the surface area of quantum dots in the wetting layer;
this ratio controls the relative intensity of the two emission spectra. Microscop-
ically, the quantum dot size is determined by the spatial extent of the wave
function.

• set_cond_level1-3, if defined, are used to manually set the quantum levels
of the conduction subbands.

• set_hh_level1-3, if defined, are used to manually set the quantum levels of
the heavy hole subbands.

• set_lh_level1-3, if defined, are used to manually set the quantum levels of
the light hole subbands.

• set_ch_level1-3, if defined, are used to manually set the quantum levels of
the crystal field hole subbands. This is used for material of wurtzite structure
(such as GaN).

• dos_reduction_factor may be used to artificially reduce the density of
states of the quantum dot.

• mater_active is the material number of the active layer serving as the host
material for the embedded qdots.
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• coupled_dots is used to indicate whether a QDOT is quantum mechanically
coupled to QDOTs in other wells. If so, this parameter is used to avoid double
counting. For example, if two QDOTs in two different wells are coupled to
each other, they should be counted only once since there will be a lifting of
degeneracy in quantum levels.

Examples

qdot_material surface_density=5.e15 tau_broaden=0.30e-13 &&
mater_active=3 import_dir=dot import_qdot_data=dot.qdd &&
coupled_dots=1 wetting_area_ratio=0.2 &&
tau_broaden2=0.18e-13 import_dir2=dot1 import_qdot_data2=dot.qdd &&
tau_broaden3=0.10e-13 import_dir3=dot2 import_qdot_data3=dot.qdd &&
tau_broaden4=0.10e-13 import_dir4=dot3 import_qdot_data4=dot.qdd &&
weight=100 weight2=75 weight3=18 weight4=4

22.594 qwell_normal

parameter data type values [defaults]
dir char x,[y],z
force_n_side char [void], down, left
zdir_xy_ref realx2 (um)

The qwell_normal statement is used in the .sol file to specify the direction normal
to the quantum well plane (where there is quantum confinement). This statement is
not needed for 2D devices grown along the y-axis.

Parameters

• dir is the direction normal to the quantum well plane.

• force_n_side may be used to help the software define the orientation of the
QW normal relative to the p-n junction. This may be necessary for some
non-local transport models.

• zdir_xy_ref is a coordinate used to evaluate the well thickness in the z-
direction.
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Examples

qwell_normal dir=y

22.595 qw_optics_control

parameter data type values [defaults]
parameterize char [yes]no
junction_type char [forward] reverse, non-optical
extrap_energy char [yes]no
extrap_conc char [yes]no
extrap_pn_ratio char [no]yes
extrap_temper char [yes]no
conc_range realx2 (m−3)
wavel_range realx2 (um)
pn_ratio_range realx2 [0.5 1.5]
temper_range realx2 (K)
wavel_points intg [50]
conc_points intg [10]
pn_ratio_points intg [3]
temper_points intg [8]

qw_optics_control is related to import_gain_data. While the latter is explic-
itly used to import data from a data file, the former is to let the program generate the
tabulated gain data internally and then use the interpolated data table to perform
the simulation.

• parameterize is used to enable or suppress this statement.

• junction_type

· forward sets conc_range = 5.e23→5.e24.
· reverse sets conc_range = 1.e22→5.e23.
· non-optical will suppress optical gain/spon. em. in active layers.

• extrap_energy indicates if extrapolation is used when photon energy is
outside of the range in imported data.

• extrap_conc indicates if extrapolation is used when concentration is outside
of the range in imported data.
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• extrap_pn_ratio indicates if extrapolation is used when hole/electron ratio
is outside of the range in imported data.

• extrap_temper indicates if extrapolation is used when temperature is out-
side of the range in imported data.

• wavel_range is the wavelength range.

• conc_range is the electron concentration range in the well.

• pn_ratio_range is the range of ratio of hole over electron concentrations.

• temper_range is the temperature range.

• wavel_points is the number of points in the wavel_range.

• conc_points is the number of points in the conc_range.

• pn_ratio_points is the number of points in the pn_ratio_range.

• temper_points is the number of points in the temper_range. For uni-
form temperature simulation, only a single temperature is used in gain table
evaluation. For heat transport simulation, more than one points must be used.
The default for heat transport simulation is eight.

Example(s)

qw_optics_control parameterize=yes

22.596 qw_trap_assisted_tunneling

parameter data type values [defaults]
field real [1.e7] (V/m)

s_huang real [0.3]
phonon_energy real [0.09] (eV)

elec_mass real [0.2]
scale_phonon_term real [0.3]

qw_level_from_ec_bar real [0.5] (eV)
trap_level_from_ec_bar real [0.5] (eV)

scale_total_rate real [1.e-2]
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qw_trap_assisted_tunneling enables a phonon and trap-assisted tunneling model
for confined QW states; this model has been proposed as a possible mechanism for
GaN LED droop.
Using this approach, the emission rate into the barrier is given by[142, Eq. 19]:
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where Γ(∆p) is Korol’s formula for the ionization rate of an electron trapped in a
delta function potential well.

Parameters

• field is the electrical field used to define Γ(∆p).

• s_huang is the Huang-Rhys electronâĂŞphonon coupling constant S.

• phonon_energy is the ~ω term in the above equation.

• elec_mass is the relative electron mass m∗ in the above equation.

• scale_phonon_term is the scaling coefficient k in the above equation.

• qw_level_from_ec_bar is the position of the confined state relative to the
conduction band barrier.

• trap_level_from_ec_bar is the position of the defect state relative to the
conduction band barrier.

• scale_total_rate is a scaling factor applied to the total recombination rate
when this term is used for the non-radiative recombination rate in the Drift-
Diffusion model.
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22.597 qwip_model

parameter data type values [defaults]
period_thickness real [0.05] (um)
average_refr_index real [3.5]
spectrum_tau real [2.5e-13](sec)

qwip_model is used to set a number of parameters for absorption spectrum calcu-
lation of a quantum well in a QWIP (quantum well infrared photodetector).

• period_thickness is the period of the QWIP.

• average_refr_index is the average refractive index used by the absorption
spectrum formula.

• spectrum_tau is the spectral broadening tau constant used by a Gaussian
function. It is the standard deviation of the Gaussian.

Example(s)

qwip_model period\_thickness=0.05 average_refr_index=3.5 &&
spectrum_tau=2.5e-13

This would be a typical use of the command.

22.598 qwip_preview

parameter data type values [defaults]
export_spectrum char [qwip_specfile.txt]
data_file char [void]
wavelength_range realx2 [3 9] (um)
spectrum_points intg [50]

qwip_preview is used to preview the QWIP model characteristics. It instructs
how the program should present the QWIP absorption data. This command is used
in conjunction with band_distance command which supplies the carrier density
and with the gain_module command which defines the applied field.
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• export_spectrum exports the absorption spectrum to this file.

• data_file if not set to void, instructs the program to print data points of all
the plots of this command.

• wavelength_range is wavelength range over which the spectrum is calcu-
lated.

• spectrum_points is the data point number of the spectrum.

Example(s)

qwip_preview light_power_range=(0 1.e4) &&
wavelength_range=(3 15) spectrum_points=150

This command would cause the program to print the absorption spectrum data to
qwip_specfile.txt after the plot.

22.599 qwire_complex_region

parameter data type values [defaults]
mater_label char
mater intg [1]

qwire_complex_region is analogous to complex_region except that it is used
in the declaration of 2D quantum-confined regions (quantum wire) rather than com-
plex MQW regions with 1D confinement.
This statement is usually generated automatically when processing the .layer file.
See start_qwire_complex.

Parameters

• mater is the material number that is part of the quantum wire cross-section.
If a label has previously been defined, mater_label may be used instead.

Examples

begin_qwire_complex &&



22.600 radiation_heavy_ion 1015

x1=0.1 x2=0.15 &&
y1=0.12 y2=0.3

qwire_complex_region mater= 5
qwire_complex_region mater= 6
qwire_complex_region mater= 7
end_qwire_complex

22.600 radiation_heavy_ion

parameter data type values [defaults]
let_file char
let_unit char [eV/Angstrom], eV/nm, eV/um,

MeV/um, pC/um, MeV*cm2/mg
depth_unit char angstrom, [um] , nm
layeri_material (i=1..5) char [Si],Ge,GaAs,SiO2
model char [import_let_profile], uniform
lateral_straggle real [0.1] (µm)
angle real [0] (degrees)
location_xz realx2 [0.1 0] (µm)
pulse_stddev real (sec)
layeri_from_top (i=1..5) real (µm)
pulse_fwhm real (sec)
lateral_entry real (µm)
rotation real [0] (degrees)
uniform_ion_energy real [100] (MeV)
uniform_let real [10]

radiation_heavy_ion is used to implement an advanced heavy ion hit model in
the device modeling. The path of an ion beam in a semiconductor device must be
modeled using external tools such as “Stopping and Range of Ions in Matter”:www.
srim.org.
Note that simpler models of heavy ion impacts can also be implemented using the
generation_rate statement.

Parameters

• let_file is the name of a text file containing Linear Energy Transfer (LET)
data. This data should be in two columns: depth (in units set by depth_unit)
and energy loss (in units set by let_unit).

www.srim.org
www.srim.org
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• layeri_material (i=1..5) describes the material in layer #i with “i” as a
placeholder value; the thickness of each layer is defined in layeri_from_top
(i=1..5).
In addition to the few standard materials included by default, custom mate-
rials may be defined here using a name starting by “eV” and followed by the
ionization energy (e.g. eV5.91 ). The term ionization energy used here refers
to the energy necessary to create electron-hole pairs since there are several
contributions to the ion energy loss (LET) term.

• model may be used to switch between importing a profile or defining a simple
uniform profile for the whole device.

• lateral_straggle is the lateral uncertainty (standard deviation) of the ion
beam’s position (at half-maximum). The size of the beam on entry is defined
using lateral_entry and also serves to describes the ion beam’s path into the
device.

• location_xz is the location of the ion hit on the x-z plane.

• angle is the angle of the incoming ion beam with respect to the -y direction
(inside the x-y plane); rotation describes the rotation of this beam about the
y-axis. In essence, these two values are analogous to the ϕ and θ angles of
spherical coordinates but with the y-axis as a reference.

• pulse_fwhm is the full-width at half-maximum of the carrier generation
pulse following the ion hit. It is related to the pulse standard deviation
pulse_stddev by the following formula: fwhm = 2.355 × σ. Only one of
these two quantities should be specified.

• uniform_ion_energy defines the ion energy in the simple uniform model.

• uniform_let defines the energy transfer term in the simple uniform model;
this value is defined using the same units as let_unit.

Examples

The following commands declare two separate ion strikes:

radiation_heavy_ion let_file=trim_ioniz.txt let_unit=eV/angstrom &&
depth_unit=angstrom layer1_material=Si layer2_material=SiO2 &&
layer3_material=Si &&
lateral_straggle=0.2 location_xz=(0 0) &&
layer1_from_top=0.5 layer2_from_top=0.025 layer3_from_top=10 &&
pulse_fwhm=1.5e-12
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$ 2nd ion strikes
radiation_heavy_ion let_file=trim_ioniz.txt let_unit=eV/angstrom &&

depth_unit=angstrom layer1_material=Si layer2_material=SiO2 &&
layer3_material=Si &&
lateral_straggle=0.2 location_xz=(0.2 0) &&
layer1_from_top=0.5 layer2_from_top=0.025 layer3_from_top=10 &&
pulse_fwhm=1.5e-12

During the simulation, the light variable in the scan command controls the timing
of the ion impacts:

$ The normalized light and light2 control the radiation generation
$ rate from 1st and 2nd ion strikes, respectively.
$ You can define up to 9 different ions, hit at different spots
$ and strike at different times.
scan var=time value_to=6.e-12 &&

var2=light function_label2=gaus_pulse1 &&
var3=light2 function_label3=gaus_pulse2 &&
init_step=0.1e-12 max_step=0.2e-12

scan_function label=gaus_pulse1 type=gaussian &&
gsn_t1=0. gsn_dt=1.5e-12 gsn_s1=0. gsn_s2=1.

scan_function label=gaus_pulse2 type=gaussian &&
gsn_t1=2.e-12 gsn_dt=1.5e-12 gsn_s1=0. gsn_s2=1.

scan var=time value_to=1000.e-12 &&
init_step=0.1e-12 max_step=50.e-12 min_step=0.001e-12 &&
var2=light value2_to=0.0 &&
var3=light2 value3_to=0.

Note that in the above, two different scan functions (and labels) are used to change
the timing between the initial ion hit and the secondary “echo”.
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22.601 radiative_boundary

parameter data type values [defaults]
x_label char
y_label char
within_x1_label char
within_x2_label char
within_y1_label char
within_y2_label char
x real [-9999.] (µm)
y real [-9999.] (µm)
within_x realx2 [-1.e5 1.e5] (µm)
within_y realx2 [-1.e5 1.e5] (µm)
emissivity real [0.9]
environ_temp real [300.]

This statement is similar to thermal_interf and is used to describe a radiative
boundary. The heat flow through the boundary is given by the StefanŰBoltzmann
law.

Parameters

Most of the position dependent parameters are the same as those of Sec. 22.696.

• emissivity is the fraction of black body radiation being emitted.

• environ_temp is the environment temperature.

Examples

radiative_boundary y=0.8 emissivity=0.9

22.602 radiative_recomb

radiative_recomb is the radiative (or spontaneous) recombination coefficient in
units of m3/sec. It is usually defined as the coefficient B such that the radiative
recombination is given by B(np − ni) where ni is the intrinsic carrier density. Note
that this coefficient is only used for the non-active region of the laser. For active
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regions, the spontaneous emission rate is computed from first principles, analogous
to the optical gain.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.603 raw_output

parameter data type values [defaults]
variable char
output_file char void
mode_index intg [1]
trap_index intg [1]

The statement raw_output is a post processing command used to print all available
2D data in the following form:

total node number
listing of x,y,z,variable

• The output is written to the output file defined by output_file

• mode_index is the mode index or mode number of the wave modes if the
quantity being printed is wave function.

• trap_index is the trap index or trap number of the deep level traps if the
quantity being printed is related to traps (eg, trap concentration).

• variable is one of the variables listed in appendix G.2.
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22.604 rcled_dbr

parameter data type values [defaults]
x_start_label char [void]
x_end_label char [void]
y_start_label char [void]
y_on_top char [no]
y_at_bottom char [no]
layer1 real [0.1]
complex_index1 realx2 [(3.5 1.e-6)]
layer2 real [0.1]
complex_index2 realx2 [(3.5 1.e-6)]
period_number intg

The statement rcled_dbr is used to define a DBR structure within an RCLED.
The basic set up of this model is that optical layers are parallel to the x-axis and the
device emits mainly in +y or -y directions.

• x_start_label, x_end_label are the position labels for the left and right
bounds of the DBR. The labels were previously defined by x_position state-
ments. If one or more of the labels are not defined, the program uses the
boundary of the device.

• y_start_label is used to define the vertical position of the DBR. The bot-
tom of the DBR stack starts from this position. It is a position label previ-
ously defined by a y_position statement. Please note that y_start_label ,
y_on_top and y_at_bottom are conflicting parameters and should be
set with care so that only one of the three is used.

• y_on_top is used to define the vertical position of the DBR if the DBR
is on top of the RCLED. Please note that y_start_label , y_on_top and
y_at_bottom are conflicting parameters and should be set with care so that
only one of the three is used.

• y_at_bottom is used to define the vertical position of the DBR if the DBR
is at the bottom of the RCLED. Please note that y_start_label , y_on_top
and y_at_bottom are conflicting parameters and should be set with care
so that only one of the three is used.

• layer1 and complex_index1 are the layer thickness and complex refractive
index of first layer of the DBR pair.
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• layer2 and complex_index2 are the layer thickness and complex refractive
index of second layer of the DBR pair.

• period_number is the number of periods of DBR pairs.

Example(s):

$ 5 periods TiO2/SiO2 DBR at 0.525
rcled_dbr x_start_label=x2 x_end_label=x3 &&

period_number=5 y_on_top=yes &&
layer1=0.0597 complex_index1=(2.2 0.0) &&
layer2=0.0899 complex_index2=(1.46 0.0)

The above example puts a DBR stack on top of the device. The DBR is defined
between position of x2 and x3.

22.605 rcled_model

Parameters

parameter data type values [defaults]
spon_all_points char no
optic_range_x1_label char void
optic_range_x2_label char void
optic_range_y1_label char void
optic_range_y2_label char void
top_emission char yes
update_spec_source char no
photon_recycle char yes
wavelength real
top_exit_index real 1.
bottom_exit_index real 1.
total_active_layer real 0.1
group_index real 3.8
ref_density real 1.e23
ref_pn_ratio real 1.
max_emit_angle real 60
stack_view_point real [9999.]
num_optic_y_grid intg 1000
num_spec_source intg 120
num_emit_angle intg 30
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The statement rcled_model is used to control parameters related to the resonant
cavity light emitting diode (RCLED) model. The basic set up of this model is that
optical layers are parallel to the x-axis and the device emits light that is roughly
parallel to the y-axis.

• spon_all_points indicates whether all mesh points are used to evaluate the
spontaneous emission spectrum. Computation time is longer if all points are
used.

• optic_range_x1_label, optic_range_x2_label, optic_range_y1_label,
and optic_range_y2_label are four labels referring to four coordinate val-
ues defined by two previous x_position and two previous y_position. These
are used to define a rectangle region within which multiple layer optical wave
propagation calculation is performed. If one or more of these labels are not
defined, the program uses the boundary of the device for optical wave modeling.

• top_emission indicates the main direction of power emission (top or bottom).

• update_spec_source indicates that the resonant cavity source shape func-
tion should be updated at all bias steps. The RCLED model relies on an
angular and wavelength-dependent resonant shape function (representing the
Q-factor of the cavity); this function is scaled with the source dipole spectrum
(spontaneous bulk emission spectrum) and output as the total emission spec-
trum. Since the shape function mostly depends on the reflectivity of the cavity
and the DBR layers, it is usually unnecessary to update the shape function at
every bias.

• photon_recycle is used to enable the generation term due to the internal
photon density. In thermal simulations, this setting allows heat to be generated
by optical absorption. However, please note that APSYS does not posses a
photon rate equation: it is expected that LEDs operate below transparency.

• wavelength is the main emission wavelength in microns.

• top_exit_index is the refractive index of the top exit medium.

• bottom_exit_index is the refractive index of the bottom exit medium.

• total_active_layer is an estimate of the total active layer thickness for the
purpose of normalizing the optical power. This will affect the plotted power
transmission distribution but will not affect the other results of the simulation.

• group_index is the group index used to calculate the group velocity of light
within the RCLED cavity.
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• ref_density is a reference carrier density, or typical carrier density of the
active layer which is used to estimate the spontaneous dipole spectrum at
equilibrium. Using this information, the resonant cavity properties are printed
to a .res file (for resonance spectrum) and a .stw file (for standing wave). These
files may be examined before running the full device simulation to help calibrate
the DBR mirror settings.

• ref_pn_ratio is the ratio of hole density over electron density. This ratio is
used together with ref_density above.

• max_emit_angle sets the maximum angle of emission to be computed in
angular power distribution.

• stack_view_point is a reference point used to compute the reflectivity of
the mirror stacks, as seen from that particular view point; these reflectivities
can be plotted using the stack_refl parameter in rcled_spectrum_angle.

• num_optic_y_grid is the number of optical grid points in the y direction
used to compute the standing wave pattern.

• num_spec_source is the number of RCLED emission spectrum points.

• num_emit_angle is the number of data points used in angular power dis-
tribution.

Examples

rcled_model wavelength=0.93 total_active_layer=0.024 &&
optic_range_y1_label=dbr1_start top_emission=no

The above example defines an RCLED cavity to be between a y-position labeled
as dbr1_start and the top of the device. The parts below dbr1_start will not be
regarded as part of the optical cavity. Emission direction is towards the bottom.
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22.606 rcled_optic_layer

parameter data type values [defaults]
x_start_label char [void]
x_end_label char [void]
y_on_top char [no]
layer1 real [0.1] (um)
complex_index1 realx2 [(3.5 1.e-6)]
layer2 real
complex_index2 realx2 [(3.5 1.e-6)]
layer3 real
complex_index3 realx2 [(3.5 1.e-6)]
layer4 real
complex_index4 realx2 [(3.5 1.e-6)]
layer5 real
complex_index5 realx2 [(3.5 1.e-6)]

The statement rcled_optic_layer is used to define one or more optical layer within
an RCLED. The basic set up of this model is that optical layers are parallel to the
x-axis and the device emits mainly in +y or -y directions.

• x_start_label, x_end_label are the position labels for the left and right
bounds of the layers. The labels were previously defined by x_position state-
ments. If one or more of the labels are not defined, the program uses the
boundary of the device.

• y_on_top is used to define the vertical position of the layer.

layerk (k=1..5) and complex_indexk (k=1..5) are the layer thickness
and complex refractive index of the kth layer.

Example(s):

$ SiO2 coating
rcled_optic_layer x_start_label=x1 x_end_label=x2 &&

y_on_top=yes layer1=0.2 complex_index1=(1.46 0.)
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22.607 rcled_plot_y

parameter data type values [defaults]
data_file char [void]
variable char [void],relative_power, real_index,

imag_index, spon_rate
add_variable char [void],relative_power, real_index,

imag_index, spon_rate
distance_range realx2 [-1.e49 1.e49] (um)
variable_range realx2 [-1.e49 1.e49]
at_mesh_near_x real [0.5](um)
scale_variable real [1.]
scale_add_variable real [1.]

plot_plot_y is a post-processor statement used to plot quantities related to RCLED
as a function of the y-coordinate.

• data_file is the file to which the graphic data is written in ASCII format.

• variable is the variable to be plotted. It takes one of “relative_power" (power
distribution relative to the power source), “real_index” (real refractive index),
“imag_index” (imaginary refractive index), or “spon_rate” (spontaneous emis-
sion rate).
add_variable adds a second variable to be plotted on the same figure. It
takes one of the parameters listed under variable.

• distance_range is the distance range in y-direction.

• variable_range specifies a range for the function variable to be plotted.
at_mesh_near_x specifies the position where a 1D slice is cut for the 1D
plot.
scale_variable is used to scale the function variable to be plotted.
scale_add_variable is used to scale the 2nd function variable added by
add_variable on the same plot.

Example(s)

rcled_plot_y variable=relative_power add_variable=real_index &&
at_mesh_near_x=0.5 scale_variable=0.3 scale_add_variable=1
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The above statement plots the relative optical power along the y-direction. Added
to the same plot is the real part of the refractive index.

22.608 rcled_power_angle

This command is similar to rcled_spectrum_angle except the optical power has
been integrated over the whole spectrum for a particular angle.

22.609 rcled_refl_coating

parameter data type values [defaults]
x_start_label char void
x_end_label char void
y_on_top char yes
power_refl real 0.32
refl_phase_in_pi real 0.
power_loss real 0.

The statement rcled_refl_coating is used to define a reflection optical coating for
an RCLED. The basic set up of this model is that optical layers are parallel to the
x-axis and the device emits mainly in +y or -y directions.

• x_start_label, x_end_label are the position labels for the left and right
bounds of the layer. The labels were previously defined by x_position state-
ments. If one or more of the labels are not defined, the program uses the
boundary of the device.

• y_on_top is used to define the vertical position of the coating.

• power_refl power reflectivity of the optical coating.

• refl_phase_in_pi is the phase of the reflectivity in π.

• power_loss is the power loss percentage related to the optical coating. It
may also be used to define the power loss beyond the optical coating so that
the total output power is affected by it.

Example(s):
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$ For HR from metal, phase should be close to 180 degree to make zero
$ metal boundary:
rcled_refl_coating x_start_label=x1 x_end_label=x4 &&

y_on_top=no power_refl=0.98 refl_phase_in_pi=1.3 power_loss=0

The above statement defines a metal coating with a phase close to 180 degrees so
that the wave intensity is nearly zero at the metal.

22.610 rcled_spectrum

parameter data type values [defaults]
data_file char [void]
top_emission char [yes],no
stack_refl char [no]
wavelength_range realx2
angle real [0.] (degree)
broaden real (um)

rcled_spectrum is a post-processor statement used to plot the RCLED spectrum
at a certain emission angle.

• data_file is the file to which the graphic data is written in ASCII format.

• top_emission indicates whether emission is towards the top or bottom.

• stack_refl would enable the plotting of reflectivity of multiple layer stack
viewed from a reference point defined in stack_view_point in command
rcled_model.

• wavelength_range is the wavelength range in microns.

• angle is the emission angle in degrees.

• broaden is the spectrum broadenning width in microns. It is the standard
deviation of the gaussian broadening function.

Example(s)

rcled_spectrum top_emission=yes broaden=0.002
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22.611 rcled_spectrum_angle

parameter data type values [defaults]
data_file char void
top_emission char yes
stack_refl char [no]
wavelength_range realx2 (-9999 9999) (µm)
theta_range realx2 (0 90)
broaden real -9999.
spectrum_range realx2 (-9999 -9999) (W/eV)
view_xrot real 0.
view_zrot real 0.

rcled_spectrum_angle is a post-processor statement used to plot the emitting
power as a function of wavelength and emission angle for an RCLED.

Parameters

• data_file is used to output the plot data to a text file.

• top_emission indicates the main direction of power emission (top or bottom).

• stack_refl enables the plotting of reflectivity of a multi-layer stack, as viewed
from the reference point defined in the stack_view_point parameter of
rcled_model.

• wavelength_range is the wavelength plotting range (x) in microns.

• theta_range is the emission angle plotting range (y) in degrees.

• broaden is the spectrum broadening width in microns. It is the standard
deviation of the gaussian broadening function.

• spectrum_range is the power intensity plotting range (z).

• view_xrot rotates the plot around the x-axis (or the wavelength axis).

• view_zrot rotates the plot around the z-axis (or the power axis).

Examples

rcled_spectrum_angle top_emission=yes broaden=0.002
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22.612 rcled_surface_plot_xy

parameter data type values [defaults]
data_file char [void]
variable char
xrange realx2
yrange realx2

plot_surface_plot_xy is a post-processor statement used to plot surface plot of
a function of x and y for quantities related to RCLED.

• data_file is the file to which the graphic data is written in ASCII format.

• variable is the variable to be plotted. It takes one of “relative_power" (power
distribution relative to the power source), “real_index” (real refractive index),
“imag_index” (imaginary refractive index), or “spon_rate” (spontaneous emis-
sion rate).

• xrange specifies a range for the x-axis.

• yrange specifies a range for the y-axis.

Example(s)

rcled_surface_plot_xy variable=relative_power

22.613 re_emission

parameter data type values [defaults]
shift char on
mater intg
exci_effi real 0.7
exci_spec_file char void
re_emi_wavelength real 0.6
re_emi_spec_file char void
loop_spec_num intg 20
absorb_pow_dens_file_prefix char my_rec
did_spec_loop char yes
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The re_emission statement is used in the optowizard solution file to activate the re-
emission function in the ray tracing model. This allows materials such as a phosphor
to absorb LED-emitted light and re-emit at a secondary wavelength.
In order to use this statement, the power absorption profile must have been recorded
in a previous ray tracing simulation using rec_absorb_pow_dens. Using both
statements in the same ray tracing simulation is not allowed in order to avoid con-
flicts. Therefore, two separate runs of the ray tracing simulation are required to
obtain the re-emission profile.

Parameters

• shift is used to turn on or off this statement.

• mater is used to specify the material number of the phosphor. This must
match the material number in APSYS.

• exci_effi is to specify a fixed value of the excitation efficiency of the phosphor.

• exci_spec_file is the name of the data file containing the excitation spec-
trum of the phosphor. The data must be in text format where the first column
is the wavelength in micrometers and the second column is the excitation ef-
ficiency at this wavelength. Using this parameter will override the fixed value
of exci_effi, if defined.

• re_emi_wavelength is used to specifiy a single fixed wavelength for the
re-emitted light.

• re_emi_spec_file is the name of the data file describing re-emission spec-
trum. The data must be in text format where the first column is the wave-
length in micrometers and the second column is the relative power density at
this wavelength. Using this parameter overrides the fixed wavelength of the
re-emitted light.

• loop_spec_num is used to discretize the re-emission spectrum defined in
re_emi_spec_file. Since the ray tracing program can only work with fixed
wavelengths, it will loop over the spectrum a few times in order to process the
entire re-emission spectrum.

• absorb_pow_dens_file_prefix is used to specify the files where the recorded
power density profile from the previous ray tracing run is stored. This file prefix
should match the one in rec_absorb_pow_dens
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• textbfdid_spec_loop tells the ray tracing program that a spectrum loop was
used to record the power density profile in the previous ray tracing run. The
software will use this information, in conjunction with the excitation effiency
spectrum, to determine the amount of re-emitted light.

Examples

re_emission shift=on mater=2 exci_effi=0.7 re_emi_wavelength=0.65 &&
absorb_pow_dens_file_prefix=red_phos

22.614 real_func

The command real_func is identical to loop_real.

22.615 real_index

parameter data type values [defaults]
material_par

The material statement real_index is the real refractive index at the appropriate
optical frequency. Please do not confuse this with the dielectric constant of Poisson’s
equation at DC or low frequencies.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.616 real_index_spec

parameter data type values [defaults]
material_par

This statement is the wavelength dependent version of the real_index statement.
As the free-style macro becomes available in recent versions, it has been outdated
since the wavelength dependence can easily be incorporated into the real_index
statement function by adding a variable (xlam).
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22.617 rec_absorb_pow_dens

parameter data type values [defaults]
shift char [on]
mater intg
file_prefix char [my_rec]
gauss_sigma real [3.0]
gauss_cutoff_dist real [5.0]
mesh_interval_xyz realx3 [1.0 1.0 1.0] (µm)
min_mesh_num_xyz intgx3 [3 3 3]
max_mesh_num_xyz intgx3 [50 50 50]

The rec_absorb_pow_dens statement is used in the Optowizard solution file to
record the power density of the light for a specific material. This is often a phosphor
and this information can later be used in the re_emission command to compute
the secondary/re-emitted light.
This statement may also be used to turn on photon recycling models in solar cells
and LEDs. However, users should note that RCLED models have a built-in photon
recycling which is independent from the ray tracing (i.e. Green’s function analysis).
Important note: This statement can only be used once per ray tracing simulation
and cannot be combined with re_emission.

Parameters

• shift is used to turn on or off this statement.

• mater is used to specify the material number of the phosphor. This must
match the material number in APSYS.

• file_prefix specifies a file prefix used to save the absorbed power density
profile.

• gauss_sigma and gauss_cutoff_dist describe the lateral extent of the
Gaussian beam used to record the power. Mathematically, the rays used in
the ray tracing method are infinitely thin so when we record the power we as-
sume that in reality, these rays are closer to Gaussian beams. gauss_sigma is
the standard deviation of the beam’s lateral profile while gauss_cutoff_dist
is the cut-off distance.

• mesh_interval_xyz is the uniform mesh spacing used to record the power.
However, these values are also constrained by min_mesh_num_xyz and
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max_mesh_num_xyz which control the minimum and maximum number
points that can be used.

Examples

rec_absorb_pow_dens shift=on mater=2 file_prefix=red_phos

22.618 regrid

parameter data type values [defaults]
variable char (see list)
method_line_base char [yes]
var_diff real [3.0]
xrange1 real -1.E10 (µm)
xrange2 real 1.E10
yrange1 real -1.E10
yrange2 real 1.E10
min_density real 10. (m−3)
zseg_num intg [1]
max_double_times intg [5]
set_edge_split intg [0]
max_edge_split intg [3]
all_zsegm char [no]

regrid, previously known as refine_mesh, is a command to adaptively refine an
existing mesh based on a specified variable distribution. It should be used in the
main solution module (.sol files).
The new mesh is saved to the same filename as the original. A backup of the original
mesh file will also be saved.

Parameters

• variable is the position-dependent variable according to which the mesh is
refined. The following variables are accepted:

– donor_conc,acceptor_conc,2_dopants: the donor and acceptor concen-
trations (or both).
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– elec_conc,hole_conc,2_carriers: the electron and hole concentrations (or
both).

– potential: the internal electrical potential V .

– x_distance,y_distance,x_plus_y_distance and x_minus_y_distance rather
than real solver values as above, these variables use the distance from the
origin (in um) to determine the mesh refinement.

• var_diff is the criterion for mesh refinement. When the variable difference
between two adjacent nodes is greater than this criterion, additional nodes are
added until the variable difference drops down below the specified criterion.
For concentrations, the unit is decades. For potential, the unit is Volt.

• method_line_base indicate whether mesh line extension method is used
to do mesh-refinement. For CSUPREM imported mesh, only triangle based
method is available.

• xrange1 and xrange2 are the lower and upper limits, in the x-direction, of
the region within which the statement is effective.

• yrange1 and yrange2 are the lower and upper limits, in the y-direction, of
the region within which the statement is effective.

• min_density is the minimum concentration density below which the refine-
ment will not take effect.

• zseg_num is the z-segment number. all_zsegm can be used to operate on
all z-segments.

• max_double_times affects the mesh refinement only when method_line_base=no.
The method for refining triangles is to double the mesh density several times
until the criterion is met. This parameter limits the number of mesh doubling
actions to avoid getting caught in an infinite loop.

• set_edge_split determines how triangle edges are split during the refinement.

• max_edge_split is similar to max_double_times as it limits the number
of times the same triangle edge can be split during the mesh refinement.

Examples

regrid variable=acceptor_conc var_diff=3.0
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22.619 reload_mater

parameter data type values [defaults]
zseg_num intg [1]

reload_mater can be used to force the solver to re-initialize the material data
for device. It may be useful when doing mesh refinement and the solver needs to
re-initialize.

22.620 remove_section

parameter data type values [defaults]
sec_num intg [1]
cavity_num intg [2]

This statement tells the software that a given optical section does not exist in a given
optical cavity; when the transfer matrix processes this section, an identity matrix
will be used.
This statement is only relevant to the multicavity model; see the begin_cavity
statement for more information.

Parameters

• sec_num is the section number to be removed.

• cavity_num is the optical cavity number in which the optical section is re-
moved.

22.621 renumber_mater

parameter data type values [defaults]
xrange realx2 [-9999. 9999.] (µm)
yrange realx2 [-9999. 9999.] (µm)
orig_mater intg [1]
new_mater intg [1]
zseg_num intg [1]
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This statement is used to override the material number assigned to a region. It
should be used before the load_macro statement so that this modified region gets
assigned the proper material parameters.

Parameters

• xrange and yrange describe the spatial extend of the region being modified.
By default, it applies to the entire mesh plane in a given z segment.

• orig_mater is the original material number.

• new_mater is the new material number being assigned.

• zseg_num is the new z segment number where this statement operates.

Examples

renumber_mater orig_mater=1 new_mater=2

22.622 replace_macrofile

parameter data type values [defaults]
macro1 char [void]
macro2 char [void]

The statement replace_macrofile may be used to replace the two default macro
files containing material parameter models. This is useful when a user would like to
use his/her own macro files without modifying the default macros.

• macro1 is used to replace the default macro file crosslight.mac.

• macro2 is used to replace the default macro file more.mac.

Example(s)

replace_macrofile macro1=my_macro.mac
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22.623 report_node

parameter data type values [defaults]
near_xy realx2 [0. 0.] (µm)
plane intg [1]

report_node is a programmer post-processing command which reports the number
of the mesh point at a specified coordinate.

22.624 restart

parameter data type values [defaults]
data_set intg 99
stop_at_data_set intg [1]

restart may be used to restart a simulation at a previous data steps. The statement
itself may be placed anywhere in the .sol file and the simulation starting point is
based on the specified data set number.
Note that some parameters in the .sol file may be changed between simulation runs
but parameter changes that would invalidate the loading of previous simulation data
(e.g. changing the mesh structure), are not allowed.

Parameters

• data_set is the data set used to restart the simulation. If this number exceeds
the number of available data sets, the highest available data set is used instead.

• stop_at_data_set stops the restarted simulation once the specified data set
number has been reached. This is equivalent to using a strategically-located
stop statement in the input file.

Examples

restart data_set=10
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22.625 right_contact

left_contact is the same as top_contact except that the contact is placed on the
right side.
One other difference is that the column number is irrelevant. The location of the
contact is given by the last layer statement before the contact definition.

22.626 ring_structure

parameter data type values [defaults]
radius real [100.] (µm)

This statement is used to define a ring laser waveguide. Instead of left/right prop-
agation, optical modes propagate clockwise and counter-clockwise, like in a fiber
laser.

Parameters

• radius is the radius of the ring measured in the middle of the waveguide.

Examples

$ 500 um waveguide -> ring rad from center of waveguide=79.58
$ waveguide width=1.5 mesh origin=79.58-1.5/2=78.83

z_structure uniform_zseg_from=0 uniform_zseg_to=360 &&
zseg_num=1 zplanes=5 &&
cylindrical=yes cylindrical_origin=-78.83

ring_structure radius=79.58

22.627 rotation

parameter data type values [defaults]
angle real [0] (degrees)
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This statement is used in a .layer file to rotate a structure. This is mostly used to
align the substrate layer along the x axis for use is some optical models.

Parameters

• angle specifies how much the .layer is rotated when making the .geo file.

Examples

rotation angle=+90.0

22.628 rtgain_phase

parameter data type values [defaults]
density real [3.e24] (m−3)
point_x real [0.1] (µm)
zseg_num intg [1]

rtgain_phase is used to generate round-trip gain spectrum data using tabulated
gain values at a specific carrier density so that the user can quickly judge the validity
of a device design. It is used in PICS3D after the equilibrium statement.
The data generated by this statement is printed in a .rtd file. For VCSELs, this
statement will also generate standing wave information in a .stw file.

Parameters

• density is the electron density used to compute the round-trip gain. The hole
density will be estimated using the p/n ratio at equilibrium unless otherwise
indicated.

• point_x is the x-position for plotting the standing wave pattern in a VCSEL.

• zseg_num is the z-segment number.
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Examples

rtgain_phase density=1.5e14

22.629 rt3d_contact_reflector

parameter data type values [defaults]
transp_contact char [no]
transp_contact1 char [void]
transp_contact2 char [void]
transp_contact3 char [void]
transp_contact4 char [void]
contact_refl real [0.99]
contact_refl1 real [0.99]
contact_refl2 real [0.99]
contact_refl3 real [0.99]
contact_refl4 real [0.99]
contact1_compindex realx2 [2. 5.]
contact1_thick real [0.1] (um)
contact2_compindex realx2 [2. 5.]
contact2_thick real [0.1] (um)
contact3_compindex realx2 [2. 5.]
contact3_thick real [0.1] (um)
contact4_compindex realx2 [2. 5.]
contact4_thick real [0.1] (um)
dbr1_box1 realx2 (um)
dbr1_box2 realx2 (um)
dbr1_box3 realx2 (um)
dbr2_box1 realx2 (um)
dbr2_box2 realx2 (um)
dbr2_box3 realx2 (um)
dbr1_layer1 real [0.1] (um)
dbr1_index1 real [3.5]
dbr1_layer2 real [0.1] (um)
dbr1_index2 real [3.5]
dbr2_layer1 real [0.1] (um)
dbr2_index1 real [3.5]
dbr2_layer2 real [0.1] (um)
dbr2_index2 real [3.5]
contact1_layer2 realx3
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contact2_layer2 realx3
contact3_layer2 realx3
contact1_layer3 realx3
contact2_layer3 realx3
contact3_layer3 realx3

rt3d_contact_reflector is used to define the optical properties of contacts in a
ray tracing simulation. This statement is new to the 2009 version of APSYS and du-
plicates features that were previously available in the export_raytrace statement.
By moving this definition to the post-processing stage, it is no longer required to
re-run the electrical simulation to change the optical properties of contacts.

Parameters

• transp_contact indicates whether transparent contact is used. If "yes", a
multi-layer transmission matrix model is used to determine how much light
leaks through the contact. Otherwise, no light is allowed to escape and a fixed
reflectivity value is used for the contact.

• transp_contactk, k=1..4, has the same meaning as transp_contact ex-
cept it is used to specify only the kth contact. This parameter overrides the
specification of transp_contact.

• contact_refl is the power reflectivity of an opaque contact. It is used for the
model of opaque mirror only. This parameter applies to all contacts, unless
otherwise specified by contact_reflk, k=1..4.

• contact_reflk, k=1..4, has the same meaning as contact_refl except it is
used to specify only the kth contact. This parameter overrides the specification
of contact_refl.

• contactn_compindex (n=1..4) is the complex refractive index of a trans-
parent contact. It is used for the transparent contact model only. Figure 22.28
presents a list of refractive indexes of a few commonly used materials.

• contactn_thick (n=1..4) is the thickness of a transparent contact. It is used
for the transparent contact model only.

• dbrj_boxk (j=1,2; k=1,2,3) is the x-y coordinates of an inside point of the
jth DBR stack consisting of kth material box. The point location can be any
place within the material box.
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Figure 22.28: Complex index of refraction of some metals and semiconductors by
wavelength

• dbrj_layerl (j=1,2; l=1,2) is the lth layer within the jth DBR stack.

• dbrj_indexl (j=1,2; l=1,2) is the lth real index within the jth DBR stack.

Examples

rt3d_contact_reflector transp_contact=no &&
contact_refl=0.99

This defines all contacts as having a fixed reflection coefficient of 99%.

22.630 scale_radiative_recomb

parameter data type values [defaults]
mater_label char []
factor real [1.]
mater intg []
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The statement scale_radiative_recomb may be used to artificially scale the
spontaneous emission spectrum from an active region. However, it does not af-
fect the recombination rate in passive regions or in active regions where analyti-
cal_recomb=yes.
This statement should be contrasted with dip_factor in active_reg and set_active_reg
which affects the dipole moment and so scales both the gain and spontaneous emis-
sion spectra.

Parameters

• mater may be used to specify which material is being affected; a previously-
defined material label may also be used instead of a number with mater_label.

If no specific material is specified, then scale_radiative_recomb affects all
active regions.

• factor is the scaling factor applied to the spontaneous emission spectra.
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22.631 scan
parameter data type values [defaults]
hot_electron char [no]
hot_hole char [no]
var char
vari(i=2..9) char [void]
function_labeli(i=2..9) char [void]
infile_label char [void]
outfile_label char [void]
auto_finish char [void]
auto_condition char [within] above below
auto2_finish char [void]
auto2_condition char [within] above below
stop_thermal char [no]
solve_rtg char [no] yes
scan_label char [void]
solve_real_rtg char [no] yes
solve_imag_rtg char [no] yes
pump_no_current char [no] yes
value_to real
valuei_to(i=2..9) real []
print_step real []
init_step real []
min_step real []
max_step real []
auto_until real [0.9]
auto_within real [0.01]
auto2_until real [0.9]
auto2_within real [0.01]

The scan statement is used by the main simulator engine to activate the equation
solver while one or more control variables are being changed (scanned).
The initial state of the simulation is always set with the equilibrium statement.
This implies that the device is under thermal equilibrium and that no external bias
is applied. Therefore, the voltage and current on all electrodes is zero; any external
light source or e-beam pump is also zero. The reference clock for transient simulations
is also set to zero at this step.
When dealing with contacts, the electrical bias can be defined in one of two ways:
voltage or current. These are mutually exclusive: when the voltage is controlled,
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the current may be adjusted and when the the current is controlled, the voltage is
floating. This may be used in latchup simulations: explicitly forcing an electrode to
have zero current allows the voltage to freely float.
In the software, current density is a mesh-dependent vector so there must be a
convention to represent the total electrode current or the average current density
on the electrode as a scalar. By default, current flowing into a contact boundary
from the semiconductor device is considered positive. This may conflict with other
software which take an external circuit view. This convention can be adjusted using
the convention statement.
Between successive scan statements, the rule is always that the value of previous
control variables is always conserved unless it is overridden by something else. For
example, take a simple device with 2 electrodes that is subjected to an external light
pump. As we vary various control variables, we get the following scenario:

• initial state: equilibrium sets light=0, V1=0, V2=0, I1=0, I2=0.

• ramp voltage of electrode 1 to +1V: light=0, V1=1, V2=0, I1 and I2 to be
solved

• ramp light source to +10: light=10, V1=1, V2=0, I1 and I2 to be solved

• ramp current of electrode 1 to +0.2A: light=10, I1=0.2, V2=0, V1 and I2 to
be solved.

The scan statement works by slowly modifying a previously known solution and
making small updates to the control variable(s). An updated solution is then found
using a non-linear Newton algorithm with the previously known solution as the initial
guess. After convergence is achieved, the solver continues to update the solution until
the target value has been reached.
The size of the update steps is therefore not strictly controlled and depends on the
convergence rate of the equations for a particular device and mesh layout. As shown
in Figure 22.29, the progress of the scanned variable can vary from a minimum step
to a maximum step. For a smoother I-V curve, smaller steps are preferable but this
increases the overall simulation time. Larger steps usually result in faster simulations
but this can make the I-V curve less smooth. Larger steps can also cause convergence
problems: if the real solution changes too much between bias steps, the previously
known solution is not a good guess for the Newton solver. See newton_par for
details on how the bias step is controlled by the convergence rate of the Newton
solver.
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Figure 22.29: Schematics for the scan statement.

Parameters

• var is the name of the main variable to be scanned. Additional variables can be
scanned at the same time using different vari(i=2..9) parameters. By default,
the additional variables will be linearly proportional to the main variable.

For details on the available control variables, please see the table at the end of
this section.

• function_label

• function_labeli(i=2..9) is used only if more than one variable is scanned. It
is used to declare or label a function relation between the ith variable with
the main variable var. Such as function relation is further defined in a sep-
arate statement called scan_function. If this parameter is not used, the
program assumes the default linear relation between the ith variable and the
main scanned variable var.

The most obvious use of this is to use time as the main scan variable. The
function labels can then be used to define f(t) relations which is especially
useful in transient simulations.

• infile_label is the label of the initial guess data file for this scan statement.
Without the use of this parameter, the program take the previous solution (.out
file) as the initial guess. This label may be generated with the outfile_label
parameter from a previous equilibrium or scan statement.



22.631 scan 1047

• stop_thermal instructs the main solver to stop using heat-flow model for the
operation of the present statement. This means the temperature distribution
will be frozen regardless bias condition.

• value_to is the final target value for the main scan variable defined in var.
The initial value is determined automatically from the previous scan or from a
reloaded scan when using infile_label.
valuei_to(i=2..9) may also be used to define the target values of additional
scan variables when not using function labels.

• init_step is the initial step of the bias scan. This value must be larger than
min_step. If this parameter is not defined by user, the program defaults to
20 percent of the difference between the initial and final value of the scanned
variable.

• min_step is the minimum step for this scan statement. If the solver is forced
to make a step smaller than this value (e.g. due to convergence difficulties),
the solver will automatically terminate the simulation. If this parameter is not
defined by user, the program defaults it to small fraction (1 × 10−5) of the
difference between the initial and final value of the scanned variable.

• max_step is the maximum step size the solver is allowed to take. This can be
used to force the I-V curve to be smoother or to prevent the solver from using
a step size which could cause convergence difficulties. If this parameter is not
defined by user, the program defaults to 50 percent of the difference between
the initial and final value of the scanned variable.

• print_step is the interval used to print additional structural data during this
bias scan. By default, structural data is automatically output at the end of the
scan but print_step can be used to print additional data at specific intervals.
An example of this can be seen in Fig. 22.29 where a value of print_step=0.8
is used.
Note that by necessity, the actual maximum step in the bias scan is the mini-
mum of print_step and max_step.

• hot_electron and hot_hole instruct the solver to solve the hydrodynamic
equation (energy distribution) for electrons and holes, respectively.

• auto_finish is the variable used to make a decision about terminating a bias
scan before value_to is reached. This must be a variable that is being solved
and not one of the control variables for the scan.

– current_k or voltage_k (k=1..5) is the current or voltage on electrode #k.
– step_current_k or step_voltage_k (k=1..5) is the step size of the current

or voltage on electrode #k.
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– incr_current_k is the rate of current increase on electrode #k. This rate
is measured with respect to the bias units of the main scan variable.

– lattice_temp is the maximum lattice temperature.
– rtgain is the peak-round-trip gain (PICS3D only).
– laser_power_front, laser_power_back or laser_power_total is the laser

power for the front, back or both facets, respectively (LASTIP only).

Please note that in all cases, the absolute value of the variable is used when
deciding to terminate a scan. Therefore, the user does not need to worry about
the current convention on the electrode.

• auto_condition is condition the variable defined in auto_finish must meet
to terminate the scan.

– above: the specified variable is larger than auto_until
– below: the specified variable is smaller than auto_until
– within: the specified variable is approximately equal to auto_until, ±

auto_within.

• auto2_finish, auto2_condition, auto2_until and auto2_within are ad-
ditional termination conditions the solver must meet to prematurely terminate
a scan. Both conditions must be met simultaneously: it is not an either/or
condition. All statements are otherwise the same as above.

• solve_rtg turns on the solution of the complex round-trip gain (RTG) equa-
tion and couples the photon density to main drift-diffusion model (PICS3D
only). For this parameter to work, a previous scan command should use
auto_finish=rtgain so that the RTG equation parameters are initialized.

• scan_label labels the output file so it can be easily referred to by plotting
tools such as CrosslightView.
solve_real_rtg and solve_imag_rtg may be used to solve only the real or
imaginary parts of the complex round-trip gain. However, this feature is for
developer use only.
pump_no_current is used in some nanoscale structures to apply a bias that
separates the quasi-Fermi levels without actually calculating the current flow:
only the Poisson equation is solved.

Examples

scan var=voltage_1 value_to=1.6 print_step=0.8 &&
init_step=0.02 min_step=1.e-5 max_step=0.1
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The above statement corresponds to Fig. 22.29.

scan var=time var2=voltage_1 value_to=1.e-11 &&
value2_to=0.5 print_step=1.e-12 &&
init_step=3.e-13 min_step=1.e-13 max_step=1.e-12 &&

This statement defines a transient simulation with a linear voltage ramp.

scan var=time value_to=50.e-12 &&
var2=light function_label2=gs_func max_step=1.e-12

scan_function label=gs_func type=gaussian gsn_dt=4.e-12

This statement defines a transient Gaussian light pulse by means of a scan function.

Available Scan Variables
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voltage_i (i=1,2,...,9) Voltage of the ith electrode.
current_i (i=1,2,...,9) Current of ith electrode in A/m for 2D and Amperes for

3D.
time Time reference of a transient simulation.
light A scale factor for the input light defined in commands

such as light_power and 3d_amplifier_model.
lighti (i=2...9) Same as “light” above, defined when there are multiple

sources of input light.
new_doping See equilibrium.
bandgap_reduction See equilibrium.
impact_fermi_factor See equilibrium.
mobility_control See equilibrium.
power_loss_scan_i(i=1..9) Is the power loss between optical sections in PICS3D.

Corresponds to the power_loss parameter of cou-
ple_next for section number i.

scale_heat_source Artificial scaling factor for all heat sources in the device,
default value is 1.

scale_impact_cr_field See equilibrium.
scale_negative_stim See equilibrium.
scale_polar_charge See equilibrium.
surf_charge_expo See equilibrium.
temperature May be used to adjust the isothermal temperature of the

device. This should not be confused with self-heating
simulations which invoke the heat_flow statement.

wavelength_scan The wavelength of the optical pump in light_power.
virtual_time Artificial quantity used for parameter sweeps in conjunc-

tion with the minispice command.
xcir_resistance_i(i=1..9) is the external circuit resistance attached to the ith con-

tact.
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22.632 scan_function

parameter data type values [defaults]
label char [mylabel]
type char [void]
user_datafile char [void]
gsn_t1 real [0.]
gsn_dt real [4.e-12]
gsn_s1 real [0.]
gsn_s2 real [1.]
pulse_t1 real [0.]
pulse_tr real [1.e-12]
pulse_dt real [4.e-12]
pulse_tf real [1.e-12]
pulse_s1 real [0.]
pulse_s2 real [1.]
sin_constant real [0.]
sin_amp real [1.]
sin_period real [1.e-9]
sin_phase real [0.]
cos_constant real [0.]
cos_amp real [1.]
cos_period real [1.e-9]
cos_phase real [0.]

The statement scan_function is used to define relation between different variables
in the scan statement.

• label corresponds to the parameter of function_labeli(i=2..9) defining a
function between the ith variable and the first (main) variable.

• type is the type of function. It currently supports the following types: gaus-
sian, pulse, sin and cos. Their meanings are as suggested by their names.

• user_datafile if defined, is the user data file containing two columns of data
to define a function relation.

• gsn_t1 , gsn_dt , gsn_s1 and gsn_s2 are parameters t1, ∆t, s1 and
s2 respectively, used to describe a Gaussian relation between the 1st and 2nd
variable. If we use t as the 1st variable, the Gaussian function is defined as
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follows:

if t1 ≤ t ≤ t1 + 2∆t (22.121)
cl = 4ln(2)

var2 = s1 + s2 − s1

1 − exp(−cl)

exp
−

(
t− t1 − ∆t

∆t

)2

cl

− exp(−cl)


else

var2 = s1

• pulse_t1 , pulse_tr , pulse_dt , pulse_tf , pulse_s1 and pulse_s2
are used to define a sqaure pulse of the following shape in the code:

if( t>=t_1 && t<=t_1+t_r ) {
var2=s_1+(s_2-s_1)*(t-t_1)/t_r;

} else if(t.ge.t_1+t_r.and.t.le.t_1+t_r+dt) {
var2=s_2;

} else if(t.ge.t_1+t_r+dt.and.t.le.t_1+t_r+dt+t_f) {
var2=s_2+(s_1-s_2)*(t-(t_1+t_r+dt))/t_f;

} else {
var2=s_1;

}

• sin_constant , sin_amp , sin_period , and sin_phase are used to define
a sines function of the form constant+amp*sin(2*pi/period*var+phase), where
phase is in unit of radians.

• cos_constant , cos_amp , cos_period , and cos_phase are used to
define a cosines function similar to that of sines above.

Example(s)
The following example is to describe a sines function:

scan_function label=my_sine_lable type=sin sin_constant=0 sin_amp=0.2 &&
sin_period=1.e-9 sin_phase=0
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22.633 section

parameter data type values [defaults]
grating_model char [kappa], 1layer, klayers (k=2..9)
active char [yes] no
2nd_order char yes [no]
dbr_period_index_profile char
kappa_real real (1/m)
kappa_imag real (1/m)
delta_kreal real [0.] (1/m)
delta_kimag real [0.] (1/m)
pitch real (m)
delta_pitch real [0.] (m)
length real [300.e-6] (m)
phase_shift real [0.] (π)
grating_phase real [0.] (π)
mesh_ratio real [1.]
layerj (j=1..k) real [0.096e-6] (m)
indexj (j=1..k) real
h1_real real (1/m)
delta_h1_real real [0.0] (1/m)
h1_imag real (1/m)
delta_h1_imag real [0.0] (1/m)
surface_p.c real
delta_s.p.c real [0.0]
top_refl real [0.3]
sec_num intg [1]
mesh_points intg [8]
dbr_period_mater intg
zseg_num intg

The statement section defines the optical mesh and other properties of a laser in the
longitudinal direction (PICS3D only). It should be distinguished from the concept of
a z-segment which defines electrical properties for a certain region. In certain cases,
a section may not have any electrical mesh defined (e.g. external cavity elements).
See Sec. 6.3 for details.
section is often used to directly input the grating properties of a certain region
rather than computing the coupling coefficients. In that case, we can also define
chirped gratings and write the z-dependent coupling coefficient as:
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κ(z) = κm(z)exp(jψk(z)) (22.122)

κm(z) = κm0 + δκm
z − z1

z2 − z1
(22.123)

ψk(z) = ψk0 + δψk
z − z1

z2 − z1
(22.124)

where z1 and z2 are the starting and ending points of the section.
The resulting chirp (ζch) will be a spatial variation of the propagation constant. In
units of π, this can be written as:

ζch(z) = ζch0 + δζch
z − z1

z2 − z1
(22.125)

Parameters

• grating_model is the grating model being used. It may take the following
values:

– 1 kappa: the coupling coefficient κ is used to describe the grating struc-
ture in an edge laser/waveguide structure (coupled-wave equation). This
coupling coefficient can be defined directly or calculated by the software
based on the mode profile.

– 2 1layer, 2layers, ..., klayers: this model uses plane wave transfer matrices
through one or more layers and is often used to define DBR layers in
VCSELs. In older versions of the software, layer0 is equivalent to 1layer ;
layer is equivalent to 2layers.

This parameter should not be confused with the similarly-named grating_model
statement which is used to define other parameters needed to compute κ in
edge-emitting devices.

• active is used to indicates that the section contains active layer. This means
that this section is matched with an electrical z-segment (or a part thereof)
and the optical properties will be obtained from the mesh data. For non-active
(non-meshed) sections, a passive_3d statement must be used to define the
optical properties.

• 2nd_order turns on the terms for the second order grating (loss/gain cou-
pling).

• dbr_period_index_profile can be used to define an index profile in an
input file. The data should be in columns: position (in µm) and index.
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• kappa_real and kappa_imag are used to represent the real and imaginary
parts of the longitudinal coupling coefficient κ. They are effective only when
the above parameter grating_model=kappa.

If these values are omitted, PICS3D will compute the coupling coefficient based
on the wave overlap and the grating compositions defined in the .layer file. This
involves using either the grating_compos or grating_model statements.
The latter should not be confused with the grating_model parameter defined
above.

• delta_kreal and delta_kimag are used to represent the change in the real
and imaginary parts of index coupling and gain/loss coupling, respectively.

• pitch and delta_pitch define the grating pitch and the change in the pitch
within a section. If this is not specified, the pitch settings from the longitu-
dinal statement should be used.

• length is the optical length of the section.

• phase_shift is the phase shift (in units of π) at the end of the section. For
example, in a standard phase shifted DFB laser, we need to create two sections
of equal length; the phase shift at the end of the first section will be in the
middle of the cavity.

• grating_phase is the phase of the grating (Ω):

n = ñ+ 2(∆n)cos
(

2π
Lg

z + Ω
)

(22.126)

• mesh_ratio is the ratio between adjacent mesh intervals. shift_center may
be used to shift the centre of the mesh point distribution. See put_mesh and
Fig. 22.22 for details on both these parameters.

• layerj (j=1..k) is the thickness of the jth layer that make up one period in the
layer model when parameter grating_ model=klayers.

• indexj (j=1..k) is the refractive index of the jth layer that make up one period
in the layer model when grating_model=1layer or klayers (k=2..9). This
older method of defining the index profile is not recommended. In newer ver-
sions of the software, new index profile capabilities have been added to the
vcsel_section statement in the .layer file: VCSELs are the most frequent
situation where this capability had been used.

In the event this antiquated feature is required, here are several rules to keep
in mind:
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– If only one layer is specified, the index may be omitted. In that case, the
software will compute the index of the layer based on the material macros,
temperature, bias, etc...

– If more than one layer is specified, all the refractive indices must be spec-
ified.

– If there are multiple layers, negative values of the index may be defined.
This instructs the software to compute changes in the average refractive
index of the layers (using their absolute value) while keeping the index
contrast between the layers constant.

The most accurate method in all cases is to separate each layer of the DBR
into a different section, use the 1layer model for each and omit the index to
let software automatically compute it. However, this may require extra mesh
and complications with the electrical solver. Defining the DBR using material
macros in vcsel_section is also a recommended method.

• h1_real and h1_imag are the real and imaginary part of the h1 parameter
describing the second order grating structure. delta_h1_real and delta_h1_imag
may be used to introduce a chirp in the second order grating parameters.

• surface_p.c is the surface power coupling coefficient for second order grating.
If not provided, the simulator computes this parameter based on the reflection
coefficient at the surface (top_refl). As in other parameters, delta_s.p.c
may be used to chirp this parameter.

• sec_num is the section number or section index.

• mesh_points is the number of optical mesh points in this section. Material
parameters will be interpolated from the electrical mesh at these locations and
used in the optical propagation model.

• dbr_period_mater may be used to obtain the grating index profile from a
certain material number. This parameter should not generally be used as there
are better ways of achieving this.

• zseg_num may be used to associate this optical section with a specific elec-
trical z-segment. In general, this is not necessary as the length information
will suffice to define the alignment between the optical and electrical mesh.

Examples

section length=800.e-6 sec_num=1 mesh_points=20
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22.634 section_air

parameter data type values [defaults]
length real [300.e-6] (m)
sec_num intg [1]
mesh_points intg [3]

The statement section_air is a special case of section. It is used to describe an
air gap within a photonic device.

• length is the length of the section.

• sec_num is the section number or section index.

• mesh_points is the subsection number or mesh points used for the purpose
of calculation. All physical quantities are assumed to be constant within the
subsection.

Example(s)

section_air length=200.e-6 sec_num=2 mesh_points=10

22.635 section_location

parameter data type values [defaults]
start real [0] (um)
end real [1.] (um)

• section_location is used to specify the starting point of the longitudinal
mode cavity. If not specified, it will start from zero. For VCSEL, this statement
may be automatically generated by the LAYER program.

• start is the starting coordinate of the optical cavity.

• end is the ending coordinate of the optical cavity.

Example(s)

section_location start=2. end=12.5
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22.636 self_consistent

parameter data type values [defaults]
conditional_off char [no]
impose_limit char [no]
sheet_charge_model char [no]
onetime_update char
onetime_resume char [no]
loop_num intg [9]
electrode_off intg [1]
wave_range real [0.005] (um)
sample_distance real (um)
change_limit real [0.1]
voltage_off real [-9999.]
current_off real [-9999.]
wave_range_bottom real (um)
wave_range_top real (um)
wave_range_left real (um)
wave_range_right real (um)
onetime_ref_voltage real (V)
onetime_ref_current real (2D: A/m, 3D: A)
sample_xcor real (um)
sample_ycor real (um)
sample_xrange realx2 (um)
sample_yrange realx2 (um)
autosample_y real (um)
autosample_xrange realx2 (um)

The self_consistent statement is used in the main solution file (.sol) to invoke the
self-consistent quantum well carrier density model. It can also be used in the gain
preview module (.gain): an external field can be supplied with gain_module. This
model is required to model the quantum-confined Stark effect (QCSE) that occurs
in QW modulators and wurtzite piezoelectric materials.
Without this statement, a flat-band model is used in the Schrödinger solver. See
Sections 8.1.2 and 8.2 for more details about the difference between these two models.
In general, the self-consistent model is more accurate but more time-consuming.
The self-consistent quantum mechanical solver finds quantized energy states which
may appear or disappear when the potential profile is changed. Such appearance or
disappearance may cause the global Newton solver to be poorly initialized and thus
diverge. In such a case, one may wish to turn off the self-consistent solver conditional
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upon the bias being beyond a certain value. This means the density of states (DOS)
of the QW/QDOT will be frozen at a value before the conditional turn-off.

Parameters

• wave_range is used to define a range for the solution of the quantum me-
chanical wave equation. Refer to Sec. 8.2.3 for details.

The wave range value is the same in all directions unless overridden in a particu-
lar direction by wave_range_bottom, wave_range_top, wave_range_left
or wave_range_right.

• sample_distance, if specified, gives the position of a 1D cut across the well
and barrier layers used to sample the potential. This 1D potential profile is
used to solve the quantum levels. By default, a value in the middle of the
quantum well region is used.

• loop_num is the maximum number of iteration in equilibrium that is need
to reach self-consistency for both the potential and quantum confined carrier
density profile.

• conditional_off is to indicate whether the self-consistent update of quantum
mechanical wave solver is to be turned for convergence reason when certain
conditions are reached.

• electrode_off is used only when conditional_off=yes. It defines the elec-
trode used as a condition to turn of the self-consistent update solution.

• sheet_charge_model is a simplification to the model which can help with
convergence in some cases. When turned on, the total sheet charge and the
position of the QW levels are calculated self-consistently. However, the carrier
density distribution does not follow the self-consistent model.

• impose_limit indicates if a limit is imposed on relative change of potential
for self-consistent calculation. Too large a change is thought to be harmful to
convergence. One may turn on this option if non-convergence due to quantum
confinement is encountered.

• change_limit is to impose a limit on relative change of potential profile in
the quantum solution. The simulator calculates the average applied field and
will only allow the profile to be changed by a certain amount.

• voltage_off defines a voltage condition under which the self-consistent up-
dates may be stopped.
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• current_off defines a current condition under which the self-consistent up-
dates may be stopped. The current units (2D or 3D) are the same as the ones
used in the scan statement.

• sample_xcor and sample_ycor are (x,y) coordinates used to sample the
potential profile in 3D simulations where the QW normal is in the z direction.

• sample_xrange and sample_yrange may be used in rare cases where a
complex MQW region with a weird shape is used. It restricts the use of the
self-consistent code to a rectangular region within that complex MQW.

• onetime_update turns on a technique which can help improve convergence
in cases where a sudden shift in the number of quantum states introduces
convergence difficulties: this discontinuity may conflict with the initial guess
to the Newton solver, which is extrapolated from the previous solution.
When using this technique, the quantum states are frozen at a certain reference
bias (after turn-on) to improve convergence. Multiple simulation runs must be
used to set up this initial state:

1. Set onetime_update=initial to save the quantum states for the next
run. The solver does not update quantum solutions at this stage.

2. Set onetime_update=repeat. The solver imports the potential saved
by the previous run and updates the quantum solution at the imported
reference bias one time only (hence the name).

3. Repeat previous step as needed to improve self-consistency.

We note in passing that the extrapolation for the initial guess to the Newton
solver can be turned off in newton_par. Users may wish to compare the two
methods to see which yields the fastest and most reliable convergence.

• onetime_ref_voltage and onetime_ref_current set the reference bias for
the “onetime” update method described above. onetime_resume determines
whether the normal update of quantum states is allowed to resume once this
reference bias has been reached.

• autosample_y and autosample_xrange may be used to automatically
change the sampling position for self-consistency in a 3D simulation. An ex-
ample of this would be a 3D Mach-Zehnder modulator with BPM propagation
in the Y-branch and where the field under the waveguide better represents the
device physics than the field in the middle of the QW region.
With the auto-sample parameters defined, the software cuts a line at a specific
y position and looks for a semiconductor material within a certain x range. The
sampling position is set to the middle of the region found within that range:
presumably, this is the middle of a ridge and will be close to the peak of the
optical mode.



22.637 set_3dray_internal_interface 1061

Examples

self_consistent loop_num=15

Changes the number of self-consistent iterations.

self_consistent wave_range=0.05 &&
electrode_off=1 conditional_off=yes voltage_off=5

For convergence reasons, the quantum states are not updated once the voltage on
electrode # 1 reaches 5 volts. This may cause some inaccuracy.

22.637 set_3dray_internal_interface

parameter data type values [defaults]
model char [fixed_index]
import_filei,i=1..9 char void
thicknessi,i=1..9 real [0.1] (um)
refr_indexi,i=1..9 realx2 [2.1245, 0.0]
inside_ref_point realx3 [0.0, 0.0, 0.0] (um)
outside_ref_point realx3 [0.0, 0.0, 0.0] (um)
nlay intg [1]

set_3dray_internal_interface is used to specify special internal interfaces for
the 3D raytracing program. For example, this can be used to represent surface
coatings that are inside of the structure’s geometry. For coatings on the outer sur-
face of a structure, the surface_model parameter of do_raytrace_3d should be
used instead. To define the position of an interface, the user must enter the XYZ
coordinates of two points on either side of the interface.
The number of layers in the coating is controlled by nlay. The parameters numbered
1 to 9 refer to that particular layer. Layer #1 is defined as the one closest to
inside_ref_point.
The complex refractive index of each layer is controlled by the model parameter. If
this is set to fixed_index, then the value of the refr_index parameter will be used.
If import_data is used instead, then the index will be read from a text file specified
by the import_file parameter. This file must be formatted so that the first column
contains the wavelength (in µm), the second column, the real part of the refractive
index and the third column, the imaginary part of the refractive index.
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22.638 set_3dray_mirror

parameter data type values [defaults]
mirror1_side char [void] -x,+x,-y,+y,-z,+z
mirror2_side char [void] -x,+x,-y,+y,-z,+z
mirror3_side char [void] -x,+x,-y,+y,-z,+z

set_3dray_mirror is used to define symmetric boundary conditions for the 3D
raytracing program (do_raytrace_3d. If this statement has been used in a 3D
raytracing simulation in a different .plt file, it must also be used before plotting the
results to enforce the correct symmetry of the plots.

22.639 set_active_reg

set_active_reg is used to override active region parameters previously defined
in active_reg. Most of the material parameters used for the two commands are
virtually identical and so are omitted here.
Note that by default, this command applies to all the previously declared active
regions so it is often used in the .sol or .gain files to alter the gain model settings
that were automatically declared when processing the .layer file.

22.640 set_barrier_width

parameter data type values [defaults]
barrier_width_bot real [0.1] (um)
barrier_width_top real [0.1] (um)
active_mater intg [1]

set_barrier_width is used to let the program take into account the barrier com-
position grading when modeling the carrier confinement of a quantum well.
Note that this command only applies to basic QW macros and is somewhat obsolete:
it is strongly recommended to use the complex MQW macros (labeled with a cx-
prefix) or the simplified complex QW library scheme from Sec. 3.5.1 instead.
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Parameters

• barrier_width_bot is the bottom barrier width.

• barrier_width_top is the top barrier width.

• active_mater is the active layer material number of the quantum well related
to the barrier described in this statement.

Examples

set_barrier_width barrier_width_bot=0.01 barrier_width_top=0.01 active_mater=3

22.641 set_fdtd_interface

parameter data type values [defaults]
mater_in intg
mater_out intg
angle_to_axis char [+x],-x,+y,-y,+z,-z
angular_data char [fdtd_data.dat]

The set_fdtd_interface statement is used in the Optowizard solution file to over-
ride the reflection properties of a specified material interface for the purposes of
ray tracing. Instead of a Fresnel reflection model, reflection/transmission data from
a FDTD solver will be used at the interface: this allows nanoscale effects to be
considered inside a larger-scale raytracing model.

Parameters

• mater_in and mater_out are used to specify the interface affected by this
command and the direction of the incoming beam.

• angle_to_axis determines a reference axis to match the incident angle of
incoming rays to angular data from FDTD solver.

• angular_data is the data file containing angular reflection/transmition data
from the FDTD solver.
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22.642 set_include

set_include defines the relative path for all subsequent include statements.

Parameters

relative_path specifies the path for the include statements. If a relative path is
specified, it is relative to the directory of the input file where set_include has been
used.

22.643 set_index

parameter data type values [defaults]
mater intg [-9999]
real_index real [3.5]
absorption real [200./m]
index_file char [void]

The set_index statement is used in the optowizard solution file to override the
refractive index (n, k) of a specified material for the purposes of ray tracing. If not
specified, the index from the electrical simulation in APSYS will be used in the ray
tracing.
Exported index data from APSYS is often only for a single wavelength so overriding
it is often recommended for more accurate results. It can also be useful to override
the index to change something without having to re-run the electrical simulation.

Parameters

• mater is used to specify the material number being overridden.

• real_index is to specify a fixed real index(n) value for the specified material.

• absorption is to specify a fixed absorption coefficient(m−1) for the specified
material.

• index_file is to specify the file name of the data file describing the index
spectrum for the specified material. The data must be in text format where
the first column is the wavelength in micrometers, the second column is the
real part of the index and the third column is the absorption coefficient (m−1).
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Examples

set_index mater=1 real_index=2.8 absorption=2000

22.644 set_initial_stress

set_initial_stress defines the initial or pre-existing stress in a device. This should
be contrasted with external stress applied on the device, which is defined in set_stress.
All parameters for this command are the same as in set_stress.

22.645 set_lp_mode_index

parameter data type values [defaults]
lp_mode_num intg [1]
m_index intg [0]
n_index intg [1]

This statement is used in PICS3D VCSEL simulations to replace the results from the
normal mode solver with one of the linearly polarized fiber modes (LPmn). These
modes may be difficult to find using normal effective index sorting procedures.

Parameters

• lp_mode_num is the number of the lateral/radial mode being specified.

• m_index and n_index are the indices of the linearly polarized mode.

Examples

multimode mode_num=4
set_lp_mode_index lp_mode_num=1 m_index=0 n_index=1
set_lp_mode_index lp_mode_num=2 m_index=1 n_index=1
set_lp_mode_index lp_mode_num=3 m_index=2 n_index=1
set_lp_mode_index lp_mode_num=4 m_index=0 n_index=2
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22.646 set_minority_carrier

The command set_minority_carrier may be used to artificially reduce the bandgap
so that larger minority carrier density can be used to overcome possible convergence
problems.
The parameter virtual_eg_kt can be used to set a reduced bandgap in unit of kT
where k is the Boltzman constant.
Example(s)

set_minority_carrier virtual_eg_kt=30

would set the bandgap to be 30 kT for the purpose of computing minnority carriers.

22.647 set_negative_stim

parameter data type values [defaults]
max_absorption real [1e4] (m−1)
zseg_num intg [1]

set_negative_stim artificially caps the the absorption coefficient in a given z-
segment.
Note that a similar adjustable scaling coefficient may be found in the equilibrium
and scan statements.

Parameters

• max_absorption is the maximum absorption value allowed: values smaller
than this parameter will be left unchanged.

• zseg_num is the z-segment number where this command is applied.

22.648 set_polarization

Important changes

As of the 2011 version of the software, a newer model based on the polariza-
tion_charge macro and polarization_charge_model statement is available.
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This new model offers a great deal more flexibility to the user so set_polarization
may be obsoleted in a future release.
Note that the two models should not be used in conjunction as this would result in
double-counting of the interface charges.

parameter data type values [defaults]
xy_plane char [no]
alias_macroname_table char
screening real [0.5]
substrate_latt real [3.189] (Å)
hex_lattice_a0 real [3.189] (Å)
hex_lattice_c0 real [5.185] (Å)
external_stress_xx real [0.] (GPa)
external_stress_yy real [0.] (GPa)
ref_column intg [1]
growth_plane_miller_index intgx4

set_polarization is used in the .layer file to automatically generate interface
statements and define the piezoelectric charges found in nitride materials.
The polarization formulas[117] used for these calculations are hardcoded. Only the
following material macros are recognized: algan, ingan, alinn, gaalinn, and gan.

Parameters

• xy_plane would produce interface charge on the x-y plane for a 3D simulation.
The interface charge would be defined using the doping command.

• alias_macroname_table is the name of a data file which can be used to
define how certain materials are renamed; the file should contain two columns
with the original name in the first column and the new name in the second
column. This should be used whenever layer.exe needs to know that a cer-
tain material has been renamed and no longer matches the default Crosslight
macros.
Under normal circumstances, the .layer file is agnostic with regards to the
names assigned to the various materials in each layer: these names are passed
un-changed and are not used until the main simulator attempts to use the
load_macro statement. In this scenario, macros may be renamed freely and
the material macro need not even exist at the time when the .layer file is
processed: it only has to exist when the main simulator is launched.
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An exception to this rule is when layer.exe calculates the interface polariza-
tion because the set_polarization command has been used. In that case,
layer.exe needs knowledge of the macro names because only a handful of pre-
determined formulas for GaN-based materials are encoded into the program.
Using aliases allows layer.exe to keep doing this job even if those materials have
been renamed.

• screening is the screening factor used to account for deviations from the theory
(e.g. screening by fixed defects, partial relaxation, etc...). A factor of unity
means 100 percent of the theoretical interface charge is used.
This parameter affects the whole device but may be adjusted locally by using
adjust_layer_screening and adjust_column_screening. This may be
used to account for surface states or passivation without affecting the whole
device.

• ref_column is a reference column of the layer structure which represents the
complete layer stack. In newer versions of the software, the strain and piezo
charge should be determined on a per-column basis so this parameter should
not be used.

• substrate_latt is the reference lattice used for the strain calculations. By
default, this value is set to GaN. Please note that this is not necessarily the
lattice of the substrate: in many growth designs, a relaxed buffer is deliberately
grown on the actual substrate to improve the material quality of the top layers.
In that case, the lattice constant of the buffer should be used here.
Users working on deep UV devices on AlN substrates should also take care to
use the right reference lattice as this is necessary to get the right type of strain.

• external_stress_xx and external_stress_yy can be used to define exter-
nally applied stress on the device.

• growth_plane_miller_index can be used to specify the crystal orientation
of the growth using the (h k i l) notation. The software will then calcu-
late the direction of the polarization vector based on hex_lattice_a0 and
hex_lattice_c0 and scale the interface charge with the appropriate cosine
factor.

Examples

set_polarization screening=0.7

This would allow 70 percent of the total theoretical value be used on the layer
interfaces.
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22.649 set_screening_factor

parameter data type values [defaults]
x1_label char
x2_label char
y1_label char
y2_label char
at_x_label char
at_y_label char
screening real [0.5]
xrange realx2 [-1.e9 1.e9] (um)
yrange realx2 [-1.e9 1.e9] (um)
at_x real (um)
at_y real (um)
at_point_range real [0.0005] (um)
zseg_num intg

set_screening_factor is used to locally override the global screening coefficient
defined in the polarization_charge_model statement. This can be used to ac-
count for regions of compensating defects or interface states and alter the amount of
fixed piezoelectric charges in a particular region.

Parameters

• x1_label,x2_label,y1_label and y2_label are position labels used to de-
fine a 2D region where the screening coefficient is modified. Absolute coordi-
nates can also be used directly with xrange and yrange: this is the default
behavior.

• at_x_label and at_y_label are position labels used to define a specific
interface where the screening coefficient is modified. Absolute coordinates can
also be used with at_x and at_y.
Specifying an interface will override the default behavior of defining a large 2D
region for the screening override.

• screening is the new locally-defined screening coefficient used to compute the
fixed charges.

• at_point_range helps locate the interface defined with at_x and related
commands: it defines a small search range to account for fuzzyness in the
mesh point location.
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• zseg_num is the z-segment number where this statement applies.

Examples

set_screening_factor screening=0.0 at_y=0.0

22.650 set_stress

parameter data type values [defaults]
all_mater char [yes]
mater_label char
xx real [0] (GPa)
yy real [0] (GPa)
xy real [0] (GPa)
zz real [0] (GPa)
xz real [0] (GPa)
yz real [0] (GPa)
mater intg []

set_stress defines the external stress applied on a device. This should be contrasted
with pre-existing stress defined in set_initial_stress.

Parameters

• xx,yy,zz,xy,xz and yz define the stress components σij applied on the device.

• all_mater determines whether the stress is applied to all layers. In not, then
a specific material where the stress exists can be specified with mater.

• mater_label may be used instead of mater if a label alias has previously
been defined for the material.

22.651 set_temperature

set_temperature resets the isothermal temperature of a simulation. It is used
when issuing the equilibrium statement several times in the same simulation to
define a new thermal equilibrium point.
All parameters are the same as in the temperature statement.
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22.652 set_wavelength

parameter data type values [defaults]
wavelength real [0.5] (um)
backg_loss real [500] (1/m)

set_wavelength is used to define some critical optical properties of a device. It is
used to initialize the optical mode distribution and internal loss.

• wavelength is the operating optical wavelength.

• backg_loss is the background loss coefficient. By default, regions outside
the active region are assumed to have a constant loss background (which can
be determined experimentally). Alternatively one can use the material state-
ment absorption to set the material loss in different materials. A non-zero
absorption setting will override the backg_loss here.

Example(s)

set_wavelength wavelength=0.5 backg_loss=1000.

22.653 set_xydata_for_scan

parameter data type values [defaults]
scan_var char [void]
scan_var_scale char [linear]
scan_var_facet char [void]
scan_var_scale_lit real [2.]
scan_var_scale_curr real [2.]
scan_var_scale_horizontal real [1.]
scan_var_horizontal_power real [-9999.d0]
scan_var_mode_index intg [1]
scanline intg
scan_num intg

set_xydata_for_scan is a post-processor statement used to set plotting options
affecting subsequent plots. It is used to convert structure data (xy-data) into bias
dependent plots.
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• scanvar is used to define scan variables to be used in AC analysis plots. The
scan variables are the same as used in the plot_scan statement. Please refer
to plot_scan for more details.
scanvar_xxx, all parameters with prefix scanvar_ are the same as those
(without the prefix) defined in plot_scan statement. Please refer to plot_scan
for more details.

• scanline is used to denote bias data from a whole scan statement. The data
from statement equilibrium is counted as the scanline=1; those from the next
scan statement counted as scanline=2, etc. For this parameter to work, the
get_data command must already include the data sets associated with this
parameter.

• scan_num is used to denote bias data from a whole scan statement. The
data from statement equilibrium is counted as the scan_num=0; those from
the next scan statement counted as scanline=1, etc. For this parameter to
work, the get_data command must already include the data sets associated
with this parameter.

set_xydata_for_scan scanvar=voltage_1

The above statement will cause the program plot small signal quantities (regarded
as xy-data or structural data) versus voltage bias at electrode number 1.

22.654 setup_raytrace

parameter data type values [defaults]
filebase char

setup_raytrace is used in the main Optowizard input file to define the data sets
generated by a previous APSYS simulation.

Parameters

• filebase is the root filename of the original simulation data, minus the exten-
sion (such as .sol or .out).

Examples

setup_raytrace filebase=tip
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22.655 shal_acpt_level

shal_acpt_level is used to define or override the shallow acceptor level of the p-
type dopants. The level is measured from the valence band and in the unit of eV.
shal_acpt_level_i may also be used when several species of dopants are present:
“i” is a placeholder for the species number.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.656 shal_acpt_level_i

shal_acpt_level_i is used to define or override the shallow acceptor level of the
of the ith p-type dopant. The level is measured from the valence band and in the
unit of eV. See also shal_acpt_level.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.657 shal_dnr_level

shal_dnr_level is used to define or override the shallow acceptor level of the n-
type dopants. The level is measured from the conduction band and in the unit of eV.
shal_dnr_level_i may also be used when several species of dopants are present:
“i” is a placeholder for the species number.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.658 shal_dnr_level_i

shal_dnr_level_i is used to define or override the shallow acceptor level of the of
the ith n-type dopant. The level is measured from the conduction band and in the
unit of eV. See also shal_drn_level.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.
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22.659 shear_modulus

shear_modulus defines the shear modulus for the acoustic wave propagation model
in SAWAVE.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.660 shift_affinity

parameter data type values [defaults]
delta_affinity real [0.0] (eV)
mater intg [1]

shift_affinity is used to shift the electron affinity for the whole material. This is
very convenient for fused junction devices where two completely different material
systems are forced together. This statement may be used to control the band offset
easily instead of defining a new affinity for each material.

• delta_affinity is the amount of shift in electron affinity.

• mater is the material number being affected.

Example(s)

shift_affinity delta_affinity=0.05 mater=3
shift_affinity delta_affinity=0.05 mater=4
shift_affinity delta_affinity=0.05 mater=5

The above example shifts the conduction band downwards by 0.05 eV for materials
with material numbers of 3, 4, and 5.

22.661 solve_lateral_wave

parameter data type values [defaults]
export_data char [void]
cond_valley intg [1]
val_valley intg [1]
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solve_lateral_wave activates the eigen equation solver to solve either the Maxwell
wave equation or the Schrödinger quantum mechanical wave equations. This state-
ment is similar to statements like equilibrium and scan in that it is the main action
of the solver.

• export_data is used to export the solution of eigen equation solver. If several
of the same statements are used in sequence, only the first statement needs to
define the exported file. All other statements can share the same data file.

• cond_valley and band_valley define the conduction and valence band val-
leys being solved.

Examples

solve_lateral_wave cond_valley=1 val_valley=1 &&
export_data=cone.qdd

The above statement solves Gamma and HH bands and exports the data to file
cone.qdd.

22.662 sp.rate_wavel

parameter data type values [defaults]
data_file char
auto_pn_ratio char [no]
field_dep_curves char [no]
wavel_range realx2 (µm)
conc_range realx2 [1.e23 1.e24] (m−3)
pn_ratio real [1]
av_index real [3.3]
field_range realx2 [1.e5 1.e7]
curve_number intg
data_point intg

sp.rate_wavel plots the spontaneous emission rate versus wavelength.

• data_file is the file to which the graphic data is written in ASCII format.
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• auto_pn_ratio is used to indicate if automatic setting of hole/electron den-
sity ratio is used in PICS3D simulation. If positive, averaged hole/electron
density from the drift-diffusion solver is used. This parameter, if positive, will
override pn_ratio.

• field_dep_curves indicates whether ot not the curves are generated with
different applied electrical field intensities. If this is set to no, the curves are
plotted with different carrier concentrations while the field is set to zero. If this
is set to yes, the carrier concentration is set to the initial value in conc_range
while the field is varied.

• av_index is the estimated average refractive index.

• wavel_range is the wavelength range.

• conc_range is the electron concentration range in the well.

• pn_ratio is the ratio of hole over electron concentrations. Note that this ratio
can be set to an arbitrary number in the gain preview. In the main solver, this
ratio is automatically determined by the simulator according to the local Fermi
levels.

• field_range is the range of the applied field for producing the different curves.
This parameter is active only if field_dep_curves is set to yes.

• curve_number is the number of spectral curves to be plotted for different
carrier concentrations.

• data_point is the number of data points in one curve.

Example(s)

sp.rate_wavel wavel_range=(1.0 1.4) &&
conc_range=(5.e23 5.e24) curve_number=5 data_point=100

22.663 sparse_eigen_solver

parameter data type values [defaults]
use_mf char [yes],no
fast_dynamic_search char [no],yes

sparse_eigen_solver is used to control the sparse eigen solver used in the .sol file.
These include lateral mode solver for wave guide modes and quantum mechanical
wave solver for quantum wells.
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Parameters

• use_mf controls the use of a multi-frontal sparse matrix solver in the eigen-
value search.

• fast_dynamic_search indicates whether a fast dynamic mode search tech-
nique is used.

Examples

sparse_eigen_solver use_mf=yes

22.664 special_suprem_contact

parameter data type values [defaults]
type char [sym_polygon], surrounding, poly-

gon
polygon_datafile char
mater_label char
insul_semi_interf char [no],yes
polygon_center_x real [1.0] (um)
polygon_center_y real [1.0] (um)
radius real [1.0] (um)
inner_radius real [0.0] (um)
num intg [1]
touch_mater intg
zseg_num intg
polygon_edge intg [6]

special_suprem_contact is a variation of suprem_contact which allows for
more complex contact shapes when importing structures from CSUPREM.

Parameters

Many of the parameters in this statement are the same as in sym_polygon_for_semicrafter
and contact.

• type Defines the shape of the contact:
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– sym_polygon defines a symmetric polygon.
– surrounding indicates that the entire perimeter of the mesh plane is the

contact boundary.
– polygon is a user-specified polygon.

• polygon_datafile is a text file containing information about a user-specified
polygon.

• polygon_center_x and polygon_center_y are the (x,y) coordinates of
the center of the symmetric polygon.

• radius and inner_radius are used when type=sym_polygon. Radius is de-
fined as the distance between the center of the polygon and the corners, i.e.
the radius of the circle which encompasses the polygon. The contact area is
the space between the two polygons; it forms a sort of “ring” if the inner radius
is larger than zero.

• num is the contact number.

• touch_mater determines the material number which serves as the reference
for the contact. If a label has previously been defined as an alias for this
material, mater_label may be used instead.

• zseg_num is the z-segment number where the contact is located.

• polygon_edge is the number of edges of the symmetric polygon.

• insul_semi_interf instructs the software to look for a semiconductor/insulator
interface within the specified range and define this interface as the contact
boundary. This method overrides the shape of the contact region that would
otherwise be produced by this command.

Examples

contact num=1
special_suprem_contact type=sym_polygon &&

polygon_center_x=0.6 polygon_center_y=0.6 &&
inner_radius=0.301 &&
radius=0.34 num=1 touch_mater=1 zseg_num=1 polygon_edge=6

22.665 spec_heat

parameter data type values [defaults]
(see) material_par
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The material statement spec_heat is used to define the specific heat (in J/kg/K)
of the semiconductor material.
The use of this parameter and related examples are given under material_par in
section 22.456.

22.666 splot_xyz

parameter data type values [defaults]
variable char
data_file char
wave_option char [right],total,left
xy_from realx2
xy_to realx2
view_xrot real [0.]
view_zrot real [0.]
xrange realx2
yrange realx2
zrange realx2
z_min real
z_max real
mode_index intg [1]
grid_sizes intgx2 [20, 20]
trap_index intg [1]

splot_xyz is a post-processor statement used to plot structural data on a 2D plane.
Unlike plot_2d, this command can only generate 3D surface plots of scalar variables.
Other related commands exist and should be used depending on the 2D/3D nature
of the original simulation results. The following rules apply:

• 2D simulations: use plot_2d

• 3D cylindrical simulations with one mesh plane: use plot_2d

• xy plane from a 3D simulation: use cplot_xy for contour plots of scalar
variables, splot_xy for 3D surface plots of scalar variables or vplot_xy for
vector variables.
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• xyz plane from a 3D simulation: use cplot_xyz for contour plots of scalar
variables, splot_xyz for 3D surface plots of scalar variables or vplot_xyz
for vector variables.

Parameters

With the exception of the z-position and vector plot-related parameters that do not
apply, all parameters are the same as in plot_2d.

• wave_option controls the plotting of certain wave-related variables in PICS3D.

• xy_from and xy_to define the (x,y) corners of the plotting plane.

• view_xrot and view_zrot rotate the 3D plot for viewing purposes.

• xrange,yrange and zrange respectively control the display ranges of the x,y
and z axes.

• z_min and z_max define the z coordinates of the corners of the plotting
plane.

Examples

splot_xyz variable=elec_conc xy_from=(0.5, 1.4970) xy_to=(0.5 1.5030) &&
grid_sizes=(60, 20) view_zrot=20.
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22.667 splot_xy

parameter data type values [defaults]
variable char (see list)
data_file char
integration char [no], yes
math_oper char [void],log10,power10
point_ll realx2 (µm)
point_ur realx2 (µm)
view_xrot real [0.]
view_zrot real [0.]
xrange realx2
yrange realx2
zrange realx2
z realx2
integration_xrange realx2 [-1.e4 1.e4] (µm)
integration_yrange realx2 [-1.e4 1.e4] (µm)
grid_sizes intgx2 [20, 20]
mode_index intg [1]
trap_index intg [1]

splot_xy is a post-processor statement used to plot structural data on a 2D plane.
Unlike plot_2d, this command can only generate 3D surface plots of scalar variables.
Other related commands exist and should be used depending on the 2D/3D nature
of the original simulation results. The following rules apply:

• 2D simulations: use plot_2d

• 3D cylindrical simulations with one mesh plane: use plot_2d

• xy plane from a 3D simulation: use cplot_xy for contour plots of scalar
variables, splot_xy for 3D surface plots of scalar variables or vplot_xy for
vector variables.

• xyz plane from a 3D simulation: use cplot_xyz for contour plots of scalar
variables, splot_xyz for 3D surface plots of scalar variables or vplot_xyz
for vector variables.
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Parameters

With the exception of the z-position and vector plot-related parameters that do not
apply, all parameters are the same as in plot_2d.

• integration tells the software to integrate the variable being plotted over
integration_xrange and integration_yrange and display the results in
the plotting log (.plt.msg).

• view_xrot and view_zrot rotate the 3D plot for viewing purposes.

• xrange,yrange and zrange respectively control the display ranges of the x,y
and z axes.

• z is the position on the z-axis for the 2D plot. If necessary, the variable data
will be interpolated from neighboring mesh planes.

Examples

splot_xy variable=elec_conc z=50. grid_sizes=(35, 35) &&
xrange=(0. 1.5) yrange=(0.0 3.0) view_xrot=0 view_zrot=30

22.668 spont_charge

This statement is used in the material macro files to define the spontaneous part of
the polarization vector (Psp(z) in the literature) which leads to interface charges in
GaN materials. This is similar to the charges created through the use of the po-
larization_charge macro command except that with spont_charge, the strain-
induced component of the polarization vector is calculated automatically using piezo-
electric tensor elements such as e15_bulk.
Note that the piezoelectric tensor elements MUST be defined in the macro when using
this statement; otherwise they will default to zero which will lead to an incorrect
interface charge.
This macro parameter must be enabled by using the polarization_charge_model
command in the .sol file; input_piezo_param=yes must be used to enable this
model instead of polarization_charge.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.
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22.669 start_loop

parameter data type values [defaults]
symbol char [void]
value_from intg [1]
value_to intg [2]
step intg [1]

start_loop is a statement used to repeat a sequence of commands. A symbolic
variable is defined as part of the loop and serves to control the number of iterations.
The sequence to be repeated must be terminated by a end_loop statement.

Parameters

• symbol is the symbol used for the loop variable.

• value_from and value_to are the starting and ending values, respectively,
of the loop variable.

• step is increase of the loop variable at each iteration.

Examples

start_loop symbol=%j value_from=1 value_to=3 step=1
scan var=voltage_%j value_to=0.5
end_loop

The above commands cause the symbol %j to take values of 1,2 and 3 and repeat
the scan command accordingly. The equivalent commands without the loop are as
follows:

scan var=voltage_1 value_to=0.5
scan var=voltage_2 value_to=0.5
scan var=voltage_3 value_to=0.5
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22.670 start_qwire_complex

parameter data type values [defaults]
column_start intg [1]
column_end intg [3]

start_qwire_complex is used in the .layer file to define the xy cross-section of
a 2D quantum-confined region (i.e. a quantum wire). All the layers and columns
between this statement and end_qwire_complex form part of the quantum wire
region. Note that in order to use this statement, complex MQW macros (normally
labeled starting with “cx-”) must be used to define the materials in the wire cross-
section.
When the .layer file is processed after using this statement, specialized commands
including begin_qwire_complex and qwire_complex_region will be defined
in the .mater file to define the quantum wire. Without this statement, these complex
MQW regions would merely form a quantum well region with 1D confinement.

Parameters

• column_start and column_end are the column numbers where the quan-
tum wire respectively begins and ends.

22.671 start_same_complex

parameter data type values [defaults]
tag char [void]

start_same_complex is used in the .layer file to define a smaller complex MQW
chunk of a larger superlattice.
The quantum mechanical solver in the software does not handle periodic boundary
conditions. Instead, an infinite potential well is used on the outer edges of the MQW
region. Since it is numerically unfeasible of solving the QW states of a superlattice
consisting of dozens of periods with this kind of boundary condition, a common
approximation is to define a smaller chunk of 5-10 periods and use these QW states
to represent the entire superlattice.
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Using start_same_complex allows the smaller superlattice chunk to be repeated
many times in the input files but lets the software know that all these complex MQW
regions are the same which can help save on computation time
start_same_complex affects all complex MQW regions defined after this state-
ment; its effects are terminated by the matching end_same_complex statement.

Parameters

• tag is a user-defined label identifying the complex MQW region.

Examples

start_loop symbol=%i value_from=1 value_to=25
start_same_complex tag=period4well

.....

isolate_complex
end_same_complex

end_loop

22.672 stop

This statement forces the solver to stop: it has no parameters.

22.673 strain_bar

strain_bar is an active layer macro statement used to define the strain in the
barrier region. It is only used in basic QW macros where the active macro contains
parameters for both the barrier and the well
This statement is otherwise identical to strain_well.

22.674 strain_well

strain_well is an active layer macro statement used to define the strain in the
quantum well. This command is only used for zincblende wells; wurtizte regions
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compute the strain based on lattice values using different commands.
By convention, compressive strain is negative and the strain is given as a fraction
(e.g., 3 percent strain is 0.03).
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.675 strained_mobility

parameter data type values [defaults]
carrier_type char [n] p
vsat_factor real [0.8]
strained_material char [yes],no
import_ref_population char [void]
export_ref_population char [void]
vsat_factor real [0.8]
unstrained_110_enh real [1.]
angle_from_100 real [0.] (degree)

The statement strained_mobility is used to specify the strain dependent mobil-
ity for strained silicon. The basic idea is to evaluate a strain dependent mobility
enhancement factor based on valley/subband population which is then used to scale
the unstrained mobility.
The stained mobility is evaluated according to valley/subband averaged effective
conduction masses in different directions, as well as valley splitting.

Parameters

• carrier_type is the carrier type of interest.

• strained_material indicates whether the structure is strained. This setting
affects reference population data import/export as detailed below.

• import_ref_population is the data file containing reference population data
for the unstrained material. It is imported to compute the strain-induced
effective mass and mobility values when strained_material=yes.

• export_ref_population is the data file which is used to store unstrained
population data for later use when strained_material=no.
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• vsat_factor is the factor used for the saturation velocity. If this factor is
unity, both low field and the saturation velocity are enhanced by the same
factor.

• unstrained_110_enh is the enhancement of unstrained hole mobility in the
110 direction due to anisotropic effective hole mass.

• angle_from_100 is the angle of crystal orientation with respect to 100.

Examples

strained_mobility carrier_type=p vsat_factor=0.5 &&
import_ref_population=ref_pmos_population strained_material=yes &&
unstrained_110_enh=0.93 angle_from_100=45

The above command imports quantum level reference data from a file placed in the
installation directory and sets up the strained mobility model for angle=45 degrees
from 100.

22.676 stretch_vertical_line

parameter data type values [defaults]
corner char [bottom_left], bottom_right,

top_right, top_left
delta_x real [0.0] (µm)
delta_y real [0.0] (µm)

stretch_vertical_line is used in the .layer file to alter the position of a vertical
line. This statement should be used immediately after a layer_mater in order to
identify the vertical line which is to be altered.
The stretching algorithm is outlined in Fig. 22.30: point C is moved to C ′ and other
segment lengths are modified to respect the following proportionality rule:

AB′

B′C ′ = AB

BC

The algorithm can further be understood using a simple children’s toy as a reference;
it consists of a white board on which vertical rubber bands are anchored in order
to draw various shapes. By default, all points on the top/bottom of a vertical line



1088 COMMAND SYNTAX
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Figure 22.30: Illustration of vertical line stretching.

are anchored on the board, as are all reference points on vertical lines not being
stretched (Fig. 22.31 a) ). The final grid is formed by drawing horizontal lines on
the picture to connect movable reference points: lack of parallelism is simply due to
camera positioning and manual positioning of the reference points.
When a single point is moved (Fig. 22.31 b) ), the affected vertical line is stretched
all other points on this line move in a proportional manner. If a second point on
the same line is forced to move with ∆ = 0 (Fig. 22.31 c) ), it is put back to its
original location which affects the stretching of other connected points and also puts
them back to their original location. In this way, complex layer shapes may be
drawn without resorting to the low-level .geo format: points may be moved in many
different ways using different references on the same line or by combining movement
on different lines.
This method also allows for layers of varying height rather than simply varying width
as per the upper_w1 parameter of the layer statement. In many cases, modifying
the height instead of the width results in a better-quality mesh since the ratio of the
distortion (∆y

∆x
) is closer to unity.

Parameters

• corner defines the reference point used to pinch and stretch the vertical line.
The corner is defined using the polygon of the preceding layer_mater state-
ment.

• delta_x and delta_y are the offset applied to the reference point when
stretching the vertical line.
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(a) (b) (c)

Figure 22.31: Illustration of vertical line stretching using a child’s toy: before stretch-
ing (a), with one moved point (b) and with a second point forcibly moved back to
its original position (c).

22.677 stress_solution

parameter data type values [defaults]
initial_stress_model char [stress_set], wurtzite

stress_solution enables the use of a 3D mechanical stress solver; it is meant to be
used alongside the qdot_individual statement.

Parameters

• initial_stress_model controls the initial stress on mesh boundaries. If
=stress_set the boundary conditions are set by the set_initial_stress state-
ment.

As of v.2016, only =stress_set is a valid choice; other parameter values are
still under development.
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22.678 suprem_contact

parameter data type values [defaults]
side char [upper],lower,left,right
mater_label char
insul_semi_interf char [no],yes
xrange realx2 (µm)
yrange realx2 (µm)
num intg
touch_mater intg
zseg_num intg

suprem_contact is used to define electrodes on the mesh imported from CSUPREM,
a process simulation program typically used to simulate the dopant profile.

Parameters

• side specifies the which side the contact is on.

• num is the contact number.

• xrange and yrange define the extent of the contact.

• touch_mater is used to help the software determine which material should
be used to determine the boundary condition. This can be helpful if a contact
touches multiple materials. If a label has previously been defined as an alias,
mater_label may be used instead.

• insul_semi_interf instructs the software to look for a semiconductor/insulator
interface within the specified range and define this interface as the contact
boundary. This method overrides the shape of the contact region that would
otherwise be produced by this command.

• zseg_num is the z-segment number where the contact is located.

Examples

suprem_contact xrange=(-0.05 0.05) num=2 side=upper touch_mater=1

The above defines a contact in the region x ∈ [−0.05, 0.05] on top of the mesh and
which touches material number 1.
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22.679 suprem_impurity_define

parameter data type values [defaults]
name char void
deep_level_trap char [no],yes
charge_type char [donor], acceptor
level real [0.01] (eV)
elec_capture real [1.e-21] (1/m2)
hole_capture real [1.e-21] (1/m2)

suprem_impurity_define is used control the behavior of impurities loaded from
a CSUPREM process simulation.

Parameters

• name is the impurity name in CSUPREM. Note that impurities activated
manually or through a diffusion step in the process simulation usually have
an “_active” suffix: plotting of the CSUPREM structure is recommended to
double-check the impurity name.

• deep_level_trap controls whether the impurity acts as a shallow dopant or
a deep level trap. In the latter case, the trap states have their own Fermi level
rather than being in quasi-equilibrium with the carrier density.

• charge_type determines if the impurity acts as a donor or an acceptor.

• level is the energy position of the impurity.

• elec_capture and elec_capture are the capture cross-section coefficients
used in the trap models.

Examples

suprem_impurity_define name=cu deep_level_trap=yes &&
charge_type=donor level=0.8 elec_capture=1.e-21 hole_capture=1.e-21

The above loads the raw (non-activated) copper (Cu) ion distribution from a cus-
tomized CSUPREM implantation step into the device simulation. If a diffusion
process step had also been used to activate the impurity, the name parameter should
be changed to cu_active in order to load that diffused profile.
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22.680 suprem_property

parameter data type values [defaults]
generic_impurity char [void],donor,acceptor
donor_type2 char [void], arsenic ,phosphorus ,anti-

mony ,selenium ,silcon ,germanium
,generic

acceptor_type2 char [void] ,boron ,beryllium ,magne-
sium ,tin ,zinc ,carbon ,generic

n_doping_level real [0.01] (eV)
p_doping_level real [0.01] (eV)
n_doping_level2 real [0.01] (eV)
p_doping_level2 real [0.01] (eV)
qw_thick real [0.01] (um)
qw_xrange realx2 [-0.05 0.05] (um)
silicon_mater intg
poly_mater intg
gaas_mater intg
aluminum_mater intg
oxide_mater intg
nitride_mater intg
oxynitride_mater intg
photoresist_mater intg
qw_silicon_mater intg

suprem_property is used to define properties related to data imported from the
CSuprem, a process simulation program typically used to simulate the dopant profile.
Please note that the coordinate system in APSYS is different than SUPREM in that
the positive y coordinate points upwards in the former.

• generic_impurity defines the type of dopant assigned to generic impurity.

• donor_type2 assigns a different type (type 2) of donor so that different
ionization energy can be defined.

• acceptor_type2 assigns a different type (type 2) of acceptor so that different
ionization energy can be defined.

• n_doping_level is the ionization energy of the donor.

• p_doping_level is the ionization energy of the acceptor.
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• n_doping_level2 is the ionization energy of the donor type 2.

• p_doping_level2 is the ionization energy of the acceptor type 2.

• qw_thick is the quantum well (qw, if any) thickness.

• qw_xrange is the x-range of he quantum well.

• silicon_mater defines the material number for silicon.

• poly_mater defines the material number for poly silicon.

• gaas_mater defines the material number for GaAs.

• aluminum_mater defines the material number for aluminum.

• oxide_mater defines the material number for SiO2.

• nitride_mater defines the material number for silicon notride.

• oxynitride_mater defines the material number for oxy-nidride.

• photoresist_mater defines the material number for photo-resist.

• qw_silicon_mater defines the material number for quantum-well silicon.
This is actually the same material as silicon but since quantum well region
receives special treatment, a different material number is assigned.

•

Example(s)

suprem_property silicon_mater=1 oxide_mater=3 qw_silicon_mater=2 &&
poly_mater=4 &&
generic_impurity=acceptor acceptor_type2=generic p_doping_level2=0.156 &&
qw_xrange=(-0.05 0.05)

The above defines a QW from -0.05 to 0.05 microns and also defines acceptor type
2 as having ionization energy of 0.156 eV.
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22.681 suprem_to_apsys_material

parameter data type values [defaults]
suprem_mater intg [1]
apsys_mater intg [1]

This command is used when importing simulation data from our process simulator
CSUPREM for use in APSYS. It maps material numbers from one software to the
other.

Parameters

• suprem_mater is the original material number in the CSUPREM file.

• apsys_mater is the new material number that will be used in APSYS.

Examples

suprem_to_apsys_material suprem_mater=3 apsys_mater=4

22.682 sym_polygon_for_semicrafter

parameter data type values [defaults]
similar_polygon_data char [void]
polygon_center_x real [1.0] (um)
polygon_center_y real [1.0] (um)
plane_size_x real [2.0] (um)
plane_size_y real [2.0] (um)
plane_start_x real [0.0] (um)
plane_start_y real [.0] (um)
polygon_edge intg [6]
mesh_per_edge intg [5]
plane_mesh_x intg [30]
plane_mesh_y intg [30]
uniform_below_layer intg [1]
outer_column intg []
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sym_polygon_for_semicrafter is a .layer pre-processing statement used to gen-
erate a set of CSUPREM mesh generation commands. It is meant to be used as quick
alternative to the SemiCrafter GUI for simple shapes such as hexagonal nanowires.
When used, this statement changes the normal operation of the .layer file. Instead of
defining the structure of an xy mesh plane, the layers now define the vertical stacking
in the z direction with each layer corresponding to a z-segment. The top-view of the
new structure (xy plane) is first given by a rectangular mesh plane. Etch statements
from CSUPREM are then used to define a symmetric polygon centered somewhere
on this mesh plane.
See also layers_for_semicrafter for a simplified version of this command which
allows rectangular shapes in the xy plane.

Parameters

• similar_polygon_data is a text file containing information on the polygon.
It can be used as an alternative to the other parameters below.

• polygon_center_x and polygon_center_y are the (x,y) center coordi-
nates of the new polygon.

• plane_start_x and plane_start_y determine the position of the lower left
corner of the plane containing the polygon in the xy plane.

• plane_size_x and plane_size_y determine the extent of the plane con-
taining the polygon in the xy plane.

• polygon_edge is the number of edges of the symmetric polygon.

• mesh_per_edge determines the number of mesh points to assign to each
edge during the CSUPREM etch process. This works in conjunction with
plane_mesh_x and plane_mesh_y which define the regular mesh for the
plane containing the polygon.

• uniform_below_layer specifies the depth of the etch used to create the
symmetric polygon. Below this layer, the original mesh plane is not etched by
CSUPREM and the rectangular plane (substrate) is preserved.

• outer_column is the right-most column in the substrate. All columns to the
right of this one are not included in the simulation.
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Examples

sym_polygon_for_semicrafter polygon_center_x=0.6 polygon_center_y=0.6 &&
plane_size_x=1.2 plane_size_y=1.2 polygon_edge=6 mesh_per_edge=5 &&
plane_mesh_x=30 plane_mesh_y=30

22.683 sym_polygon_quantum_well

parameter data type values [defaults]
polygon_center_x real [1.0] (um)
polygon_center_y real [1.0] (um)
polygon_edge intg [6]

sym_polygon_quantum_well is a .sol statement used to define a region with
quantum confinement in the area between two symmetric polygons. Based on the
input, the software will look to neighboring materials to identify the QW and barrier
regions. The main application of this is nanowire LEDs.
See also sym_polygon_for_semicrafter which is used to define the initial struc-
ture in most problems where sym_polygon_quantum_well would be used.

Parameters

• polygon_center_x and polygon_center_y are the (x,y) coordinates of
the center of the polygon.

• polygon_edge is the number of edges of the symmetric polygon.

Examples

sym_polygon_quantum_well polygon_center_x=0.6 polygon_center_y=0.6 &&
polygon_edge=6

22.684 sym_polygon_taper

parameter data type values [defaults]
taper_info_file char [sym_polygon_taper_info.txt]
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sym_polygon_taper imports a file which defines the taper profile between mesh
planes. This statement is generated automatically by layer.exe when using commands
such as sym_polygon_for_semicrafter. The taper profile is usually determined
automatically by the polygon shapes in the original .layer structure.

22.685 symbol_variable

parameter data type values [defaults]
variation char [function] table
returned char
num intg [1]

symbolic_variable is used to define functional relationship between variables in the
command system. The supported syntax and mathematical expressions are identical
to those in the material macro library file. Please refer to the header information in
the crosslight.mac file that comes with the software installation.

• variation decides if the relationship is defined by a function or a look up table.
For the former, a math function of the form should follow
function(var1,var2,...) end_function
For a table the following form should be used:
table(var1,var2,...) end_table

• returned is the returned symbol which may be used in any of the states
following it.

• num is a number labeling the relation definition in case there are more than
one such definitions.

Example(s)

symbolic_variable returned=%y
function(%x)
s2=%x**2+sin(%x);
s2**2+%x-5.
end_function
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The above function is used to define a relation between symbolic variable %x and
%y so that

symbolic_variable variation=table returned=%ai
table(%volt)
0.3 10.
0.8 18.
1.8 28.
end_talble

This statement uses a table to define the relation. Linear interpolation will be used
is the argument does not fall on the tabulated values.

22.686 taper_between_segments

parameter data type values [defaults]
y1_from_label char
y2_from_label char
y1_to_label char
y2_to_label char
layer_data_file char
xpoint_from real (um)
top_xpoint_from real (um)
xpoint_to real (um)
top_xpoint_to real (um)
yrange_from realx2 [-1.e9 1.e9] (um)
yrange_to realx2 [-1.e9 1.e9] (um)
from_segment intg [1]
to_segment intg

taper_between_segments establishes a taper connection between the first and
last plane of two neighboring z-segments. This statement replaces many parameters
that were previously part of the z_structure statement. See also taper_outer_boundary.
Note that a common misconception about tapers is that they allow sampling of the
region between segments. This is not so: actual mesh planes must be used to sample
longitudinal variations. Tapers only control how the mesh points couple to each
other between planes.
A more complete discussion on the 3D modeling scheme used by Crosslight software
tools can be found in Sec. 6.3.
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Parameters

• y1_from_label and y2_from_label are user labels defining the [y1,y2]
range of the taper line at the beginning of the taper. The matching points
of the taper line at the end of the taper are given by y1_to_label and
y2_to_label.

Instead of labels, absolute coordinates can also be specified using yrange_from
and yrange_to.

• xpoint_from and xpoint_to are the x-coordinates of the taper line at the
beginning and end of the taper, respectively. If the taper line is vertical, then
only one value is required. Otherwise, xpoint_from and xpoint_to corre-
spond to the minimum x value while top_xpoint_from and top_xpoint_to
are the maximum x value of the taper line on each side of the taper.

• from_segment is the z-segment number immediately before the taper. The
next segment (after the taper) is usually determined automatically but can also
be specified using to_segment.

• layer_data_file is the name of a file describing variations in layer thicknesses
along the taper. This file is usually generated automatically by the process
simulator CSUPREM.

• layer is a layer number used to help the software connect taper lines to the
right layer if there is a thickness variation along the taper.

22.687 taper_outer_boundary

parameter data type values [defaults]
left_taper char [no]
right_taper char [no]
bottom_taper char [no]
top_taper char [no]
from_segment intg [1]

taper_outer boundary essentially serves the same purpose as taper_between_segments.
but instead of using point coordinates, taper lines generated by this command are
based on the outer boundaries of the mesh planes on each side of the taper.
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Parameters

• left_taper, right_taper, top_taper and bottom_taper uses a straight
edge on the respective edge of the device as a taper line.

• from_segment is the z-segment number immediately before the taper.

22.688 tau_density

parameter data type values [defaults]
hh_or_lh char [hh] lh ch
gamma_detail char [no] yes
data_file char [void]
density_start real [2.e23] (m−3)
density_end real [2.e24] (m−3)
pn_ratio real [1.]
data_point intg [10]
elec_level intg [1]
hole_level intg [1]

tau_density plots the intraband relaxation time (ie., tau_scat) in 10−13 sec. ver-
sus carrier density. This statement is only used in the gain preview module.

• hh_or_lh indicates whether heavy hole or light hole subband is involved.

• gamma_detail may be used to plot individual contribution to gain broaden-
ing factor (Γ) from different scattering mechanisms such as electron-electron,
electron-hole, etc..

• data_file is the file to which the graphic data is written in ASCII format.

• density_start is the starting point of the carrier density at which the intra-
band relaxation time is calculated.

• density_end is the ending point of the carrier density at which the intraband
relaxation time is calculated.

• pn_ratio is the ratio of hole over electron concentrations. Note that this ratio
can be set to an arbitrary number in the gain preview. In the main solver, this
ratio is determined automatically by the simulator according to the local Fermi
levels.
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• data_point is the number of data points in data curve.

• elec_level and hole_level are the electron and hole subband levels involved
in the optical transition.

Example(s)

tau_density gamma_detail=yes density_end=5.e24

22.689 tau_energy

parameter data type values [defaults]
(see) material_par

tau_energy is the energy relaxation time of hot electrons in seconds. It is used
only when hot electron model is activated.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.

22.690 tau_model

parameter data type values [defaults]
char char
phonon_omega_LO real [34.E-3] (eV)
epsilon_infinity real [11.4]
mater intg 1

tau_model is used to turn on the intraband scattering model discussed in Sec. 10.2.
When this model is activated, the constant ~

τ
normally defined in active_reg is

overridden and replaced with a temperature-dependent calculated value.
This statement may be used in both the gain preview file (.gain) and the main input
file (.sol).
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Parameters

• phonon_omega_LO is the longitudinal optical phonon energy in eV.

• epsilon_infinity is the optical (or at infinite frequency) dielectric constant.

• mater is the material number of the active region under consideration. If a
label has previously been defined, mater_label may be used instead.

Examples

tau_model mater=2 phonon_omega_LO=46.E-3 epsilon_infinity=10.4

22.691 tau_temperature

parameter data type values [defaults]
hh_or_lh char [hh] lh ch
gamma_detail char [no] yes
data_file char [void]
temp_start real [200.]
temp_end real [400.]
density real [2.e24] (m−3)
pn_ratio real [1.]
data_point intg [10]
elec_level intg [1]
hole_level intg [1]

tau_temperature plots the intraband relaxation time (ie., tau_scat) in 10−13

sec. versus temperature. This statement is only used in the gain preview module.

• hh_or_lh indicates whether heavy hole or light hole subband is involved.

• gamma_detail may be used to plot individual contribution to gain broaden-
ing factor (Γ) from different scattering mechanisms such as electron-electron,
electron-hole, etc..

• data_file is the file to which the graphic data is written in ASCII format.

• temp_start is the starting point of temperature range.

• temp_end is the ending point of temperature range.
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• density is the carrier density at which the intraband relaxation time is cal-
culated.

• pn_ratio is the ratio of hole over electron concentrations. Note that this ratio
can be set to an arbitrary number in the gain preview. In the main solver, this
ratio is determined automatically by the simulator according to the local Fermi
levels.

• data_point is the number of data points in data curve.

• elec_level and hole_level are the electron and hole subband levels involved
in the optical transition.

Example(s)

tau_temperature temp_start=200. temp_end=400. density=2.e24 &&
data_point=10 elec_level=1 hole_level=1 gamma_detail=yes

22.692 tax_mass_bar

tax_mass_bar is an active layer macro statement used to define the anisotropic
effective mass of the conduction band for silicon quantum MOS. The band struc-
ture model has a ellipsoidal shaped constant-energy surface of cylindrical symmetry
around a symmetry axis. For example if the ellipsoid is symmetric around the z-axis,
the energy dispersion becomes:

E(kx, ky, kz) = E0 + ~2

2m0

(
k2

z

lax_mass
+ k2

x

tax_mass
+

k2
y

tax_mass

)
(22.127)

tax_mass_barr thus defines the transverse mass perpendicular to the symmetry
axis in the quantum barrier region.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.693 tax_mass_well

tax_mass_well is identical to tax_mass_bar but defines the transverse mass in
the well region rather than in the barrier.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.
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22.694 temp_dep_macro_table

parameter data type values [defaults]
doping_logscale char [yes]
disable_table_method char [no]
temper_points intg [60]
doping_points intg [40]
wavelength_points intg [60]
other_points intg [40]

This statement controls the behavior of temperature-dependent macro parameters
in the software. At the beginning of the simulation, macros are evaluated at fixed
temperature values and a multi-dimensional table is constructed. Later, material
parameters are obtained as needed by interpolation over this table.
The temperature range of the table is governed by the parameters of the heat_flow
statement.

Parameters

• doping_logscale controls whether the doping points are spaced on a linear
or logarithmic scale.

• disable_table_method disables the temperature interpolation table and re-
verts to an older method based on a polynomial fit.

• temper_points is the number of temperature points in the interpolation
table.

• doping_points is the number of doping points in the interpolation table. It
used as an extra dimension for the interpolation (.e.g graded doping region).

• wavelength_points is the number of wavelength points in the interpolation
table. It used as an extra dimension for the interpolation (e.g. spectrum-
dependent quantities).

• other_points is the number of points used for other graded properties (e.g.
composition). Again, this is an extra dimension used for interpolation.

Examples

temp_dep_macro_table temper_points=100
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22.695 temperature

parameter data type values [defaults]
temp real [300] (K)

temperature sets the isothermal temperature in the device.

Parameters

• temp is the temperature in K.

Examples

temperature temp=350

22.696 thermal_interf

parameter data type values [defaults]
x_label char [void]
y_label char [void]
within_x1_label char [void]
within_x2_label char [void]
within_y1_label char [void]
within_y2_label char [void]
thm_num intg
thm_type intg [1]
thm_with_x realx2 [-1.1e19 1.1e19](um)
thm_with_y realx2 [-1.1e19 1.1e19](um)
thm_x real (um)
thm_y real (um)
thm_lat_temp real [300.] (Kelvin)
thm_ht_flow real [100.] (2D: W/m, 3D:W)
thm_cond real [10.] (2D: (W/K)/m, 3D: W/K)
thm_ext_temp real [300.] (K)
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The statement thermal_interf defines the thermal properties of a non-electrode
thermal boundary.

Parameters

The parameters of this command relating to the positioning of the thermal interface
are the same as those in the interface statement. The parameters related to the
thermal properties are the same as those of the contact statement, with some minor
syntax variations. For the sake of brevity, these parameters will be omitted here.

• thm_num is the thermal interface number. This number is distinct from the
contact numbers even though contacts also serve as thermal boundaries.

Examples

Example(s)

thermal_interf thm_num = 1 thm_type = 1 thm_lat_temp = 77. &&
thm_with_x = (2. 2.) thm_with_y = (2.2 3.)

thermal_interf thm_num = 2 thm_type = 2 thm_ht_flow = 0. &&
thm_y = 3.

22.697 thermal_kappa

thermal_kappa defines the thermal conductivity κ (in W/(m*K)) for a given ma-
terial. This is used to solve the heat flow equation and is otherwise ignored.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.698 thermal_kappa_xy

parameter data type values [defaults]
dir char [y],x
mater_label char
factor real [1.]
mater intg [1]
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This statement modifies the thermal conductivity defined by thermal_kappa to
create an anisotropic κ on the x-y plane. This may be useful for the effective medium
approximation of multiple layers (such as DBR mirrors in a VCSEL).

Parameters

• dir is the direction in which the κ is scaled.

• factor is the scaling factor applied to κ.

• mater is the number of the material affected by this statement. If a label has
previously been defined, mater_label may be used instead.

Examples

thermal\_kappa_xy dir=y factor=0.6 mater=3

The above statement decreases κ in the y-direction by a factor of 0.6 in material
number 3.

22.699 tmass_gamma_bar

parameter data type values [defaults]
(see) material_par

The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.
It is the barrier conduction band effective mass in direction perpendicular to the
c-axis. This statement is applicable for wurtzite structure active region [1]. The
mass in c-axis direction is specified by mass_gamma_bar.
[1] S. L. Chuang, “Optical Gain of Strained Wurtzite GaN Quantum Well Lasers",
IEEE J. Quantum Electron., VOL. 32, NO. 10, OCTOBER 1996, p. 1791
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22.700 tmass_gamma_bulk

parameter data type values [defaults]
(see) material_par

The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.
It is the conduction bane effective mass in direction perpendicular to the c-axis. This
statement is applicable for wurtzite structure bulk region [1].
[1] S. L. Chuang, “Optical Gain of Strained Wurtzite GaN Quantum Well Lasers",
IEEE J. Quantum Electron., VOL. 32, NO. 10, OCTOBER 1996, p. 1791

22.701 tmass_gamma_well

parameter data type values [defaults]
(see) material_par

The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.
It is the well conduction band effective mass in direction perpendicular to the c-axis.
This statement is applicable for wurtzite structure active region [1]. The mass in
c-axis direction is specified by mass_gamma_well.
[1] S. L. Chuang, “Optical Gain of Strained Wurtzite GaN Quantum Well Lasers",
IEEE J. Quantum Electron., VOL. 32, NO. 10, OCTOBER 1996, p. 1791
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22.702 top_contact

parameter data type values [defaults]
contact_type char [ohmic] schottky
use_schottky_xp char [yes] no
column_num intg [1]
from real
to real
contact_num intg
barrier real (volt)
work_function real (volt)
intern_xp_size real [0.0002] (um)

top_contact defines the placement of the top contact in the .layer file. When the
.layer file is processed, it defines boundary conditions for polygons in the .geo file
and creates a matching contact statement in the .mater file.

Parameters

• contact_type indicates the type of contact and can take either ohmic or
schottky.

• use_schottky_xp is used to control the use of extra point near the contact
in case the contact is of Schottky type.

• column_num describes the column where this contact is found.

• to and from set the x-range where the contact lies. Note that the origin is at
the upper left-hand corner of each polygon and that units are in µm.

• contact_num defines the index number of the contact.

• barrier is the barrier height of the Schottky contact.

• work_function is the work function of the Schottky contact.

• intern_xp_size is the internal extra point size around a Schottky contact.

Examples

top_contact column_num=3 from=0 to=1.8 contact_num=1
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22.703 trap_assisted_tunnel_junc

parameter data type values [defaults]
level_from_cond real [0.6] (eV)
tau_n real [1.e-2] (s)
tau_p real [1.e-2] (s)
pf_expo_factor real [1.]
set_tj_num intg

trap_assisted_tunnel_junc defines a trap-assisted (interband) tunneling junc-
tion model[1]. This command must be used in conjunction with tunnel_junc with
use_physical_model=yes.
For trap-assisted intraband tunneling, please see trap_assisted_tunneling.

Parameters

• level_from_cond is the energy level of the trap, measured from the conduc-
tion band.

• tau_n and tau_p are the trap carrier lifetimes.

• pf_expo_factor is the Poole-Frenkel shift of the trap level due to the local
field. The same formula used for the incomplete ionization of traps (Sec. 5.1.4)
is used here.

• set_tj_num, when specified, limits the trap settings to a specific tunnel
junction (numbered according to the order of the tunnel_junc statements).
If this parameter is omitted, all tunnel junctions share the same settings.

Examples

tunnel_junc use_physical_model=yes yrange=(0.9 1.1)
trap_assisted_tunnel_junc level_from_cond=0.8 tau_n=1.e-2 tau_p=1.e-2
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22.704 trap_assisted_tunneling

parameter data type values [defaults]
direction char x,[y],z
carrier char [electron], hole
x1_label char [void]
y1_label char [void]
x2_label char [void]
y2_label char [void]
zplane_from_label char
zplane_to_label char
zdir_x1_label char
zdir_x2_label char
zdir_y1_label char
zdir_y2_label char
model char [linear] , poole_frenkel, hopping
trap_profile char
point_ll realx2 [µm ]
point_ur realx2 [µm ]
scale_tunnel_coef real [1.]
zdir_xrange realx2 [µm ]
zdir_yrange realx2 [µm ]
trap_density real [1.e20] (m−3)
linear_rate1 real [1.e8] (m/(V s))
tau0_pf real [1.e7] (s)
trap_size_hopping real [1.e-3] (µm)
trap_level_depth real [1.2] (eV)
trap_profile_start real [0.] (µm)
tau0_hopping real [1.e-9] (s)
trap_level_ref real [1.2] (eV)
zplane_from intg [1]
zplane_to intg [5]
exclude_materi(i=1..5) intg
fly_to_contacts intgx2
zseg_num intg

trap_assisted_tunneling defines a trap-assisted intraband tunneling model. Prior
to the 2015 version, this command referred to an interband tunnel junction model
which can now be accessed using trap_assisted_tunnel_junc.
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Theory

The trap-assisted tunneling (TAT) model is based on the assumption that traps in
a barrier (insulator or wide bandgap material) are able to emit carriers with a rate
of 1

τ
and thus generate a current flux with the following form[143]:

J = q
∫ tbar

0

Ntrap

τ
dx (22.128)

where the integral is along the thickness of the barrier layer and Ntrap is the bulk
trap density.
To convert the above into the familiar field-dependent mobility form, the rate must
be written in a field-dependent form:

1
τ

= StatfT (22.129)

where Stat is the emission rate, F is the electrical field and fT is a correction factor
due to temperature, related to thermal activation of trapped carriers at energy level
Et:

fT = Ae
− Et

kBT (22.130)

A = e
Et0

kB×300 (22.131)

Using a first-order approximation of the above rate, the mobility form can be ob-
tained:

StatfT = StatfT |F =0 + d

dF
(StatfT )F (22.132)

and by imposing the boundary condition of zero net current in the absence of applied
bias, the current flux can be obtained as:

J = qNtrap
d

dF
(StatfT ) ∆V (22.133)

It is interesting to note that if the emission rate is linear in field, the current flux
is only dependent on applied voltage and not on the field or the thickness of the
barrier.
Various models of field dependence are implemented:
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Linear model

The field dependence comes from a linear dStat

dF
term. This model is easy to converge

since there is no field-dependent mobility. Temperature dependence still included
via the fT term which has no field dependence.

Poole-Frenkel model

The field dependence is introduced via fT and comes from a shift in the trap level’s
position, assuming the presence of a Coulomb potential[143]:

∆Et =
√
qF

πϵ0ϵ
(22.134)

This model has a strong field dependence and current saturates strongly.

Hopping model

The field dependence is introduced via fT and comes from a shift in the trap level’s
position, assuming the presence of a rectangular potential well of size dhop:

∆Et = Fdhop (22.135)

Parameters

• direction is the direction of the tunneling current.

• carrier is the type of carrier concerned.

• point_ll, point_ur are upper left and lower right corner points of the area
being considered for tunneling. The area must be large enough to cover the
potential barrier and must be at least a few times the mean free path of the tun-
neling carrier. However, it should not be so large as to affect carrier transport
in areas unrelated to quantum tunneling.

• x1_label,y1_label,x2_label,y2_label are position labels equivalent to point_ll
and point_ur.

• zplane_from zplane_to allow the tunneling to take place between two z-
mesh planes. Instead of plane numbers, labels may be used in zplane_from_label
and zplane_to_label.
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Optionally, the lateral range of the tunneling between these two planes may be
restricted using the absolute coordinates of zdir_xrange and zdir_yrange
or the position labels in zdir_x1_label, zdir_x2_label,zdir_y1_label
and zdir_y2_label.

• model switches between the available trap-assisted tunneling models.

• trap_density is the trap density (Ntrap).

Spatial dependence of the trap profile can be included via a text file de-
fined in trap_profile; this spatial profile is relative to the position given in
trap_profile_start.

• linear_rate1 defines the value of dStat

dF
.

• tau0_pf and tau0_hopping define the value of τ at 300K in the Poole-
Frenkel and hopping models, respectively. They serve to define the constant
value of Stat in the 1st-order expansion of the field dependence.

• trap_size_hopping is the value of dhop.

• trap_level_depth defines the trap position Et.

• trap_level_ref defines the trap reference Et0.

• exclude_materi(i=1..5) may be used to tell the software to omit quantum
tunneling from certain materials in the simulation.

• fly_to_contacts, when used, takes the tunneling current and applies it di-
rectly to the electrode current of the specified pair, bypassing the local mesh.
This may be used to represent hot carriers flying over a depleted area where
thermalized carriers would be unable to support the needed current flow.

• zseg_num is the z-segment number in which the tunneling takes place (if on
the x-y plane).

22.705 trap_conc_1

trap_conc_i,i=1..9 is a passive macro statement used when traps are defined
using the material statement rather than doping. It defines the concentration (in
m−3) of traps with the label “i”.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.
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22.706 trap_conc_2

See trap_conc_1.

22.707 trap_conc_3

See trap_conc_1.

22.708 trap_conc_4

See trap_conc_1.

22.709 trap_conc_5

See trap_conc_1.

22.710 trap_conc_6

See trap_conc_1.

22.711 trap_conc_7

See trap_conc_1.

22.712 trap_conc_8

See trap_conc_1.

22.713 trap_conc_9

See trap_conc_1.
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22.714 trap_excitation

parameter data type values [defaults]
emit_carrier char [electron] hole
mater_label char
cross_section real [1.e-19] (m2)
power_depend_coef real [0] (m4/Watt)
trap_index intg [1]
mater intg [1]

The statement trap_excitation is used to specify the photo properties of a deep
level trap. The theory is detailed in Sec. 5.5.

22.714.1 Parameters

• emit_carrier specifies the type of carriers emitted upon light excitation.

• cross_section is the cross section of light absorption. When it is multiplied
by the density of traps responding to light, an equivalent absorption coefficient
may be obtained.
power_depend_coef is the power dependent cross section coefficient. When
multiplied by the optical power density in units of Watt/m2, it adds to the
light absorption cross section of the trap.

• trap_index is the index (or label) of the deep trap.

• mater is the index of the material being affected. If a label has previously
been defined for this material, mater_label may be used instead.

22.714.2 Examples

trap_excitation emit_carrier=electron &&
cross_section=1.e-19 trap_index=1 mater=2

22.715 trap_level_i

trap_level_i is used to define or override the energy level of deep traps with the
label “i” (i=1..9). This level is measured from the conduction band and in the unit
of eV. See Sec. 5.5 for more details.
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The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.716 trap_ncap_i

The material statements trap_ncap_i and trap_pcap_i are the electron and hole
capture cross section in m2. i=1..9 is a label identifying the trap species affected by
this statement. the trap_i (i=1,2,...).
The relationship between capture cross sections and minority carrier lifetime is ex-
plained under the statements lifetime_n and lifetime_p. See also Sec. 5.5 for
more details.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.717 trap_pcap_i

See trap_ncap_i.

22.718 trap_type_1

parameter data type values [defaults]
type char [donor]
mater_label char
mater intg [1]

trap_type_i,i=1..9 is a passive macro statement used when traps are defined
using the material statement rather than doping. It defines the trap type (donor
or acceptor) for trap species #i.
The material number is only necessary when used to override macro parameters in
the .sol file. In that case, mater_label may be used instead if a label has previously
been defined for the material.

22.719 trap_type_2

See trap_type_1.



1118 COMMAND SYNTAX

22.720 trap_type_3

See trap_type_1.

22.721 trap_type_4

See trap_type_1.

22.722 trap_type_5

See trap_type_1.

22.723 trap_type_6

See trap_type_1.

22.724 trap_type_7

See trap_type_1.

22.725 trap_type_8

See trap_type_1.

22.726 trap_type_9

See trap_type_1.

22.727 traplevel_stddev_1

traplevel_stddev_i,i=1..9 is a passive macro statement used when traps are
defined using the material statement rather than doping. It defines the standard
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deviation when the trap levels follow a gaussian model. This statement applies to
traps with the label “i”.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further destddevs.

22.728 traplevel_stddev_2

See traplevel_stddev_1.

22.729 traplevel_stddev_3

See traplevel_stddev_1.

22.730 traplevel_stddev_4

See traplevel_stddev_1.

22.731 traplevel_stddev_5

See traplevel_stddev_1.

22.732 traplevel_stddev_6

See traplevel_stddev_1.

22.733 traplevel_stddev_7

See traplevel_stddev_1.

22.734 traplevel_stddev_8

See traplevel_stddev_1.
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22.735 traplevel_stddev_9

See traplevel_stddev_1.

22.736 traplevel_tail_1

traplevel_tail_i,i=1..9 is a passive macro statement used when traps are defined
using the material statement rather than doping. It defines the characteristic
decay constant (L in e−E/L) when the trap levels follow an exponential decay model.
This statement applies to traps with the label “i”.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.737 traplevel_tail_2

See traplevel_tail_1.

22.738 traplevel_tail_3

See traplevel_tail_1.

22.739 traplevel_tail_4

See traplevel_tail_1.

22.740 traplevel_tail_5

See traplevel_tail_1.

22.741 traplevel_tail_6

See traplevel_tail_1.
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22.742 traplevel_tail_7

See traplevel_tail_1.

22.743 traplevel_tail_8

See traplevel_tail_1.

22.744 traplevel_tail_9

See traplevel_tail_1.

22.745 tunneling

parameter data type values [defaults]
direction char x,[y],z
carrier char [electron], hole
barrier_type char [propagation_matrix]
trans_broad char [no], rectangle, lorentzian
x1_label char [void]
y1_label char [void]
x2_label char [void]
y2_label char [void]
local_correction char [yes],no
miniband_model char yes,[no]
miniband_period_y1_label char
miniband_period_y2_label char
save_miniband char [miniband_data.txt]
adjust_emission_point char [yes]
zplane_from_label char
zplane_to_label char
zdir_x1_label char
zdir_x2_label char
zdir_y1_label char
zdir_y2_label char
point_ll realx2 [µm ]
point_ur realx2 [µm ]
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broad_width real [1.] (kBT )
scale_tunnel_coef real [1.]
adjust_barrier real [0.] (eV)
miniband_upper_range real [0.5](eV)
upper_range_above_peak real [0.2] (eV)
zdir_xrange realx2 [µm ]
zdir_yrange realx2 [µm ]
miniband_period_y1 real [µm ]
miniband_period_y2 real [µm ]
mesh_multiply intg [2]
energy_points intg [3000]
miniband_number intg [2]
miniband_fd_mesh intg [100]
miniband_k_points intg [20]
zplane_from intg [1]
zplane_to intg [5]
exclude_materi(i=1..5) intg
fly_to_contacts intgx2

tunneling enables the intraband quantum tunneling transport mechanism. This
covers a variety of models including the standard theories of Sec. 9.2 and mini-
band transport[144, 145]. As of the 2013 version, this command is also used to
enable non-equilibrium Green’s function (NEGF) transport in conjunction with the
negf_model command.

Parameters

• direction is the direction of the tunneling current.

• carrier is the type of carrier concerned.

• barrier_type is the type of barrier being tunneled through. Several models
are available depending on the shape of the potential profile:

– “rectangle” (default): barrier profile should have steep edges on both sides.
– “triangle”: one side of the barrier should be much steeper than the other.
– “smooth_wkb”: smooth barrier profile
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– “propagation_matrix”: general-purpose model, more accurate but slower
than the others.

• local_correction is used to indicate whether a mesh-dependent quantum tun-
neling correction is applied to all local mesh points. If set to no, the tunneling
current is calculated at the top of the barrier and is assumed to be uniform
across the whole rectangle region. The local mesh correction method is rec-
ommended for relatively smooth potential profiles while non-local correction
works better for thin and high tunneling barriers.

• trans_broad is used to indicate if and what type of energy level broadening
is used when using the “propagation_matrix” method. The profile of the
broadened level may in take rectangle or Lorentzian shape.

• point_ll, point_ur are upper left and lower right corner points of the area
being considered for tunneling. The area must be large enough to cover the
potential barrier and must be at least a few times the mean free path of the tun-
neling carrier. However, it should not be so large as to affect carrier transport
in areas unrelated to quantum tunneling.

• x1_label,y1_label,x2_label,y2_label are position labels equivalent to point_ll
and point_ur.

• adjust_emission_point triggers a downhill search for the bottom of the
potential profile in order to set the tunneling energy range; if disabled, the
energy range is set using the start/end points of the tunneling region. It is
recommended to disable this setting if dealing with a potential profile consisting
mostly of quantum wells.
This parameter is new as of the 2013 version and replaces the use of manual
“barrier” labels.

• broad_width is the broadening of tunneling energy level in units of kbT ,
where kb is the Boltzmann constant and T is the temperature.

• scale_tunnel_coef provides a way to artificially scale the tunneling coeffi-
cient.

• adjust_barrier works when local_correction=no and is used to adjust the
barrier height used to compute the carrier density at the top of the barrier.
Please note that this parameter only affects the carrier concentration at the
top of the barrier (thus the magnitude of tunneling current) but does not affect
the potential profile used to calculate the tunneling transparency.

• mesh_multiply is a multiplication factor used to over-sample the electrical
mesh along the path of the tunneling current. It is used in the propagation
matrix method to get more accurate results.



1124 COMMAND SYNTAX

• energy_points is the number of energy divisions used in evaluation of tun-
neling current when using the propagation matrix method.

• fly_to_contacts, when used, takes the tunneling current and applies it di-
rectly to the electrode current of the specified pair, bypassing the local mesh.
This may be used to represent hot carriers flying over a depleted area where
thermalized carriers would be unable to support the needed current flow.

• miniband_model would enable the mini-band transport model[144, 145]
through the tunneling region.

• miniband_period_y1_label and miniband_period_y2_label are po-
sition labels equivalent to miniband_period_y1 and miniband_period_y2.

• save_miniband saves the miniband data to a file.

• miniband_period_y1 and miniband_period_y2 are positions used to
define the beginning and ending of a period for the miniband model.

• miniband_upper_range defines an upper range within which we search the
energy solution of the miniband.

• miniband_number is the number of minibands to be solved and used in
optical/transport modeling.

• miniband_fd_mesh is the finite difference mesh number within a period of
the miniband.

• miniband_k_points is the number of k-points to be solved for the miniband
structure.

• upper_range_above_peak extends the tunneling energy range some dis-
tance above the peak of the potential profile. Note that the default non-zero
value automatically double-counts some carriers since thermionic emission can
occur within this range; use a zero value to go back to the pre-2013 behavior.

• zplane_from zplane_to allow the tunneling to take place between two z-
mesh planes. Instead of plane numbers, labels may be used in zplane_from_label
and zplane_to_label.
Optionally, the lateral range of the tunneling between these two planes may be
restricted using the absolute coordinates of zdir_xrange and zdir_yrange
or the position labels in zdir_x1_label, zdir_x2_label,zdir_y1_label
and zdir_y2_label.

• exclude_materi(i=1..5) may be used to tell the software to omit quantum
tunneling from certain materials in the simulation.
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Position Labels

In this statement, various absolute coordinates defining boundaries can be replaced
by equivalent position labels for the convenience of the user. These labels must
be predefined using the x_position, y_position or define_vertical_position
commands.
It is also possible to use higher-level commands such as layer_position and col-
umn_position in the .layer file. These will automatically generate the correct po-
sition labels when the file is processed so the user never needs to figure out the exact
coordinate of a position label. Also, any changes in the .layer file will automatically
result in matching changes to the position labels.

Examples

tunneling point_ll=(0., 2.49) point_ur=(0.5 2.6) &&
barrier_type=triangle

tunneling point_ll=(0., 4.7) point_ur=(0.5 4.95) &&
barrier_type=triangle carrier=hole
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22.746 tunnel_junc

parameter data type values [defaults]
x_start_label char
x_end_label char
y_start_label char
y_end_label char
set_n_side char [void],up,down,left,right
use_physical_model char [no]
region_label char
direction char [xy],z
zplane_start_label char
zplane_end_label char
type2_quantum_well char [no]
ignore_forward_current char [no]
physical_model char [zener], silicon_pat, kane_direct,

kane_indirect
xrange realx2 [-1.e9 1.e9] (um)
yrange realx2 [-1.e9 1.e9] (um)
equiv_mobility real [0.01] (m2/V/s)
tun_mass real
type2_qw_mob_scale real [1.0]
silicon_holemass_fac real [1.]
scale_tj_current real [1.]
zseg_num intg [1]
silicon_dir intg [001], 011 111

tunnel_junc is used to define an interband tunneling region. Unlike the zener
model which converts the tunneling current into a local generation term, this model
is a non-local approach and the tunneling current goes out from one mesh point and
into a remote point. This model therefore bypasses the normal “fluid-like” approach
of Drift-Diffusion theory.
The default model for the tunneling current simply assumes some equivalent mobility
coefficient which is used to exchange electron and holes on either side of the junction.
This method is very numerically stable but may miss some important features of the
device such as the peak current and negative resistance of the tunnel junction.
More accurate models (use_physical_model and physical_model) may also be
used to compute the equivalent mobility. This is most often used in multi-junction
devices such as solar cells where the individual tunneling junctions are forward-
biased. However, this physical model may have trouble in reverse-biased junctions
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and calculate a zero mobility which would completely block the current across the
tunnel junction. In such a case, the default equivalent mobility model may be used
to restore the current flow.
Note that since the tunneling is defined between two mesh points only, it is very
important to define the tunneling range properly so that it is representative of the
whole junction. Ideally, the end points will be some distance away from the junction
itself where the carrier density is high but the band profile is relatively flat. However,
the points should also not be too far apart since tunneling is a short-range process:
inverting some exponentials can cause NaN (not a number) or divide by zero errors
if the wave function decays too much. Selecting points that do not meet this criteria
may result in an inaccurate evaluation of the overall tunneling current in the device.

Parameters

• x_start_label, x_end_label, y_start_label and y_end_label are po-
sition labels which define the tunneling range in the xy plane. When not used,
the software will default to the absolute coordinates defined in xrange and
yrange.
For tunneling in the z direction, zplane_start_label and zplane_end_label
should be used.

• set_n_side is used to select the direction of the electron-to-hole tunneling.
If void, the software will examine the doping profile to determine the most
likely choice. With a properly defined tunneling range and doping profile, the
default setting is usually sufficient. However, this may need to be set to define
the position of the electron well in type II QW structures.

• use_physical_model tells the software to use one of the physical models to
estimate the equivalent tunneling mobility. The exact model used is set by
physical_model and can take one of the following values:

– zener defines the Zener tunneling model described in Sec. 9.3.
– silicon_pat defines a phonon-assisted tunneling model for silicon derived

by Schenk[146, 147].
– kane_direct is similar to the Zener model above but uses a slightly differ-

ent field dependence model[148].
– kane_indirect is also similar to the Zener model above and uses yet an-

other slightly different field dependence model[148].

Trap-assisted tunneling may also be defined using trap_assisted_tunneling.
This will supplement the tunneling current calculated by the above physical
models.
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• region_label is a user-defined label defining the tunneling region. It must be
accompanied by a matching st:nonlocal_transp_region statement.

• direction determines whether the tunneling direction is within a mesh plane
(xy) or across multiple mesh planes (z).

• equiv_mobility is the equivalent mobility for the transport of carriers across
the junction when the physical models are not used. This will determine the
slope of the I-V curve of the junction.

• type2_quantum_well is used to activate a special tunneling model for
MQW/superlattice regions with type II band alignment. See type2_qw_setting
for additional details regarding this model.

• ignore_forward_current can be used to artificially ignore the forward cur-
rent to improve convergence in cases where the tunnel junction is reverse-biased
(e.g. power applications).

• tun_mass is the Zener interband tunneling mass to be set by the user. If it is
not specified, the combined effective mass is used as in the following formula:
2memh/(me +mh).

• type2_qw_mob_scale can be used when type2_quantum_well=yes to
scale the effective mobility on a per-junction basis. An additional parameter
also exists in type2_qw_setting to scale the mobility for the whole simula-
tion project.

• silicon_holemass_fac can be used to artificially scale the hole mass in the
phonon-assisted silicon model.

• scale_tj_current can be used to artificially scale the tunneling current.

• zseg_num is the z-segment number in a 3D structure.

• silicon_dir is the silicon crystal orientation in the phonon-assisted model.

Examples

tunnel_junc y_start_label=y1 y_end_label=y2 equiv_mobility=0.02
$ The labels y1 and y2 are predefined positions.
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22.747 two_photon_carr

This material statement is used to defined the optical loss due to free carriers gen-
erated by the two-photon absorption process[149]. This statement is used in pas-
sive regions and an alternate method of defining this term is also found in pas-
sive_carr_loss. For active regions, equivalent parameters are available in ac-
tive_reg and set_active_reg.
The two_photon_carr statement defines the propagation power loss coefficient γ
in Eq. 22.137. This term should not be seen as a separate single-step three-photon
loss term but as a side effect of the two-photon absorption process described by β in
the same equation[149].
In Eq. 22.137, the units of γ ∗S2 must be in m−1 so that γ is given in m5. However,
if one follows the form of Eq. 22.137 given in [149], γ is sometimes given in units of
m3/W 2 so that dϕ

dz
and γϕ3 are both in W/m3. Following the same approach used

for the β coefficient, a conversion factor of (~ωvg)2 may be used to convert this kind
of value to the Crosslight convention.
Alternatively, we can also rewrite the relationship between β and γ given in [149] to
reflect our choice of units:

γ = σ

2
τβvg (22.136)

where σ is the total free-carrier absorption cross-section (usually defined using elec_carr_loss
and hole_carr_loss) in m2, τ is the carrier lifetime , vg is the group velocity and
β is in m2.
Eq. 22.136 shows that if both free carrier losses and two_photon_loss are defined
for a material, then a consistent value of two_photon_carr should also be defined
for this material. Conversely, two_photon_carr should be zero if either of these
terms is neglected in the model.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.748 two_photon_loss

This material statement is used to defined the optical loss due to the two-photon
absorption process[149] in passive regions and an alternate method of defining this
term is also found in passive_carr_loss. For active regions, equivalent parameters
are available in active_reg and set_active_reg.
The two_photon_loss statement defines the propagation power loss coefficient β
in the following equation:



1130 COMMAND SYNTAX

dS

dz
= −αS − βS2 − γS3

= (−α− βS − γS2)S
= −α′(S)S (22.137)

where S is the local photon density in m−3. For the γ term, see two_photon_carr.
In the software, β is implemented as an absorption coefficient that depends on the
local photon density. α′(S) is thus used to compute the stimulated recombination
and generation terms in the drift-diffusion equation and additional derivatives in ∂α

∂S

are used to define the Jacobian. Since α and βS must have the same units and α is
in m−1, β must be given in m2.
In reference [149], an alternate form of Eq. 22.137 which depends on the photon
flux ϕ in W/m2 is used so in that reference, β is given in m/W . These units can
be converted to the convention used by PICS3D by noting that by definition, the
photon flux and photon density are related by the group velocity and photon energy:

ϕ = ~ωvgS (22.138)

Using the above relationship in Eq. 22.137, it is trivial to show that a scaling factor
of ~ωvg exists between the two definitions of β. From reference [149] β ≈ 1.5 ×
10−10m/W . Assuming a group refractive index of 3.6 and an emission wavelength of
1.3 µm, the equivalent value β used in PICS3D should therefore be on the order of
1.9 × 10−21m2.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.749 type2_qw_setting

parameter data type values [defaults]
use_average_field char yes, [no]
mean_free_path real [0.1] (um)
bulk_radiative_coef real [1e-19] (m3/s)
tau_trap real [1e-9] (s)
mobility_scale real [1.0]
qw_period intg
dos_scale_ref_period intg
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This statement sets the parameters for the tunneling model when used in a type II
QW photodetector It is used in conjunction with tunnel_junc with the parameter
type2_quantum_well=yes.
The model is derived from [150] which deals with quantum cascade lasers with a
tunneling-assisted transition. This paper presents a rate equation in (2) and a con-
version to current density in (10). APSYS uses a similar equation except that the
transitions considered are between conduction and valence subbands rather then
between different conduction subbands.

Parameters

• use_average_field uses the average field to compute the long-range tunnel-
ing rather than local values which may quickly flucutate.

• mean_free_path is the mean free path of the carriers in µm.

• bulk_radiative_coef is an effective spontaneous emission coefficient for the
superlattice.

• tau_trap is an effective trap lifetime for the superlattice.

• mobility_scale is a global scaling factor applied to the effective mobility of
all type II tunneling regions.

• qw_period is the number of quantum well periods in the project. It is used in
conjunction with dos_scale_ref_period to scale the 1D DOS. This allows
more carriers per energy unit to participate in the tunneling in larger devices.

• dos_scale_ref_period is the reference number of periods used to scale the
1D DOS. If this parameter is used, qw_period must also be defined; other-
wise, no scaling is done. This parameter can be used to account for the change
in responsivity with increased number of periods.

Examples

$ mean-free-path mainly affect longer range tunneling current.
type2_qw_setting mean_free_path=0.4 bulk_radiative_coef=3.e-19
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22.750 unified_schottky_local_tunneling

parameter data type values [defaults]
scale_tunnel_mass real [1.]
max_range real [0.01]
scale_current real [1.]

unified_schottky_local_tunneling converts the non-local tunneling integral into
a local carrier generation rate[151, 152].
This simplified approach has the advantages of being convenient and easy to define
but the artificial generation of holes may have unphysical effects.

Parameters

• scale_tunnel_mass is an artificial scaling coefficient for the tunneling mass.

• max_range defines a region around the top of the barrier that is used for the
carrier generation.

• scale_current is an artificial scaling coefficient for the tunneling current.

22.751 use_bulk_affinity

parameter data type values [defaults]
all_material char [yes]
macro_name char
mater_label char
mater intg [1]

use_bulk_affinity is an active layer macro statement used to define the band offset
of the quantum well. It directs the program to use bulk material affinity to define
band offsets of the active layers.
This statement overrides all other band offset declarations including band_offset
and band_discont.
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Parameters

• all_material lets all active layer materials to use bulk affinity as band offsets.

• macro_name indicates all materials with this macro name are affected.

• mater is the material number affected. It is not used if macro_name is
already set.

• mater_label may be used instead of mater if a label has previously been
defined as an alias.

Examples

use_bulk_affinity all_material=yes

22.752 use_bulk_bandgap

This command would force the program to take the bandgap of the bulk macro if
there is a conflict between active and bulk macros.

22.753 use_bulk_property

This command would force the program to take the material parameters of the bulk
macro if there is a conflict between active and bulk macros.
This command affects bandgap, affinity and effective masses.

22.754 use_macrofile

parameter data type values [defaults]
macroj (j=1,2,...) char [void]

The statement use_macrofile is used to override or to add to the default macro
files crosslight.mac and more.mac. The simulator will check macro files loaded by
this statement before going to the default macros. More than one macro files can be
loaded this way
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• macroj (j=1,2,...) is the user-defined macro file.

Example(s):
use_macrofile macro1=mydata.mac

22.755 user_defined_mobility

parameter data type values [defaults]
carrier_type char [electron], hole
dependence char [parallel_field], total_field
curve_control char [vertical_field] total_field, elec-

trode_voltage
data_type char [mobility], velocity, current
filek (k=1...9) char [my_mob_data_file]
spline_smooth char [no]
mater_label char
scale_column1 real [1.]
scale_column2 real [1.]
scale_curve_para real [1.]
curve_parak (k=1...9) real
mater intg [1]
electrode intg [2]

The user_defined_mobility command is used to import user-defined mobility
into Crosslight simulation software. Whenever this command is used for a material,
it will override whatever default mobility model or previously defined mobility model
it may have had.
The user supplied mobility model is imported as a 2-column data file to define the
mobility versus field relationship. Other forms such as velocity and current can also
be used; the software will convert the data into mobility before using it. One may
use several data files to define several regimes of the mobility.

Parameters

• carrier_type is the type of carrier being defined.

• dependence defines whether the mobility depends on the field component
parallel to the current flow, or on the total local field magnitude.
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• curve_control is the parameter used to switch between data files. The pro-
gram automatically linearly interpolate between different data files as neces-
sary.

• data_type is the type of data being imported in the 2nd column (mobility,
velocity, or current) of the data files.

• filek (k=1...9) are the file names for the imported data. The data should be in
SI units or scaled back into SI units using scale_column1 and scale_column2.

• spline_smooth determines whether spline smoothing is applied to the user-
defined data. By default, a simple linear interpolation method is used.

• scale_curve_para is a scaling factor for curve_parak below.

• curve_parak is the value of the control parameter used to switch between
data files.

• mater is the number assigned to the material affected by this command. If
a label alias has previously been assigned to this material, mater_label may
be used instead.

• electrode is the electrode number if control parameter is based on electrode-
voltage.

Examples

user_defined_mobility carrier_type=electron &&
curve_control=electrode_voltage data_type=velocity &&
curve_para1=4.5 &&
file1=mobdata1.txt &&
curve_para2=9. &&
file2=mobdata2.txt &&
curve_para3=13.5 &&
file3=mobdata3.txt &&
mater=1 electrode=2

The above example allows the import of velocity versus parallel field data in 3 dif-
ferent data files. These data files are used for 3 different voltages (4.5, 9 and 13.5
volts) of electrode number 2. The program would interpolate if the electrode voltage
falls between these curve parameters.
The content of each file should be similar to the following:
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0.0 0.1
1.e5 0.081
1.e6 0.02
1.e7 0.02

22.756 use_sor

parameter data type values [defaults]
print_sor char [noprint]
wave_tol real [1.e-7]
beta_tol real [1.e-7]
omega real [1.5]
omegab real [1.5]
max_iter intg [5000]
update intg [15]

use_sor instructs the software to use the SOR iterative method to find the solution
of lateral modes. This statement was previously defined as sor_par.
The initial guess to the SOR method is either a uniform field profile based on the
mode solver limits in init_wave or the result of the optical_field command.

Application Notes

The SOR method is considered obsolete and the user is strongly encouraged to mi-
grate to either optical_field or direct_eigen, depending on the structure.

Parameters

• print_sor controls the printing of the SOR iterations.

• wave_tol is the tolerance for the wave-amplitude. Note that the wave ampli-
tude is normalized to the order of 1 inside the SOR method.

• beta_tol is the tolerance for the eigenvalue, which is also normalized to the
order of 1 inside the SOR method.

• omega is the initial relaxation parameter used for the wave amplitude itera-
tion. This parameter is adaptive during the iteration procedure.
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• omegab is the initial relaxation parameter used for the eigenvalue. This pa-
rameter is also adaptive during iteration.

• max_iter is the maximum number of iterations. If it is zero, the initial guess
is not refined.

• update is the interval of iterations at which the eigenvalue is updated inside
the SOR method.

Examples

use_sor max_iter=0000

use_sor max_iter=5000 print_sor=noprint

22.757 valj_mass_para (j=1..3)

parameter data type values [defaults]
(see) material_par

This statement is used in active macros to define the relative valence band valley
mass in a direction parallel to the quantum well. It is used for general complex
strained macros; the most common applications are for strained silicon, SiGe and
II-VI lead salt materials.
The mass defined in this statement can also be modified by non-parabolic terms with
the valj_para_e_dep_mass1 and valj_para_e_dep_mass2 statements:

m(E) = a+ bE + cE2

E(k) = ~2k2

2m0m(E)

j is a placeholder value that must be the same in all three statements: it refers to
the number (j = 1..3) of the valley being defined.
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Parameters

The parameters for this statement are the same as for all other material statements
and are discussed under material_par in Sec. 22.456.

Examples

layer_type type=general_cx_strain valley_c1=4 valley_v1=4 &&
optic_trans_valley_pair1=(1 1)

$ Define band gap as a bulk_xfunc1, to be referred to later by other functions
ext_func1 variation=function
function(x,temper)
0.17+0.057*x-0.095*x**2+sqrt(4.e-4+2.56e-7*temper**2)
end_function

val1_mass_para value=0.05

val1_para_e_dep_mass1 variation=function
function(x)
em_parab=0.05;
egt=ext_func1;
2.*em_parab/egt
end_function

Which is equivalent to m(E) = 0.05 + 0.1 E
Eg

in the notation above.

References

• Khodr & al., “Effects of band nonparabolicity ...”, IEEE JQE, VOL. 32, NO.
2, Feb. 1996

22.758 valj_mass_perp (j=1..3)

parameter data type values [defaults]
(see) material_par

This statement is used in active macros to define the relative valence band valley
mass in a direction perpendicular to the quantum well. It is used for general complex
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strained macros; the most common applications are for strained silicon, SiGe and
II-VI lead salt materials.
The mass defined in this statement can also be modified by non-perpbolic terms with
the valj_perp_e_dep_mass1 and valj_perp_e_dep_mass2 statements:

m(E) = a+ bE + cE2

E(k) = ~2k2

2m0m(E)

j is a placeholder value that must be the same in all three statements: it refers to
the number (j = 1..3) of the valley being defined.

Parameters

The parameters for this statement are the same as for all other material statements
and are discussed under material_par in Sec. 22.456.

Examples

layer_type type=general_cx_strain valley_c1=4 valley_v1=4 &&
optic_trans_valley_pair1=(1 1)

$ Define band gap as a bulk_xfunc1, to be referred to later by other functions
ext_func1 variation=function
function(x,temper)
0.17+0.057*x-0.095*x**2+sqrt(4.e-4+2.56e-7*temper**2)
end_function

val1_mass_perp value=0.05

val1_perp_e_dep_mass1 variation=function
function(x)
em_parab=0.05;
egt=ext_func1;
2.*em_parab/egt
end_function

Which is equivalent to m(E) = 0.05 + 0.1 E
Eg

in the notation above.
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References

• Khodr & al., “Effects of band nonparabolicity ...”, IEEE JQE, VOL. 32, NO.
2, Feb. 1996

22.759 valj_para_e_dep_mass1 (j=1..3)

parameter data type values [defaults]
(see) material_par

This statement modifies valj_mass_para and adds a linear energy dependent term
to the electron mass. j is a placeholder used to identify the valley (j = 1..3).

22.760 valj_para_e_dep_mass2 (j=1..3)

parameter data type values [defaults]
(see) material_par

This statement modifies valj_mass_para and adds a quadratic energy dependent
term to the electron mass. j is a placeholder used to identify the valley (j = 1..3).

22.761 valj_perp_e_dep_mass1 (j=1..3)

parameter data type values [defaults]
(see) material_par

This statement modifies valj_mass_perp and adds a linear energy dependent term
to the electron mass. j is a placeholder used to identify the valley (j = 1..3).
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22.762 valj_perp_e_dep_mass2 (j=1..3)

parameter data type values [defaults]
(see) material_par

This statement modifies valj_mass_perp and adds a quadratic energy dependent
term to the electron mass. j is a placeholder used to identify the valley (j = 1..3).

22.763 val1_valley_prop1

valj_valley_propk are a set of active layer macro statements: j and k are place-
holder values that indicate the valley subband valley number (j=1..3) and the prop-
erty number (k). It is otherwise the same as cond1_valley_prop1.

22.764 val2_valley_prop1

See val1_valley_prop1.

22.765 val2_valley_prop1

See val1_valley_prop1.

22.766 val_bandj_edge (j=2,3)

parameter data type values [defaults]
(see) material_par

The material statement val_bandj_edge is an active layer macro statement used
to define the 2nd or 3rd valence band valley with respect to the highest valence
band valley, in unit of eV. It is used for general_cx_strain type of macro, or general
complex strain macro.
The parameters for this statement are the same as for all other material statements.
The use of these parameters and related examples are given under material_par
in section 22.456.
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22.767 vcsel_cavity_region

parameter data type values [defaults]
radius_from real [-1.e89] (µm)
radius_to real [1.e89] (µm)
gaussian_tail real [2.] (µm)
gain_reduc_range real [0.0] (µm)
gain_gaussian_tail real [0.5] (µm)

vcsel_cavity_region defines a new independent optical region in a VCSEL struc-
ture. It is used in conjunction with begin_cavity.

Parameters

• radius_from and radius_to partition the optical mode (which is calculated
over the entire VCSEL) and assigns it to the new cavity.

• gaussian_tail extends the partitioned mode past the radius_from and ra-
dius_to coordinates with a Gaussian tail to prevent a sharp cut-off; the value
of this parameter is equal to the standard deviation of the Gaussian distribu-
tion.

• gain_reduc_range reduces the optical gain at the edges of the partition to
account for the influence of the Gaussian tail from neighboring cavities; the
reduction is fixed over this range.

• gain_gaussian_tail serves the same purpose as gain_reduc_range but
reduces the optical gain following a Gaussian tail distribution instead of a
fixed amount. This tail points towards the inside of the partition, like the
gaussian_tail from a neighboring cavity; the value of this parameter is equal
to the standard deviation of the Gaussian distribution.

Examples

begin_cavity cavity_num=1
vcsel_model index_core=3.2 index_cladding=1.0 &&

core_radius =9.5 bessel_order=0
init_wave backg_loss=500 init_wavel=0.83 wavel_range=(0.75, 0.90) &&

photon_fac=1.e9
vcsel_cavity_region radius_from=0 radius_to=5
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multimode mode_num=2
end_cavity

begin_cavity cavity_num=2
vcsel_model index_core=3.2 index_cladding=1.0 &&

core_radius =9.5 bessel_order=0
init_wave backg_loss=500 init_wavel=0.83 wavel_range=(0.75, 0.90) &&

photon_fac=1.e9
vcsel_cavity_region radius_from=5 radius_to=9.5
multimode mode_num=2
end_cavity

22.768 vcsel_model

parameter data type values [defaults]
use_eim char [no],yes
rectangle_system char [no]
rect_symetric_x char [yes]
propagation_dir char [y],z
rect_lateral_model char [eim], bessel
independent_stw char yes, [no]
eim_stw_method char [min_loss], max_gain,

min_abs_loss
index_core real [3.5]
index_cladding real [2.0]
core_radius real
photon_fac real [1.e-3]
eim_zero real (um)
rect_core_xrange real (um)
rect_core_zrange real (um)
rect_core_origin realx2 [0. 0.](um)
zdir_x_ref real [0.0] (um)
zdir_y_ref real [0.0] (um)
ydir_x_center real [0.0] (um)
ydir_z_center real [0.0] (um)
bessel_order intg [0]
add_r_division intg [1]
rect_x_order intg [1]
rect_y_order intg [1]
long_ref_zseg intg
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vcsel_model is used to activate the Vertical Cavity Surface Emitting Laser (VCSEL)
model in the .sol file.

Parameters

• use_eim activates the effective index method model for the VCSEL simulation
environment. By default, this parameter is set to no and the fiber-like EIM
model is used.

• rectangle_system turns on the rectangle/cartersian coordinate system for
VCSEL simulation.

• rect_symetric_x indicates whether only half of a symmetric device is sim-
ulated to save mesh. If so, the symmetric axis is assumed to be located at
x=0.

• propagation_dir defines the optical propagation (longitudinal) direction in
3D simulations with multiple mesh planes. In almost all cases, this should
be left to the default setting of y. As of the 2016 version of the software,
convergence using multiple mesh planes stacked along the propagation direction
of z still has not been demonstrated and should be considered experimental.

• index_core and index_cladding are the refractive indices of the core and
cladding regions in the fiber-like EIM method. These parameters are effective
only if use_eim=no.

• core_radius is the radius of the core region in the fiber-like EIM method.
This parameter is effective only if use_eim=no. Please note that this pa-
rameter should not be confused with the identically-named parameter in the
vcsel_section and outer_section commands: the radius defined in those
two commands are used only for the EIM model (use_eim=yes).

• photon_fac is the photon factor used to normalize the cavity photon number
for VCSELs for the round-trip gain equation. It multiplies the parameter of
the same name defined in init_wave so that the default scaling of the cavity
photon number is different for edge-emitting and VCSEL cavities. As such,
either of these parameters can be used if the user wishes to modify the default
scaling.

• eim_zero is the radius outside of which the EIM wave function is forced to
be zero. It is used only when the EIM model is activated by the parameter
use_eim above.
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• rect_lateral_model is used in 3D simulations that use a cartesian coordinate
system but which may also have bent shapes to form a cylindrical shape. It
specifies wether the software will use the EIM model or Bessel functions for
the modes.

• rect_core_xrange and rect_core_zrange specify the dimensions of the
high index core in the x and z directions, respectively when rectangular/cartesian
coordinates are used in a 3D simulation and propagation_dir=y. rect_core_origin
is similar and defines the origin (lower left corner) of the rectangular high index
core.

• ydir_x_center and ydir_z_center are used to define the center of the x-z
plane (i.e. the origin of the Bessel functions) when rect_lateral_model=bessel.
zdir_x_ref and zdir_y_ref serve the same function when propagation_dir=z
(experimental).

• bessel_order is the order of the Bessel function used to model the wave
function in the modified effective index method. Higher order means higher
order lateral modes.

• add_r_division is used for the EIM model (use_eim=yes). When this
model is activated, add_r_division controls the number of divisions in the
lateral direction used to evaluate the effective index. More precisely, the soft-
ware will use a 1D transfer matrix at various vertical cut lines to establish
n(r, z) profiles, each line representing a local standing wave profile. At each r
value, a single standing wave effective index is selected to provide a n(r) profile
which is then used to establish the lateral mode profile.
The position of these cut lines is determined by an initial rough division
of the device into columns, as seen in Fig. 22.32; these are normally de-
fined in the .layer file through the vcsel_section command and the resulting
outer_section statement. These divisions may be further refined if they ex-
ceed the value of ∆R:

∆R = Rm −R0

add_r_division
(22.139)

• eim_stw_method controls how the local standing wave profile is determined
in the EIM model described above. For each r position, an 1D eigenvalue
problem is solved for z and a single standing wave profile is selected based on
the following effective index criteria:

– min_loss picks the mode with the smallest loss coefficient
– max_loss picks the mode with the largest gain coefficient
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oxide

DBR

DBR

R0 R1 R2 Rm

Figure 22.32: Schematics of the cut lines in the VCSEL EIM model.

– min_abs_loss picks the mode with the smallest absolute gain/loss coeffi-
cient

• rect_x_order and rect_y_order define the number of modes solved for in
each direction for 3D simulations with rectangular/cartersian coordinates.

• long_ref_zseg is used in 3D simulations with multiple mesh planes. It defines
which z-segment serves as a reference for the optical section statements. All
other z-segments are mapped onto this reference segment.

• independent_stw works with add_r_division and the EIM model. By
default, the software will calculate the standing wave (STW) pattern only
once to save on time; enabling this option will evaluate the STW for every cut
line which results in a slower but more accurate simulation. It is recommended
to enable this option in devices where there is a strong lateral variation of the
index profile (e.g. oxide-confined VCSELs).

Examples

Simple example using fiber-like model:

vcsel_model index_core=3.2 index_cladding=1.0 &&
core_radius =7.5 bessel_order=0

Simple example using EIM model settings inherited from .layer file:
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vcsel_model bessel_order=0 use_eim=yes

A rectangular-shaped VCSEL:

vcsel_model index_core=3.2 index_cladding=1.0 rectangle_system=yes

22.769 vcsel_section

parameter data type values [defaults]
vcsel_type char
grating_model char [kappa]layer,layer0
active char [no],yes
dbr_period_index_profile char
dbr_period_from_macro char [no],yes
layerk,k=1..9 real [0.096e-6] (m)
indexj,j=1..9 real
core_radius real (um)
mesh_points intg [10]
remove_from_cavity intg []
section_index real
outer_indexi,i=1..9 real []

vcsel_section is used to describe physical properties of a layer region used in a
VCSEL. While it used exclusively in the .layer file, this statement defines optical
properties which are different than the electrical/geometrical settings defined in other
.layer commands. When the .layer file is processed, the information included in this
statement will be included in a .vcsel file which must be included in the main .sol
input file.

Parameters

• vcsel_type defines a label for the VCSEL section which is used in other
statements such as layer.

• active is used to indicate if a VCSEL section is active (i.e. has an optical
gain). This parameter is also used to locate the active region and compute the
standing wave enhancement factor.

• dbr_period_index_profile may be used to give the name of a text file that
contains the refractive index profile for a single DBR period instead of directly
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using the layerk and indexj values. This method makes it simple to define a
graded index profile for the DRB period.

• dbr_period_from_macro instructs the software to adjust the thickness of
the overall DBR for the optical mesh (c.f. section statement in the .vcsel
output file) to match the refractive index values of the individual materials
inside the DBR period.
Note that this parameter requires defining the individual components of the
DBR using vertical_dbr_layer_mater instead of directly using the layerk
and indexj values. Graded composition profiles may be defined using the latter
statement.
We also note that the overall electrical thickness for that layer must match the
previously-defined optical thickness; this is set in the layer statement.

• grating_model defines the grating model for the optical propagation in that
section; see section and the parameter of the same name for more information.

• layerk,k=1..9 are the different DBR layer thicknesses (in meters) used in this
section, with the appropriate grating_model setting. The refractive index of
the DBR layers is likewise defined using indexj,j=1..9. See section for more
information on DBR settings.

• outer_indexi,i=1..9 is used to determine the refractive index outside the
VCSEL in the fiber-like effective index model. If the electrical layer is subdi-
vided into multiple optical sub-sections (e.g. a DBR mesa in the first column,
with air outside), a separate value must be provided for each of those sub-
sections.
When the .layer file is processed, the outer index settings are transferred to
the outer_section statement for use in the .sol file.

• core_radius is used as part of the VCSEL EIM model (see vcsel_model).
It defines the radius of a particular region for mode calculations and tells the
simulator that this section is terminated by an outside insulator layer (e.g.
air). In complex devices, multiple VCSEL section declarations with different
core radius settings may be used to define different effective index profiles in
different columns of the device; in that case, core_radius should be set to
the same value as the column width, as seen in Fig. 22.32.
When the .layer file is processed, the core radius settings are transferred to the
outer_section statement for use in the .sol file.

• mesh_points is the number of longitudinal mesh points used in the optical
propagation model for this section.

• section_index is identical to index1 above.
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• remove_from_cavity removes that particular section from existence for the
given optical cavity number.
This statement may be used in the multicavity model (see begin_cavity
statement)and produces a remove_section statement for used in the .sol
file.

Examples

A standard definition using older syntax. Under this model, the refractive index
values for the DBR are fixed for the entire simulation.

vcsel_section vcsel_type=n-dbr &&
grating_model=2layers active=no &&
layer1 =0.122e-6 layer2 =0.112e-6 &&
index1 = 3.17 index2 = 3.46 &&
mesh_points=15

A similar definition using negative index numbers. Under this model, only the ab-
solute difference in refractive index values is used for the DBR index step, with
the average refractive index in the layer taken from the macros according to injec-
tion/thermal conditions. For more explanation of negative index numbers, please
see the section statement.

vcsel_section vcsel_type=n-dbr &&
grating_model=2layers active=no &&
layer1 =0.122e-6 layer2 =0.112e-6 &&
index1 = -3.17 index2 = -3.46 &&
mesh_points=15

A more modern declaration style, with all index values taken from the material
macros. The electrical mesh still consists of an “average” material.

vcsel_section vcsel_type=n-dbr &&
dbr_period_from_macro=yes &&
active=no mesh_points=10

$ this is the effective medium
layer_mater macro_name=algaas var1=0.625 column_num=1 var_symbol1=x

$ let’s define a DBR period using macro like this (use column 1 only)
$ (also possible to define grading within a DBR period)
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vertical_dbr_layer_mater macro_name=algaas var_symbol1=x var1=0.25 &&
thick=0.0595

vertical_dbr_layer_mater macro_name=algaas var_symbol1=x var1=1. &&
thick=0.0706

layer d=3.7729 n=15 r=0.9 &&
n_doping1=2.e24 vcsel_type=n-dbr

22.770 vectorial_wave

parameter data type values [defaults]
mode char [te] tm

The statement vectorial_wave is used to turn on the vectorial wave solver. Please
note that this statement only affects the wave distribution. It does not affect the
optical evaluation. You should also set the polarization in active_reg for the TE
or TM mode.

• mode is the polarization mode and may take te or tm.

Example:

vectorial_wave mode=te
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22.771 vertical_dbr_layer_mater

parameter data type values [defaults]
macro_name char
var_symbol1 char
var_symbol2 char
var_symbol3 char
var_symbol4 char
var_symbol5 char
var_symbol6 char
var_symbol7 char
var_symbol8 char
var_symbol9 char
mater_lib char
var1 real [-9999.]
var2 real [-9999.]
var3 real [-9999.]
var4 real [-9999.]
var5 real [-9999.]
var6 real [-9999.]
var7 real [-9999.]
var8 real [-9999.]
var9 real [-9999.]
grade_from real [-9999.]
grade_to real [-9999.]
thick real [-9999.]
grade_var intg [0]
grade_points intg [5]

This command is used to define VCSEL DBR layers using material macros instead
of index values. It only defines the optical part of the model (VCSEL sections).

Parameters

Most of the parameters are the same as in the layer_mater statement as both
commands define material compositions. Size information for the DBR is given by:

• thick is the thickness of the DBR layer.
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• grade_points is the number of points used to sample the grading within the
DBR layer.

Examples

vcsel_section vcsel_type=n-dbr &&
dbr_period_from_macro=yes &&
active=no mesh_points=10

$ this is the effective medium
layer_mater macro_name=algaas var1=0.625 column_num=1 var_symbol1=x

$ let’s define a DBR period using macro like this (use column 1 only)
$ (also possible to define grading within a DBR period)
vertical_dbr_layer_mater macro_name=algaas var_symbol1=x var1=0.25 &&

thick=0.0595
vertical_dbr_layer_mater macro_name=algaas var_symbol1=x var1=1. &&

thick=0.0706
layer d=3.7729 n=15 r=0.9 &&

n_doping1=2.e24 vcsel_type=n-dbr

22.772 view_dipole

parameter data type values [defaults]
data_file char [void]
mode char [te]tm
gamma_subband intg [1]

view_dipole plots the dipole moments in a k.p theory.

• data_file is the file to which the graphic data is written in ASCII format.

• mode denotes the polarization.

• conc_range is the electron concentration range in the well.

• gamma_subband is the Gamma subband used in the optical transition.

Example(s)
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view_dipole gamma_subband=1

22.773 view_ganvalence

parameter data type values [defaults]
data_file char [void]
data_file2 char [void]
matrix_6x6 char yes,[no]
direction char [x],y,z
region char [well],barrier,barrier2

view_ganvalence is used in the .gain file to plot the active region basic bulk band
structure (ie., HH, LH, CH) for wurtzite GaN-based structure along with parabolic
fit

Parameters

• data_file is the data file to which the band structure data is to be saved. If
plot_device=data_file in plot_data, data_file2 may be used to specify a
second data file in which to save the data.

• matrix_6x6 determines if the full 6 × 6 wurtizte Hamiltonian is used.

• direction is the direction of the wave vector used to plot the band structure.

• region is used to specify if the band structure for well or barrier is to be
plotted.

Examples

view_ganvalence region=well

22.774 view_zincblende_valence

This statement and its parameters are analogous to view_ganvalence. However,
it applies to cubic zincblende materials so a different Hamiltonian is solved.
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22.775 view_kpsubband

parameter data type values [defaults]
data_file char [void]
include_data char [void]
versus_q char [no]
mqw_complex intg [1]

view_kpsubband is used in the .gain file to plot the quantum well subbands (E(kt))
from k.p theory.

• data_file is a text file which is used to save a copy of the band structure data.

• include_data includes data files from other subband calculations for the pur-
pose of comparison. The format is a column-wise list of kt and energy E; data
from different subbands are separated by an empty line.

• mqw_complex is used to select which MQW is being plotted if there are
multiple quantum-confined regions in the simulation.

• versus_q changes the axis of the plot and is used only if periodic boundary
conditions have been defined in modify_qw. In that case, different energy
dispersion relations can be calculated: as normal, vs. the in-plane wave vector
kt or vs. the periodicity coefficient q.
The periodicity coefficient is defined in the interval [0, π

L
] and covers the entire

range of possible periodic boundaries[66]:

Ψ(L) = Ψ(0)eiqL (22.140)

22.776 view_kpwave

parameter data type values [defaults]
versus_q char [no]
kt char [1]

view_kpsubband is used in the .gain file to plot wave functions (E(kt)) from k.p
theory. As of the 2015 version, this is only available for the newer version of the
zincblende k.p solver.
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• versus_q changes the axis of the plot and is used only if periodic boundary
conditions have been defined in modify_qw. In that case, different energy
dispersion relations can be calculated: as normal, vs. the in-plane wave vector
kt or vs. the periodicity coefficient q.
The periodicity coefficient is defined in the interval [0, π

L
] and covers the entire

range of possible periodic boundaries[66]:

Ψ(L) = Ψ(0)eiqL (22.141)

• kt controls which wave functions are being plotted. This value ranges from 1
(at zone center) to the number of k.p points specified in modify_qw.

22.777 view_macro

view_macro is a programmer-only command used to evaluate macros with external
tools.

22.778 view_vtkfile

parameter data type values [defaults]
vtkfile char
dimension char [2d],3d

view_vtkfile is used in the post-processing stage to visualize FDTD data stored in
the VTK file format with the help of an external viewer called Paraview.

Parameters

• vtkfile is the filename containing the FDTD data.

• dimension tells the viewer to expect 2D or 3D data.

22.779 virtual_time_setting

parameter data type values [defaults]
element_name char [], Vcc, I1
scan_num intg [2]

http://www.paraview.org/
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virtual_time_setting modifies a particular scan statement so that when the vir-
tual_time variable is used, only one particular current or voltage source in the min-
ispice external circuit is modified.
If this statement is omitted, virtual_time modifies all SPICE source devices simul-
taneously during the scan.

Parameters

• element_name is the SPICE device name that will be modified during the
scan

• scan_num sets which scan statement is altered by this command

22.780 vplot_xy

parameter data type values [defaults]
variable char (see list)
data_file char
mater_boundary char [yes]no
point_ll realx2 (µm)
point_ur realx2 (µm)
xrange realx2
yrange realx2
z real (micron)
maxvector_scale real [1.]
grid_sizes intgx2 [20, 20]

vplot_xy is a post-processor statement used to plot structural data on a 2D plane.
Unlike plot_2d, this command can only plot vector fields.
Other related commands exist and should be used depending on the 2D/3D nature
of the original simulation results. The following rules apply:

• 2D simulations: use plot_2d

• 3D cylindrical simulations with one mesh plane: use plot_2d
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• xy plane from a 3D simulation: use cplot_xy for contour plots of scalar
variables, splot_xy for 3D surface plots of scalar variables or vplot_xy for
vector variables.

• xyz plane from a 3D simulation: use cplot_xyz for contour plots of scalar
variables, splot_xyz for 3D surface plots of scalar variables or vplot_xyz
for vector variables.

Parameters

With the exception of the z-position and contour plot-related parameters that do
not apply, all parameters are the same as in plot_2d.

• z is the position on the z-axis for the 2D plot. If necessary, the variable data
will be interpolated from neighboring mesh planes.

Examples

vplot_xy variable=elec_curr z=50. grid_sizes=(35, 35) &&
xrange=(0. 1.5) yrange=(1.1 1.9)

22.781 vplot_xyz

parameter data type values [defaults]
variable char (see list)
data_file char
xy_from realx2 (µm)
xy_to realx2 (µm)
xrange realx2
yrange realx2
z_min real (micron)
z_max real (micron)
maxvector_scale real [1.]
grid_sizes intgx2 [35, 35]

vplot_xyz is a post-processor statement used to plot structural data on a 2D plane.
Unlike plot_2d, this command can only plot vector fields.
Other related commands exist and should be used depending on the 2D/3D nature
of the original simulation results. The following rules apply:
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• 2D simulations: use plot_2d

• 3D cylindrical simulations with one mesh plane: use plot_2d

• xy plane from a 3D simulation: use cplot_xy for contour plots of scalar
variables, splot_xy for 3D surface plots of scalar variables or vplot_xy for
vector variables.

• xyz plane from a 3D simulation: use cplot_xyz for contour plots of scalar
variables, splot_xyz for 3D surface plots of scalar variables or vplot_xyzfor
vector variables.

Parameters

This statement is similar to vplot_xy and varies only in the way it defines the
plotting plane. As such, most of the parameters are also similar to those in plot_2d.

• xy_from and xy_to define the (x,y) corners of the plotting plane.

• z_min and z_max define the z coordinates of the corners of the plotting
plane.

Examples

vplot_xyz variable=elec_curr &&
xy_from=(0.5 0.) xy_to=(0.5 3.)

22.782 wave_boundary

parameter data type values [defaults]
x1_label char [void]
y1_label char [void]
x2_label char [void]
y2_label char [void]
point_ll realx2 [0. 0.](µm)
point_ur realx2 [1. 1.](µm)
fld_center realx2 (µm)
n_ubdata realxn
n_lbdata realxn
ubdata_num intg [0]
lbdata_num intg [0]
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The statement wave_boundary sets the boundary condition for the optical wave
equations. Use of this statement overrides the corresponding parameters in in state-
ment init_wave. This statement can be generated by the graphic user interface
and appears in the .doping file.

• x1_label y1_label x2_label y2_label user pre-defined labels to specify
point_ll, point_ur parameters, respectively. The labels must be prede-
fined using x_position, y_position or define_vertical_position com-
mand. They may be predefined in the .layer file relative to a specific layer so
that there is no need to find out the absolute coordinates.

• point_ll and point_ur are lower-left and upper-right points of the window
within which the wave equation is solved (see also Fig. 22.13). This window
must be less than or equal to the full device size defined in the .geo input file.
In some cases, this window must be reduced in size because only a limited
number of lateral modes are needed. In gain guided devices, the lasing mode is
not the highest index mode. Since PICS3D searches the optical mode starting
from the highest mode index, there may be many non-lasing modes within the
window. In the current version, PICS3D can only solve up to 10 modes. Since
the number of non-lasing, high index modes increases with size of the window,
the user should carefully adjust the window size for gain guided structures so
that the lasing mode is included within the 10 modes.

• fld_center is the estimated optical mode center. Note that this information
is only used to initialize the wave function and may or may not coincide with
the optical field center in the final solution.

• n_ubdata and n_lbdata are window specifications. By default, the window
for the wave equation is specified by "point_ll" and "point_ur" to be a rectangu-
lar window. Now it is possible to override the upper and lower borders with the
parameters n_ubdata, n_lbdata, ubdata_num and lbdata_num where
n_ubdata (for upper boundary data) is used to specify the upper boundary
points (xi, yi) in the format

n_ubdata=(x1 y1 x2 y2 x3 y3 ...)
where the prefix n_ should be equal to the number of data values in the bracket
(or half of the points in 2D space). The related parameter for this statement,
ubdata_num, must match the number of data value in n_ubdata.

init_wave ... &&
ubdata_num=8 8_ubdata=(0. 3.16 0.773 3.16 1.5 2.16 6. 2.16)
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is used to describe a non-planar metal boundary for the wave equation. Simi-
larly, n_lbdata and lbdata_num are used to describe the lower boundary.

Example(s)

wave_boundary point_ll=(0., 0.0) point_ur=(3.5, 3.0) &&
fld_center=(0.5, 1.5)

22.783 waveguide_input

This command is identical to 3d_amplifier_model. It exists only for historical
reasons where separate models in PICS3D were used for semiconductor optical ampli-
fiers (SOAs) and electro-absorbing modulators (EAMs). This is no longer necessary
now that the equations are fully coupled with the round-trip gain method and the
same model can handle both kinds of devices.
Note that for completely passive photo-absorbing waveguides, an additional flag is
needed to properly use the bulk absorption coefficient in the simulation. Please see
3d_amplifier_model for details.

22.784 wurtzite_offset_model

parameter data type values [defaults]
use_strained_bandgap char [yes]
bulk_strain_exist char [no]
use_hh_as_bandgap char [yes]

The this command is used to control various aspects of the band offset model for
wurtzite materials; to understand it properly, a few key aspects of the band alignment
rules in Crosslight should be reviewed:

• 1 Bulk layers (active and passive) directly define the conduction band position
using the affinity statement. No strain shifts are applied to this value unless
they are deliberately included the affinity declaration (macro file).
For passive layers, only a single band is ever used for transport so all valence
bands are combined, with a reduced mass accounting for the HH, LH and CH
bands. The valence band edge is thus positioned as Ev = Ec + Eg.
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For bulk active layers, all of the valence band edges are explicitly considered
so using the effective bandgap for each valley, the valence bands are positioned
as Ev,i = Ec + Eg,i.

• 2 Quantum wells position the conduction band relative to the barrier based
on the band_offset value; this can be overridden by certain commands such
as use_bulk_affinity and band_discont. Various authors define the band
offset in different ways which may or may not include the strain; see Sec. 10.1
for more information on this topic.

For a quantum well, each band valley is considered separately and the valence
band edges are given by Ev,i = Ec + Eg,i. Valence band mixing through k ·
p is available as an option but only affects momentum matrix elements and
dispersion relations.

Parameters

• use_strained_bandgap determines whether or not the strained bandgap is
used inside the band offset calculations for quantum wells.

• bulk_strain_exist uses the strained bandgap in bulk and bulk active layers
to position the valence band(s).

• use_hh_as_bandgap controls whether the HH band is used as the single
band edge for transport in passive layers. If this is turned off, the smallest
bandgap will be used as the band edge. This parameter will affect hole trans-
port by changing the effective barrier height in the thermionic emission model.

Examples

Recommended setting to model a strained electron blocking layer of AlGaN in a LED;
adjustment of the affinity macro to include the hydrostatic shift is also required.

wurtzite_offset_model bulk_strain_exist=yes use_hh_as_bandgap=no

22.785 x_position

parameter data type values [defaults]
label char [void]
x real
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x_position is used by the program to refer to a x-coordinate using a label.

Parameters

• label is a position label at a specific x-coordinate in microns.

• x is the x-coordinate of the point.

Examples

x_position label=mid_mqw x=0.0051

This example labels a x-position 0.0051 µm as “id_mqw" for use in other statements.

22.786 y_position

parameter data type values [defaults]
label char [void]
y real

y_position is used by the program to refer to a y-coordinate using a label.

Parameters

• label is a position label at a specific y-coordinate in microns.

• y is the y-coordinate of the point.

Examples

y_position label=mid_mqw y=0.0051

This example labels a y-position 0.0051 µm as “id_mqw" for use in other statements.
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22.787 young_modulus

young_modulus defines Young’s modulus for the acoustic wave propagation model
in SAWAVE.
The parameters for this statement are the same as for all other material statements.
See material_par in section 22.456 for examples and further details.

22.788 z_structure

parameter data type values [defaults]
link_taper_contact char [yes] (no)
cylindrical char [no] yes
uniform_zseg_from real (um)
uniform_zseg_to real (um)
uniform_length real (um)
taper_length real [0.] (um)
xp1_size real [0.] (um)
xp2_size real [0.] (um)
mesh_ratio real [1.]
shift_center real [0.] (um)
cylindrical_origin real [0.](um)
single_plane_zdim real (um)
zseg_num intg [1]
zplanes intg [1]

The statement z_structure is used to define the electrical mesh structure in the
z-direction for a particular region (z-segment) with uniform material composition
and which share the same material parameters.
Note that many taper commands previously defined here have been relocated to the
taper_between_segments statement.
We also note that electrical current may or may not flow between mesh planes: this
setting is controlled in 3d_solution_method. This setting may be of interest in
edge-emitting lasers where the mesh planes are coupled by the round-trip propagation
of the light and longitudinal current flow is negligible.
A more complete discussion on the 3D modeling scheme used by Crosslight software
tools may also be found in Sec. 6.3.
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Parameters

• link_taper_contact indicates whether contacts in different segments are
joined together if there is tapering between segments. This statement takes
effect only when two electrodes have the same contact number.

This parameter only takes effect when the current is not allowed to flow between
xy planes. For details, see 3d_solution_method. If the current is allowed
to flow between planes, then the connection is mandatory.

• cylindrical would set the current segment to be in cylindrical system.

• uniform_zseg_from and uniform_zseg_to are used to specify the po-
sitions of the uniform segment along the longitudinal direction. These two
positions can be the same, in which case the length of the segment is zero.
This is not uncommon when using tapers.

Note that taper connections are made in the space between two uniform seg-
ments: there may therefore be gaps between the “from” and “to” values of two
successive segments. However, the first and last segments of the device must
always be uniform segments, even if their length is zero.

• zseg_num is the z-segment number.

• uniform_length defines the length of the uniform segment; this will override
the uniform_zseg_from and uniform_zseg_to if need be. In general,
only one declaration style for segment lengths should be used, in order to
simplify the input.

• xp1_size and xp2_size are small offsets applied to the mesh plane position
at the beginning and end, respectively, of the segment. This is needed to prop-
erly define heterojunctions since mesh points can only belong to one material
number in the Crosslight discretization scheme.

• mesh_ratio controls the distribution of mesh planes in the z-segment. See
Fig. 22.22 for details.

shift_center is a related parameter which applies for negative mesh ratios
and symmetric mesh distributions. This parameter is used to adjust the center
of the distribution.

• cylindrical_origin is the origin of the cylindrical system, if applicable.

• zplanes is the number of mesh planes (longitudinal mesh) in the z-segment; to
properly define a 3D volume, at least 2 mesh planes must normally be present.

A single mesh plane inside a segment may be used in only 2 cases:
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– in the case of tapers, where a single mesh plane with zero thickness is used
to sample the longitudinal properties of the device at a specific position.
In this case, multiple segments are expected, in order to define a 3D
volume using multiple mesh planes from these different segments.

– if single_plane_zdim or taper_length are used to define the segment
length. In this case, the material properties are uniform in the segment
and the 3D volume is obtained by extruding the 2D mesh plane with this
length.

Examples

The first example is a standard edge-emitting DFB laser, electrically uniform with
7 mesh planes:

3d_solution_method 3d_flow=yes z_connect=no
z_structure uniform_length=500.0 zplanes=7 zseg_num=1
load_mesh mesh_inf=inp13.msh

However, this particular DFB laser has a λ
4 phase shift in the middle so optically,

this electrical segment is split into two optical sections:

$ Quarter-wave phase shift: 90 degrees=0.5*pi
section length=250e-6 kappa_real=2e3 &&

sec_num=1 mesh_points=10 phase_shift=0.5
section length=250e-6 kappa_real=2e3 &&

sec_num=2 mesh_points=10

The second example defines a taper between z=0 and z=200m followed by a uniform
segment. There is no mesh inside the taper region but mesh triangles are projected
along taper lines inside the finite volume discretization of the Drift-Diffusion equa-
tions. Additional segments (with their own .layer, .geo and .msh files) inside the
taper regions would enhance the accuracy of this simulation by more accurately
sampling the lateral variation in the structure.

3d_solution_method 3d_flow=yes z_connect=yes
z_structure uniform_zseg_from=0. uniform_zseg_to=0. &&

zseg_num=1 zplanes=1

taper_between_segments from_segment=1 xpoint_from=1 xpoint_to=6

z_structure uniform_zseg_from=200. uniform_zseg_to=400. &&
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zseg_num=2 zplanes=2

load_mesh mesh_inf=gaas2e1.msh zseg_num=1
load_mesh mesh_inf=gaas2e2.msh zseg_num=2

22.789 zdir_cx

parameter data type values [defaults]
type char [well], barrier
xy_ref realx2 [1. 2.] (µm)
zseg intg
mater intg 1

zdir_cx is used to define a complex MQW region in the z direction.

Parameters

• type identifies the current z-segment as being either the barrier or well of the
complex MQW region.

• mater is the material number for the quantum-coupled region on this plane.
If this statement is used in the .layer file where materials is not available, the
quantum coupled region is identified with the (x,y) coordinates of xy_ref
instead.

• zseg is the z-segment number where this commands applies; it may be gen-
erated automatically for the .sol if this statement is originally defined in the
.layer file.

Examples

begin_zdir_complex num_segment= 9
zdir_cx zseg= 16 type=barrier mater= 3
zdir_cx zseg= 17 type=barrier mater= 3
zdir_cx zseg= 18 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 19 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 20 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 21 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 22 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
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zdir_cx zseg= 23 type=barrier mater= 3
zdir_cx zseg= 24 type=barrier mater= 3
end_zdir_complex

22.790 zdir_light_source

parameter data type values [defaults]
shape char [rectangle], circle
xrange realx2 [-1.e8 1.e8] (µm)
yrange realx2 [-1.e8 1.e8] (µm)
gaussian_tail real [0.1] (µm)
circle_center realx2 [0.0 0.0] (µm)
circle_radius real [1.0] (µm)

This statement is used in conjunction with light_power to define an optical pump-
ing source that is roughly perpendicular to the xy mesh planes in a 3D simulation.
zdir_light_source light source specifies only the profile of the input light. All
other properties are controlled by light_power just like in a 2D simulation.

Parameters

• shape is the shape of the light spot on the device. Within that spot, the power
density is uniform.

• xrange and yrange determine the extend of the light spot in the rectangle
model.

• gaussian_tail describes how quickly the light decays when outside the light
spot. This is modeled in the same way as the decay in the doping statement.

• circle_center and circle_radius determine the extend of the light spot in
the circle model.

Examples

light_power spectrum_file=solar.am0 light_dir=+z
zdir_light_source shape=circle gaussian_tail=0.1 &&

circle_center=(65. 65.) circle_radius=60.
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22.791 zener

parameter data type values [defaults]
balance_zero_bias char [yes]
tun_mass real
xrange realx2
yrange realx2

zener is used to activate the interband tunneling (or Zener tunneling as in Zener
diodes) model. Since this statement is useful for heavily doped reverse junctions, it
may be useful to use this statement together with the impact ionization model.
Note that this model converts the tunneling current into a local generation term:
the formula involved is only applicable for a reverse junction and does not model the
negative resistance that can occur under forward bias.
For forward-biased tunnel junctions, see the tunnel_junc statement. A full discus-
sion on theory can also be found in Sec. 9.3.

Parameters

• balance_zero_bias balances out the tunneling current with thermal current
at zero bias. This may be set to “no” in some cases for the purpose of achieving
convergence at low bias voltages.

• tun_mass is the Zener interband tunneling mass to be set by the user. If it is
not specified, the combined effective mass is used as in the following formula:
2memh/(me +mh).

• xrange and yrange define the tunneling range using absolute coordinates.

Examples

$ Just one word:
zener
$ This will enable the interband tunneling model to
$ use the standard combined effective mass.
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22.792 zero_doping

parameter data type values [defaults]
mater_label char
mater intg [1]
macro_name char [void]

The statement zero_doping forces the doping to be zero in a particular material.

Parameters

• mater is the material number affected by this statement. This parameter is
ignored if macro_name is used.

• mater_label may be used instead of mater if a label has previously been
defined as an alias.

• macro_name indicates all materials using this macro name be set to zero
doping impurities.

22.793 zincblende_offset_model

parameter data type values [defaults]
use_strained_bandgap char [yes]
partition_hydro_term char [yes]

The this command is used to control various aspects of the band offset model for
zincblende materials; to understand it properly, a few key aspects of the band align-
ment rules in Crosslight should be reviewed:

• 1 Bulk layers (active and passive) directly define the conduction band position
using the affinity statement. No strain shifts are applied to this value unless
they are deliberately included the affinity declaration (macro file).
For passive layers, only a single band is ever used for transport so all valence
bands are combined, with a reduced mass accounting for the HH and LH bands.
The valence band edge is thus positioned as Ev = Ec + Eg.
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For bulk active layers, all of the valence band edges are explicitly considered
so using the effective bandgap for each valley, the valence bands are positioned
as Ev,i = Ec + Eg,i.

• 2 Quantum wells position the conduction band relative to the barrier based
on the band_offset value; this can be overridden by certain commands such
as use_bulk_affinity and band_discont. Various authors define the band
offset in different ways which may or may not include the strain; see Sec. 10.1
for more information on this topic.

For a quantum well, each band valley is considered separately and the valence
band edges are given by Ev,i = Ec + Eg,i. Valence band mixing through k ·
p is available as an option but only affects momentum matrix elements and
dispersion relations.

Parameters

• use_strained_bandgap determines whether or not the strained bandgap is
used inside the band offset calculations for quantum wells.

• partition_hydro_term controls whether or not the hydrostatic shift is split
between the conduction and valence band. If this option is disabled, the hy-
drostatic shift is applied on the valence band alone.

22.794 zplane_label

parameter data type values [defaults]
label char
hline nearest_z real (µm)
zplane intg

This statement is used to mark a specific z coordinate for later use. Unlike zplane_position,
the coordinate must explicitly match the position of a mesh plane.

Parameters

• label defines a variable name that can be reused in other commands to refer
to this position.
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• zplane is the z-mesh plane number where the labeled is applied. This number
can also be found automatically by specifying a numeric value in nearest_z;
the software will attempt to locate the mesh plane closest to this position.

22.795 zplane_position

parameter data type values [defaults]
label char
location char [top]
delta_z_from_bottom real [-9999.] (µm)
delta_z_from_top real [-9999.] (µm)

This statement is similar to layer_position and is used to mark a specific z coor-
dinate for later use. Unlike zplane_label, the position defined by this statement
does not need to match that of a z-mesh plane which makes it useful for plotting
purposes.
All the parameters from this statement are analogous to those of layer_position.
The main difference is that all positions are defined relative to the preceding z_structure
statement.

22.796 zsegment_setting

parameter data type values [defaults]
limit_gain char [no]
zseg_num intg [1]

zsegment_setting is used to set some model parameters for a specific z-segment.

• limit_gain indicates whether optical gain is limited by the gain interpolation
table and disallow any extrapolation. This parameter affects package PICS3D
only.

• zseg_num is the z-segment affected by this command.



1172 COMMAND SYNTAX



Part VI

APPENDICES





Appendix A

WAVE EQUATION FOR
PERFECTLY MATCHED LAYER

We shall derive the wave equation for the PML starting from the Maxwell equations:

∇ · ε[Λ]
−→
E = 0

∇ · µ[Λ]
−→
H = 0

∇ × −→
E = −jωµ[Λ]

−→
H

∇ × −→
H = jωε[Λ]

−→
E (A.1)

Based on the 3rd and 4th equations above, we obtain the wave equation in the
following form:

[Λ]−1∇ × [Λ]−1∇ × −→
E − k2−→E = 0 (A.2)

Using a, b, c to define the [Λ] tensor, we can make the following expansion and deriva-
tion:

[Λ]−1∇ × [Λ]−1∇ × −→
E = 1

a

[
1
c

(
∂2Ey

∂x∂y
− ∂2Ex

∂y2

)
− 1
b

(
∂2Ex

∂z2 − ∂2Ez

∂x∂z

)]
−→
i

+ 1
b

[
1
a

(
∂2Ez

∂y∂z
− ∂2Ey

∂z2

)
− 1
c

(
∂2Ey

∂x2 − ∂2Ex

∂x∂y

)]
−→
j

+ 1
c

[
1
b

(
∂2Ex

∂x∂z
− ∂2Ez

∂x2

)
− 1
a

(
∂2Ez

∂y2 − ∂2Ey

∂y∂z

)]
−→
k(A.3)

For anisotropic PML with interface normal to x-axis, the coefficients should be re-
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lated by c = b = 1/a. We may simplify the above equation as follows:

[Λ]−1∇ × [Λ]−1∇ × −→
E =

[(
∂2Ey

∂x∂y
− ∂2Ex

∂y2

)
−
(
∂2Ex

∂z2 − ∂2Ez

∂x∂z

)]
−→
i

+
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∂2Ez

∂y∂z
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∂z2

)
− 1
c2

(
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j

+
[

1
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(
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− ∂2Ez

∂x2

)
−
(
∂2Ez
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∂y∂z

)]
−→
k (A.4)

It is useful to consider the following expression:

1
c
∇(∇ · [Λ]
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E ) = ∇
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1
c2
∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ex

∂z
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+
−→
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∂
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)
(A.5)

Based on the first Maxwell equation, the above equation should be zero. Thus, we
may subtract it from Eq. A.4 so that the cross terms may be canceled out. We
obtain the following:

[Λ]−1∇ × [Λ]−1∇ × −→
E = −

(
1
c2
∂2Ex

∂x2 + ∂2Ex

∂y2 + ∂2Ex

∂z2

)
−→
i

−
(

1
c2
∂2Ey
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)
−→
j

−
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)
−→
k (A.6)

Or simply:

[Λ]−1∇ × [Λ]−1∇ × −→
E = −

(
1
c2

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
−→
E (A.7)

The wave equation in the PML can be thus written in the following form:(
1
c2

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
−→
E + k2−→E = 0 (A.8)



Appendix B

MATERIAL PARAMETERS

B.1 Introduction

Most material parameters implemented in the simulation software are well estab-
lished data taken from Refs. such as [1], [153] and [154]. They are specified outside
the program in the form of input statements. Since there are a large number of semi-
conductor parameters for a device, these material statements are collected together
as macros.
To ensure a rapid update of the most recent material parameters, the material macro
library is in a simple editable text format. Should the user have better knowledge of
the material parameters than those listed in the macro library, he/she is encouraged
to revise the library or override the parameters in the macro by re-issuing an input
material statement after the macros have been loaded. It is also possible to define an
entirely new macro in a separate text file in the simulation directory: the program
can make use of this custom macro file with the use_macrofile statement.
In this appendix, we only provide a full listing of a few typical material macro
parameters for the purpose of illustration. For a full listing of all macros, consult the
“crosslight.mac” and “more.mac” files in the installation directory. These files are
the default macro database and should usually not be edited by the user since they
affect all simulations. Instead, use custom macro files or override input statements
as described above.
A full list of macros is also visible when using the LayerBuilder and GeoEditor GUI
programs to define the materials in a particular layer or polygon.
Note that certain macros, especially for ternary/quaternary III-V materials, are de-
signed for the case where the material is lattice-matched to a particular substrate
(GaAs or InP). Make sure to read the header section of each macro to ensure you
are using the correct macro and material parameters for your simulation.
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B.2 Rules for macros

The rules for macros are detailed in the header of the crosslight.mac file. For the
sake of convenience, here is a copy.

$ IMPORTANT: Please do not use any invisible characters such as tabs in macro
$*****************MATERIAL MACRO*********************************
$
$ Copyright (c) 1995-present Crosslight Software Inc..
$ All rights reserved.
$
$ What Is A Macro
$
$ A macro is a collection of input statements (or commands).
$ A statement starts with a keyword followed by parameters
$ specified with "=".
$ A statement for material parameters overrides a
$ previous statement with the same keyword.
$ To make changes of the parameters in a macro, just re-issue
$ the statement with different parameters after the macro call
$ in the input file. You can also change the parameters in the
$ macro directly.
$
$ For example, if you are unhappy with the bandgap in gaas macro,
$ you can do the following:
$ load_macro name=gaas mater=#m
$ band_gap value=1.425 mater=#m
$
$
$ Two Types of Macros
$
$ For device simulation, you may need two types of macros:
$
$ 1) Bulk material macros. These are given lower case macro names
$ such as "algaas". They are referred to by "load_macro" in the
$ input files. You must specify bulk material macro for
$ all material layers. They specify general material
$ parameters such as bandgap, mobility, index, etc.
$
$ 2) Active layer macros. These are given mixed case macro names
$ such as "AlGaAs". These are only needed for active layers in a
$ laser diode or quantum well layers in other devices. Quantum
$ subbands and/or optical processes are considered in these layers.
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$ If there are overlaps with 1), the parameters (such as bandgap)
$ in active layer macros will override those in 1). Active layer
$ macro with prefix cx- (such as cx-InGaAsP/InP)
$ are "complex active layers" which may be used to define
$ active or quantum regions of complex structures.
$
$ You must use both "bulk material macro" and "active layer macro"
$ if you have an active region or a quantum region.
$
$
$ Syntax
$
$ Comments start with "$". A line to be continued terminates
$ with "&&". Symbol definition within a function terminates with ";".
$ A statement starts with a keyword followed by parameters
$ specified with "=". Space, ",", "(", ")", "[", "]", "{" and
$ "}" with a statement are ignored by the program. The length
$ of a statement line must not exceed 80 characters. The tab key is
$ not to be used in any statements.
$
$ A math function is declared using variation=function and
$ followed in the next few lines by
$
$ function(var1,var2,var3,...)
$ for logical_expression_1
$ complete_function_definition_1
$ for logical_expression_2
$ complete_function_definition_2
$ for logical_expression_3
$ complete_function_definition_3
$ ...
$ for else
$ complete_function_definition_N
$ end_function
$
$ The logical_exression takes the format
$ expr1<expr2 or expr1<expr2<expr3
$ It also supports one of | (logical OR) or & (logical AND) operator.
$ to use "for else" as a case indicator. The following lines are legal:
$
$ function(x,y,xlam)
$ for 1.24/xlam<bulk_xfunc1
$ complete_function_definition_1



1180 MATERIAL PARAMETERS

$ for 0.5<y
$ complete_function_definition_2
$ for y>0.1&xlam<0.8
$ complete_function_definition_3
$ for x<0.8|xlam<0.8
$ complete_function_definition_4
$ for else
$ complete_function_definition_5
$ end_function
$
$ Please note that ">" really means "greater than or equal". Similarly
$ "<" means "less than or equal". For continuous
$ numerical functions, there is no difference between "greater than or equal"
$ and simply "greater than".
$
$ The case indicator above separates the function into branches
$ of complete function definitions (like having different functions).
$
$ Within each branch of complete function definition, a set of
$ new and more convenient logical switches can be used in the following form
$
$ if(expression1) then
$ else if(expression2) then
$ else if(expression3) then
$ ...
$ else
$ endif
$
$ The "then" word is optional, so is the "if" following the "else".
$ The program looks for expressions within the
$ bracket. The following format is equivalent to the above.
$
$ if(expression1)
$ else (expression2)
$ else (expression3)
$ ...
$ else
$ endif
$
$ It is also possible to use an if-else-endif branching within another
$ if-else-endif. The hierarchy may reach 99 and within
$ each hierarchy, there can be 29 branches.
$ For example the following complicated logical branches are
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$ supported:
$
$ if(adfa.eq.k) then
$ some_definition_lines
$
$ if(5<x*y)
$ some_definition_lines
$ else if(wavelength>1.9)
$ some_definition_lines
$ endif
$
$ some_definition_lines
$ else if (bulk_xfunc1>2.5) then
$ some_definition_lines
$ endif
$
$
$ Please note that a complete function definition can not
$ exceed 3000 characters. If you need to construct a function
$ with many logical branches of long math expressions,
$ it is recommended that you use the conventional
$ "for" logical branching method.
$
$ The logical expressions in "for" and "if-then-else" must
$ not exceed 80 characters. The math expressions follow the
$ same syntax as for function definition detailed as follows.
$
$ For a function definition, there can be more than one
$ math expressions. The "=" symbol is used to define intermediate
$ variables. Expression without "=" is interpreted as the returned
$ function value and causes the evaluation procedure to exit the function.
$ All expressions should be separated by ";" or "end-of-line".
$ An expression longer than 80 characters will be jointed
$ by the next line regardless of existence of "&&" at the end of the line.
$
$ The mathematical operators +, -, *, /, **
$ follow those of C/FORTRAN [** means pow() or power() in C] languages.
$ All intrinsic mathematic functions appearing in the
$ FORTRAN language, such as sin(), cos(),
$ sqrt(), log(), log10(), exp(), etc., can be used without modification.
$
$ Tables
$
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$ In addition to analytical functions, parameters can also be specified
$ by numerical tables expressed in the form of an n-dimensional matrix:
$ para(j1,j2,...,jn). The index in each dimension corresponds to an
$ independent variable (such as composition or temperature).
$ The change of such a variable with the index is not necessarily of equal
$ interval but must be in ascending order. The table must be presented in
$ a column-wise manner and the left most index changes the fastest.
$ Blank lines may be inserted anywhere inside the table. For example:
$
$ electron_mass variation=table
$ table(x,y)
$ x(1) y(1) matrix(1,1)
$ x(2) y(1) matrix(2,1)
$ x(3) y(1) matrix(3,1)
$
$ x(1) y(2) matrix(1,2)
$ x(2) y(2) matrix(2,2)
$ x(3) y(2) matrix(3,2)
$
$ end_table
$
$
$ Units
$
$ Dimensions are in micron meters. Band parameters and
$ potentials are in eV or volts. All others are in MKS units.
$ For example mobility is in m^2/(volt*sec), band_gap in eV
$ and dopant concentration in 1/m^3.
$
$ Symbol Definition
$
$ max_electron_mob Maximum dopant dependent elec. mobility.
$ min_electron_mob Minimum dopant dependent elec. mobility.
$ electron_ref_dens Reference impurity density in
$ Dopant dependent elec. mobility function
$ alpha_n exponent in dopant dependent elec. mobility
$ function.
$ max_hole_mob Corresponding symbol for holes.
$ min_hole_mob ...
$ hole_ref_dens ...
$ alpha_p ...
$ tau_energy Energy relaxation time in hydrodynamic model.
$ lifetime_n Minority n-carrier (electron) life time.



B.2 Rules for macros 1183

$ Deep trap specification will override this.
$ lifetime_p Minority p-carrier (hole) life time.
$ Deep trap specification will override this.
$ radiative_recomb Radiative recombination constant.
$ other symbols Obvious.
$
$
$ Special Symbols, Temperature, Doping, etc.
$
$ "temper" is reserved as a variable for the lattice temperature
$ when constructing a material macro. The unit is degrees Kelvin.
$ If you use any other symbol for temperature within a macro,
$ it may not work for the thermal modeling option.
$ Please note that in a simulation
$ involving setting the environmental temperature, it is not
$ sufficient to set the temperature parameter in a material
$ macro. You must also use the "temperature" statement.
$ The temperature parameter in a macro is used to evaluate the
$ material properties (such as bandgap) at a particular temperature,
$ while the "temperature" statement is used to model the
$ carrier statistics at that temperature.
$
$ Similarly, "doping_n", "doping_p", and "trap_1", "trap_2", ..., "trap_9"
$ are reserved variable symbols in a function definition. The units are
$ in 1/m**3. "wavelength" is another reserved variable with unit of
$ micron meters.
$
$ # is used together with a symbol to denote a numerical value
$ to be supplied by the user. For example, in
$
$ load_macro name=gaas mater=#m
$
$ #m is used to mean a numerical value denoting the material
$ number in a device. For example, if your device has GaAs bulk
$ material as material number 2, then the above statement should be
$ written as
$
$ load_macro name=gaas mater=2
$
$
$ Macro Styles and Function Formats
$
$ An advanced feature of Crosslight Software macro is its ability
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$ to define mathematical functions external to the simulation
$ program. Such functions are evaluated dynamically at run-time.
$
$ Currently, there are two kinds of macros with different formats of
$ functions: a) the older "fix-arguement-style" macros and
$ b) the more recent "free-arguement-style" macros. The older macros
$ are included here for compatibility reason and the newer formats are
$ highly recommended. The two formats are explained as follows.
$
$ a) Fix-Arguement-Style Macros
$
$ The rules for function variables/arguements are rather strict.
$ If a function is used for a physical quantity (presented as
$ a statement), there should be exactly the same number of
$ of function variables as that used in the "load_macro" or
$ "get_active_layer" statement. For example, if you use
$ (x,temper) as the variables in "load_macro", all functions
$ within the macro must have these two variables even if
$ all of them do not use the two variables. When calling such a macro,
$ the following can be used:
$
$ load_macro name=algaas.temp var1=0.3 var2=300
$
$ Since all functions of such a style have the same number of
$ arguments, the program knows which value supplied belongs to which
$ argument in a function. Please note that when calling these kinds
$ of macros, the user must supply all values of the arguments even
$ if they are reserved symbols such as "temper", "doping_n", etc.
$
$ b) Free-Argument-Style Macros
$
$ The use of free-style format is more based on the need of variables.
$ A function passes and uses as many function arguments as it needs.
$ For example, the bandgap can pass and use both the composition
$ and temperature as (x,temper). But for the effective mass, only
$ the composition is needed and passed as (x). The evaluation of such
$ a macro is based on symbol matching, i.e., the user must specify
$ both the symbol and the value of the symbol when calling the macro,
$ such as in the following call.
$
$ load_macro name=algaas.temp var1=0.3 var2=300 &&
$ var_symbol1=x var_symbol2=temper
$
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$ The user may skip the specification of reserved internal arguments
$ such as "temper", "doping_n", etc., because the program already
$ knows their values. For example, the following may be used instead of
$ the above.
$
$ load_macro name=algaas.temp var1=0.3 var_symbol1=x
$
$
$ Searching For a Macro
$
$ The macro files can contain both the older and newer style macros
$ with the same macro name. The search of the correct version depends
$ on how the macro is called. If a macro does not require
$ any user-supplied macro variables, the simulator will use the first
$ macro it encounters in the search. For macro requiring user-supplied
$ variables (or function arguments), if "var_symbol" is not specified
$ in a macro call, older style macro is assumed and user must strictly
$ align all variables in a macro call. The user is encouraged
$ to convert to the newer style because all future new macros will
$ be created and maintained in the newer free-style.
$
$ Please also note that the older style (fix-argument-style) may be
$ regarded as a special case of free-style macro with many un-used
$ function variables listed in all macro functions. Or in another word
$ the older macro can be loaded also with a complete listing of
$ "var_symbol". In fact when the program detects a "load_macro" or
$ "get_active_layer" without any "var_symbol", it will search all the
$ macro functions and supply the necessary "var_symbol". In the case
$ of a macro call fits more than one macros in the macro library, the
$ simulator will always use the first one it encounters.
$
$ For the free-style macros to be recognized by the graphic user
$ interface (GUI) such as LayerBuilder and GeoEditor, it must be labeled
$ as [free-style] in the remarks before the macro. Otherwise, it will be
$ treated as an older style macro.
$
$
$ Mobility Parameter Specifications
$
$ In Crosslight device simulator, the dopant dependent low field mobility
$ takes the following form:
$
$ mu_low_field=mu_min+(mu_max-mu_min)/(1+(total_doping/ref_dens)**alpha)
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$
$ The current version of the simulator supports two versions of
$ parameter specifications. The older version is to specify the
$ following four parameters for electrons:
$ max_electron_mob, min_electron_mob, electron_ref_dens, and alpha_n.
$ The program computes the above for each mesh point and average them
$ in mid-point between two nodes. Then the mid-point quantities of the
$ above is used in the dopant dependent formula at every iteration.
$
$ To speed up the computation, a more efficient version of parameter
$ specification is to directly evaluate the dopant dependence for
$ for statement of "electron_mobility", as in the following example.
$
$ electron_mobility variation=function
$ function(doping_n,doping_p,trap_1)
$ mu_max=0.14;
$ mu_min=0.0055;
$ ref_dens=1.07d23;
$ alpha=0.73;
$ total_doping=doping_n+doping_p+trap_1;
$ mu_min+(mu_max-mu_min)/(1+(total_doping/ref_dens)**alpha)
$ end_function
$
$ Speed-up is achieved because we need to evaluate the formula
$ once only at the time of processing the macro data.
$
$ The two versions of parameters specification are equivalent in theory
$ but may result in some difference if the mesh is rough because of the
$ non-linearity of the dopant dependent formula. Also, difference in
$ number of trap types may also make a difference. The older version
$ of specification automatically takes into account all trap densities
$ while the user need to explicitly specify the number of traps to
$ be used in the dopant dependent formula.
$
$
$ use_macro_file macro1=my_old_macro1 macro2=my_old_macro2
$
$ The simulation software will first search macros in the above
$ statement before searching the default crosslight.tab/more.tab.
$ Please note that that included macros must be placed in the
$ same directory as the input files.
$
$
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$ Crosslight Quaternary Parameter Interpolation Scheme
$
$ For quaternary material such as In(1-x)Ga(x)As(y)P(1-y), experimental
$ data for arbitrary (x,y) normally do not exist. However, data are available
$ for ternaries [such as In(1-x)Ga(x)As] and for the lattice matched line:
$ fm(xm,ym)=0. Therefore, any reasonable interpolation scheme must
$ satisfy experimental data for all the ternaries and at the matched line.
$
$ Crosslight macros use the following interpolation scheme:
$
$ Let us take the bandgap as an example:
$ Given bandgap of matched line (xm,ym): Eg0_match(ym)
$ and measured ternary bandgaps, we interpolate as follows.
$ If (x,y) is within the left side of the matched line (xm,ym):
$
$ Eg0=Eg0_bilin(x,y)+(x/xm)*(Eg0_match(y)-Eg0_bilin(xm,y))
$
$ If (x,y) is within the right side of the matched line (xm,ym):
$
$ Eg0=Eg0_bilin(x,y)+[(1-x)/(1-xm)]*(Eg0_match(y)-Eg0_bilin(xm,y))
$
$ where Eg0_bilin(x,y) is bi-linear interpolation from ternaries as proposed
$ in the paper of Adachi,
$ [Adachi,S. "Material parameters of In(1-x)Ga(x)As(y)P(1-y) and related
$ binaries." J. Appl. Phys. Vol. 53 No. 12, Dec. 1982, pgs 8775-92.]
$
$ The Crosslight formula ensures that the unstrained bandgap
$ agrees with experiment at ternaries and at the matched line (xm,ym).
$ For any other composition, we draw horizontal line across
$ (x,y) and linearly interpolate given the three known points:
$ (0,y), (xm,y), (1,y)
$
$ Supported Intrinsic Math Functions
$
$ Math functions are directly taken from Fortran90 and accuracy of
$ double precision is already used. Please note that the following
$ symbols are reserved for math functions and these should not be used
$ for user-defined variables. Also, version 2009 and later supports
$ multiple variable instrinsic functions, such as atan2(x1,x2)
$ and max(x1,x2,...).
$
$ function-symbol equivalent double-precision version remark
$ log dlog
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$ log10 dlog10
$ exp dexp
$ asin dasin
$ acos dacos
$ atan datan
$ sin dsin
$ cos dcos
$ tan dtan
$ sinh dsinh
$ cosh dcosh
$ tanh dtanh
$ erf derf
$ erfc derfc
$ sqrt dsqrt
$ abs dabs
$ atan2 datan2 2-variable function
$ max multiple-variable function
$ maxval same as max()
$ min multiple-variable function
$ minval same as min()
$
$ Band Offsets and Alignments
$
$ For bulk macro, the band alignment is solely determined by the
$ affinity parameter. For active_layer macro, the band alignment
$ is determined by band_offset, band_discont, or band_discont_right.
$ band_discont and band_discont_right override band_offset. Then
$ band alignment settings in active_layer macro override the affinity
$ setting in bulk macro.
$
$ For quantum well with strain in well and/or barrier, it may be confusing
$ to use band_offset since hydrostatic strain changes the bandgap. Such
$ change may be partitioned between the conduction and
$ valence band with a certain ratio.
$
$ The shear strain may split the HH/LH/CH valence bands, making the
$ bandgap multi-valued. Different use of band_offset is controlled by
$ the command zincblende_offset_model or wurtzite_offset_model, for
$ zincblende or wurtzite material, respectively.
$
$
$ Supported Internal and External Functions
$
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$ Crosslight macro system supports user-defined external and internal
$ functions. User-defined external function uses names like
$ bulk_xfunck (k=1,...,9) for bulk macros and ext_funck (k=1,...,9)
$ for active_layers.
$ They can be defined in the same way as other predefined functions
$ such as for band_gap and affinity, and supports symbolic math expressions
$ and tables. The advantage is that they can be repeatedly used in
$ defining other quantities. For example, one may define a temperature
$ dependent external function and repeatedly use it in band_gap, affinity,
$ mobility and other physical variables which may use the same temperature
$ dependent function.
$
$ The other type of function is "internal function", in the form of
$ intern_funck (k=1,...,9). These are more flexible and are treated
$ in a manner as the math intrinsic functions such as sin() and cos().
$ They are user-defined within the same macro and can use both math
$ expression and tables. The function arguements are completely independent
$ of variables passed when loading a macro. The difference between
$ user-defined internal and external functions are as follows:
$ Function arguements for external functions must be passed from macro
$ loading. For example, the argument "x" is passed through
$ load_macro name=algaas mater= 1 &&
$ var_symbol1=x var1= 0.7100E+00
$ Also, temperature, doping concetration and other reserved variables are
$ automatically passed to it. The user has no way of changing the
$ input arguements. For internal functions, the input arguements
$ are supplied when being used within a function definition. The input
$ arguements may or may not be related to macro loading. Also, user
$ may operate on the input variables before passing it as internal
$ a function arguement.
$
$=============================================================

B.3 Zincblende passive macro

A typical passive macro for a zincblende material (AlxGa1−xAs) is listed here.

$***********************************
$ macro algaas
$ for bulk Al(x)Ga(1-x)As
$ Lattice matched to GaAs
$ [free-style]
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$ Temperature dependent version of macro algaas
$ Renamed from algaas.temp
$ Typical use:
$ load_macro name=algaas var1=#x mater=#m &&
$ var_symbol1=x
$ parameter_range x=[0 1]
$ parameter_range temper=[77 600]
$ parameter_range doping_n=[1.e20 1.e26]
$ parameter_range doping_p=[1.e20 1.e26]
$ parameter_range trap_1=[1.e18 1.e24]
$***********************************
begin_macro algaas
material type=semicond band_valleys=(1 1) &&

el_vel_model=n.gaas hole_vel_model=beta
dielectric_constant variation=function
function(x)
13.1 - 3 * x
end_function

electron_mass variation=function
function(x)
for 0.<x<0.45
0.067 + 0.083 * x
for 0.45<x<1.
0.85 - 0.14 * x
end_function

hole_mass variation=function
function(x)

( ( 0.087 + 0.063 * x ) ** (3 / 2)
+ ( 0.62 + 0.14 * x ) ** (3 / 2) ) ** (2 / 3)

end_function

band_gap variation=function
function(x,temper)
for 0.<x<0.45
shift=-5.5e-4 * temper**2 /(temper+225)+9.4285712E-02 ;
1.424 + 1.247 * x +shift
for 0.45<x<1.
shift=-5.5e-4 * temper**2 /(temper+225)+9.4285712E-02 ;
1.9 + 0.125 * x + 0.143 *x * x +shift
end_function
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affinity variation=function
function(x,temper)
for 0<x<0.45
offset=0.6;
shift=-5.5e-4 * temper**2 /(temper+225)+9.4285712E-02 ;
4.07 - 0.748 * x-offset*shift
for 0.45<x<1.
offset=0.6;
shift=-5.5e-4 * temper**2 /(temper+225)+9.4285712E-02 ;
3.7964 - 0.14 * x-offset*shift
end_function

electron_mobility variation=function
function(x,temper,doping_n,doping_p,trap_1)
for 0<x<0.45
fac=(300/temper)**2.3;
mu_max=0.85 * exp(-18.516 * x ** 2 )*fac;
mu_min=0;
ref_dens=1.69d23;
alpha=0.436;
total_doping=doping_n+doping_p+trap_1;
mu_min+(mu_max-mu_min)/(1+(total_doping/ref_dens)**alpha)
for 0.45<x<1.
fac=(300/temper)**2.3;
mu_max=0.02*fac;
mu_min=0;
ref_dens=1.69d23;
alpha=0.436;
total_doping=doping_n+doping_p+trap_1;
mu_min+(mu_max-mu_min)/(1+(total_doping/ref_dens)**alpha)
end_function

hole_mobility variation=function
function(x,temper,doping_n,doping_p,trap_1)
dope=1.e22 ;
tfac1=(temper/300)**2.3 ;
tfac2=(temper/300)**1.5 ;
fac=1/( tfac1 + 1.6e-24*dope*tfac2 );
mu_max=(0.04 - 0.048 * x + 0.02 * x * x)*fac;
mu_min=0;
ref_dens=2.75d23;
alpha=0.395;
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total_doping=doping_n+doping_p+trap_1;
mu_min+(mu_max-mu_min)/(1+(total_doping/ref_dens)**alpha)
end_function

beta_n value=2.
electron_sat_vel variation=function
function(x,temper)
for 0<x<0.45
fac=(300/temper)**2.3;
0.77e5 * (1 - 0.44 * x )*fac
for 0.45<x<1.
fac=(300/temper)**2.3;
8.e4*fac
end_function

beta_p value=1.
hole_sat_vel variation=function
function(temper)
dope=1.e22 ;
tfac1=(temper/300)**2.3 ;
tfac2=(temper/300)**1.5 ;
fac=1/( tfac1 + 1.6e-24*dope*tfac2 );
1.d5*fac
end_function

norm_field value=4.e5
tau_energy value=1.e-13
radiative_recomb value=1.d-16
auger_n value=1.5e-42
auger_p value=1.5e-42
lifetime_n value=1.e-7
lifetime_p value=1.e-7

real_index variation=function
function(x)
3.65-0.73*x
end_function

absorption value=0.
thermal_kappa value=46.
end_macro algaas
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B.4 Zincblende active macro

A typical active macro for a zincblende material (AlxGa1−xAs) is listed here. This
is a QW macro with the barrier and well having a different Al%: note how the
parameters depend on both the well and barrier compositions. Parameters from this
macro will override values defined in the passive macros for the well and barriers if
there is a conflict.

$ ******************************************************
$ acitve layer macro : Al(xw)Ga(1-xw)As/Al(xb)Ga(1-xb)As
$ [free-style]
$ xw, xb=Al comp. in well, barrier, temper=well temperature
$ Typical use:
$ get_active_layer name=AlGaAs/AlGaAs mater=#m &&
$ var1=#xw var2=#xb var_symbol1=xw var_symbol2=xb
$ parameter_range xw=[0 1]
$ parameter_range xb=[0 1]
$ parameter_range temper=[77 600]
$ ******************************************************
$
begin_active_layer AlGaAs/AlGaAs
$
layer_type type=unstrained_well valley_gamma=1 valley_l=4 &&

valley_hh=1 valley_lh=1
$
eg0_well variation=function
function(xw,temper)
for 0.<xw<0.45
shift0=-5.5d-4*300.**2/(300.+225.) ;
shift=-5.5d-4*temper**2/(temper+225.) ;
1.424+1.247*xw+shift-shift0
for 0.45<xw<1.
shift0=-5.5d-4*300.**2/(300.+225.) ;
shift=-5.5d-4*temper**2/(temper+225.) ;
1.9+.125*xw+0.143*xw**2+shift-shift0
end_function
$
lband_well value=0.28
$
eg0_bar variation=function
function(xb,temper)
for 0.<xb<0.45
shift0=-5.5d-4*300.**2/(300.+225.) ;
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shift=-5.5d-4*temper**2/(temper+225.) ;
1.424+1.247*xb+shift-shift0
for 0.45<xb<1.
shift0=-5.5d-4*300.**2/(300.+225.) ;
shift=-5.5d-4*temper**2/(temper+225.) ;
1.9+.125*xb+0.143*xb**2+shift-shift0
end_function
$
lband_bar value=0.28
$
$ revised jun04
$delta_so_well value=0.366
delta_so_well variation=function
function(xw,xb,temper)
0.343-0.0628*xw
end_function
delta_so_bar variation=function
function(xw,xb,temper)
0.343-0.0628*xb
end_function
$
band_offset value=0.6
$
mass_gamma_well variation=function
function(xw)
0.067+0.083*xw
end_function
$
mass_gamma_bar variation=function
function(xb)
0.067+0.083*xb
end_function
$
mass_l_well variation=function
function(xw)
0.56+0.1*xw
end_function
$
mass_l_bar variation=function
function(xb)
0.56+0.1*xb
end_function
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$
gamma1_well variation=function
function(xw)
g1ga=6.9 ;
g1al=3.45 ;
g1ga*(1.-xw)+g1al*xw
end_function
$
gamma2_well variation=function
function(xw)
g2ga=2.2 ;
g2al=0.68 ;
g2ga*(1.-xw)+g2al*xw
end_function
$
gamma3_well variation=function
function(xw)
g3ga=2.9 ;
g3al=1.29 ;
g3ga*(1.-xw)+g3al*xw
end_function
$
a_well variation=function
function(xw)
dhga=-9.8 ;
dhal=-9.8 ;
dhga* (1. - xw) +dhal*xw
end_function
$
b_well variation=function
function(xw)
duga=-1.76 ;
dual=-1.76 ;
duga*(1.-xw)+dual*xw
end_function
$
c11_well variation=function
function(xw)
c11ga=11.9 ;
c11al=12.02 ;
c11ga*(1.-xw)+c11al*xw
end_function
$
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c12_well variation=function
function(xw)
c12ga=5.38 ;
c12al=5.70 ;
c12ga*(1.-xw)+c12al*xw
end_function
$
gamma1_bar variation=function
function(xb)
g1ga=6.9 ;
g1al=3.45 ;
g1ga*(1.-xb)+g1al*xb
end_function
$
gamma2_bar variation=function
function(xb)
g2ga=2.2 ;
g2al=0.68 ;
g2ga*(1.-xb)+g2al*xb
end_function
$
gamma3_bar variation=function
function(xb)
g3ga=2.9 ;
g3al=1.29 ;
g3ga*(1.-xb)+g3al*xb
end_function
$
a_bar variation=function
function(xb)
dhga=-9.8 ;
dhal=-9.8 ;
dhga*(1.-xb)+dhal*xb
end_function
$
b_bar variation=function
function(xb)
duga=-1.76 ;
dual=-1.76 ;
duga*(1.-xb)+dual*xb
end_function
$
c11_bar variation=function
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function(xb)
c11ga=11.9 ;
c11al=12.02 ;
c11ga*(1.-xb)+c11al*xb
end_function
$
c12_bar variation=function
function(xb)
c12ga=5.38 ;
c12al=5.70 ;
c12ga*(1.-xb)+c12al*xb
end_function
$

kane_para_f_well variation=function
function(xw)
gaas=-1.94;
alas=-0.48;
(1-xw)*gaas+xw*alas
end_function

kane_para_f_bar variation=function
function(xb)
gaas=-1.94;
alas=-0.48;
(1-xb)*gaas+xb*alas
end_function

lattice_constant value=5.65325
$
end_active_layer AlGaAs/AlGaAs

B.5 Wurtzite passive macro

This section shows the passive macro of a common wurtzite material (InxGa1−xN).
Note how the strain parameters are critical.

$**********************************************
$ [free-style]
$ macro ingan
$ Bulk In(x)Ga(1-x)N parameters
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$ Contributors: Peter Mensz, Khalid Shahzad (and maybe) others.
$ Changed by Kehl Sink 6/10/99
$ changed by Joachim Piprek 12/2/99 + 1/7/00
$ revised By zqli 05/2005 for band gap and bowing
$ InN band gap of 0.71 is from T Matsuoka et al.
$ Appl. Phys. Lett., 12, 1246(2002)
$ revised jul07
$ 1) use unstrained offset 2) include temper. 3) reduce lifetime
$ Typical use:
$ load_macro name=ingan var1=#x mater=#m var_symbol1=x
$ parameter_range x=[0 1]
$ parameter_range temper=[77 600]
$ *********************************************
begin_macro ingan
material type=wurtzite band_valleys=(1 1) &&

el_vel_model=beta hole_vel_model=beta
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ bowing=3. & band-structure parameters
$ according to JAP Vol 89 No 11 pp 5815-5875
$ modified by George Xiao on Aug. 29, 2006
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$---wurtzite parameters-----------
$---These are the same as in corresponding Active Layer Macro
$---Please see references therein

lattice_base value=3.189
lattice_c_base value=5.185
lattice_bulk variation=function
function(x,temper)
3.189*(1-x)+3.545*x
end_function
lattice_c_bulk variation=function
function(x)
gan=5.185;
inn=5.718;
gan*(1-x)+inn*x
end_function
$
eg0_bulk variation=function
function(x,temper)
eg0gan=3.507-9.09d-4*temper**2/(830+temper);
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eg0inn=0.735-2.45d-4*temper**2/(624+temper);
bowing=3.0;
(1.0-x)*eg0gan+eg0inn*x-bowing*x*(1-x)
end_function
$
delta1_bulk variation=function
function(x,temper)
gan=0.019;
inn=0.041;
gan+(inn-gan)*x
end_function
$
delta2_bulk variation=function
function(x,temper)
gan=0.0047;
inn=0.00033;
gan+(inn-gan)*x
end_function
$
delta3_bulk variation=function
function(x,temper)
gan=0.0047;
inn=0.00033;
gan+(inn-gan)*x
end_function
$
mass_gamma_bulk variation=function
function(x)
gan=0.20;
inn=0.12;
gan+(inn-gan)*x
end_function
$
tmass_gamma_bulk variation=function
function(x)
gan=0.20;
inn=0.12;
gan+(inn-gan)*x
end_function
$
a1_bulk variation=function
function(x,temper)
inn=-8.21;
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gan=-6.56;
gan+(inn-gan)*x
end_function
$
a2_bulk variation=function
function(x,temper)
inn=-0.68;
gan=-0.91;
gan+(inn-gan)*x
end_function
$
a3_bulk variation=function
function(x,temper)
inn=7.57;
gan=5.65;
gan+(inn-gan)*x
end_function
$
a4_bulk variation=function
function(x,temper)
inn=-5.23;
gan=-2.83;
gan+(inn-gan)*x
end_function
$
a5_bulk variation=function
function(x,temper)
inn=-5.11;
gan=-3.13;
gan+(inn-gan)*x
end_function
$
a6_bulk variation=function
function(x,temper)
inn=-5.96;
gan=-4.86;
gan+(inn-gan)*x
end_function
$
c33_bulk variation=function
function(x,temper)
gan=398;
inn=224;
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gan+(inn-gan)*x
end_function
$
c13_bulk variation=function
function(x,temper)
gan=106;
inn=92;
gan+(inn-gan)*x
end_function

c11_bulk variation=function
function(x,temper)
gan=390;
inn=271;
gan+(inn-gan)*x
end_function

c12_bulk variation=function
function(x,temper)
gan=145;
inn=124;
gan+(inn-gan)*x
end_function

c44_bulk variation=function
function(x,temper)
gan=105;
inn=46;
gan+(inn-gan)*x
end_function

$
$ GaN values for def. pot.
$
d1_bulk variation=function
function(x,temper)
gan=-3.0;
inn=-3.0;
gan+(inn-gan)*x
end_function
$
d2_bulk variation=function
function(x,temper)
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gan=3.6;
inn=3.6;
gan+(inn-gan)*x
end_function
$
d3_bulk variation=function
function(x,temper)
gan=8.82;
inn=8.82;
gan+(inn-gan)*x
end_function
$
d4_bulk variation=function
function(x,temper)
gan=-4.41;
inn=-4.41;
gan+(inn-gan)*x
end_function

d5_bulk variation=function
function(x,temper)
gan=-4.00;
inn=-2.33;
gan+(inn-gan)*x
end_function

d6_bulk variation=function
function(x,temper)
gan=-4.00;
inn=-2.33;
d5=gan+(inn-gan)*x;
d3=8.82;
(d3+4*d5)/sqrt(2)
end_function

$
$a_bulk value=-4.08
$ac_bulk value=-8.61
$
a_bulk variation=function
function(x,temper)
gan=-8.16;
inn=-3.5;
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gan+(inn-gan)*x
end_function
$
ac_bulk variation=function
function(x,temper)
gan=-4.08;
inn=-3.5;
gan+(inn-gan)*x
end_function
$
$---end of wurtzite parameters-----------
$
dielectric_constant variation=function
function(x,temper)
gan=9.5;
inn=15;
gan+(inn-gan)*x
end_function
$
$ k.p theory: unstrained ref. bandgap=eg0+delta1+delta2
$
affinity variation=function
function(x,temper)
gan=4.07;
eg0gan=3.507-9.09d-4*temper**2/(830+temper);
eg0inn=0.735-2.45d-4*temper**2/(624+temper);
bowing=3.0;
egx=(1.0-x)*eg0gan+eg0inn*x-bowing*x*(1-x);
$
delta1_gan=0.019;
delta1_inn=0.041;
delta1_x=delta1_gan+(delta1_inn-delta1_gan)*x;
$
delta2_gan=0.0047;
delta2_inn=0.00033;
delta2_x=delta2_gan+(delta2_inn-delta2_gan)*x;
$
$egx_ref=egx+delta1_x+delta2_x;
$eg0gan_ref=eg0gan+delta1_gan+delta2_gan;
egx_ref=egx;
eg0gan_ref=eg0gan;
off=0.67;
gan-(egx_ref-eg0gan_ref)*off
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end_function

$
max_electron_mob variation=function
function(x,temper)
684.d-4*(300/temper)**1.5
end_function
min_electron_mob variation=function
function(x,temper)
386.d-4*(300/temper)**1.5
end_function
electron_ref_dens value=1.d23
alpha_n value=1.37
beta_n value=1.
electron_sat_vel value=1.d5
norm_field value=2.1e7
$ from [7]
max_hole_mob value=2.0d-4
min_hole_mob value=2.0d-4
hole_ref_dens value=2.75d23
alpha_p value=0.395
beta_p value=1.
hole_sat_vel value=1.d5
$
tau_energy value=1.d-13
$
lifetime_n value=1.e-7
lifetime_p value=1.e-7
$ adjusted 1/7/00
radiative_recomb value=0.2d-16
auger_n value=1.d-46
auger_p value=1.d-46
$
$real_index value=2.7
$for x<0.3
real_index variation=function
function(x,temper)
gan=2.5067;
inn=3.4167;
gan+(inn-gan)*x
end_function
absorption value=0.
$ rough estimate for thin layers:
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thermal_kappa value=10.
$
end_macro ingan

B.6 Wurtzite active macro

This section lists a typical wurtzite active layer: InGaN well grown on an InGaN
barrier. The parameters for wurtzite semiconductors are substantially different from
those of zincblende structure due to the complex coupling of the three valence bands.
Many terms are needed to define the valence band Hamiltonian and various strain
effects.
Since the whole structure is often grown on sapphire, it is also unclear exactly what
the base lattice size should be. Thus the user is required to investigate this issue
based on information of the growth on sapphire. In many cases, a thick GaN buffer
layer is also used and the base lattice will be that of GaN.

$ ***********************************************
$ Version 2005
$ active layer macro for
$ quantum well system of In(xw)Ga(1-xw)N/In(xb)Ga(1-xb)N
$ xw=In composition in well, xb=In composition in barrier,
$ temper=well temperature
$
$ [free-style]
$ revised by J. Piprek 9/9/2001
$ revised By zqli 05/2005 for band gap and bowing
$ InN band gap of 0.71 is from T Matsuoka et al.
$ Appl. Phys. Lett., 12, 1246(2002)
$ Strained quantum well grown on strained quantum barrier.
$ The substrate is assumed to be lattice matched to GaN
$ Typical use:
$ get_active_layer name=InGaN/InGaN mater=#m &&
$ var1=#xw var2=#yw var_symbol1=xw var_symbol2=yw
$ parameter_range xw=[0 1]
$ parameter_range xb=[0 1]
$ parameter_range temper=[77 600]
$ **********************************************
$
begin_active_layer InGaN/InGaN
layer_type type=wurtzite_well valley_gamma=1 &&

valley_hh=1 valley_lh=1 valley_ch=1
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$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ bowing=3. & band-structure parameters
$ according to JAP Vol 89 No 11 pp 5815-5875
$ modified by George Xiao on Sept. 14, 2006
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$
$ Lattice constant of InN is 3.548
$ Lattice constant of GaN is 3.189
$
$ We need to compute the strain based on lattice constant
$ of the substrate
$
lattice_constant value=3.189
lattice_c_constant value=5.185
$
lattice_well variation=function
function(xw,xb)
3.189*(1-xw)+3.545*xw
end_function
$
lattice_bar variation=function
function(xw,xb)
3.189*(1-xb)+3.545*xb
end_function

lattice_c_well variation=function
function(xw,xb)
gan=5.185;
inn=5.718;
gan*(1-xw)+inn*xw
end_function

lattice_c_bar variation=function
function(xw,xb)
gan=5.185;
inn=5.718;
gan*(1-xb)+inn*xb
end_function

$
$ --- energy parameters
$
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$eg0_well variation=function
$function(xw,temper)
$eg0GaN=3.35564150943396;
$bowing=3.8;
$eg300=(1.0-xw)*eg0GaN+1.89*xw-bowing*xw*(1-xw);
$eg300-6.e-4*(temper-300.)
$end_function
$
eg0_well variation=function
function(xw,xb,temper)
eg0GaN=3.507-9.09d-4*temper**2/(830+temper);
eg0InN=0.735-2.45d-4*temper**2/(624+temper);
bowing=3;
$bowing=1.4;
(1.0-xw)*eg0GaN+eg0InN*xw-bowing*xw*(1-xw)
end_function
$
$eg0_bar variation=function
$function(xb,temper)
$eg0GaN=3.35564150943396;
$bowing=3.8;
$eg300=(1.0-xb)*eg0GaN+1.89*xb-bowing*xb*(1-xb);
$eg300-6.e-4*(temper-300.)
$end_function
$
eg0_bar variation=function
function(xw,xb,temper)
eg0GaN=3.507-9.09d-4*temper**2/(830+temper);
eg0InN=0.735-2.45d-4*temper**2/(624+temper);
bowing=3;
$bowing=1.4;
(1.0-xb)*eg0GaN+eg0InN*xb-bowing*xb*(1-xb)
end_function
$
band_offset value=0.67
$
delta_so_well variation=function
function(xw,xb)
gan=0.014;
inn=0.001;
gan+(inn-gan)*xw
end_function
$
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delta_so_bar variation=function
function(xw,xb)
gan=0.014;
inn=0.001;
gan+(inn-gan)*xb
end_function
$
delta1_well variation=function
function(xw,xb)
gan=0.019;
inn=0.041;
gan+(inn-gan)*xw
end_function
$
delta1_bar variation=function
function(xw,xb)
gan=0.019;
inn=0.041;
gan+(inn-gan)*xb
end_function
$
delta2_well variation=function
function(xw,xb)
gan=0.0047;
inn=0.00033;
gan+(inn-gan)*xw
end_function
$
delta2_bar variation=function
function(xw,xb)
gan=0.0047;
inn=0.00033;
gan+(inn-gan)*xb
end_function
$
delta3_well variation=function
function(xw,xb)
gan=0.0047;
inn=0.00033;
gan+(inn-gan)*xw
end_function
$
delta3_bar variation=function
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function(xw,xb)
gan=0.0047;
inn=0.00033;
gan+(inn-gan)*xb
end_function
$
$ ----conduction band masses
$
mass_gamma_well variation=function
function(xw,xb)
gan=0.20;
inn=0.12;
gan+(inn-gan)*xw
end_function
$
mass_gamma_bar variation=function
function(xw,xb)
gan=0.20;
inn=0.12;
gan+(inn-gan)*xb
end_function
$
tmass_gamma_well variation=function
function(xw,xb)
gan=0.20;
inn=0.12;
gan+(inn-gan)*xw
end_function
$
tmass_gamma_bar variation=function
function(xw,xb)
gan=0.20;
inn=0.12;
gan+(inn-gan)*xb
end_function
$
a1_well variation=function
function(xw,xb)
inn=-8.21;
gan=-6.56;
gan+(inn-gan)*xw
end_function
$
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a2_well variation=function
function(xw,xb)
inn=-0.68;
gan=-0.91;
gan+(inn-gan)*xw
end_function
$
a3_well variation=function
function(xw,xb)
inn=7.57;
gan=5.65;
gan+(inn-gan)*xw
end_function
$
a4_well variation=function
function(xw,xb)
inn=-5.23;
gan=-2.83;
gan+(inn-gan)*xw
end_function
$
a5_well variation=function
function(xw,xb)
inn=-5.11;
gan=-3.13;
gan+(inn-gan)*xw
end_function
$
a6_well variation=function
function(xw,xb)
inn=-5.96;
gan=-4.86;
gan+(inn-gan)*xw
end_function
$
a1_bar variation=function
function(xw,xb)
inn=-8.21;
gan=-6.56;
gan+(inn-gan)*xb
end_function
$
a2_bar variation=function
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function(xw,xb)
inn=-0.68;
gan=-0.91;
gan+(inn-gan)*xb
end_function
$
a3_bar variation=function
function(xw,xb)
inn=7.57;
gan=5.65;
gan+(inn-gan)*xb
end_function
$
a4_bar variation=function
function(xw,xb)
inn=-5.23;
gan=-2.83;
gan+(inn-gan)*xb
end_function
$
a5_bar variation=function
function(xw,xb)
inn=-5.11;
gan=-3.13;
gan+(inn-gan)*xb
end_function
$
a6_bar variation=function
function(xw,xb)
inn=-5.96;
gan=-4.86;
gan+(inn-gan)*xb
end_function
$
c33_well variation=function
function(xw,xb)
gan=398;
inn=224;
gan+(inn-gan)*xw
end_function
$
c33_bar variation=function
function(xw,xb)
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gan=398;
inn=224;
gan+(inn-gan)*xb
end_function
$
c13_well variation=function
function(xw,xb)
gan=106;
inn=92;
gan+(inn-gan)*xw
end_function
$
c13_bar variation=function
function(xw,xb)
gan=106;
inn=92;
gan+(inn-gan)*xb
end_function

c11_well variation=function
function(xw,xb)
gan=390;
inn=271;
gan+(inn-gan)*xw
end_function

c11_bar variation=function
function(xw,xb)
gan=390;
inn=271;
gan+(inn-gan)*xb
end_function

c12_well variation=function
function(xw,xb)
gan=145;
inn=124;
gan+(inn-gan)*xw
end_function

c12_bar variation=function
function(xw,xb)
gan=145;
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inn=124;
gan+(inn-gan)*xb
end_function

c44_well variation=function
function(xw,xb)
gan=105;
inn=46;
gan+(inn-gan)*xw
end_function

c44_bar variation=function
function(xw,xb)
gan=105;
inn=46;
gan+(inn-gan)*xb
end_function

$
$a_well value=-8.16
$ac_well value=-4.08
$a_bar value=-8.16
$ac_bar value=-4.08
$d1_well value=-0.89
$d1_bar value=-0.89
$d2_well value=4.27
$d2_bar value=4.27
$d3_well value=5.18
$d3_bar value=5.18
$d4_well value=-2.59
$d4_bar value=-2.59
$a_well value=-3.5
$ac_well value=-4.9
$a_bar value=-3.5
$ac_bar value=-4.9
$
a_well variation=function
function(xw,xb)
gan=-8.16;
inn=-3.5;
gan+(inn-gan)*xw
end_function
$
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ac_well variation=function
function(xw,xb)
gan=-4.08;
inn=-1.75;
gan+(inn-gan)*xw
end_function

az_well variation=function
function(xw,xb)
gan=-8.16;
inn=-3.5;
gan+(inn-gan)*xw
end_function
$
acz_well variation=function
function(xw,xb)
gan=-4.08;
inn=-1.75;
gan+(inn-gan)*xw
end_function

$
a_bar variation=function
function(xw,xb)
gan=-8.16;
inn=-3.5;
gan+(inn-gan)*xb
end_function
$
ac_bar variation=function
function(xw,xb)
gan=-4.08;
inn=-3.5;
gan+(inn-gan)*xb
end_function

az_bar variation=function
function(xw,xb)
gan=-8.16;
inn=-3.5;
gan+(inn-gan)*xb
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end_function
$
acz_bar variation=function
function(xw,xb)
gan=-4.08;
inn=-3.5;
gan+(inn-gan)*xb
end_function

$
$d1_well value=-3.7
$d1_bar value=-3.7
$d2_well value=4.5
$d2_bar value=4.5
$d3_well value=8.2
$d3_bar value=8.2
$d4_well value=-4.1
$d4_bar value=-4.1
$
d1_well variation=function
function(xw,xb)
gan=-3.0;
inn=-3.0;
gan+(inn-gan)*xw
end_function
$
d1_bar variation=function
function(xw,xb)
gan=-3.0;
inn=-3.0;
gan+(inn-gan)*xb
end_function
$
d2_well variation=function
function(xw,xb)
gan=3.6;
inn=3.6;
gan+(inn-gan)*xw
end_function
$
d2_bar variation=function
function(xw,xb)
gan=3.6;
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inn=3.6;
gan+(inn-gan)*xb
end_function
$
d3_well variation=function
function(xw,xb)
gan=8.82;
inn=8.82;
gan+(inn-gan)*xw
end_function
$
d3_bar variation=function
function(xw,xb)
gan=8.82;
inn=8.82;
gan+(inn-gan)*xb
end_function
$
d4_well variation=function
function(xw,xb)
gan=-4.41;
inn=-4.41;
gan+(inn-gan)*xw
end_function
$
d4_bar variation=function
function(xw,xb)
gan=-4.41;
inn=-4.41;
gan+(inn-gan)*xb
end_function

d5_well variation=function
function(xw,xb)
gan=-4.00;
inn=-2.33;
gan+(inn-gan)*xw
end_function

d5_bar variation=function
function(xw,xb)
gan=-4.00;
inn=-2.33;
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gan+(inn-gan)*xb
end_function

d6_well variation=function
function(xw,xb)
d5_gan=-4.00;
d5_inn=-2.33;
d5=d5_gan+(d5_inn-d5_gan)*xw;
d3=8.82;
(d3+4*d5)/sqrt(2)
end_function

d6_bar variation=function
function(xw,xb)
d5_gan=-4.00;
d5_inn=-2.33;
d5=d5_gan+(d5_inn-d5_gan)*xb;
d3=8.82;
(d3+4*d5)/sqrt(2)
end_function
$
end_active_layer InGaN/InGaN
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Appendix C

MODIFIED
SCHARFETTER-GUMMEL
FORMULA FOR HOT
ELECTRONS

C.1 Current Flow in Hydrodynamic Model

The expression for hot electron current flow has been derived by Azoff [2][3]. Here
we use a very initiative and less rigorous approach to derive the expression for hot
electron current flow to gain insight into how it relates to the corresponding model
in the conventional drift-diffusion model. We give all the details so that our user can
check all the steps.
Our purpose is to convert our expression of current flow so that the spatial variation
in the electron temperature (or electron energy) can be taken into account. We start
by defining a ratio to indicate the effect of Fermi-Dirac statistics.

γF/kT = ln

{
F1/2[(Efn − Ec)/kT ]
exp(Efn − Ec)/kT ]

}
(C.1)

We recall that the electron concentration is given by

n = NcF1/2[(Efn − Ec)/kT ] (C.2)

or in terms of the γF constant we just introduced,

n = exp[ln(Nc)]exp(γF/kT )exp[(Efn − Ec)/kT ] (C.3)

or
kT ln(n) = kT ln(Nc) + γF + (Efn − Ec) (C.4)
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We choose the vacuum as the zero energy and express the conduction band in terms
of the potention and the electron affinity.

Ec = −ψ − χ (C.5)

Then we have
kT ln(n) = kT ln(Nc) + γF + Efn + ψ + χ (C.6)

or
Efn = kT ln(n) − kT ln(Nc) − γF − ψ − χ (C.7)

A well known formula in drift and diffusion theory relates the current flow to the
quasi-Fermi level:

Jnq/µn = n∇Efn (C.8)

where
Efn = kT ln(n) − kT ln(Nc) − γF − ψ − χ (C.9)

We split this into drift and diffusion parts:

Jnq/µn[drift] = n∇[−kT ln(Nc) − γF − ψ − χ] (C.10)

Jnq/µn[diff ] = n∇[kT ln(n)] (C.11)

or
Jnq/µn[diff ] = ∇[kTn] (C.12)

We recall that the density of states is given by

Nc = Mx2.5 × 1025
(

mckT

km0300.

)3/2

(C.13)

where Mx is the number of band valleys (or degeneracy) in k-space. The drift part
under constant electron temperature is rewritten as

Jnq/µn[drift] = n∇[−kT ln(Nc) − γF − ψ − χ] (C.14)
= −nkT (3/2)∇ln(mc) − n∇[γF + ψ + χ] (C.15)

Here we have neglected the effect of temperature gradient to the drift part. We also
assume that the temperature gradient contributes an extra diffusion term n∇(kT ).
Therefore the diffusion current is proportional to the gradient of (kTn) instead of n
alone:

Jnq/µn[diff ] = ∇[kTn] (C.16)

To avoid confusion with lattice temperature, we use Te to denote electron carrier
temperature. Our final results are

Jnq/µn = −n∇[γF + ψ + χ] − nkTe(3/2)∇ln(mc) + ∇[kTen] (C.17)
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which is the same as that derived by Azoff [2][3] from Boltsman equation.
We define the electron energy as w = (3/2)kTe and we have the following final result
for current flow:

Jnq/µn = −n∇[γF + ψ + χ] − nw∇ln(mc) + (2/3)∇[wn] (C.18)

C.2 Discretization for Hot Electron Current

In the conventional drift-diffusion model, the discretization of the current flow on a
grid is best handled by the formula derived by Scharfetter and Gummel (SG-formula)
in 1969 [11]. For hot electron model, the discretization formula must be modified to
relfect the spatial variation of electron temperature. Following Azoff [3], we derive
the new discretization as follwos.
We consider two grid points along the x-direction and express the current flow as
follows:

(3/2)Jnq/µn = −(3/2)n ∂

∂x
[γF + ψ + χ] − (3/2)nw ∂

∂x
ln(mc) + ∂

∂x
[wn] (C.19)

We assume that the electric field between mesh points is constant. The electron tem-
perature may be different between the two points, but we assume that the temparture
variation is smooth enough so that ∂w

∂x
and ∂ln(w)

∂x
may be regarded as constants. We

re-write the current:

(3/2)Jnq/µn = ∂w

∂x
n{−(3/2) ∂

∂x
[γF + ψ+ χ] − (3/2)w ∂

∂x
ln(mc)}

(
∂w

∂x

)−1

+ ∂

∂x
[wn]

(C.20)
or

(3/2)Jnq/µn = ∂w

∂x
nα + ∂

∂x
[wn], (C.21)

where α is a position independent parameter based on our previous assumptions,

α = {(3/2) ∂
∂x

[−γF − ψ − χ] − (3/2)w ∂

∂x
ln(mc)}

(
∂w

∂x

)−1

(C.22)

= {(3/2) ∂
∂x

(−γF − ψ − χ)
(
∂w

∂x

)−1

−(3/2) ∂
∂x
ln(mc)

(
∂

∂x
ln(w)

)−1

(C.23)

We apply the basic assumption of the original SG-formula that the electron current
is constant between two grid piints. Using wα as an integration factor on Eq. (C.21),
we obtain
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(3/2)Jnq/µn = w−α

[
∂w

∂x
nαwα + ∂

∂x
(wn)wα

]
(C.24)

(3/2)Jnq/µn = w−α

[
∂w

∂x
nαwα + ∂w

∂x
nwα + ∂n

∂x
wα+1

]
(C.25)

(3/2)Jnq/µn = w−α

[
∂w

∂x
n(α + 1)wα + ∂n

∂x
wα+1

]
(C.26)

(3/2)Jnq/µn = w−α

[
∂

∂x
wα+1n+ ∂

∂x
nwα+1

]
(C.27)

(3/2)Jnq/µn = w−α ∂

∂x
(wα+1n) (C.28)

We assume w is a linear function between the two grid points so that

w = wax+ wb (C.29)

We re-write the equation as

(3/2)Jnq/µnw
αdx = d(wα+1n) (C.30)

We integrate from point 1 to point 2 and get:

(3/2)Jnq/µn

[
wα+1

(1 + α)wa

]2

1
= [wα+1n]21 (C.31)

Jnq/µn = (2/3)[wα+1n]21[
wα+1

(1+α)wa

]2
1

(C.32)

= (2/3)(x2 − x1)−1 (w2 − w1)[wα+1n]21[
wα+1

(1+α)

]2
1

(C.33)

= (2/3)(x2 − x1)−1 (w2 − w1)(wα+1
2 n2 − wα+1

1 n1)(1 + α)
wα+1

2 − wα+1
1

(C.34)

Jnq/µn = (2/3)(x2 − x1)−1(w2 − w1)(1 + α)w
α+1
2 n2 − wα+1

1 n1

wα+1
2 − wα+1

1
(C.35)

= (2/3)(x2 − x1)−1(w2 − w1)(1 + α)[
wα+1

2 n2

wα+1
2 − wα+1

1
+ wα+1

1 n1

wα+1
1 − wα+1

2

]
(C.36)

We obtain our result:

Jnq/µn = (2/3)(x2 − x1)−1(w2 − w1)(1 + α)
[

n1

1 − (w2/w1)α+1 + n2

1 − (w1/w2)α+1

]
(C.37)
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Furthermore, we wish to use the lattice temperature kTL as the unit for W = w/kTL

so that the equilibrium electron temperature is W0 = 3/2. We obtain:

Jn = µn

(
kTL

q

)
(2/3)(x2 − x1)−1(W2 −W1)(1 + α)[

n1

1 − (W2/W1)α+1 + n2

1 − (W1/W2)α+1

]
(C.38)

= µnvt(2/3)(x2 − x1)−1(W2 −W1)(1 + α)[
n1

1 − (W2/W1)α+1 + n2

1 − (W1/W2)α+1

]
(C.39)

where vt = kTL/q is the lattice thermal voltage.

C.3 Hot Electron Current with Equal Energy

When the electron energy at the two points are equal or nearly equal, some approx-
imation can be made. This is important in numerical simulation to avoid floating
point problem when the carrier temperature of the adjacent points are nearly equal.
We start from our basic equation before any discretization:

Jnq/µn = −n∇(γF + ψ + χ) − nw∇ln(mc) + (2/3)∇(wn) (C.40)

When w can be considered constant (but not necessarily equal to the lattice tem-
perature), we have

Jnq/µn = −n∇[γF + ψ + χ] − n(3/2)kTe∇ln(mc) + kTe∇n (C.41)

Jnq/(kTeµn) = −n∇[γF + ψ + χ+ (3/2)kTe∇ln(mc)]/kTe + ∇n (C.42)

Again, we apply the basic assumption of the SG-formula that the current is constant
between two points. Then we obtain a differential equation in the x-direction of the
form:

a = −bn+ dn

dx
(C.43)

where

Jnq/(kTeµn) = −n∇[γF + ψ + χ+ (3/2)kTe∇ln(mc)]/kTe + ∇n (C.44)

a = Jnq/(kTeµn) (C.45)

b = ∇[γF + ψ + χ+ (3/2)kTe∇ln(mc)]/kTe (C.46)
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Solving the simple differential equation from x1 to x2, we have

a = 1/(x2 − x1)b(x2 − x1)[n2 − n1exp[b(x2 − x1)]]/[exp[b(x2 − x1)] − 1] (C.47)

a(x2 − x1) = b(x2 − x1)n2/[exp[b(x2 − x1)] − 1]
−b(x2 − x1)n1exp[b(x2 − x1)]/[exp[b(x2 − x1)] − 1]

= b(x2 − x1)n2/[exp[b(x2 − x1)] − 1]
−b(x2 − x1)n1/[1 − exp[b(x1 − x2)]]

= b(x2 − x1)n2/[exp[b(x2 − x1)] − 1]
−b(x1 − x2)n1/[exp[b(x1 − x2)] − 1] (C.48)

a = 1
x2 − x1

[n2B[b(x2 − x1)] − n1B[b(x1 −X2)]] (C.49)

where B() is the Bernouli function. Substituting a and b from Eqs. (C.45) and (C.46)

Jnq/(kTeµn) = 1
x2 − x1

[n2B(ηh
2 − ηh

1 ) − n1B(ηh
1 − ηh

2 )] (C.50)

Jn = Vte
µn

x2 − x1
[n2B(ηh

2 − ηh
1 ) − n1B(ηh

1 − ηh
2 )] (C.51)

This is to be compared with the cool electron expression:

Jn = Vt
µn

x2 − x1
[(n2B(η2 − η1) − n1B(η1 − η2)] (C.52)

It is most convenient to relate the ηh to η

ηh = [γF + ψ + χ+ kTLln(Nc)]/kTe

+(3/2)∇ln(mc) − ln(Nc)TL/Te (C.53)
= [γF + ψ + χ+ kTLln(Nc)]/kTL(TL/Te)

+(3/2)∇ln(mc) − ln(Nc)TL/Te (C.54)
= η(TL/Te) + (3/2)ln(mc) − ln(Nc)TL/Te (C.55)

Using the unitless W :

ηh = η1.5(kTL/1.5kTe)
+(3/2)ln(mc) − 1.5ln(Nc)(kTL/1.5kTe) (C.56)

= η1.5/W + (3/2)ln(mc) − 1.5ln(Nc)/W (C.57)

Similarly
Vte = kTe/q (C.58)

Vte = 1.5kTekTL/(1.5kTLq) (C.59)
Vte = (1.5kTe/kTL)/1.5(kTL/q) (C.60)

Vte = W/1.5Vt (C.61)



Appendix D

GREEN’S FUNCTION AND
SPONTANEOUS EMISSION

This chapter starts from the Maxwell equation to establish some notations. Then
we recall some basic theories of partial differential equations. Finally, we derive
the theories for spontaneous recombination noise power which is critical for our
understanding of linewidth and mode spectrum.

D.1 Maxwell Equations

The four fundamental equations of Maxwell are as follows:

∇ · D = ρ, (D.1)
∇ · B = 0, (D.2)

∇ × E + ∂B
∂t

= 0, (D.3)

∇ × H − ∂D
∂t

= J. (D.4)

The notations are defined as follows,

• D is the electrical displacement vector in coulombs/meter2.

• B is the magnetic induction in webers/meter2.

• E is the electric field intensity in volts/meter.

• H is the magnetic field in ampere/meter.
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• ρ is the free charge density in coulombs/meter3.

• J is the current density in coulombs/meter2.

With the introduction of the polarization vector P and the magnetization vector M,
it is possible to eliminate the vectors D and H from the fundamental equations by
substituting:

D = ϵ0E + P, (D.5)

H = B
µ0

− M. (D.6)

Then we re-write the Maxwell equations in the following form:

∇ · E = 1
ϵ
(ρ− ∇ · P) (D.7)

∇ · B = 0, (D.8)

∇ × E + ∂B
∂t

= 0, (D.9)

∇ × B − ϵ0µ0
∂E
∂t

= µ0

(
J + ∂P

∂t
+ ∇ × M

)
. (D.10)

In our applications, no magnetization is involved. This allows us to set the M to
be zero in the above equations. The Maxwell equations can be simplified further if
we concentrate on the Fourier component at the optical frequency, also referred to
as Eω elsewhere in the book. Using a time dependent factor of exp(−jωt) for all
the variables, we obtained the following expressions for the last two equations of the
Maxwell equation set:

∇ × E + jωB = 0, (D.11)
∇ × B − jωϵ0µ0E = µ0 (J + jωP) . (D.12)

In a waveguiding structure, we can consider the free current J to be zero at the
optical frequencies. The polarization vector can be decomposed into two components
as follows:

P = ϵ0(ϵr − 1)E + Psp. (D.13)
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where the first term is the polarization induced by the electric field which includes
the usual effects from the dielectric constants and also effects like loss and gain. The
second term is polarization induced by spontaneous emission of photons associated
with radiative recombination of electron-hole pairs. Such a spontaneous emission
process is random and not directly related to the external electric field intensity. As
a results, we expect the second term to have a zero mean in both the spatial and
time domain.
Elimination of the B vector from the Maxwell equations results in the following

− ∇ × ∇ × E + ω2ϵ0ϵrµ0E = −µ0ω
2Psp. (D.14)

With the assumption ∇ · E = 0, we finally arrived at the vector wave equation we
use most often in our applications,

∇2E + ω2ϵ0ϵrµ0E = −µ0ω
2Psp. (D.15)

Using the speed of light c0 = 1/√ϵ0µ0 the wave equation can be written in a more
familiar form:

∇2E + ω2

c2
0
ϵrE = Fω. (D.16)

The right hand side term is also called the Langevin force Fω:

Fω = −µ0ω
2Psp. (D.17)

D.2 Conventions

In this work we shall assume the oscillating field takes the form exp(−jωt). As a
result, the forward (or right going) wave propagates with a factor exp(+jkz) and
backward (or left going) wave with factor exp(−jkz). Under such a convention, a
loss material has positive imaginary wave number k′′ where k = k′ + jk′′. Any time
dependence quantities can be expanded in Fourier component with exp(−jωt) and
we assume that the real field can be expressed as

E(t) =
∫ ∞

0
Eωexp(−jωt)dω + c.c. (D.18)

where c.c. is used to denote the complex conjugate. Using this notation, the field
with single frequency can be written as

E(t) = Eωexp(−jωt) + E∗
ωexp(jωt) (D.19)

In some cases, we adopt the bracket notation from quantum mechanics such that

ϕ(r) = |ϕ >= |n > (D.20)
ϕ∗(r) = < ϕ| = |n > (D.21)

< ψ|ϕ > = < n|n >=
∫
ψ∗ϕdr (D.22)
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D.3 Basic Wave Equation

For simplicity we are only concerned with the scalar field in the optical frequency
domain ω. The scalar wave equation is written as:

∇2Eω + ω2

c2
0
ϵrEω = Fω. (D.23)

In a wave guide environment, it common to solve the above wave equation by sep-
arating variables in the field (we drop the subscript ω and it is understood that we
deal with single frequency):

E(x, y, z) = Z(z)ϕ(x, y) (D.24)

or simply
E(x, y, z) = E(z)ϕ(x, y) (D.25)

We assume that there is a orthogonal and complete set of transverse modes ϕn(x, y)
satisfying

[
∂2

∂x2 + ∂2

∂y2 + ω2

c2
0
ϵr(r)

]
ϕn(x, y) = ω2

c2
0
n2

eff (z)ϕn(x, y). (D.26)

where the z-dependent effective index neff (z)2 is also used to define the z-dependent
wave number (or propagation constant):

k(z) = ω

c0
neff (z). (D.27)

We notice that the lateral solution |ϕn > may still be z-dependent. However, if
the z-dependence is weak compared with the x-y dependence, we can treat it as a
parameter and evade the differential operator ∂

∂z
. For this reason we temporarily

hide its z-dependence here.
It is well known that solution to Eq. (D.26) has nice properties such as orthogonality
and completeness. The orthogonality is∫

ϕnϕm =< ϕnϕm >= δnm < ϕnϕm > . (D.28)

And the completeness is
∑

n

ϕn(x, y)ϕn(xs, ys)
< ϕnϕn >

= δ(x− xs)δ(y − ys). (D.29)

For an arbitrary solution for ϕ(x, y), we expand it in terms of the complete set of ϕn

|ϕ >=
∑

n

An|ϕn > (D.30)
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where
An = < ϕn|ϕ >

< ϕn|ϕn >
(D.31)

Using this expansion, we are able to rewrite the wave equation as follows:

E(z)
(
∂2

x2 + ∂2

y2

)
|ϕ > +|ϕ > ∂2

z2E(z) + ω2

c2
0
ϵrE(z)|ϕ > = F

(D.32)

E(z)
(
∂2

x2 + ∂2

y2

)
(
∑

n

An|ϕn >) + |ϕ > ∂2

z2E(z) + ω2

c2
0
ϵrE(z)(

∑
n

An|ϕn >) = F

(D.33)

|ϕ > ∂2

z2E(z) + Ez

[(
∂2

x2 + ∂2

y2

)
(
∑

n

An|ϕn >) + ω2

c2
0
ϵr(
∑

n

An|ϕn >)
]

= F

(D.34)

|ϕ > ∂2

z2E(z) + E(z)
[(
∂2

x2 + ∂2

y2

)
(
∑

n

An|ϕn >) + ω2

c2
0
ϵr(
∑

n

An|ϕn >)
]

= F

(D.35)

|ϕ > ∂2

z2E(z) + (
∑

n

Ank
2ϕn)E(z) = F

(D.36)

Let us multiply the above equation by < ϕn| and obtain

< ϕn|ϕ > ∂2

z2Ez + Ank
2 < ϕn|ϕn > Ez = < ϕn|F > . (D.37)

< ϕn|ϕ > ∂2

z2Ez + Ank
2 < ϕn|ϕn > Ez = < ϕn|F > . (D.38)

< ϕn|ϕ > ∂2

z2Ez + k2 < ϕn|ϕ > Ez = < ϕn|F > . (D.39)

∂2

z2Ez + k2Ez = < ϕn|F (x, y, z) >
< ϕn|ϕ >

(D.40)

∂2

z2Ez + k2Ez = f(z) (D.41)

where
f(z) = < ϕn|F (x, y, z) >

< ϕn|ϕ >
(D.42)

We have finally reduced the 3-variable equation to a single variable differential equa-
tion. If we are lucky enough to find the solution for Ez, our final solution for the
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three dimensional equation can be written as

Ez(z)[
∑

n

An(z)ϕn(x, y; z)] (D.43)

Here we have explicitly show the dependence of the lateral solution to z. One good
example of z-dependent solution is beam propagation in a tapered wave guiding
structure.

D.4 The Green’s Function

A well know technique for solving partial differential equation is the Green’s function
method. The basic idea is that for a differential equation of the form

L(Z) = f(z) (D.44)

where L is a linear differential operator. The solution can be written as

Z(z) =
∫
f(zs)g(z, zs)dzs (D.45)

where g(z, zs) is the Green’s function satisfying

L(Z) = δ(z − zs) (D.46)

The interpretation of the Green function technique is simple enough: If we can find a
solution due to a single point solution located at zs, the solution due to a continuous
distribution of sources f(z) is just the superposition of all the solutions from the
points sources contained in f(z).
The Green’s function technique is ideal for the analysis of our waveguiding system
because the the spontaneous noise can be considered as a random ensemble of point
sources. The Green’s function allows us to give a compact formal solution in terms
of the noise. Note that the formal solution is all we need here because it is impossible
to write down an analytical expression for random noise.

D.5 Longitudinal Green’s Function

Our final goal is to find the solution to the Green’s function in Eq. (D.41). Several
derivation steps should be taken before we arrive at the solution of the Green’s
function. We consider the following ordinary differential equation:

L(Z) =
(
d2

dz2 + k2(z)
)
Z(z) = f(z). (D.47)

The longitudinal Green’s function is just a special case of the above equation with
f(z) = δ(z − zs).
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D.5.1 The Wronskian

It is convenient to introduce the Wronskian from functions Z1(z) and Z2(z):

W =
∣∣∣∣∣Z1(z) Z ′

1(z)
Z2(z) Z ′

2(z)

∣∣∣∣∣ (D.48)

= Z1(z)Z ′
2(z) − Z2(z)Z ′

1(z) (D.49)

where we have used ′ to denote the derivative with respect to z.
We notice a couple of interesting properties of the Wronskian. First the Wronskian
can be used to test the dependency of two functions. If the two functions Z1 and
Z2 are dependent on each other, i.e., if they are proportional to each other, then the
Wronskian is zero everywhere. If the Wronskian differs from zero for any range of of
values of z, then Z1 is a completely different function from Z2 and the two functions
are said to be independent.
The second properties of the Wronskian is that, if Z1 and Z2 are two independent
solutions of the homogeneous equation L(Z) = ′, then the Wronskian should be
independent of z, or in another word,

dW

dz
= Z1Z

′′
2 − Z2Z

′′
1 , (D.50)

= Z1[−k2(z)Z2] − Z2[−k2(z)Z1], (D.51)
= 0. (D.52)

If W is not zero but a constant independent of z, and if we already find one solution
Z1 to the homogeneous equation L(Z) = 0, then we can use the Wronskian to find
another independent solution to the homogeneous equation as follows,

W = Z1(z)Z ′
2(z) − Z2(z)Z ′

1(z), (D.53)

= Z2
1
d

dz

(
Z2

Z1

)
. (D.54)

Z2(z) = WZ1(z)
∫ z

z0

du

Z2
1(u)

. (D.55)

D.5.2 Solution of Inhomogeneous Equation

Let us try to find a solution to the inhomogeneous equation Eq. (D.47) by setting
Z(z) = u(z)v(z) in L(Z) = f(z), obtaining

vL(u) + uv′′ + 2u′v′ = f(z). (D.56)

If now we set u equal to one of the solutions Z1 of the homogeneous equation,
L(Z) = 0, we obtain

v′′ + 2(Z ′
1/Z1)v′ = f(z)/Z1 (D.57)
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On the other hand, we already know that the second solution from is related to first
by the Wronskian by the following [see Eq. (D.55)]

d

dz

(
Z2(z)
Z1(z)

)
= W

Z2
1(z)

. (D.58)

Taking another derivative, we have

d

dz2

(
Z2(z)
Z1(z)

)
= W

Z2
1(z)

(D.59)

=
(
W

Z2
z

)′

(D.60)

= −2WZ ′
1

Z3
1

(D.61)

Using Eq. (D.58) so that

(Z2/Z1)′′ + 2(Z1/Z1)(Z2/Z1)′ = 0 (D.62)

Multiplying this equation by v′ and Eq. (D.57) by (Z2/Z1)′ and subtracting so that
the second term on both equations cancel out, we obtain

(
Z2

Z1

)′
v′′ − v′

(
Z2

Z1

)′′
=

[(
Z2

Z1

)′]2
d

dz

[
v′

(Z2/Z1)′

]
(D.63)

=
(
f(z)
Z1

)(
Z2

Z1

)′
(D.64)

=
(
f(z)
Z1

)(
W

Z2
1

)
(D.65)

By now, we have reduced our original second order inhomogeneous equation L(Z) =
f(z) to a simple first order inhomogeneous equation

d

dz

[
v′

(Z2/Z1)′

]
= fZ1

W
(D.66)

Integrating this first order equation, we obtain

v′ =
[
d

dz

(
Z2

Z1

)] ∫ fZ1

W
dz (D.67)

or by adding another term on both side of the above equation

v′ + fZ2

W
= d

dz

[(
Z2

Z1

) ∫ fZ1

W
dz

]
(D.68)
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Integration of the above equation gives our final solution:

Z = vZ1 (D.69)

= Z1

∫ z2

z

fZ2dz

W
+ Z2

∫ z

z1

fZ1dz

W
(D.70)

where z1 and z2 are constants used to fit boundary conditions. It is interesting to
note that z1 and z2 can be regarded as the starting and ending points along the lon-
gitudinal direction and Z1 and Z2 may be regarded as solutions to the homogeneous
equation satisfying the boundary condition at z1 and z2. To be more specific, we
examine Eq. (D.70) in more details. If we take the limit of z− > z1, the second
term goes to zero and the first one is proportional to Z1. Similarly if z− > z2, then
the first term is zero and the second term is proportional to Z2. Therefore, if Z1
and Z2 satisfy the boundary conditions at z = z1 and z = z2, respectively, then we
have found a solution to the inhomogeneous equation which satisfies all boundary
conditions.
In the case of Green’s function, we set f(z) = δ(z − zs) and obtain:

g(z, zs) = Z1

∫ z2

z

δ(z − zs)Z2dz

W
+ Z2

∫ z

z1

δ(z − zs)Z1dz

W
(D.71)

g(z, zs) = [Z1(z)Z2(zs)θ(zs − z) + Z2(z)Z1(zs)θ(z − zs)]/W (D.72)

D.6 Green’s Function for an AR Coated Waveg-
uide

We consider a simple example of an unending waveguide (or a traveling wave ampli-
fier with perfect anti-reflection AR coatings). This example has special significance
because we need to use the result to derive a more general relation between sponta-
neous emission power and the diffusion coefficient.
We need to choose Z1 and Z2 to construct the Green’s function and the Wronskian.
For such a waveguide with perfect AR coating, the boundary condition at the two
facets are waves traveling out of the device.

Z1 = exp(−jkz) (D.73)
Z2 = exp(+jkz) (D.74)

The Wronskian is
Wn = 2jk (D.75)

and the Green’s function is
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g(z, zs)Wn = Z1(z)Z2(zs)θ(zs − z) + Z2(z)Z1(zs)θ(z − zs) (D.76)
= exp[−jk(z − zs)]θ(zs − z) + exp[−jk(z − zs)]θ(z − zs)

(D.77)
= exp[−jk(z − zs)]θ(zs − z) + exp[jk(z − zs)]θ(z − zs)

(D.78)
= exp(jk|z − zs|) (D.79)

Let us try to find the solution of the wave equation in this waveguide if we assume
the driving noise term is uncorrelated and has a δ function like correlation:

< f(z)f ∗(z′) >= f0δ(z − z′) (D.80)

where <> is used denote ensemble average and

f0(z) =
∣∣∣∣∣< ϕn|F (x, y, z) >

< ϕn|ϕ >

∣∣∣∣∣
2

(D.81)

The field Ez can be expressed as a function of the Green’s function:

E(z) =
∫
f(zs)g(z, zs)dzs (D.82)

=
∫ f(zs)exp(jk|z − zs|)

Wn

dzs (D.83)

=
∫ f(zs)exp(jk|z − zs|)

2jk
dzs (D.84)

Since f(z) is used to represent noise, it is not possible to express Ez analytically.
However, we can consider the average field amplitude due to the noise:
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< Ez(z)E∗
z (z) >

=
∫ L

0

∫ L

0
< f(zs)f ∗(z′

s)g(z, zs)g∗(z, z′
s)dzsdz

′
s (D.85)

=
∫ L

0

∫ L

0

< f(zs)f ∗(z′
s) > exp(jk|z − zs| − jk∗|z − z′

s|)
4|k|2

dzsdz
′
s

(D.86)

=
∫ L

0

f0δ(zs − z′
s)exp(jk|z − zs| − jk∗|z − z′

s|)
4|k|2

dzsdz
′
s (D.87)

= f0

∫ L

0

exp(−2k′′|z − zs|)
4|k|

dzs (D.88)

= f0

∫ z

0

exp[−2k′′(z − zs)]
4|k|

dzs + f0

∫ L

z

exp[+2k′′(z − zs)]
4|k|

dzs (D.89)

= f0

4|k|2

{∫ z

0
exp[−2k′′(z − zs)]dzs +

∫ L

z
exp[+2k′′(z − zs)]dzs

}
(D.90)

= f0

4|k|2
{ 1

2k′′ {1 − exp[−2k′′z]} + 1
2k′′ {1 − exp[−2k′′(L− z)]}

}
(D.91)

= f0

8|k|2k′′ {{1 − exp[−2k′′z]} + {1 − exp[−2k′′(L− z)]}} (D.92)

If we plot the above quantity as a function of the relative distance zr = z/L, we will
have the following interesting observations. In a gain medium, we define gr = −2k′′L
and

< Ez(z)E∗
z (z) > 4|k|2

f0
= 1
gr

{exp[grzr] − 1} + 1
gr

{exp[gr(1 − zr)] − 1} (D.93)

Similarly in the case of a loss material, we set αr = αL = 2kL and obtain

< Ez(z)E∗
z (z) > 4|k|2

f0
= 1
αr

{1 − exp[−αrzr]} + 1
αr

{1 − exp[−αr(1 − zr)]} (D.94)

We plot the amplitude of the field due to the noise in Fig D.1. It shows that for
a gain medium, the noise field amplitude (or the noise power) gets amplified and
shows a maximum value at both side of the device, while a lossy material attenuates
the noise field and has minimum amplitudes at both ends.
In the following sections, we need to estimate the pure effect of spontaneous emission.
This requires the elimination of boundary condition and any amplification effect. A
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Figure D.1: The relative wave intensity of wave in a AR coated waveguide with gain
(solid) and loss (dash). The relative gain (gr)and loss (αr) are set at 0.5 each.

long and lossy waveguide is regarded to have this pure effect at one end. Consider
z=L and L being large, we have

< Ez(z)E∗
z (z) >= f0

8|k|2k′′ (D.95)

or
< Ez(z)E∗

z (z) >= 2DF F (z)
8|k|2k′′ (D.96)

D.7 Diffusion Coefficient of the Langevin Forces

The driving noise term F appearing on the right hand side of wave equation is
random in nature and uncorrelated over time or distance. Our starting point is that
the ensemble average

< Fω(r)Fω′(r′) > = 0 (D.97)
< F ∗

ω(r)F ∗
ω′(r′) > = 0 (D.98)

and the correlation function is of δ function like:

< Fω(r)F ∗
ω′(r′) >= 2DF F ∗(r)δ(r − r′)δ(ω − ω′) (D.99)
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where the coefficient 2DF F ∗(r) was introduced by C. H. Henry [80] and was called
“diffusion coefficient". For convenience we drop the delta function in ω and always
use the same frequency for all the field quantities. The driving noise term can be
expressed as

f(z) = < ϕn|F (x, y, z) >
< ϕn|ϕ >

(D.100)

f(z′)∗ = < F (x′, y′, z′)|ϕn >,

< ϕ|ϕn >
(D.101)

< f(z)f(z′)∗ > =
⟨
< ϕn(rxy)|F (r) >

< ϕn|ϕ >
< F (r′)|ϕn(r′

xy) >
< ϕ|ϕn >

⟩
(D.102)

=
⟨
< ϕn(rxy)| < F (r′)|F (r) > |ϕn(r′

xy) >
|< ϕn|ϕ >|2

⟩
(D.103)

=
< ϕn(rxy)|2DF F ∗(r)δ(r′ − r)|ϕn(r′

xy) >
|< ϕn|ϕ >|2

(D.104)

= < ϕn(rxy)|2DF F ∗|ϕn(rxy) >
|< ϕn|ϕ >|2

δ(z − z′) (D.105)

= f0(z)δ(z − z′) (D.106)

In order to determine the diffusion coefficient, we wish to evaluate the emitted optical
power within ∆ω from the bulk photon energy density as follows:

Sω~ω = 2ε0nng < |E(z)|2 > |ϕ(x, y)|2 (D.107)

The linear energy density is as follows

sω~ω = 2ε0nng < |E(z)|2 >
∫
dxdy|ϕ(x, y)|2 (D.108)

or
sω~ω = 2ε0nng < |E(z)|2 > (D.109)

From the result of the previous section

sω~ω = 2ε0nng
2DF F (z)
8|k|2k′′ (D.110)

The power emitted is just the above times vg:

Pn = vg2ε0nng
2DF F (z)
8|k|2k′′ (D.111)
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Pn = −vg2ε0nng
2DF F (z)

4|k|2g
(D.112)

Pn = −c0ε0n
2DF F (z)

2|k|2g
(D.113)

Please note the minus sign comes in because −g = 2k′′.
Now let us derive the optical power from a completely different view point. When
the photons are in equilibrium with the environment, the average noise power within
∆ω can be expressed in terms of the mode occupation number < nω >:

Pn∆ω =
∑

n

vgn~ω < nω > ∆ωD1(E) (D.114)

where D1(E) is the 1D mode density (modes per unit energy per unit length) which
is derived as follows.
The mode spacing is

∆kz = 2π
Lz

(D.115)

Therefore the mode number per unit length per unit ω is D1(E) = 1
2π

dk
dω

. To a good
approximation, the group velocity may be used:

dk

dω
= 1/vg (D.116)

This gives a power
Pn = ~ω < nω > /(2π) (D.117)

Comparison of the two different expressions of optical power, we finally obtain the
following relation for the diffusion coefficient:

2DF F (z) = −|k|2~ωg < nω > /(πc0ε0n) (D.118)

or, if we neglect the imaginary part of the refractive index in |k|,

2DF F (z) = −~ω3n′(z)g(z) < nω >

πc3
0ε0

(D.119)

Please note that a difference of factor (2π)2 than that from Ref. [80] is due to the
use of different unit system.
According to Henry [80], the mode occupation number is given by

< nω >= −nsp = 1
exp

(
~ω−eVF

kT

)
− 1

(D.120)
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Using the well-known relation between optical gain and spontaneous emission, we
can also use an alternative (or more convenient) form for the diffusion coefficient in
terms of bulk spontaneous recombination rate.

g = rsp(E)
vgD(E)

{1 − exp[(~ω − eVF )/kT ]} . (D.121)

where

D(E) = πk2∆k
π3∆E

. (D.122)

=
(
n

~c

)3 E2

π2 (D.123)

is the photon mode density. Thus, the product gnsp be re-written as

gnsp = rsp(E)
vgD(E)

(D.124)

Using the above for the n-th lateral mode, we have

2DF F (z) = |k|2E < ϕn|rsp|ϕn > /(D(E)vgπc0ε0n) (D.125)

2DF F (z) = n2ω2E < n|rsp|n > π2~3c3
0/(n3E2vgπc

3
0ε0n) (D.126)

2DF F (z) = (~ω) < n|rsp(E)|n > π~/(n2vgε0) (D.127)

Please note that rsp(E) must be in units of rate per volume per energy interval.



1240 GREEN’S FUNCTION AND SPONTANEOUS EMISSION



Appendix E

THEORY OF POWER
SPECTRUM

It has been shown in Ref. [106] that near lasing the Wronskian is independent of the
position z and is only a function of frequency. Thus we can expand it over a complex
omega plane as follows:

1
W

≈
∑

i

1
dW (ωi)

dω
(ω − ωi)

(E.1)

Let us derive the photon density in terms of the electric field. According to Landau
and Lifschitz [155], the energy density, U , of a dispersive medium can be written as

U = ε0
∂

∂ω
(ε′ω)E2 + ε0(ε′)E2 (E.2)

where ε′ is the real part of the dielectric constant at the optical frequencies. We go
on and derive the following:

U = 2ε0n
′ω
∂n′

∂ω
E2 + ε0n

′2E2 + ε0ε
′E2 (E.3)

which can be expressed in terms of the group index as follows:

U = 2ε0ω
∂n′

∂ω
E2 + 2ε0n

′E2 (E.4)

= 2ε0n
′ngE

2 (E.5)

where
ng = n′ + ω

∂n′

∂ω
(E.6)

Using the Fourier transform of the electric field, we write down our expression of
photon density as

S(ω) = U

~ω
= 2ε0n

′ng

~ω
|Eω(z)ϕ(x, y)|2 (E.7)
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Integration over x-y leads to the linear photon density:

sl(ω, z) = 2ε0n
′ng

~ω
|Eω(z)|2 (E.8)

We recall that the spectrum of the electric field can be repressed in terms of the
Green’s function as follows:

Eω(z) =
∫ l

0 g(z, z′)fω(z′)dz′

W (ω)
(E.9)

We perform the spatial integral

sl(ω, z) = 2ε0n
′(z)ng

~ω
|Eω(z)|2

= 2ε0n
′(z)ng

~ω|W (ω)|2
∫ l

0
g(z, z′)∗f ∗

ω(z′)dz′
∫ l

0
g(z, z′′)fω(z′′)dz′′

= 2ε0n
′(z)ng

~ω|W (ω)|2
∫ l

0

∫ l

0
g(z, z′)∗g(z, z′′)f ∗

ω(z′)fω(z′′)dz′dz′′ (E.10)

(E.11)

We take the ensemble average of the above to obtain:

sl(ω, z) = 2ε0n
′(z)ng

~ω|W (ω)|2
∫ l

0

∫ l

0
g(z, z′)∗g(z, z′′) < f ∗

ω(z′)fω(z′′) > dz′dz′′

= 2ε0n
′(z)ng

~ω|W (ω)|2
∫ l

0

∫ l

0
g(z, z′)∗g(z, z′′)2Dω(z′)δ(z′ − z′′)dz′dz′′

= 2ε0n
′(z)ng

~ω|W (ω)|2
∫ l

0
|g(z, z′)|22Dω(z′)dz′ (E.12)

Let us transform the Wronskin as follows:
1

|W (ω)|2
=

∑
i

∑
j

1
dW ∗(ωi)

dω
(ω − ω∗

i )
1

dW (ωj)
dω

(ω − ωj)

=
∑

i

1
| dW (ωi)

dω
|2 (ω − ω∗

i )(ω − ωi)

=
∑

i

1
| dW (ωi)

dω
|2 [(ω − ωre,i)2 + ω2

im,i]
(E.13)

Please note that we have dropped the cross terms of 1
(ω−ωi)(ω−ωj)∗ because these are

normally much smaller than the sqared terms.
Using and n′ and n interchangeably and combining Eq. (E.12) and Eq. (E.13), we
obtain

sl(ω, z) = 2ϵ0n(z)ng

~ω

∑
i

1
|dW (ωi)

dω
|2[(ω − ωre,i)2 + ω2

im,i]

 ∫ l

0
|g(z, z′)|22Dω(z′)dz′

(E.14)
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where ωre,i and ωim,i are the real and imaginary parts of a pole respectively. ϵ0, n and
ng are the vacuum permitivity, refractive index and group index, respectively. Dω(z)
is the diffusion coefficient of the Langevin force fω(z) [106]. The above expression
shows that the spectrum of the photon density is a sum of Lorentzian lines centered
at ωre,i, with peak intensity proportional to 1/ω2

im,i.
We integrate over z and obtain the modal spectrum:

Iω =
∫ l

0
sl(ω, z)dz

= 4πϵ0

~ω
∑

i

∣∣∣∣∣dW (ωi)
dω

∣∣∣∣∣
−2 ∫ l

0

∫ l

0
n(z)ng|g(z, z′)|22Dω(z′)dz′dz


× (2π)−1

[(ω − ωre,i)2 + ω2
im,i]

(E.15)

The term related to the Wronskian has been worked out in Ref. [106] as

dW (ωi)
dω

= 2
∫ l

0
k(z)ZL(z)ZR(z)∂k(ωi, z)

∂ω
dz (E.16)

Near the material gains peak, to a good approximation we obtain

∂k

∂ω
= 1
vg

(E.17)

Assuming the system is near threshold, both ZL(z) and ZR(z) reduce to a common
solution Z0,i(z) where the label i indicates wave function at frequency ωi:

dW (ωi)
dω

= 2
vg

∫ l

0
k(z)Z2

0,i(z)dz (E.18)

The Green’s function is reduced to a simpler form:

g(z, z′) = Z0(z)Z0(z′) (E.19)

where Z0(z) is understood as Z0,i.
We have arrived at the following spectrum

Iω = 4πϵ0

~ω
∑

i

∫ l
0
∫ l

0 n(z)ng|Z0(z)|2|Z0(z′)|22Dω(z′)dz′dz∣∣∣2ω
c2

∫ l
0 n(z)ngZ2

0(z)dz
∣∣∣2

× (2π)−1

[(ω − ωre,i)2 + ω2
im,i]

(E.20)
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From Appendix D, we recall that the diffusion constant is related to the optical gain
by

2DF F (z) = ~ω3n(z)g(z)nsp

πc3ε0
(E.21)

We thus obtain:

Iω = 4πϵ0

~ω
~ω3

πc3ε0

∑
i

∫ l
0
∫ l

0 n(z)ng|Z0(z)|2|Z0(z′)|2n(z′)g(z′)nspdz
′dz∣∣∣2ω

c2

∫ l
0 n(z)ngZ2

0(z)dz
∣∣∣2

× (2π)−1

[(ω − ωre,i)2 + ω2
im,i]

(E.22)

which may be written in our final form of the spectrum:

Iω = c
∑

i

[∫ l
0 n(z)ng|Z0(z)|2dz

] [∫ l
0 |Z0(z′)|2n(z′)g(z′)nspdz

′
]

∣∣∣∫ l
0 n(z)ngZ2

0(z)dz
∣∣∣2

× (2π)−1

[(ω − ωre,i)2 + ω2
im,i]

(E.23)

Introducing the parameter Rsp,i:

Rsp,i = c

[∫ l
0 n(z)ng|Z0(z)|2dz

] [∫ l
0 |Z0(z′)|2n(z′)g(z′)nspdz

′
]

∣∣∣∫ l
0 n(z)ngZ2

0(z)dz
∣∣∣2 (E.24)

which is also referred to as the rate of spontaneous emission into the ith mode. The
spectrum may be written as

Iω = (2π)−1Rsp,i

[(ω − ωre,i)2 + ω2
im,i]

(E.25)

Integrating over all frequencies, we get the total number of photons in the cavity Ip,i

in the ith mode:
Ip,i = Rsp,i

2ωim,i

(E.26)

which agrees with results from other works in the literature (see, e.g., Ref. [106]).
In the above formulas, Z0(z) = Z0,i(z) is the solution to the homogeneous scalar
wave equation at ω = ωi, vg the group velocity, g(z) the modal gain, and nsp(z) the
inversion parameter. The expression (E.24) agrees completely with results in Ref.
[106].
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Application notes on SMSR

The side-mode suppression ratio (SMSR) is often used to determine whether or not
a laser is single-mode. Based on the above derivations, two definitions of SMSR may
be used.
Based on the photon number (integrated over all frequencies):

SMSRij = Ip,i

Ip,j

= Rsp,i

Rsp,j

ωim,j

ωim,i

(E.27)

Based on the peaks of the power spectrum (at ω = ωre,i for each mode):

SMSRij = Iωi

Iωj

= Rsp,i

Rsp,j

(
ωim,j

ωim,i

)2

(E.28)

On a log scale, the two definitions therefore differ by a factor of 2, all other values
being equal. The first definition is used in the rtg_smsr variable of plot_scan; the
RTG power spectrum of gain_spectrum may be used to measure the second.
We also note that the side mode suppression ratio may be strongly affected by how the
population inversion factor is defined inside the Green’s function model; depending
on the choice of intern_spon_par in material_3d, the spontaneous emission in
each mode may be replaced by Rsp,av = ∑N

i Rsp,i/N .
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Appendix F

NOMENCLATURE

Ax Coefficient for band-gap narrowing effects.
a0, a Lattice constants of GaAs (a0) and InGaAs (a).
B Radiative recombination coefficient.
B1,B2,Bz Complex wave amplitudes of the optical wave propagating from

right to left in a laser.
Bk Constant used in mathematical fittings.
b Shear deformation potential.
Cn, Cp Auger recombination coefficients, for electrons (n) and holes (p).
cnj, cpj Electron (n), hole (p) capture coefficients of the j th deep trap.
c Velocity of light in vacuum.
c11, c12 Elastic constants.
Dc, Dv Density of states of the conduction and valence band.
ED, EA Shallow donor (D) and acceptor (A) levels.
E0

i , E0
j , E0

ij Energy minimums of the i th and the j th levels, and the differ-
ence between them, . The i refers to the valence band sub-band
levels and j refers to the conduction band sub-band levels.

E,Eij Photon energy and energy difference between the i th and j th
levels.

Efn, Efp Quasi-Fermi energies of electrons (n) and holes (p).
Eg Bandgap.
Eg0 Unstrained bandgap.
∆EP F Shift in ionization energy of a dopant due to Poole-Frenkel effect.
δEhy Hydrostatic strain energy.
δEsh Energy associated with shear strain.
F Electric field intensity.
Fl Lorentzian shape function.
F0n,F0p Threshold electric field used in the electron (n) and hole (p)

mobility models.
F1/2 Fermi integral of order one-half.
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fD, fA Occupancy of the donor (D) and acceptor (A) levels.
ftj Occupancy of the j th deep trap level.
fi, fj Fermi functions for the i th and the j th level.
f ′

i , f ′
j Integrated Fermi functions for the i th and the j th levels.

g Interband local gain.
gij, g Local gain due to transition between the i th and the j th levels,

and the local gain of the material.
gd, ga Degeneracies of the shallow donor (d) and acceptor (a).
Hij Hamiltonian matrix element between the i th and the j th states.
h(x) step function of variable x.
h,~ Plank’s constants.
I1, I2 The integrals needed to evaluate the quantum well gain and

spontaneous emission rate.
Jn, Jp Electron (n) and hole (p) current flux densities.
Jsn, Jsp Electron (n) and hole (p) current flux densities on the surface.
Jhn, Jhp Electron (n) and hole (p) current flux densities across the het-

erojunction.
Jsource Current flux source.
k Boltzmann constant.
L Laser cavity length.
L() Lines shape function for gain broadening.
m0 Electron mass
mi, mj, mij Relative effective masses of the i th and the j th level and the

reduced effective mass between the i th and the j th level. Their
relation is defined by 1/mij = 1/mi +1/mj. Indices i and j refer
here to quantum well sub-bands.

mn,mp Bulk effective masses for electrons (n) and holes (p).
me,mh The same as mn and mp, respectively.
mbn,mbp Bulk effective masses for electrons (n) and holes (p) on the bar-

rier side of the heterojunction.
mzl Relative effective mass of the L-band used in the quantum level

calculation.
mvx, mvy, mvz Effective hole masses in the x, y and z direction.
M0, Mij, Mlh,
Mhh

Momentum matrix elements for bulk material, between the i th
and the j th states, involving light- and heavy-hole transitions,
respectively.

N Total number of grid points in the simulation space. Also used
for the total number of longitudinal layers.

Nb Number of grid points associated with a boundary of interest.
ND, NA Doping density of shallow donors (D) and shallow acceptors (A).
Ntj Density of the j th deep trap.
n Electron concentration or density.
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nb Electron concentration or density on the barrier side of the
hetero-junction.

nb0 Electron concentration or density on the barrier side of the
hetero-junction when its quasi-Fermi level coincides with that
on the other side.

ns Electron concentration or density on the surface.
n Real part of refractive index.
ni Intrinsic carrier density.
n2D The surface concentration of a quantum well, equal to the bulk

density times the layer thickness.
Nrn, Nrp Reference doping density in electron (n) and hole (p) mobility

equations.
Pij Probability of a transition from the i th to the j th level.
p Hole concentration or density.
pb Hole concentration or density on the barrier side of the hetero-

junction.
pb0 Hole concentration or density on the barrier side of the hetero-

junction when its quasi-Fermi level coincides with that on the
other side.

ps Hole concentration or density on the surface.
Qj

em Energy density of the jth emitted longitudinal mode.
Qj

cav Energy density of the jth longitudinal mode within the laser
cavity.

q Electronic charge.
Rtj

n , Rtj
p Electron (n) and hole (p) recombination rates per unit volume

through the j th deep trap.
Rsp, Rb

sp, Rqw
sp Spontaneous recombination rate per unit volume, also called the

radiative recombination rate, and the same quantity in bulk (b)
and in the quantum well (qw).

rqw
sp Frequency dependent spontaneous recombination rate for the

quantum well.
Rs Resistance associated with a boundary condition.
Rst Stimulated recombination rate per unit volume.
Rau Auger recombination rate per unit volume.
rm,reff

m Single facet reflectivity and effective reflectivity of a laser.
T Absolute temperature.
Tscat The scattering kernel for carrier-carrier scattering.
t Thickness of the quantum well.
V Electrical potential.
Vs Electrical potential on the surface.
Vapplied Applied electrical potential.
v Volume.
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vn, vp Average thermal velocity of electrons (n) and holes (p). The
average is taken over all three dimensions.

vtherm
n , vtherm

p Average thermal velocity of electrons (n) and holes (p). The
average is taken only over the dimensional of interest.

vtherm
bn , vtherm

bp Average thermal velocity of electrons (n) and holes (p) located
on the barrier side of the heterojunction. The average is taken
only over the dimensional of interest.

vsn,vsp Saturation velocity for electrons (n) and holes (p).
W Carrier energy.
Wn Electron energy.
Wn Hole energy.
W e

j , W h
i Effective width of the wave functions for electron and hole in

the jth and ith subbands, respectively.
x, y Spatial coordinates used in the model. The x-axis is parallel to

the quantum well. x is also used elsewhere as the Al composition
in AlGaAs or the In composition in InGaAs.

α αqw Local loss coefficient due to loss other than interband recombi-
nation, and local loss in the quantum well.

αint Internal loss defined as the weighted average of the local loss α.
αn, αp Constants used in doping dependent mobility functions for elec-

trons (n) and holes (p).
αfn, αfp Coefficients of the free carrier absorption for electrons (n) and

holes (p) in the quantum well.
α0 Absorption coefficient for regions outside the quantum well.
β, β1, β2 Complex eigenvalues of the wave equation and its real (1) and

imaginary (2) parts. They are also considered effective indices.
αem Optical loss coefficient due to emission of light in the lasing

mode.
αemj Optical loss coefficient due to emission of light in the jth longi-

tudinal mode.
βp Constant used in the hole mobility equation.
∆ Spin-orbit splitting of the valence band energy.
∆a

ij Transition energy shift term in the Asada broadening model.
δ Constant. Value is 1 for deep donors and 0 for deep accep-

tors when used to represent electrical charge. Also used as a
δ-function.

ϵ0 Dielectric constant of vacuum.
ϵdc Relative DC or low frequency dielectric constant.
ϵ, ϵ1, ϵ2 Complex optical dielectric constant and its real (1) and imagi-

nary (2) parts. ϵ is also used, under a completely context, for
non-linear gain coefficient.
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ϵg
2, ϵα

2 Imaginary parts of the dielectric constant corresponding to gain
due to interband transition and loss due to other mechanisms,
respectively.

ε Strain.
Γ Energy level broadening parameter, or the half width of the

Lorentzian broadening function.
Γ0 The maximum energy level broadening parameter, or the half

width of the Lorentzian broadening function.
Γa The energy level broadening parameter, or the half width of the

Lorentzian broadening function, as used in the Asada’s broad-
ening model.

γ1, γ2, γ3 Luttinger numbers.
γ Constant relating the optical wave amplitude to electric field.
γn,γp Adjustable constants for the electron (n) and hole (p) thermionic

emission model, used to account for tunneling and other effects.
γhn,γhp Adjustable constants for the electron (n) and hole (p) thermionic

emission model for heterojunctions, used to account for tunnel-
ing and other effects.

χ Affinity.
χ Affinity of a reference material.
λ Optical wavelength.
λj Optical wavelength of the jth longitudinal mode.
µn, µp Mobility of electrons (n) and holes (p).
µ0n, µ0p Low field electron (n) and hole (p) mobilities.
µ1n, µ1p Minimum electron (n) and hole (p) mobilities.
µ2n, µ2p Maximum electron (n) and hole (p) mobilities.
ν Function used in the Fermi-Direct statistics.
ρi, ρj, ρij Density of states for the i th and the j th levels, and the reduced

density of states for transition between the j th and the i th
levels.

ϕn,ϕp Quasi-Fermi potential for electrons (n) and holes (p).
ϕb Schottky barrier height.
ρ0

i , ρ0
j , ρ0

ij Constants for the two-dimensional density of states for the i th
and the j th levels, and reduced density of states for transition
between the i th and the j th levels. For example ρ0

i = mi/π~2t
.

σnj, σpj Electron (n) and hole (p) capture cross sections of the j th deep
trap.

τ Intra-band scattering lifetime.
τnj,τpj Electron (n) and hole (p) life time due to the jth trap.
τh, τv Hole-hole scattering life time for the Asada gain broadening

model. τh = 2τv.
ω Angular frequency of the optical wave.
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ωa,ωβ SOR parameters used for the wave equation.
ξ Function used in the Fermi-Dirac statistics.
ζ, ζn, ζp Variable related to the effective masses. ζ is also used for half

the shear strain energy for a different context.
< > Average with | W |2 as weight.



Appendix G

POST-PROCESSING &
PLOTTING VARIABLES

G.1 Bias-dependent Variables

Bias-dependent variables refer to quantities characterizing the whole device rather
than a local value at a particular mesh point. They can be plotted using plot_scan
or analyzed using commands such as fourier_power.

Table G.1: Bias-dependent variables available for plot-
ting

Variable Definition
all_mode_power Emitted laser power for all lateral modes in units

of mW (LASTIP) 1 .
all_mode_micav_power Emitted microcavity laser power for all lateral

modes (PICS3D). Units in W/m for 2D and W
for 3D.

bottom_led_power LED power emitted from the bottom of the de-
vice.

bottom_led_power_te LED power emitted from the bottom of the device
(TE mode).

bottom_led_power_tm LED power emitted from the bottom of the device
(TM mode).

Continued on next page

1Starting with the 2012 version, this value is no longer scaled by a factor of two to account for
implied symmetry
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Table G.1 – continued from previous page
Variable Definition

current_i Total current (sum of electron, hole and displace-
ment current) at electrode i.

disp_curr_i Displacement current (time derivative of the dis-
placement vector) at electrode i.

effective_index Real effective refractive index for a waveguide de-
vice.

efficiency Laser emission power efficiency (or slope effi-
ciency) (LASTIP).

elec_curr_i Electron current at electrode i
hole_curr_i Hole current at electrode i.
laser_current_i Total injection current into a laser diode; this

value is multiplied by the device length to con-
vert the current into mA (LASTIP)1.

laser_power Emitted laser power for a single mode in units of
mW (LASTIP)1.

led_curr_effi LED luminosity/current efficiency (cd/A)
(APSYS).

led_effi LED internal quantum efficiency (APSYS).
led_effx1 Similar to led_effz1.
led_effx2 Similar to led_effz1.
led_effy1 Similar to led_effz1.
led_effy2 Similar to led_effz1.
led_effz1 LED power extraction efficiency from facet 1 (i.e.,

left or bottom facet) facing the z-direction based
on the (cubic) broad-area LED model. This result
may be different from that calculated from the ray
tracing model.

led_effz2 Similar to led_effz1 above.
led_power Total amount of emitted optical power from all

facets of an LED (APSYS) in the (cubic) broad-
area LED model. This may be different from
the optical power calculated from the ray tracing
model.

led_power_te Total amount of emitted optical power (TE mode)
from all facets of an LED (APSYS) in the (cu-
bic) broad-area LED model. This may be differ-
ent from the optical power calculated from the ray
tracing model.

Continued on next page
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Table G.1 – continued from previous page
Variable Definition

led_power_tm Total amount of emitted optical power (TM
mode) from all facets of an LED (APSYS) in the
(cubic) broad-area LED model. This may be dif-
ferent from the optical power calculated from the
ray tracing model.

led_spon_power Total power generated from spontaneous emission
events inside a LED (APSYS).

led_spon_power_te Total power (TE mode) generated from sponta-
neous emission events inside a LED (APSYS).

led_spon_power_tm Total power (TM mode) generated from sponta-
neous emission events inside a LED (APSYS).

light Incident light power to a photodetector, modula-
tor, SOA or any other light-sensitive device.

micav_laser_power Emitted microcavity laser power for specified
mode (PICS3D). Units in W/m for 2D and W
for 3D.

more_bias_vari(i=1..9) Special variable created by using various state-
ments such as bias_output_near_point.

pd_efficiency External quantum efficiency of a photodetector 2.
pd_responsivity Responsivity of a photodetector2.
peak_gain Peak model gain in a waveguide device with lat-

eral mode and active layer(s). It is the modal gain
at peak wavelength.

rtg_left_power Left power emission in RTG model (PICS3D).
rtg_left_power_allmode All-mode left power emission in RTG model

(PICS3D).
rtg_photon_num Photon number in RTG model (PICS3D).
rtg_photon_num_allmode All-mode photon number in RTG model

(PICS3D).
rtg_right_power Left facet power emission in RTG model

(PICS3D).
rtg_right_power_allmode Right facet power emission in RTG model

(PICS3D).
rtg_surf_power Surface emitting power (for 2nd order grating) in

RTG model (PICS3D).
rtg_surf_power_allmode All-mode surface emitting power (for 2nd order

grating) in RTG model (PICS3D).
Continued on next page

2This term does not include dark current effects
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Table G.1 – continued from previous page
Variable Definition

rtg_wavelength Wavelength in RTG model (PICS3D).
rtg_wave_phase Phase shift of input wave in RTG model

(PICS3D).
rtg_2facet_power 2-facet power for a particular mode (PICS3D).
rtg_2facet_power_allmode All-mode power for a particular mode (PICS3D).
rtg_efficiency External quantum efficiency for laser device

(PICS3D).
rtg_ase_left Amplified spontaneous emission from the left facet

for a particular longitudinal mode (PICS3D).
rtg_ase_left_allmode Amplified spontaneous emission from the left facet

for all modes (PICS3D).
rtg_ase_right Amplified spontaneous emission from the

right facet for a particular longitudinal mode
(PICS3D).

rtg_ase_right_allmode Amplified spontaneous emission from the right
facet for all modes (PICS3D).

rtg_ase_2facet_allmode Amplified spontaneous emission from both facets
for all modes (PICS3D).

rtg_ase_efficiency External quantum efficiency for amplified sponta-
neous emission source (PICS3D).

rtg_smsr Side mode suppression ratio (PICS3D). This is
based on the photon number of each mode, as
defined in Appendix E.

rtg_wave_phase Phase change of input wave at exit for a modula-
tor/SOA (PICS3D).

sum_space_charge Sum of space charge over a region.
temp_max Maximum temperature in device.
time Time in picoseconds used in a transient simula-

tion.
top_led_power LED power emitted from the top of the device .
top_led_power_te LED power (TE mode) emitted from the top of

the device .
top_led_power_tm LED power (TM mode) emitted from the top of

the device .
total_joule_heat Integrated total Joule heat.
total_optic_heat Total heat due to optical absorption.
total_peltier_heat Integrated total Peltier heat.
total_recomb_heat Integrated total recombination heat.
total_thomson_heat Integrated total Thomson heat.

Continued on next page
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Table G.1 – continued from previous page
Variable Definition

tunneling_enhancement Maximum tunneling enhancement/increase to the
classical drift-diffusion current.

volt_res_i The voltage at boundary i in a mixed-mode sim-
ulation, including the external resistor.3

voltage_i Voltage at electrode i.
wavelength Laser emission wavelength at peak modal gain

(LASTIP).
wavelength_scan Wavelength of the optical pump.

G.2 Scalar Variables

Scalar variables are structural quantities defined for every mesh point of the device.
They depend on also depend on bias but are only printed at certain data sets, as
defined in the scan statement. These quantities may be plotted using statements
such as plot_1d and plot_2d.

Table G.2: Scalar variables available for plotting

Variable Definition
absorption background optical absorption not including

gain/loss from active layers.
acceptor_conc acceptor concentration.
acceptor_conc2 acceptor concentration (level2).
all_conc both electron and hole.
all_heat all heat sources.
band energy band. (for plot_1d and lplot_xy)
bulk_bandgap bandgap of bulk material; in a QW region, the

heavy hole bandgap is used even if the light hole
bandgap is smaller.

bulk_elec_conc bulk elec. concentration in QW system.
bulk_hole_conc bulk hole concentration in QW system.
central_area local surface area around mesh point.

Continued on next page

3The definitions voltage_i and volt_res_i switched in v.2015 due to various improvements in
the mixed-mode model.



1258 POST-PROCESSING & PLOTTING VARIABLES

Table G.2 – continued from previous page
Variable Definition

ch_val_band crystal field hole valence band edge for wurtzite
structures.

compact_iqe localized photon conversion efficiency: Rsp(x,y,z)
J(x,y,z) .

cond_band conduction band.
disp_curr_mag magnitude of displacement current.
disp_curr_x displacement current x-component.
disp_curr_y displacement current y-component.
disp_curr_z displacement current z-component.
donor_conc donor concentration.
donor_conc2 donor concentration (level2).
efb_cond_band conduction band in effective QW miniband model.
efb_val_band valence band in effective QW miniband model.
efm_cond_band conduction band in effective bulk medium model.
efm_val_band valence band in effective bulk medium model.
elec_conc electron concentration.
elec_curr_mag magnitude of electron current.
elec_curr_x electron current x-component.
elec_curr_y electron current y-component.
elec_curr_z electron current z-component.
elec_diff magnitude of the electron concentration gradient

|∇n|.
elec_diff_gain electron differential gain (cm2).
elec_imref electron IMREF.
elec_mobility average nodal electron mobility.
exciton_dipole_source exciton dipole source density.
exciton_singlet singlet exciton density.
exciton_triplet triplet exciton density.
fdfd_efield_r optical field component Er from microcavity vec-

torial mode solver.
fdfd_efield_z optical field component Ez from microcavity vec-

torial mode solver.
fdfd_hfield_phi optical field component Hϕ from microcavity vec-

torial mode solver.
field_mag electrical field magnitude.
field_x electric field x-component.
field_y electric field y-component.
heat_flux_density_mag heat flux magnitude.
heat_flux_density_x heat flux x-component.

Continued on next page
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Table G.2 – continued from previous page
Variable Definition

heat_flux_density_y heat flux y-component.
heat_flux_density_z heat flux z-component.
hole_conc hole concentration.
hole_curr_mag magnitude of hole current.
hole_curr_x hole current x-component.
hole_curr_y hole current y-component.
hole_curr_z hole current z-component.
hole_diff_gain hole differential gain (cm2).
hole_imref hole IMREF.
hole_mobility average nodal hole mobility.
impact_alpha_n electron impact ionization coefficient.
impact_alpha_p hole impact ionization coefficient.
impact_ionization total impact ionization rate.
incident_power same as optical_energy.
index_change refractive index change from equilibrium value.
interband_pumping optically pumped interband absorption.
interface_length equivalent interface length around mesh point;

this value only considers ALL mesh triangle edges
touching something other than the material num-
ber of local the mesh point.

joule_heat Joule heat source.
kpref_val_band reference valence band edge for wurtzite struc-

tures.
lattice_temp lattice temperature.
lh_val_band light hole valence band edge.
linear_acceptor_conc acceptor concentration in linear scale.
linear_bulk_elec bulk elec. concentration in QW system (linear

scale).
linear_bulk_hole bulk hole concentration in QW system (linear

scale).
linear_donor_conc donor concentration in linear scale.
linear_elec_conc electron concentration in linear scale.
linear_heat Heat source linear in current.
linear_hole_conc hole concentration in linear scale.
linear_rec_elec same as rec_elec_conc but in linear scale.
linear_rec_hole same as rec_hole_conc but in linear scale.
linear_subb_elec QW subband elec. concentration (linear scale).
linear_subb_hole QW subband hole concentration (linear scale).
local_gain local optical gain.

Continued on next page
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Table G.2 – continued from previous page
Variable Definition

lower_elec_imref IMREF of the lower electron state in the split-
state model

lower_hole_imref IMREF of the lower hole state in the split-state
model

lower_elec electron concentration in the lower state in the
split-state model

lower_hole hole concentration in the lower state in the split-
state model

magnetic_field_mag magnitude of flux density (B) pseudo-vector.
magnetic_field_x x-component of magnetic flux density (B) pseudo-

vector.
magnetic_field_y y-component of magnetic flux density (B) pseudo-

vector.
magnetic_field_z z-component of magnetic flux density (B) pseudo-

vector.
magnetic_potential_mag magnitude of magnetic vector potential (A).
magnetic_potential_x x-component of magnetic vector potential (A).
magnetic_potential_y y-component of magnetic vector potential (A).
magnetic_potential_z z-component of magnetic vector potential (A).
material_num internal material number.
negative_fix_charge negative fixed space charge.
negf_elec_diff same as elec_diff but for NEGF transport.
occup_trap occupancy of trap.
optic_heat optical heat source.
optical_energy relative energy distribution scaled to incident light

energy density.
optical_gen optical generation rate induced by incident light.
optical_gen_led optical generation rate in resonant-cavity model,

induced by trapped spontaneous emission.
outer_interface_length equivalent interface length around mesh point;

this value only considers only the mesh triangle
edges touching the outer edges of the simulation
domain.

peltier_heat Peltier heat source.
polar_vector Total polarization vector; sum of spontaneous and

strain-induced polarization.
piezo_stress_xx Piezoelectric stress component in SAWAVE simu-

lation.
Continued on next page
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Table G.2 – continued from previous page
Variable Definition

piezo_stress_xy Piezoelectric stress component in SAWAVE simu-
lation.

piezo_stress_xz Piezoelectric stress component in SAWAVE simu-
lation.

piezo_stress_yy Piezoelectric stress component in SAWAVE simu-
lation.

piezo_stress_yz Piezoelectric stress component in SAWAVE simu-
lation.

piezo_stress_zz Piezoelectric stress component in SAWAVE simu-
lation.

piezo_vector Strain-induced polarization vector.
piezo_vector_external Polarization vector due to external stress.
positive_fix_charge positive fixed space charge.
potential potential.
qdot_electron electron concentration in the embedded quantum

dot
qdot_hole hole concentration in the embedded quantum dot
radiation_heat radiation heat source term.
real_index real index.
rec_elec_conc electron concentration participated in recombina-

tion only as opposed to that in transport.
rec_hole_conc hole concentration participated in recombination

only as opposed to that in transport.
recomb_aug Auger recombination rate.
recomb_heat recombination heat source.
recomb_rad radiative recombination rate (TE+TM).
recomb_rad_te radiative recombination rate (TE).
recomb_rad_tm radiative recombination rate (TM).
recomb_srh SRH recombination rate.
recomb_st stimulated recombination rate.
space_charge net space charge.
spatial_grad_thermal_power_n magnitude of spatial gradient of electron thermo-

electric power ∇Pn; this terms controls the com-
bined Peltier and Thomson heat.

spatial_grad_thermal_power_p magnitude of spatial gradient of hole thermoelec-
tric power ∇Pp this terms controls the combined
Peltier and Thomson heat.

stress_xx normal stress in x direction.
stress_xy shear stress (xy).

Continued on next page
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Table G.2 – continued from previous page
Variable Definition

stress_xz shear stress (xz).
stress_yy normal stress in y direction.
stress_yz shear stress (yz).
stress_zz normal stress in z direction.
subb_elec_conc QW subband elec. concentration.
subb_hole_conc QW subband hole concentration.
temp_grad_thermal_power_n magnitude of temperature-driven gradient for

electron thermoelectric power (∂Pn

∂T
∇T ).

temp_grad_thermal_power_p magnitude of temperature-driven gradient for hole
thermoelectric power (∂Pp

∂T
∇T ).

thermal_power_n electron thermoelectric power (Pn)
thermal_power_p hole thermoelectric power (Pp)
thomson_heat Thomson heat source.
total_curr_mag magnitude of total current.
total_curr_x total current x-component.
total_curr_y total current y-component.
total_curr_z total current z-component.
trap_conc trap concentration.
trapped_elec_conc trapped electron concentration
trap_level trap level.
tunnel_enhancement enhancement factor applied to drift-diffusion cur-

rent in the tunneling and NEGF models.
val_band valence (also heavy hole) band edge.
wave_2ndwavel SOA Traveling Wave (2nd wavelength).
wave_real_part Real part of the optical mode. Note that the op-

tical wave is normalized to within a complex con-
stant; only the spatial difference is significant.

wave_imag_part Imaginary part of the optical mode. See above
comment for normalization.

wave_intensity relative wave intensity.
wave_intensity_all_modes wave intensity of all modes.

G.3 Vectorial Variables

Vectorial variables, like scalar variables, are structural quantities defined at every
mesh point of the device. The corresponding vector field may be plotted using
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statements such as plot_2d and vplot_xy:

Table G.3: Vectorial variables available for plotting

Variable Definition
elec_curr electron current
hole_curr hole current
disp_curr displacement current
elec_field electric field (static)
total_curr total current
flowline_curr flowline plot of total current
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Appendix H

SUPPORTED EXAMPLES

H.1 APSYS Examples

------------------------
\apsys_examples\A_tutorial
[title] Simulation of a camel diode: A tutorial.
[structure] Silicon camel diode.
[comment] Basic simulation procedures using APSYS.
------------------------
\apsys_examples\basic_silicon\bjt_3d
[title] Full 3D simulation of BJT.
[structure] 3D structure of BJT with edge effect.
[comment] The edge effect makes significant difference.
------------------------
\apsys_examples\basic_silicon\diode
[title] Turn-on characteristics of pn junction diode.
[structure] Simple p-n junction diode.
[comment] Set up of transient simulation.
------------------------
\apsys_examples\basic_silicon\hot_carrier
[title] Hot electron simulation.
[structure] N-type MOS transistor.
[comment] Different I-V is obtained if energy dep. mobility is used.
------------------------
\apsys_examples\basic_silicon\impact_mos
[title] Impact ionization effect in MOS.
[structure] N-type MOS transistor.
[comment] Break down effect due to impact ionization.
------------------------
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\apsys_examples\basic_silicon\jfet_temperature
[title] JFET simulation.
[structure] Silicon JFET.
[comment] Set up of simulation at different temperatures.
------------------------
\apsys_examples\basic_silicon\jfet_trap
[title] Deep level traps in JFET.
[structure] Silicon JFET with deep traps.
[comment] Deep trap model at low temperature.
------------------------
\apsys_examples\basic_silicon\mini_bjt
[title] Small size BJT.
[structure] Silicon bipolar junction transistor.
[comment] Show how to generate a family of I-V curves.
------------------------
\apsys_examples\basic_silicon\npn_indium
[title] NPN silicon BJT with indium doped base
[structure] N-P-N with boron and indum doped base.
[comment] Show how to use two p dopings with different ionization energies.
------------------------
\apsys_examples\basic_silicon\SOI_impact
[title] Impact ionization in SOI.
[structure] SOI with gate length of 1.6 um and poly gate.
[comment] Switch to current control before snap back in I-V curve.
------------------------
\apsys_examples\basic_silicon\TFT_3D
[title] 3D Simulation of a-SI TFT device.
[structure] Strip cell with mirror symmetry in x-direction and z-direction.
[comment] Show how to simulate 3D a-Si TFT by Csuprem and apsys.
------------------------
\apsys_examples\basic_silicon\thermal_npn
[title] Thermal analysis of a BJT.
[structure] Silicon NPN BJT
[comment] Substantial difference when self-heating effect is included.
------------------------
\apsys_examples\basic_silicon\thyristor
[title] Simulation of forward I-V characteristics of a thyristor
[structure] silicon p-n-p-n
[comment] Use of special convergence techniques to get the S-shape I-V curve
------------------------
\apsys_examples\CCD_CIS\CCD
[title] Simplified CCD structure
[structure] Silicon CCD detector
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[comment] Basic simulation procedures using APSYS.
------------------------
\apsys_examples\CCD_CIS\PD_CIS
[title] 2D CMOS image sensor with photodiode
[structure] 0.2 um CMOS with .layer format.
[comment] Demonstration of how clock cycle is controlled in CCD/CIS
------------------------
\apsys_examples\CCD_CIS\PG_CIS
[title] CIS with a photogate
[structure] PG+TX-MOS+Reset-MOS
[comment] Classic design of CIS based on photogate as light integrator
------------------------
\apsys_examples\EAM\CQW_modulator
[title] Simulation of a vertical coupled quantum well modulator.
[structure] InGaAs/InAlAs CQW modulator.
[comment] Detailed analysis and comparison with experiments
------------------------
\apsys_examples\EAM\franz_keldysh
[title] Franz-Keldysh in Bulk DH Device.
[material] Bulk InGaAsP at 1.3 micron bandgap.
[structure] 1D p-n junction EAM
------------------------
\apsys_examples\EAM\Mach-Zehnder-2D
[title] 2D analysis of InP based MQW Mach-Zehnder modulator
[structure] MQW ridge waveguide
[keywords] Quantum confined Stark effect (QCSE), Pockels’ effect, index change
------------------------
\apsys_examples\EAM\QCSE
[title] Electro-Absorption modulator simulation.
[structure] SQW EAM of AlGaAs.
[comment] Use of "self_consistent" needed to update potential profile.
------------------------
\apsys_examples\EAM\QW_exciton
[title] Exciton model for Electro-Absorption Modulator spectrum
[structure] SQW EAM of AlGaAs.
[comment] Use of "self_consistent" and "exciton".
------------------------
\apsys_examples\ESD\impact
[title] Electrostatic discharge (ESD) simulation
[structure] A simple silicon diode
[comment] Basic ESD simulation procedures using APSYS.
------------------------
\apsys_examples\ESD\self_heating
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[title] Electrostatic discharge (ESD) thermal simulation
[structure] A simple silicon diode
[comment] Basic ESD simulation procedures using self-heating.
------------------------
\apsys_examples\FDTD\2d_lense
[title] FDTD simulation of 2D lense structure
[device] 2D lense shape with light incidence from top
[comment] Illustrates focusing effect
------------------------
\apsys_examples\FDTD\2d_slab
[title] FDTD material absorption in a simple 2D slab
[device] Simple silicon slab with light incidence from top
[comment] Illustrates basic parameter setting for FDTD modeling
------------------------
\apsys_examples\FDTD\3D_lense_PD3x3
[title] FDTD material absorption in a simple 2D slab
[device] Simple silicon slab with light incidence from top
[comment] Illustrates basic parameter setting for FDTD modeling
------------------------
\apsys_examples\FDTD\3D_lense_PD3x3
[title] 3D micro lense simulation by FDTD
[structure] 3D lense constructure by multiple segments
[comment] use of MEEP package
------------------------
\apsys_examples\FDTD\3D_pyramid_cell
[title] 3D textured thinfilm cell simulation using FDTD
[structure] muc-Si cell with pyramid texture
[comment] Use of mesh plane bending to obtain 3D texture
------------------------
\apsys_examples\FDTD\box3d_FDTD
[title] FDTD interface to APSYS
[structure] Simple 3D box of silicon with an Al contact pad
[comment] Illustrates use of FDTD interface through a simple 3D box
------------------------
\apsys_examples\FDTD\inside_src
[title] FDTD with inside light source
[structure] silicon device
[remark] place light source inside of device
------------------------
\apsys_examples\FDTD\Lense_PD_FDTD
[title] Lensed photodetector simulation using FDTD
[structure] Silicon PD with lense with SiO2 AR coating
[comment] Start from .layer and use GeoEditor to construct lense
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------------------------
\apsys_examples\FDTD\thick_glass
[title] FDTD simulation with light source through thick glass
[structure] p-i-n silicon solar cell with 3mm glass layer.
[comment] Demo of FDTD simulation of solar cell with thick glass cover.
------------------------
\apsys_examples\HBT\hbt_ingaas
[title] Simulations of compound semiconductor HBT.
[structure] InGaAs/InP.
[comment] Basic procedures of HBT simulation.
------------------------
\apsys_examples\HBT\hbt0_tunnel
[title] InGaAs/InP HBT models.
[structure] HBT based in InGaAs/InP material.
[comment] Effect of tunneling in HBT simulation.
------------------------
\apsys_examples\HBT\sige_hbt
[title] SiGe HBT simulation.
[structure] SiGe HBT.
[comment] Set up of DC and AC simulation for SiGe HBT.
------------------------
\apsys_examples\HBT\sige_hbt2
[title] Analysis of SiGe HBT Performance
[structure] Selective-epitaxial SiGe
[comment] Study of bandgap narrowing effects in SiGe HBT.
------------------------
\apsys_examples\HEMT_and_FET\GaAs_HEMT\hemt3d
[title] GaN/AlGaN HEMT 3D structure with tapered barrier layer
[structure] GaN/AlGaN HEMT with deep level traps.
[comment] Use of y_taper_line to set up taper in 3D HEMT application
------------------------
\apsys_examples\HEMT_and_FET\GaAs_HEMT\impact_ionization
[title] AlGaAs HEMT simulation with selfconsistent method.
[structure] GaAs/AlGaAs HEMT with 2D gas system.
[comment] Use of "complex MQW" to define the 2D gas.
------------------------
\apsys_examples\HEMT_and_FET\GaAs_HEMT\MM_HEMT
[title] Metamorphic InAlAs/InGaAs/GaAs HEMT.
[structure] Metamorphic InAlAs/InGaAs/GaAs HEMT with delta doping.
[comment] Heavily doped layer as the so-called delta-doping layer.
------------------------
\apsys_examples\HEMT_and_FET\GaN_HEMT\AlGaNGaN_HEMT_Brkdwn
[title] High breakdown voltage AlGaN/GaN HEMT.
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[structure] AlGaN/GaN HEMT with magnesium doping layer under 2-DEG channel.
[comment] Including the following features;
------------------------
\apsys_examples\HEMT_and_FET\GaN_HEMT\AlGaN-hemt
[title] AlGaN HEMT simulation using piezo surface charge and substrate trap.
[structure] GaN/AlGaN HEMT with 2D gas system.
[comment] Piezo surface charge and substrate trap are varied to fit experiment.
------------------------
\apsys_examples\HEMT_and_FET\GaN_HEMT\HEMT_gate_leakage
[title] Simulation of gate leakage in GaN HEMT
[structure] GaN/AlGaN/GaN/Schottky
[comment] To study condition for gate leakage
------------------------
\apsys_examples\HEMT_and_FET\GaN_HEMT\HEMT_nano
[title] Nano scale AlGaN HEMT simulation
[structure] GaN/AlGaN QW HEMT
[comment] Demonstrate the set up of a D-mode AlGaN HEMT
------------------------
\apsys_examples\HEMT_and_FET\GaN_HEMT\HEMT_nano_emode
[title] Enhancement mode nano scale AlGaN HEMT simulation
[structure] GaN/AlGaN QW HEMT
[comment] Demonstrate the use of local adjustment of polarization charges
------------------------
\apsys_examples\HEMT_and_FET\GaN_HEMT\HEMT_selfcs
[title] AlGaAs HEMT simulation with selfconsistent method.
[structure] GaAs/AlGaAs HEMT with 2D gas system.
[comment] Use of "complex MQW" to define the 2D gas.
------------------------
\apsys_examples\HEMT_and_FET\GaN_HEMT\hemt_suprem_quantum
[title] Process and device simulation of GaN-HEMT with quantum effects
[structure] GaN/AlGaN HEMT with CSuprem simulation
[purpose] To provide a template for CSuprem and APSYS simulation of HEMT
------------------------
\apsys_examples\HEMT_and_FET\GaN_HEMT\hot_traps\no_traps
[title] GaN/AlGaN HEMT hot-carrier effects
[structure] GaN/AlGaN HEMT with p(-) substate
[comment] Purpose is to compare with similar cases with deep level traps.
------------------------
\apsys_examples\HEMT_and_FET\GaN_HEMT\hot_traps\traps
[title] GaN/AlGaN HEMT hot-carrier trapping effects
[structure] GaN/AlGaN HEMT with deep level traps.
[comment] Deep level traps in substrate and SiN passivated surface
------------------------
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\apsys_examples\HEMT_and_FET\other_FET\broken_gap_FET
[title] GaSb/InGaAs broken bandgap FET
[structure] GaSb/InGaN TJ at source
[comment] Use of equivalent mobility to model broken gap TJ
------------------------
\apsys_examples\HEMT_and_FET\other_FET\GTFET
[title] Simulation of a Green Tunnel Field Effect
Transistor (GTFET) with large turn-of swing
[model] Tunnel junction with PAT
------------------------
\apsys_examples\HEMT_and_FET\other_FET\PAT_in_TFET
[title] Tunnelling Junction FET simulation
[structure] vertical silicon FET
[remark] Demonstration of phonon-assisted and trap-assisted tunnelling
------------------------
\apsys_examples\HEMT_and_FET\other_FET\Sb_FET
[title] Sb based HEMT simulation
[structure] AlSb/InAs/AlSb/AlGaSb layers
[comment] demonstration of setting up a Sb based HEMT
------------------------
\apsys_examples\LED_GaN_MQW\2d\AlGaN_block
[title] Compare AlGaN blocking layer design with and without supperlattice
[structure] GaN based MQW system with AlGaN SL blocking layer
[comment] Use of Piezo charge and quantum tunneling in blocking layer
------------------------
\apsys_examples\LED_GaN_MQW\2d\AlGaN_block\no_sl
[title] AlGaN blocking layer design (I): no superlattice
[structure] GaN based MQW system with AlGaN blocking layer
[comment] Use of Piezo charge and quantum tunneling in blocking layer
------------------------
\apsys_examples\LED_GaN_MQW\2d\AlGaN_block\with_sl
[title] AlGaN blocking layer design (II): with superlattice
[structure] GaN based MQW system with AlGaN SL blocking layer
[comment] Use of Piezo charge and quantum tunneling in blocking layer
------------------------
\apsys_examples\LED_GaN_MQW\2d\complex_well
[title] Use of complex macros to engineer QW of LED
[structure] GaN/AlGaN based MQW system.
[comment] We compare different ways to define a non-symmetric QW
------------------------
\apsys_examples\LED_GaN_MQW\2d\deep_wells\non_seq_trap
[title] InGaN MQW LED with deep wells.
[structure] GaN based MQW system with AlGaN blocking layer



1272 SUPPORTED EXAMPLES

[comment] IQE roll-off even for deep wells and high EBL
------------------------
\apsys_examples\LED_GaN_MQW\2d\deep_wells\non_sequential
[title] InGaN MQW LED with deep wells.
[structure] GaN based MQW system with AlGaN blocking layer
[comment] IQE roll-off even for deep wells and high EBL
------------------------
\apsys_examples\LED_GaN_MQW\2d\deep_wells\q_trap
[title] InGaN MQW LED with deep wells.
[structure] GaN based MQW system with AlGaN blocking layer
[comment] IQE roll-off even for deep wells and high EBL
------------------------
\apsys_examples\LED_GaN_MQW\2d\dome
[title] Epoxy domed LED simulation
[structure] GaN LED with epoxy dome.
[comment] Demonstration of setting up ray tracing with dome-packaging.
------------------------
\apsys_examples\LED_GaN_MQW\2d\InGaN
[title] Piezo and thermal effects in LED.
[structure] GaN based MQW system.
[comment] L-I curves would role off due to thermal effect
------------------------
\apsys_examples\LED_GaN_MQW\2d\triangle_well
[title] Triangle quantum well in LED modeled as graded complex layers.
[material] InGaN/GaN with graded InGaN
[comment] To show how to construct a triangle well using cx-InGaN
------------------------
\apsys_examples\LED_GaN_MQW\2d\tunnel_junction
[title] use tunnel junction as p-contact in LED.
[structure] GaN based MQW system.
[comment] demonstrate how to use TJ in LED
------------------------
\apsys_examples\LED_GaN_MQW\2d\tunnel_junction\with_TJ
[title] use tunnel junction as p-contact in LED.
[structure] GaN based MQW system.
[comment] demonstrate how to use TJ in LED
------------------------
\apsys_examples\LED_GaN_MQW\2d\tunnel_junction\without_TJ
[title] use tunnel junction as p-contact in LED.
[structure] GaN based MQW system.
[comment] This project has turned off TJ model to use as a reference
------------------------
\apsys_examples\LED_GaN_MQW\3d_fancy\circle
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[title] 3D simulation of LED with circular contacts
[structure] geometry defined by circulr masks
[purpose] templates for simulating devices with complicated geometry
------------------------
\apsys_examples\LED_GaN_MQW\3d_fancy\interdigi
[title] Simulation of an LED with interdigital electrodes
[structure] LED with interdigital electrodes
[comment] Demonstrate how to set up complicated eletrodes using .layer
------------------------
\apsys_examples\LED_GaN_MQW\3d_fancy\spiral
[title] 3D simulation of LED with spiral-shaped contacts
[structure] geometry defined by mask data
[purpose] templates for simulating devices with complicated geometry
------------------------
\apsys_examples\LED_GaN_MQW\3d_fancy\star
[title] 3D simulation of LED with star shaped contacts
[structure] geometry defined by mask data
[purpose] templates for simulating devices with complicated geometry
------------------------
\apsys_examples\LED_GaN_MQW\3d_wellxz\LED_maskeditor
[title] LED IQE simulation 2010
[stucture] MQW InGaN/GaN LED with EBL
[remark] IQE sensitive to band offset
------------------------
\apsys_examples\LED_GaN_MQW\3d_wellxz\LED_maskeditor
[title] LED simulation set up using MaskEditor/CSuprem
[stucture] MQW InGaN/GaN LED with EBL
[remark] Use of Csuprem / MaskEditor for mesh
------------------------
\apsys_examples\LED_GaN_MQW\3d_wellxz\side_contact3d
[title] 3D AlGaN/AlGaN MQW LED simulation with ray-tracing
[structure] AlGaN/AlGaN MQW emitting at 0.34 micron.
[comment] Use of self-consistency model in multiple segment 3D structure
------------------------
\apsys_examples\LED_GaN_MQW\barrier_emit
[title] LED barrier emission
[structure] InGaN/GaN MQW.
[comment] Study of barrier emission spectrum
------------------------
\apsys_examples\LED_GaN_MQW\IQE_droop
[title] LED IQE simulation 2010
[stucture] MQW InGaN/GaN LED with EBL
[remark] IQE sensitive to band offset
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------------------------
\apsys_examples\LED_GaN_MQW\LED_external_stress\reference
[title] LED IQE simulation 2010
[stucture] MQW InGaN/GaN LED with EBL
[remark] IQE sensitive to band offset
------------------------
\apsys_examples\LED_GaN_MQW\LED_external_stress\with_stress
[title] LED IQE simulation 2010
[stucture] MQW InGaN/GaN LED with EBL
[remark] IQE sensitive to band offset
------------------------
\apsys_examples\LED_GaN_MQW\mplane_LED
[title] InGaN/GaN QW mplane LED simulation using full k.p theory
[material] InGaN/GaN
[device] InGaN/GaN LD
------------------------
\apsys_examples\LED_GaN_MQW\selfconsistent_onetime
[title] New method of selfconsistent simulation
[stucture] MQW InGaN/GaN LED with EBL
[remark] Three stages of simulation to achieve selfconsistency
------------------------
\apsys_examples\LED_GaN_MQW\split_local_trapping
[title] Introducing split QW state local carrier trapping model

This directory contains examples to demo. the new split-QW state local
------------------------
\apsys_examples\LED_GaN_MQW\split_local_trapping\AlGaN_local
[title] Split state model in LED with AlGaN blocking layer
[structure] GaN based MQW system with AlGaN blocking layer
[comment] Use of split state model
------------------------
\apsys_examples\LED_GaN_MQW\split_local_trapping\AlGaN_nonlocal
[title] Split state model in LED with AlGaN blocking layer
[structure] GaN based MQW system with AlGaN blocking layer
[comment] Use of split state model
------------------------
\apsys_examples\LED_GaN_MQW\split_local_trapping\GaAs_local
[title] Demonstrate of local split state trapping model.
[structure] Simple MQW GaAs/AlGaAs LED
[comment] Use of large tau causes IQE droop, even in GaAs LED.
------------------------
\apsys_examples\LED_GaN_QDOT\QD_4sizes
[title] InGaN based LED with quantum dots.
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[structure] MQW-QDOT InGaN/AlGaN LED.
[comment] Procedures of simulation
------------------------
\apsys_examples\LED_GaN_QDOT\QD_life
[title] Non-radiative lifetime effect in InGaN LED with quantum dots.
[structure] MQW-QD InGaN/AlGaN LED.
[comment] Study of carrier lifetime within QD effect.
------------------------
\apsys_examples\LED_general\BCLED\OneStage
[title] OneStage bipolar cascade LED LED.
[material] InGaAs/GaAs MQW
[structure] tunnel junction is used.
------------------------
\apsys_examples\LED_general\BCLED\PIN
[title] PIN LED.
[material] InGaAs/GaAs MQW
[structure] Simple PIN structure.
------------------------
\apsys_examples\LED_general\dome2d_rt3d
[title] 3D Ray Tracing structure w/dome
[structure] Simple InGaAlP/GaAs LED with external
dome structure to enhance extraction efficiency
------------------------
\apsys_examples\LED_general\led_absorption_each_well
[title] Extraction of absorption spectrum for each well in MQW LED
[stucture] MQW InGaN/GaN LED with EBL
[remark] Use of output_more_spectrum and plot_more_spectrum
------------------------
\apsys_examples\LED_general\pumped_led
[title] GaN based LED with optical pumping.
[structure] MQW GaN LED.
[comment] Demo of MQW LED simulation with incident light.
------------------------
\apsys_examples\LED_general\RT_TE_TM
[title] Simulation TE/TM raytracing in a LED
[structure] InGaN LED
[comment] shows how to plot both TE and TM from LED
------------------------
\apsys_examples\LED_general\Textured_LED
[title] Simulation of a LED with textured surface.
[structure] MQW LED with star-shaped contact.
[comment] A simulation by cooperation of Csuprem,Apsys,FDTD and RT3D.
------------------------
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\apsys_examples\LED_general\tunnel_spectrum\no_sl
[title] AlGaN blocking layer design (I): no superlattice
[structure] GaN based MQW system with AlGaN blocking layer
[comment] Use of Piezo charge and quantum tunneling in blocking layer
------------------------
\apsys_examples\LED_general\tunnel_spectrum\with_sl
[title] AlGaN blocking layer design (II): with superlattice
[structure] GaN based MQW system with AlGaN SL blocking layer
[comment] Use of Piezo charge and quantum tunneling in blocking layer
------------------------
\apsys_examples\mixed_mode\MOSFET
[title] Mixmode simulation of external circuit including a MOSFET
[structure] Simple meshed silicon resistor connected to a test.cir file.
[comment] CuteSpice command drives the circuit simulator capatible with SPICE
------------------------
\apsys_examples\NAND_flash_memory
[title] 2D simulation of multi-cell NAND flash memory
[structure] 50nmx50nm multi-cell flash memory line
[remark] real device simplified to two select gates and 4 pass gates
------------------------
\apsys_examples\nanowire\nanowire_bulk
[title] A simple cylindrical bulk nanowire of InGaN/GaN
[material] wurtzite bulk active layer of InGaN used
[comment] For more complicated 3D nanowire structure SemiCrafter is recommended
------------------------
\apsys_examples\nanowire\nanowire_mqw
[title] Modeling nanowire with multiple crystal orientation.
[structure] InGaN/GaN/ZnO with ZnO as growth template
[remark] Use of new type of 3D taper: symmetric polygon
------------------------
\apsys_examples\nanowire\nanowire_mqw_ito
[title] Modeling nanowire with multiple crystal orientation.
[structure] InGaN/GaN/ZnO with ZnO as growth template
[remark] Use of new type of 3D taper: symmetric polygon
------------------------
\apsys_examples\nanowire\nanowire_multiplane
[title] Modeling nanowire with multiple crystal orientation.
[structure] InGaN/GaN/ZnO with ZnO as growth template
[remark] Use of new type of 3D taper: symmetric polygon
------------------------
\apsys_examples\NEGF\FINFET_3D_SUPREM_NEGF
[title] 3D process and NEGF device simulation of FINFET
[device] FINFET
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[structure] Si on SiO2, with nitride spacer
------------------------
\apsys_examples\NEGF\NEGF_nmos
[title] NEGF quantum ballistic transport model of NMOS
[structure] Nano scale MOSFET
[purpose] To demonstrate the set up of NEGF method with drift-diffusion solver
------------------------
\apsys_examples\nonplanar_layer
[title] Setting up non-planar layer structure in simulation
[structure] GaAs/AlGaAs quantum well device
[comment] Use of modify_layer_height in .layer demonstrated
------------------------
\apsys_examples\OLED\AMOLED_yang
[title] OLED in AMOLED application
[structure] m-MTDATA/alpha-NPD/Alq3/LiF/Al/Ag
[comment] Comparison with published experimental data
------------------------
\apsys_examples\OLED\bilayer
[title] Bilayer OLED simulation
[material] NPB/Alq3 OLED
[demo] Use of metal on OLED to form microcavity; multiple active layers
------------------------
\apsys_examples\OLED\DCM_micro
[title] Microcavity analysis of an OLED with exciton diffusion model
[structure] Alq3/DCM:Alq3/TPD/ITO
[comment] To perform both electrical and optical analysis of an OLED stack
------------------------
\apsys_examples\OLED\EL_abs_spectra
[title] EL/Absorption Spectrum Model for Organic Light-Emitting Diode
[structure] Single active layers of Alq3 and Alq3:DCM
[comments] Use of Frenkel exciton model to generate EL/absorption spectrum
------------------------
\apsys_examples\OLED\EL_fit
[title] Fitting EL Spectrum of Organic Materials
[structure] Active layers of organic semiconductors
[comment] Explain the procedures involved in fitting to experimental EL data
------------------------
\apsys_examples\OLED\PIN_OLED
[title] Low-voltage electrolumiscent device
[structure] PIN Organic LED w/Alq3 active region
[comment] Reasonable agreement with experimental I-V and L-V curves
------------------------
\apsys_examples\OLED\pumped_oled
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[title] Opticalled pumped OLED
[structure] TPD/CBP/F8BT/SiO2
[comment] Optical pumping to generate exciton only, not free carriers.
------------------------
\apsys_examples\OLED\RC-OLED
[title] OLED with resonant cavity effect
[structure] CuPc/TPD/Alq3/LiF
[comment] For the study of micro cavity effect in OLED
------------------------
\apsys_examples\OLED\tandem
[title] Tandem OLED with resonant cavity effect
[structure] Stacks of NPB, Alq3, DCJTB:Alq3, n-doped Alq3 and p-doped NPB
[comment] Use of tunnel junction to connect series of OLED
------------------------
\apsys_examples\OLED\tandem2
[title] Tandem OLED with multple active layers.
[structure] Stacks of NPB, Alq3, C545T:Alq3, n-doped Alq3 and p-doped NPB
[comment] Use of tunnel junction to connect series of OLED
------------------------
\apsys_examples\OLED\trilayer
[title] Trilayer OLED simulation
[material] NPB/Alq3/Alq3:DCM
[demo] Multiple active layers in OLED
------------------------
\apsys_examples\OLED\triplet_diff
[title] Simulation of a WOLED with exciton diffusion model
[structure] ITO/NPD/BCzVBi:CBP/CBP/PQIr:CBP/Ir(ppy)3:CBP/CBP/BCzVbi:CBP/BPhen
[comment] To demonstrate white OLED simulation with triplet diffusion
------------------------
\apsys_examples\OLED\triplet_diff\no_biex
[title] Simulation of a WOLED with exciton diffusion model
[structure] ITO/NPD/BCzVBi:CBP/CBP/PQIr:CBP/Ir(ppy)3:CBP/CBP/BCzVbi:CBP/BPhen
[comment] This example turns off biexciton quenching.
------------------------
\apsys_examples\OLED\triplet_diff\no_el_transfer
[title] Simulation of a WOLED with exciton diffusion model
[structure] ITO/NPD/BCzVBi:CBP/CBP/PQIr:CBP/Ir(ppy)3:CBP/CBP/BCzVbi:CBP/BPhen
[comment] This example turns off dopant-dopant energy transfer.
------------------------
\apsys_examples\OLED\triplet_diff\ref
[title] Simulation of a WOLED with exciton diffusion model
[structure] ITO/NPD/BCzVBi:CBP/CBP/PQIr:CBP/Ir(ppy)3:CBP/CBP/BCzVbi:CBP/BPhen
[comment] To demonstrate white OLED simulation with triplet diffusion
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------------------------
\apsys_examples\other\3D_stacking\xyplane_attachment
[title] Attachment of multiple 3D object in mesh generation
[structure] Multiple 3D domain (M3DD)
[comment] Use 3d_attachment command to construct complicated 3D mesh
------------------------
\apsys_examples\other\amplifier
[title] Guided wave amplifier on y-z plane.
[structure] MQW InGaAsP/InP structure at 1.55 um.
[comment] Transient simulation of traveling wave amplifier.
------------------------
\apsys_examples\other\angled_interface
[title] Modeling angled interface
[device] InGaN based MQW
[comment] Angled cosine factor may be used to modify fixed charge.
------------------------
\apsys_examples\other\bulk_exciton
[title] Bulk GaAs absorption spectrum simulation using exciton model
[material] bulk GaAs QW at 0.83 um.
[comment] Manybody/exciton model as compared with experiment
------------------------
\apsys_examples\other\Esaki_junction
[title] Esaki tunnel junction
[structure] Ge tunnel junction
[comment] Based on 1957 paper in PhysRev.
------------------------
\apsys_examples\other\HB_Varactor
[title] Simulation of a heterostructure barrier varactor.
[structure] AlGaAs/GaAs symmetrical heterostructure barrier varactor
[comment] Use of self-consistent, tunneling, complex-MQW models.
------------------------
\apsys_examples\other\import_gen_rate
[title] Simulation of Photodetector with Imported Optical Gen. Rate
[structure] Ridge waveguide SQW PD.
[comment] Direct use of carrier generation rate from 3rd party software
------------------------
\apsys_examples\other\InN_non_parabolic_surface
[title] Simulation of a InN solar cell
[structure] Mg-doped InN layer with an electrolyte layer
[comment] Space-charge output
------------------------
\apsys_examples\other\jdos_tail
[title] Adding tail states in joint density of states
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[structure] 1D quantum well and bulk active layers.
[comment] Study of tail states, JDOS and shape of gain/PL spectrum.
------------------------
\apsys_examples\other\laser_heat
[title] Thermal transient simulation of laser lift-off process
[structure] Copper, GaN, amorphase GaN and sapphire
[comment] High power laser pulse is used to heat up GaN/sapphire interface
------------------------
\apsys_examples\other\lead_salt\bulk_leadsalt
[title] Bulk lead-salt active layer with non-parabolic band model
[structure] lead-salt PbSrSe
[comment] Use of generic-bulk macro for lead-salt
------------------------
\apsys_examples\other\lead_salt\lead_salt_cx_mqw
[title] Lead-salt MQW quantum well gain/spontaneous emisson model
[structure] complex MQW lead-salt emitting at 5 um.
[comment] Use of generic-complex-mqw macro for lead-salt
------------------------
\apsys_examples\other\lead_salt\lead_salt111
[title] Lead-salt MQW quantum well grown in 111 model
[structure] complex MQW lead-salt PbSrSe
[comment] Use of generic-complex-mqw macro for lead-salt
------------------------
\apsys_examples\other\mesfet
[title] Simulation of GaAs MESFET.
[structure] GaAs MESFET.
[comment] Set up of a basic MESFET simulation.
------------------------
\apsys_examples\other\miniband\basic_nin
[title] Use of mini-band transport model for superlattice in GaN-based lasers
[material] InGaN/AlGaN
[structure] 2D LD model
------------------------
\apsys_examples\other\QWIP\QWIP_ydir
[title] Simulation of GaAs/AlGaAs QWIP
[structure] GaAs/AlGaAs QWIP with 40 wells.
[comment] Basic simulation procedures using APSYS.
------------------------
\apsys_examples\other\QWIP\QWIP_zdir_no_fdtd
[title] 3D Simulation of GaAs/AlGaAs QWIP with well on xy-plane
[structure] GaAs/AlGaAs QWIP with 40 wells with well on xy-plane.
[comment] Basic simulation procedures using APSYS.
------------------------
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\apsys_examples\other\radiation_heavy_ion
[title] Radiation model for heavy ion strikes
[structure] 1-um nMOSFET
[comment] command radiation_heavy_ion demonstrated
------------------------
\apsys_examples\other\RTD\RTD_selfcons
[title] RTD simulation using tunneling model with self-consistent treatment.
[structure] 1D RTD with two barriers.
[comment] Simultanous use of self-consistent MQW and tunneling model.
------------------------
\apsys_examples\other\schottky_tunnel
[title] Study of tunneling effects in a Schottky diode.
[structure] 1D Schottky diode.
[comments] Demo of tunneling effect in Schottky contact.
------------------------
\apsys_examples\other\STL_import
[title] 3D mesh import using the STL format
[structure] p-i-n silicon solar cell.
[comment] A simple example of STL file import procedure
------------------------
\apsys_examples\other\STL_import\STL_organizer_sample
[Title] How to use the STL_organizer program
[content] Program files and documents
[comment] A character user interface program
------------------------
\apsys_examples\other\trap_emission
[title] Trap emission model
[structure] GaN and AlGaN bulk HEMT-like structure
[purpose] To demonstrate trap emission via optical pumping
------------------------
\apsys_examples\other\ZnO
[title] ZnO/MgZnO material model
[structure] ZnO/MgZnO QW
[comment] Setting up wurtzite macro for ZnO/MgZnO MQW
------------------------
\apsys_examples\PhCLED\InGaN
[title] PhCLED of InGaN/GaN
[structure] GaN based MQW system.
[comment] Air holes are used on top to enhanced extraction.
------------------------
\apsys_examples\PhCLED\with_DBR
[title] Modeling InGaAs/AlGaAs PhCLED/RCLED
[structure] Cylindrical RCLED with DBR and air hole photonic crystal
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[comment] PhC. air holes are used to enhance light extraction
------------------------
\apsys_examples\photo_sensitive\APD_GB
[title] 2D simulation of InGaAsP/InP APD.
[structure] InGaAsP/InP APD.
[comment] Gain-bandwidth calculation using impulse transient simulation.
------------------------
\apsys_examples\photo_sensitive\APD_GB\apd
[title] 2D simulation of InGaAsP/InP APD.
[structure] InGaAsP/InP APD.
[comment] gain-bandwidth study
------------------------
\apsys_examples\photo_sensitive\APD_GB\apd2
[title] 2D simulation of InGaAsP/InP APD.
[structure] InGaAsP/InP APD.
[comment] gain-bandwidth study
------------------------
\apsys_examples\photo_sensitive\APD_GB\apd3
[title] 2D simulation of InGaAsP/InP APD.
[structure] InGaAsP/InP APD.
[comment] gain-bandwidth study
------------------------
\apsys_examples\photo_sensitive\CIGS
[title] CIGS detector simulation
[structure] Cu[In(1-x)Ga(x)]Se2 based detector.
[comment] Dark current simulation
------------------------
\apsys_examples\photo_sensitive\diffraction
[title] Single Slit Driffraction in Photo-sensitive Devices
[structure] MSM with 0.8 um inlet slit for light power.
[comment] Shows how to set up a single slit diffraction model.
------------------------
\apsys_examples\photo_sensitive\extern_optics
[title] 2D Simulation of Photodetector with External Light Profile
[structure] Ridge waveguide SQW PD.
[comment] Use of different forms of external optical field profile
------------------------
\apsys_examples\photo_sensitive\gaas_apd
[title] A simple 1D example of GaAs/AlGaAs APD
[structure] GaAs/AlGaAs.
[comment] Use of bandgap_reduction technique.
------------------------
\apsys_examples\photo_sensitive\GaN_PD\GaN_APD
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[title] 1D simulation of separated-absorption-multipliation(SAM) GaN APD.
[structure] p-GaN/i-GaN(multiplication layer)/n-GaN/i-GaN(absorption layer)/n-GaN <---light.
------------------------
\apsys_examples\photo_sensitive\GaN_PD\GaN_PIN
[title] 1D simulation of p-i-n GaN APD.
[structure] p-GaN/i-GaN/n-GaN.
[comment] BV and transient simulation for GaN APD is demonstrated.
------------------------
\apsys_examples\photo_sensitive\inp_apd
[title] 2D simulation of InGaAsP/InP APD.
[structure] InGaAsP/InP APD.
[comment] DC and AC simulation with bandgap_reduction technique.
------------------------
\apsys_examples\photo_sensitive\kwon_gaas_apd
[title] A 1D example of GaAs/AlGaAs/GaAs APD for GBP study
[structure] GaAs/AlGaAs/GaAs.
[comment] Use of bandgap_reduction technique.
------------------------
\apsys_examples\photo_sensitive\msm_ac
[title] MSM PD simulation - AC photo-response analysis.
[structure] MSM with 0.5 um epi GaAs/AlGaAs/SI-GaAs.
[comment] AC response analysis for external light input.
------------------------
\apsys_examples\photo_sensitive\msm155
[title] Modeling optical absorption in active regions of PD.
[structure] InGaAs/InAlAs/InP.
[comment] Declaration of active region to allow interband transition model.
------------------------
\apsys_examples\photo_sensitive\PD_raytrace
[title] Photodetector Ray Tracing simulation of InGaAsP/InP APD.
[structure] InGaAsP/InP APD.
[comment] Use of ray tracing technique to generate photo-carriers.
------------------------
\apsys_examples\photo_sensitive\PD3D_external
[title] 3D Simulation of Photodetector with External Light Profile
[structure] Tapered ridge waveguide SQW PD.
[comment] Use of different forms of external optical field profile
------------------------
\apsys_examples\photo_sensitive\PIN_cyl
[title] Cylindrical PIN PD simulation.
[structure] InGaAs/InP PD
[comment] Demo of use of cylindrical coordinate system.
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------------------------
\apsys_examples\photo_sensitive\SAGCM_APD

[title] 1D simulation of InP/InGaAs SAGCM APD.
[structure] InP/InGaAs SAGCM APD APD.
------------------------
\apsys_examples\photo_sensitive\silicon_apd\npip
[title] Basic impact ionization model for silicon.
[structure] Simple silicon pn-junctons.
[comment] Illustrate basic techniques of modeling break-down effects.
------------------------
\apsys_examples\photo_sensitive\silicon_apd\simple
[title] Basic impact ionization model for silicon.
[structure] Simple silicon pn-junctons.
[comment] Illustrate basic techniques of modeling break-down effects.
------------------------
\apsys_examples\photo_sensitive\surface
[title] Fermi level pinning effect due to surface states.
[structure] MSM PD.
[comment] Surface effects reduces dark current of PD.
------------------------
\apsys_examples\photo_sensitive\UV_PD
[title] GaN Ultra-violet photo-detector using
[structure] Bulk InGaN/AlGaN for 0.28 micron meter wavelength.
[comment] Demo of short wavelength photo-detector.
------------------------
\apsys_examples\photo_sensitive\waveguide_pd
[title] Waveguide photodetector simulation.
[structure] GRINCH-SQW-SCH waveguide PD.
[comment] Optical modes must be solved to compute carrier generation.
------------------------
\apsys_examples\photo_sensitive\zener_impact
[title] Junction breakdown due to Zener effect and impact ionization.
[structure] Silicon pn-junction.
[comment] Comparison of Zener and impact ionization effects.
------------------------
\apsys_examples\quantum_MOS\FINFET_qw3d
[title] Quantum effects in 3D-FINFET
[structure] FINFET with SiO2 as confining barriers.
[comment] Current injection in FINFET is 3D in nature.
------------------------
\apsys_examples\quantum_MOS\FINFETs\FINFET_bulk
[title] FINFET simulation using bulk model
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[structure] FINFET with SiO2 as confining barriers.
[comment] For the purpose of comparison with the quantum finfet model.
------------------------
\apsys_examples\quantum_MOS\FINFETs\FINFET_qw
[title] Quantum effects in FINFET
[structure] FINFET with SiO2 as confining barriers.
[comment] Quantum effects in FINFET are significant.
------------------------
\apsys_examples\quantum_MOS\FINFETs\simple
[title] Quantum effects in a simple double gate MOSFET
[structure] FINFET with SiO2 as confining barriers.
[comment] Quantum effects in single segment of FINFET is considered.
------------------------
\apsys_examples\quantum_MOS\mobility_transverse
[title] Comparison of transverse field depedent mobility models.
[structure] Silicon N-MOS (80 nm)
[comment] Comparison of models named Intel1, Intel2 and Lombardi
------------------------
\apsys_examples\quantum_MOS\mobility_transverse\intel1
[title] Comparison of transverse field depedent mobility models.
[structure] Silicon N-MOS (80 nm)
[comment] Comparison of models named Intel1, Intel2 and Lombardi
------------------------
\apsys_examples\quantum_MOS\mobility_transverse\intel2
[title] Comparison of transverse field depedent mobility models.
[structure] Silicon N-MOS (80 nm)
[comment] Comparison of models named Intel1, Intel2 and Lombardi
------------------------
\apsys_examples\quantum_MOS\mobility_transverse\lombardi
[title] Comparison of transverse field depedent mobility models.
[structure] Silicon N-MOS (80 nm)
[comment] Comparison of models named Intel1, Intel2 and Lombardi
------------------------
\apsys_examples\quantum_MOS\mobility_transverse\reference
[title] Comparison of transverse field depedent mobility models.
[structure] Silicon N-MOS (80 nm)
[comment] Comparison of models named Intel1, Intel2 and Lombardi
------------------------
\apsys_examples\quantum_MOS\nmos_highk
[title] Simulation of a high-k MOSFET
[structure] Silicon MOSFET
[comment] Shows how to define new materials using custom
------------------------
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\apsys_examples\quantum_MOS\npoly_experiment
[title] Quantum MOS gate current study
[structure] Silicon N-MOS with n+ polysilicon gate.
[comment] Use of direct tunneling model with quantum confinement in channel.
------------------------
\apsys_examples\quantum_MOS\poly
[title] Quantum effects in MOS with thin gate oxide and poly-gate
[structure] Silicon N-MOS with polysilicon gates
[comment] Quantum effects in MOS are significant.
------------------------
\apsys_examples\quantum_MOS\qw_mos
[title] Quantum effects in MOS with thin gate oxide
[structure] Silicon N-MOS and P-MOS
[comment] Quantum effects in MOS are significant.
------------------------
\apsys_examples\quantum_MOS\SGT
[title] Simulation of a surrounding gate transistor.
[structure] cylndrical MOSFET.
[comment] Quantum effects are included using APSYS.
------------------------
\apsys_examples\quantum_MOS\SGT3d
[title] Full 3D Simulation of a surrounding gate transistor.
[structure] cylndrical MOSFET without rotation symmetry.
[comment] Rotation symmetry broken by gate oxide being non-uniform.
------------------------
\apsys_examples\quantum_MOS\SONOS\300
[title] Quantum mechanical simulation for a SONOS-EEPROM
[structure] Semiconductor-oxide-nitride-oxide-semiconductor MOSFET
[comment] trapping/detrapping, quantum confinement/tunneling.
------------------------
\apsys_examples\quantum_MOS\SONOS\450
[title] Quantum mechanical simulation for a SONOS-EEPROM
[structure] Semiconductor-oxide-nitride-oxide-semiconductor MOSFET
[comment] trapping/detrapping, quantum confinement/tunneling.
------------------------
\apsys_examples\quantum_MOS\uniaxial_SSi
[title] Simulation of uniaxially stress MOSFET
[structure] n-MOSFET and p-MOSFET on 100 wafer with 100 or 110 channel
[comment] Both quantum well property and full MOSFET simulation are studied.
------------------------
\apsys_examples\quantum_MOS\uniaxial_SSi\n_qwell_100
[title] Study of mass induced mobility enhancement under uniaxial strain.
[structure] Strained Si with uniaxial tensile strain.
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[comment] A series of preview files are used to conc. average valley mobility
------------------------
\apsys_examples\quantum_MOS\uniaxial_SSi\n_qwell_110
[title] Study of mass induced mobility enhancement under uniaxial strain.
[structure] Strained Si with uniaxial tensile strain [110].
[comment] A series of preview files are used to conc. average valley mobility
------------------------
\apsys_examples\quantum_MOS\uniaxial_SSi\nmos_nostrain
[title] Unstrained n-MOSFET as referece for strained silicon modeling
[structure] Silicon N-MOS
[comment] This structure has zero stress and exports data
------------------------
\apsys_examples\quantum_MOS\uniaxial_SSi\nmos_strain100
[title] Simulation of strained n-MOSFET [100]
[structure] Silicon N-MOS with poly gate
[comment] This structure has 1 GPa tensile stress
------------------------
\apsys_examples\RCLED\70well_noDBR
[title] Thermal simulation 70 pair MQW RCLED
[structure] RCLED of InGaAlP emitting at 600 nm
[comment] Use of current/density dependent lifetime
------------------------
\apsys_examples\RCLED\AlGaAs
[title] Model of resonant cavity LED (RCLED) with multilayer optic module
[structure] Cylindrical RCLED with implanted current confinement regions.
[comment] Note the input of DBR stacks in .sol file
------------------------
\apsys_examples\RCLED\DBR_detuned
[title] Effect of DBR detuning in RCLED
[structure] Cylindrical RCLED with implanted current confinement regions.
[comment] To show that if DBR is detuned, resonance will ocurr at an angle
------------------------
\apsys_examples\RCLED\InGaAs
[title] Modeling InGaAs/AlGaAs RCLED
[structure] Cylindrical RCLED with DBR and Ag HR coating
[comment] Optical phase of Ag mirror affects resonant wavelength
------------------------
\apsys_examples\RCLED\long_cavity
[title] InGaN based RCLED at 0.52 um.
[structure] RCLED with long cavity.
[comment] We find many resonant peaks in both wavelenghths and angles
------------------------
\apsys_examples\RCLED\thermal_70well
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[title] Thermal simulation 70 pair MQW RCLED
[structure] RCLED of InGaAlP emitting at 600 nm
[comment] Use of current/density dependent lifetime
------------------------
\apsys_examples\RCLED\thermal_rcled
[title] Thermal simulation of an RCLED
[structure] RCLED with multiple quantum wells.
[comment] Demonstration of rolling off RCLED power at higher temperature
------------------------
\apsys_examples\sige_proc_device
[title] Process and device simulation of SiGe MOSFET
[strucutre] MOSFET with SiGe pocket
[purpose] To provide a template for strain treatment of SiGe MOSFET
------------------------
\apsys_examples\solar_cell\compound\3D_beam
[title] 3D models of triple junction solar cell powered by focused beam
[structure] 3D triple junction solar cell with tunnel junction.
[comment] Use of loop structure to set up 3D planes.
------------------------
\apsys_examples\solar_cell\compound\3D_beam_thermal
[title] 3D models of triple junction solar cell powered by focused beam
[structure] 3D triple junction solar cell with tunnel junction.
[comment] Use of loop structure to set up 3D planes.
------------------------
\apsys_examples\solar_cell\compound\3D_beam_zdir
[title] 3D focused beam model with beam from z-direction
[structure] 3D triple junction solar cell with tunnel junction.
[comment] Set up cell with junction parallel to x-y plane.
------------------------
\apsys_examples\solar_cell\compound\CdSe_CZT_CIGS_cell
[title] CsSe-CIGS cell simulation
[material] CdSe - CuInGaSe layers
[remark] provide serveral templates for CIGS based cells.
------------------------
\apsys_examples\solar_cell\compound\diffraction
[title] triple junction solar cell simulation with diffraction model.
[structure] 2D triple junction solar cell using diffraction model.
[comment] Diffraction model takes into account different wavelengths.
------------------------
\apsys_examples\solar_cell\compound\InGaN_cell
[title] InGaN solar cell
[material] InGaN
[purpose] To provide a working template of InGaN cell
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------------------------
\apsys_examples\solar_cell\compound\InGaN_Si
[title] InGaN/Si solar cell
[structure] InGaN/Si heterojunction solar cell
[comment] Use of tunneling junction in a special structure
------------------------
\apsys_examples\solar_cell\compound\inverted
[title] GaInP/GaAs/GaInAs solar cell simulation.
[structure] 2D triple junction solar cell with tunnel junction.
[comment] High efficiency (about 34%) solar cell
------------------------
\apsys_examples\solar_cell\compound\invtTJSCEQE
[title] GaInP/GaAs/GaInAs solar cell simulation for EQE computation.
[structure] 2D triple junction solar cell with tunnel junction.
[comment] Using series Project to compute EQE
------------------------
\apsys_examples\solar_cell\compound\multi-light-source
[title] triple junction solar cell simulation, multiple light source.
[structure] 2D triple junction solar cell with tunnel junction.
[comment] Demo of multiple light source
------------------------
\apsys_examples\solar_cell\compound\tj_thermal
[title] triple junction solar cell thermal simulation.
[structure] 2D triple junction solar cell with tunnel junction.
[comment] Setting up thermal boundary conditions.
------------------------
\apsys_examples\solar_cell\compound\triple_junc
[title] triple junction solar cell simulation.
[structure] 2D triple junction solar cell with tunnel junction.
[comment] Use of equivalent mobility for tunnel junction.
------------------------
\apsys_examples\solar_cell\Si_simple
[title] Silicon solar cell simulation.
[structure] 1D silicon p-n junction.
[comment] Use of AM15 solar spectrum to achieve accuracy.
------------------------
\apsys_examples\solar_cell\silicon\EQE_wavelength
[title] Si solar cell for wavelength dependent simulation

using internal wavelength scan.

------------------------
\apsys_examples\solar_cell\silicon\import_doping
[title] Silicon solar cell simulation with imported doping profile
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[structure] 1D silicon p-n junction.
[comment] Use of AM15 solar spectrum to achieve accuracy.
------------------------
\apsys_examples\solar_cell\silicon\IQE_wavelength
[title] Computing IQE versus wavelength for solar cell
[structure] silicon P(+)P(-)N structure
[comment] Using series to scan wavelength
------------------------
\apsys_examples\solar_cell\silicon\LFC_RCC_solar_cell
[title] Modeling of RCC solar cell with laser fired contact
[structure] Structure by CSuprem, & combine CSuprem & APSYS
[comment] RUN_all.bat will run all the 4 steps.
------------------------
\apsys_examples\solar_cell\silicon\LFC_RCC_solar_cell\step01
[title] Modeling of RCC solar cell with laser fired contact
[structure] Structure by CSuprem, & combine CSuprem & APSYS
[comment] RUN_all.bat will run all the 4 steps.
------------------------
\apsys_examples\solar_cell\silicon\LFC_RCC_solar_cell\step02
[title] Modeling of RCC solar cell with laser fired contact
[structure] Structure by CSuprem, & combine CSuprem & APSYS
[comment] RUN_all.bat will run all the 4 steps.
------------------------
\apsys_examples\solar_cell\silicon\LFC_RCC_solar_cell\step03
[title] Modeling of RCC solar cell with laser fired contact
[structure] Structure by CSuprem, & combine CSuprem & APSYS
[comment] RUN_all.bat will run all the 4 steps.
------------------------
\apsys_examples\solar_cell\silicon\LFC_RCC_solar_cell\step04
[title] Modeling of RCC solar cell with laser fired contact
[structure] Structure by CSuprem, & combine CSuprem & APSYS
[comment] RUN_all.bat will run all the 4 steps.
------------------------
\apsys_examples\solar_cell\silicon\metal_tunnel
[title] Silicon solar cell simulation with Schottky & tunneling.
[structure] 1D silicon p-n junction.
[comment] Use of tunneling for Schotky effect.
------------------------
\apsys_examples\solar_cell\silicon\PERT_2coatings
[title] Silicon PERT Cell.
[structure] Passivated emitter, rear totally diffused (PERT).
[comment] PERT Cell with contacts on both sides.
------------------------
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\apsys_examples\solar_cell\silicon\photocurrent_life\surf_vel1
[title] Silicon wafer photo-current lifetime calibration
[structure] 2D Si wafer, lightly n-doped
[comment] May be used to calibrate surface recombination velocity
------------------------
\apsys_examples\solar_cell\silicon\photocurrent_life\surf_vel2
[title] Silicon wafer photo-current lifetime calibration
[structure] 2D Si wafer, lightly n-doped
[comment] May be used to calibrate surface recombination velocity
------------------------
\apsys_examples\solar_cell\silicon\PIN
[title] Silicon solar cell simulation.
[structure] 1D silicon p-n junction.
[comment] Use of AM15 solar spectrum to achieve accuracy.
------------------------
\apsys_examples\solar_cell\silicon\poly
[title] Simple PIN-like solar cell based on Si or poly Si.
[structure] 2D silicon PIN strcuture.
[comment] Use of AM15 solar spectrum.
------------------------
\apsys_examples\solar_cell\silicon\RCC_2coatings
[title] Silicon Rear Contacted cell (RCC) simulation.
[structure] 2D Si RCC structure with double coating layers.
[comment] RCC with double coating layers.
------------------------
\apsys_examples\solar_cell\silicon\RCC_2D_coating
[title] Silicon Rear Contacted cell (RCC) simulation.
[structure] 2D silicon RCC structure.
[comment] RCC.
------------------------
\apsys_examples\solar_cell\silicon\RCC_flat2d_rt3d
[title] Ray-tracing (RT) technique for comparison.
[structure] RCC structure (x-direction size reduced).
[comment] For comparison with triangle textured case.
------------------------
\apsys_examples\solar_cell\silicon\RCC_triangle2d_rt3d
[title] Ray-tracing (RT) technique for comparison.
[structure] RCC structure with triangle interface.
[comment] For comparison with flat case. This example uses
------------------------
\apsys_examples\solar_cell\silicon\RCC_triangle3d_rt3d
[title] Ray-tracing (RT) technique for comparison.
[structure] RCC structure with triangle interface.
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[comment] For comparison with flat case. This example uses
------------------------
\apsys_examples\solar_cell\silicon\temperature_dependent
[title] Si solar cell for temp dependent simulation with series

Command.

------------------------
\apsys_examples\solar_cell\silicon\wavelength_dependent
[title] Si solar cell for wavelength dependent simulation

with series Command.

------------------------
\apsys_examples\solar_cell\solar_qd_qw\QD
[title] Simulation of quantum dot solar cell
[structure] InAs/GaAs dot in i region of pin structure
[purpose] To demo how effective miniband model is used in QD device
------------------------
\apsys_examples\solar_cell\thinfilm\3d_tandem_texture
[title] 3D textured thinfilm tandem cell simulation
[structure] a-Si/muc-Si tandem cell with pyramid texture
[comment] Use of mesh plane bending to obtain 3D texture
------------------------
\apsys_examples\solar_cell\thinfilm\alpha
[title] Simple PIN-like solar cell based on alpha-Si, or amorphous Si.
[structure] 2D silicon PIN strcuture.
[comment] Use of AM15 solar spectrum.
------------------------
\apsys_examples\solar_cell\thinfilm\Si_Tandem_cell
[title] Amorphous/micro-crystal silicon tandem cells
[structure] Ag/ZnO/muC-Si-PIN/a-Si/ITO
[comment] Use of tunneling junction to connect 2 cells back to back
------------------------
\apsys_examples\solar_cell\thinfilm\SiC_TJ_tandem
[title] Amorphous SiC and SiGe triple junction tandem cells
[structure] muC-Si/a-SiGe/a-SiC
[comment] Use of tunneling junction to connect 3 cells back to back
------------------------
\apsys_examples\solar_cell\thinfilm\SiGe_TJ_tandem
[title] Amorphous SiGe triple junction tandem cells
[structure] a-SiGe/a-SiGe/a-Si
[comment] Use of tunneling junction to connect 3 cells back to back
------------------------
\apsys_examples\solar_cell\thinfilm\STL_import_solar
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[title] STL import example
[structure] p-i-n silicon solar cell.
[comment] A simple example of STL file import procedure
------------------------
\apsys_examples\solar_cell\thinfilm\tandem_ito_semicon
[title] Amorphous/micro-crystal silicon tandem cells - ITO as semiconductor
[structure] Ag/ZnO/muC-Si-PIN/a-Si/ITO
[comment] Use of tunneling junction to connect 2 cells back to back
------------------------
\apsys_examples\tunnel_junc_model\physical_tunnel_junc
[title] Tunneling junction based on non-local physical model
[structure] GaAs tunneling junction
[comment] TJ model in forward bias agrees with experiment
------------------------
\apsys_examples\tunnel_junc_model\trap_ass_tunnel
[title] Trap assisted tunnelling model
[structure] GaAs p-n junction
[remark] Demo of TAT in TJ simulation
------------------------
\apsys_examples\tunnel_junc_model\tunnel_junc_IV
[title] Tunneling junction biased on non-local physical model
[structure] GaAs/AlGaAs tunneling junction
[comment] Interband tunneling models are used in both forward and reverse.
------------------------
\apsys_examples\tunnel_junc_model\tunnel_junc_local
[title] Tunneling junction with heterojunction and MQW
[structure] Fused junction InGaAlAs/InP/AlGaAs, Also GaN junction
[comment] Demo. the use of tunneling junction to achieve injection.
------------------------
\apsys_examples\tunnel_junc_model\zener_impact_local
[title] Simulation of a tunneling junction biased in both directions
[structure] GaAs/AlGaAs tunneling junction
[comment] Both impact ionzation and Zener interband tunneling models are used
------------------------
\apsys_examples\typeII_PD
[title] Simulation of type II MQW photo detector
[device] Type II MQW of GaAsSB/InGaAsP grown on InP
[remark] Use of type II QW transport model
------------------------
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H.2 LASTIP Examples

\lastip_examples\active_grade\complex
[title] A layered laser diode simulation with graded complex layers.
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure.
[purpose] To demo how to grade a complex coupled MQW structure.
------------------------
\lastip_examples\active_grade\grade_function
[title] Arbitrary composition grading in graded complex layers.
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure.
[purpose] To demo how to using a composition grading function in .mater
------------------------
\lastip_examples\active_grade\single_well
[title] A layered laser diode simulation with graded active layer.
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure, with graded active layer.
[purpose] To provide an example on how to grade the active/barrier layers.
------------------------
\lastip_examples\broad_areas\asymmetric
[title] Asymmetric broad area laser.
[material] InGaAs/GaAs at 0.98 micron.
[structure] An asymmetric broad area laser.
[comment] How to deal with multiple modes in broad area lasers.
------------------------
\lastip_examples\broad_areas\broad_ingaalp
[title] Simulation of broad area InGaAlP laser.
[material] Strained MQW GaInP/AlGaInP (lambda=0.65-0.71 um)
[structure] Broad area laser.
[purpose] Set up of multiple mode in broad area laser model.
------------------------
\lastip_examples\bulk_InGaAsP
[title] 1D/2D bulk DH laser.
[material] Bulk InGaAsP at 1.3 micron.
[structure] 1D/2D bulk channel-substrate waveguide laser.
[comment] For demo of conventional bulk DH laser.
------------------------
\lastip_examples\complex_MQW\combo
[title] Combination of complex and simple quantum wells.
[material] InGaAsP MQW emisison at 1.5 um.
[structure] MQW with mixed type of barriers. Strain compensated.
[comment] To illustrate the use of complex MQW with simple QWs.
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------------------------
\lastip_examples\complex_MQW\coupled
[title] Coupled wells.
[material] InGaAsP MQW at 1.55 um emission.
[structure] Complex cx-InGaAsP coupled wells.
[comment] Study of interaction between wells.
------------------------
\lastip_examples\complex_MQW\step_qw
[title] Optical gain model for step quantum well
[material] InGaAsP QW on GaAs substrate
[structure] A step is formed near the barrier to make a 5 layer QW structure
[comment] Use of inner_bar_gain to calculate optical gain at inner barrier
------------------------
\lastip_examples\complex_MQW\uneven_bar
[title] Uneven barrier
[material] AlGaAs/AlGaAs QW at 0.83 um
[structure] Complex cx-AlGaAs single well with uneven barrier
[comment] Demo of uneven barrier using complex-MQW feature
------------------------
\lastip_examples\current_blocking\buryhet
[title] Buried het. laser with irregular shape.
[material] Bulk AlGaAs at 0.8 micron.
[structure] 2D bury het. laser.
[comment] Use of "new_doping" method to treat difficult structure.
------------------------
\lastip_examples\current_blocking\leaky_mqw
[title] Leakage structure.
[material]QW InGaAsP/InP at 1.6 micron.
[structure] 2D MQW laser.
[comment] Demo of new_doping method in 3-column structure.
------------------------
\lastip_examples\current_blocking\new_doping
[title] New_doping technique.
[material] Bulk AlGaAs at 0.8 micron.
[structure] 2D bury het. laser.
[comment] To show "new_doping" method for current blocking structure.
------------------------
\lastip_examples\dual_polar
[title] Dual polarization lasing
[material] InGaAsP wells grown on InP substrate.
[structure] 1D laser, MQW strained well, unstrained barrier.
[purpose] To demo set up of dual polarization simulation.
------------------------
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\lastip_examples\gainguide_3e
[title] Three electrode laser.
[material] GaAs/AlGaAs at 0.82 micron.
[structure]3-electrode stripe geometry, gain guided laser.
[comment] Demo of how gain guiding can control the optical beam and modes.
------------------------
\lastip_examples\GaN_growth_plane\miller_index\mplane_wgpara
[title] InGaN/GaN QW mplane laser diode simulation using full k.p theory
[material] InGaN/GaN
[device] InGaN/GaN LD
[comment] Use of k.p gain data import to speed up 2/3 D simulation.
------------------------
\lastip_examples\GaN_growth_plane\miller_index\mplane_wgperp
[title] InGaN/GaN QW mplane laser diode simulation using full k.p theory
[material] InGaN/GaN
[device] InGaN/GaN LD
[comment] Use of k.p gain data import to speed up 2/3 D simulation.
------------------------
\lastip_examples\GaN_growth_plane\miller_index\semipolar
[title] InGaN/GaN QW mplane laser diode simulation using full k.p theory
[material] InGaN/GaN
[device] InGaN/GaN LD
[comment] Use of k.p gain data import to speed up 2/3 D simulation.
------------------------
\lastip_examples\GaN_growth_plane\plane_angle\bulk_effective_mass
[title] m-plane InGaN/GaN MQW LD simulation
[material] InGaN/GaN at 0.41 um
[structure] Simplified 1D MQW structure
[comment] To illustrate effect of wurtzite crystal orientation
------------------------
\lastip_examples\GaN_growth_plane\plane_angle\bulk_effective_mass\phi0
[title] m-plane InGaN/GaN MQW LD simulation
[material] InGaN/GaN at 0.41 um
[structure] Simplified 1D MQW structure
[comment] To illustrate effect of wurtzite crystal orientation
------------------------
\lastip_examples\GaN_growth_plane\plane_angle\bulk_effective_mass\phi90
[title] m-plane InGaN/GaN MQW LD simulation
[material] InGaN/GaN at 0.41 um
[structure] Simplified 1D MQW structure
[comment] To illustrate effect of wurtzite crystal orientation
------------------------
\lastip_examples\GaN_growth_plane\plane_angle\bulk_effective_mass\ref
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[title] m-plane InGaN/GaN MQW LD simulation
[material] InGaN/GaN at 0.41 um
[structure] Simplified 1D MQW structure
[comment] To illustrate effect of wurtzite crystal orientation
------------------------
\lastip_examples\GaN_growth_plane\plane_angle\mplane_LD
[title] InGaN/GaN QW mplane laser diode simulation using full k.p theory
[material] InGaN/GaN
[device] InGaN/GaN LD
[comment] Use of k.p gain data import to speed up 2/3 D simulation.
------------------------
\lastip_examples\GaN_growth_plane\plane_angle\mplane_park
[title] InGaN/GaN QW mplane optical gain model
[structure] InGaN/GaN MQW.
[comment] Study of optical gain of arbitrary crystal orientation.

------------------------
\lastip_examples\manybody\GaAs
[title] Manybody gain enhancement effect.
[material] AlGaAs QW at 0.83 um.
[structure] SQW.
[comment] Manybody effect is done under the Pade approximation.
------------------------
\lastip_examples\manybody\InGaN
[title] InGaN/GaN MQW laser simulation with manybody effect
[material] Simplified InGaN/GaN/AlGaN MQW laser.
[comment] Comparison of manybody gain/PL/index effect on GaN based lasers.

------------------------
\lastip_examples\miniband\basic_nin
[title] Use of mini-band transport model for superlattice in GaN-based lasers
[material] InGaN/AlGaN
[structure] 2D LD model
[purpose] To demonstrate setting up mini-band transport model
------------------------
\lastip_examples\miniband\LD
[title] Use of mini-band transport model for superlattice in GaN-based lasers
[material] InGaN/AlGaN
[structure] 2D LD model
[purpose] To demonstrate setting up mini-band transport model
------------------------
\lastip_examples\modulation
[title]Small signal frequency modulation
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[material] InGaAs/AlGaAs at 0.95 microns.
[structure] 2D laser, GRIN-SCH structure.
[purpose] To compare the LI and modulation of SQW and MQW.
------------------------
\lastip_examples\mqw_ridge\GaAs
[title] A classic GRINCH-SCH-SQW laser.
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D/2D ridge waveguide laser, GRIN-SCH-SQW structure.
[purpose] To demo a simple yet representative structure.
------------------------
\lastip_examples\mqw_ridge\ingaalas_inp
[title] InGaAlAl laser.
[material] QW InGaAlAs/InP at 1.3 micron.
[structure] 1D GRIN-SCH-SQW laser.
[comment] An alternative to InGaAsP/InP system.
------------------------
\lastip_examples\mqw_ridge\InGaAs
[title] InGaAs/GaAs: An early strained QW laser.
[material] InGaAs/AlGaAs at 0.98 microns.
[structure] 1D/2D ridge waveguide laser, GRIN-SCH-SQW structure.
[comment] To show one of the early strained QW laser.
------------------------
\lastip_examples\mqw_ridge\InGaAsN
[title] InGaAsN/GaAs laser.
[material] InGaAsN/GaAs at 1.3 um.
[structure] Ridge waveguide.
[purpose] To provide a convient structure for a new material system.
------------------------
\lastip_examples\mqw_ridge\qw_InGaAsP
[title] InGaAsP laser for 1.55 application.
[structure] 1D/2D MQW ridge waveguide laser.
[material] MQW strained InGaAsP/InP.
[comment] To provide a good structure of MQW laser at 1.55 emission.
------------------------
\lastip_examples\mqw_ridge\setup_MQW
[title] Use of SetupLayer for an InGaAsP MQW laser
[material] InGaAsP/InGaAsP/InP at 1.55 microns.
[structure] 1D MQW laser, may be converted to 2D ridge waveguide laser.
[purpose] To provide a tutorial example on how to use SetupLayer program.
------------------------
\lastip_examples\multi_active
[title] Super lattice with variable QW with.
[material] GaAs/AlGaAs.
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[structure] 1D super lattice with different well widths.
[purpose] To show different type of active region in one simulation.
------------------------
\lastip_examples\multicavity\bipolar_cascade
[title] Two color bipolar cascade laser.
[material] InGaAs/GaAs MQW
[structure] Two cavities connected by tunnel junction.
[purpose] To demonstrate the simulation of multi-cavity laser with tunnel junctions.
------------------------
\lastip_examples\multicavity\side_by_side
[title] Simulation of a multiple cavity laser structure
[material] GaAs/AlGaAs at 0.81 and 0.84 microns.
[structure] 3-column, 2 SQW structures.
[purpose] To show how to set up a 2-cavity laser.
------------------------
\lastip_examples\multimode\bulk2d
[title] Multimode bulk 2D laser simulation.
[material] bulk InGaAsP/InP at 1.3 micron.
[structure] 2D bulk channel-substrate waveguide laser.
[purpose] Demo of multimode solver based on examples/bulk_InGaAsP
------------------------
\lastip_examples\multimode\ingaasp_gaas
[title] Multimode QW InGaAsP/GaAs laser.
[material] QW InGaAsP/GaAs system at 980nm.
[structure] 2D ridge waveguide LD.
[purpose] To provide a convenient example of multimode laser 980nm application.
------------------------
\lastip_examples\multimode\kink_effect
[title] Lateral model dependent mirror reflectivity and kink effect
[material] AlGaAs QW at 0.83 um.
[structure] Ridge waveguide.
[purpose] To set variable mirror reflectivity and study kink effect
------------------------
\lastip_examples\multimode\msas
[title] MSAS laser with multimode.
[material] AlGaAs at 0.78 um.
[structure] MSAS structure.
[purpose] To demo the power of Arnoldi solver in selecting lateral modes.
------------------------
\lastip_examples\other\chuang_gain
[title] Gain and subbands of InGaN/AlGaN QW.
[material] InGaN/AlGaN
[structure] InGaN/AlGaN QW, 1D.
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[comment] To compare with Chuang’s published data.
------------------------
\lastip_examples\other\ex_import_gain
[title] Export and import of gain data to and from ASCII file
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure.
[purpose] To provide an example on how to export/import gain/index/PL data
------------------------
\lastip_examples\other\fancy_geo
[title] Flexible device geometry
[material] bulk AlGaAs at 0.8 micron.
[structure] a fancy geometry ridge waveguide laser.
[purpose] demo of fancy geometry and treatment of curved boundary.
------------------------
\lastip_examples\other\farfield
[title] Far field computation.
[structure] non-planar ridge waveguide laser.
[material] bulk AlGaAs at 0.8 micron.
[purpose] Demo of far field computation.
------------------------
\lastip_examples\other\gain_index\index_change
[title] Gain and index change calculations.
[material] GaAs/AlGaAs, bulk AlGaAs.
[structure] Bulk and quantum well laser. 1D.
[comments] study of alpha factor and index change.
------------------------
\lastip_examples\other\gain_index\landsberg
[title] Gain broadening of Landsberg type.
[structure] Bulk and QW laser.
[material] Bulk and QW InGaAsP/InP.
[purpose] Demo of Landsberg gain broadening.
------------------------
\lastip_examples\other\mmb_gain
[title] Use of microscopic many-body gain table
[material] InGaAs/AlGaAs at 1. micron.
[structure] 1D laser, GRIN-SCH-SQW structure.
[purpose] To provide a tutorial example on how to import the mmb gain table.
------------------------
\lastip_examples\other\mmb_gain_export
[title] Export of microscopic many-body gain table (Koch gain table)
[material] InGaAs/AlGaAs at 1. micron.
[structure] 1D laser, GRIN-SCH-SQW structure.
[purpose] To convert into general purpose gain table good for thermal model.
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------------------------
\lastip_examples\other\parameterize
[title] Parameterization of quantum well optical models
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure.
[purpose] Speed up of simulation using parameterized optical gain/spon/index.
------------------------
\lastip_examples\other\pump_spectrum
[title] Opitcally pumped laser using continuous spectrum.
[material] GaAs/AlGaAs emitting at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure.
[comment] To demonstrate optical pumping using a spectrum.
------------------------
\lastip_examples\other\pumped_laser
[title] Opitcal pumping.
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure.
[comment] To demonstrate optical pumping in simulation.
------------------------
\lastip_examples\other\quick_LD
[title] A quick laser diode simulation.
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure.
[purpose] To demonstrate how to use the gain preview for a quick laser model
------------------------
\lastip_examples\other\trap
[title] Trap models for semi-insulating layers.
[material] QW InGaAsP/InP at 1.55 micron.
[structure] 2D MQW bury het. laser with semi-insulating blocking layer.
[comment] Deep level trap model with new_doping technique.
------------------------
\lastip_examples\other\vectorial
[title] Vectorial wave model.
[structure] Bulk buryhet laser.
[material] Bulk AlGaAs at 0.78 um.
[comments] Difference between scalar and vectorial wave model.
------------------------
\lastip_examples\pml_eeim\eeim_basic
[title] EEIM lateral modes.
[material] GaAs/AlGaAs QW.
[structure] Ridge waveguide.
[comment] To show the basic set up of EEIM simulation.
------------------------
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\lastip_examples\pml_eeim\msas_pml
[title] Use of PML in MSAS Structure
[material] Bulk DH structure with buried GaAs loss layer.
[structure] MSAS structure
[comment] To show the use of PML boundary on MSAS.
------------------------
\lastip_examples\pml_eeim\scowl\PML
[title] Slab coupled optical waveguide laser (SCOWL).
[material] InGaAs/AlGaAs at 0.95 microns.
[structure] 2D laser, GRIN-SCH-MQW structure.
[comment] To demonstrate the use of PML in SCOWL
------------------------
\lastip_examples\pml_eeim\scowl\without_PML
[title] Slab coupled optical waveguide laser (SCOWL).
[material] InGaAs/AlGaAs at 0.95 microns.
[structure] 2D laser, GRIN-SCH-MQW structure.
[comment] To be used as a reference case without PML
------------------------
\lastip_examples\pml_eeim\substrate_loss\gaas26a
[title] Modeling substrate loss using PML.
[material] AlGaAs QW at 0.83 um.
[structure] Ridge waveguide laser with lossy substrate closs to active region.
[comment] To illustrate the use of PML to study substrate radiative loss.
------------------------
\lastip_examples\pml_eeim\substrate_loss\gaas26b
[title] Modeling substrate loss using PML.
[material] AlGaAs QW at 0.83 um.
[structure] Ridge waveguide laser with lossy substrate closs to active region.
[comment] To be compared with case of gaas26a
------------------------
\lastip_examples\quantum_cascade\main_project\qcl_1d
[title] 1D macroscopic model of a quantum cascade laser
[material] InGaAlAs/InP
[structure] MQW QCL
[comment] To demonstrate the set up of macroscopic MQW QCL simulation
------------------------
\lastip_examples\quantum_cascade\main_project\qcl_2d
[title] 2D macroscopic model of a quantum cascade laser
[material] InGaAlAs/InP
[structure] MQW QCL
[comment] To demonstrate the set up of macroscopic MQW QCL simulation
------------------------
\lastip_examples\quantum_cascade\micro_gain\4wells



H.2 LASTIP Examples 1303

[title] Subband structure design for a four wells QCL
[material] InGaAs/InAlAs strain balanced MQW.
[structure] 1D structure with periodic MQW
[purpose] To provide a tutorial example for setting up basic QC Laser
------------------------
\lastip_examples\quantum_cascade\micro_gain\GaAs
[title] Subband structure design for GaAs QCL
[material] GaAs/AlGaAs MQW QCL at 9um.
[structure] 1D structure with periodic MQW
[purpose] To provide a tutorial example for setting up basic QC Laser
------------------------
\lastip_examples\quantum_cascade\micro_gain\InGaAs
[title] Subband structure design for quantum cascade laser
[material] InGaAs/InAlAs MQW.
[structure] 1D structure with periodic MQW
[purpose] To provide a tutorial example for setting up basic QC Laser
------------------------
\lastip_examples\quantum_dots\box_half
[title] Quantum states of half a quantum dot
[material] InGaAs/GaAs
[structure] Half of InGaAs/GaAs quantum dot of box shape
[purpose] To provide a setup example for a half structure of a quantum dot
------------------------
\lastip_examples\quantum_dots\box_single
[title] Quantum states of a simple quantum dot
[material] InGaAs/GaAs
[structure] InGaAs/GaAs quantum dot of box shape
[purpose] To provide a setup of a 3D quantum dot structure
------------------------
\lastip_examples\quantum_dots\columnar
[title] Simulation of a self-assembled columnar structure QDOT laser
[material] InGaAs/GaAs/AlGaAs
[structure] Stacked interacting columnar quantum dots
[purpose] To setup example for coupled structure in cylindrical system
------------------------
\lastip_examples\quantum_dots\columnar\cone2
[title] Quantum states of stacked columnar quantum dots
[material] InGaAs/GaAs
[structure] Stacked interacting columnar quantum dots
[purpose] To setup example for coupled structure in cylindrical system
------------------------
\lastip_examples\quantum_dots\columnar\cone400
[title] Quantum states of stacked columnar quantum dots
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[material] InGaAs/GaAs
[structure] Stacked interacting columnar quantum dots
[purpose] To setup example for coupled structure in cylindrical system
------------------------
\lastip_examples\self-consistent\AlGaAs
[title] A Simple Self-consistent MQW model
[material] GaAs/AlGaAs
[structure] SQW 1D laser structure.
[purpose] Setting a simple self-consistent 1D model.
------------------------
\lastip_examples\self-consistent\InGaAlAs
[title] Self-consistent MQW model
[material] InGaAlAs/InP.
[structure] MQW 1D laser structure.
[purpose] Explain the basic steps of turning on self-consistent model
------------------------
\lastip_examples\self-consistent\InGaN
[title] Piezo-electric effect and self-consistent model.
[material] GaN-base wurtzite emitting at blue
[structure] MQW 1D laser structure.
[purpose] Demo the use of "interface" to define the piezo surface charge.
------------------------
\lastip_examples\self-consistent\nakamura
[title] Room Temperature-CW Operated InGaN MQW Laser Diode
[material] InGaN/GaN/AlGaN.
[comment] Reproduced experiment results of Shuji Nakamura (1997).

------------------------
\lastip_examples\self-consistent\UV_algan
[title] Piezo-electric effects in a UV-InGaN/AlGaN laser
[material] GaN-based wurtzite
[structure] MQW 1D laser structure.
[purpose] Illustrate the use of "interface" to define the piezo surface charge.
------------------------
\lastip_examples\short_wavelength\GaN\shuji
[title] A Simplified MQW GaN blue LED/LD
[material] InGaN/InGaN MQW.
[structure] N-contact placed on the side.
[comment] Basic set up with no piezo effects included.
------------------------
\lastip_examples\short_wavelength\ZnSe
[title] Short wavelength ZnSe laser.
[material] QW ZnSe-based laser emitting at blue.
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[structure] 1D and 2D QW laser.
[comments] Demo of multiple tranverse mode model.
------------------------
\lastip_examples\tau_model
[title] Intraband relaxation time.
[material] AlGaAs QW.
[structure] 1D QW laser.
[purpose] Illustrate the model of scattering tau parameter.
------------------------
\lastip_examples\temperature\GaAs_temperature
[titel] Temperature performance of AlGaAs QW laser.
[material] GaAs/AlGaAs.
[structure] 1D ridge waveguide laser, GRIN-SCH-SQW structure.
[purpose] To demo temperature capability.
------------------------
\lastip_examples\temperature\InP_T0
[title] T0 of InGaAsP long wavelength laser.
[material] MQW InGaAsP at 1.5 micron.
[structure] 1D MQW structure.
[purpose] Show how to calculate T0.
------------------------
\lastip_examples\thermal\bulk1d
[title]Thermal effects in bulk InGaAsP laser.
[material]Bulk InGaAsP at 1.3 um.
[structure]Bulk 1D DH InGaAsP laser.
[comment] Demo of simple simulation of self-heating effect.
------------------------
\lastip_examples\thermal\external_cir
[title] External thermal circuit.
[material] AlGaAs QW at 0.83 um.
[structure] 1D AlGaAs QW at 0.83 um with external thermal ciruit.
[comment] Use of external thermal circuit as special boundary.
------------------------
\lastip_examples\thermal\hot_algaas
[title] Thermal effects in AlGaAs QW laser.
[material] AlGaAs QW at 0.83 um.
[structure] 1D and 2D ridge waveguide AlGaAs QW at 0.83 um.
[comment] Demo of basic set up of a thermal simulation.
------------------------
\lastip_examples\thermal\import_gain
[title] Use of imported optical gain for thermal simulation
[material] GaAs/AlGaAs laser at 0.83 micron.
[structure] 1D laser, GRIN-SCH-SQW structure.
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[purpose] To demo imported gain data for thermal simulation.
------------------------
\lastip_examples\thermal\iso_vs_self
[title] Isothermal versus self-heating simulation.
[material] MQW InGaAsP at 1.5 micron.
[structure] 1D MQW structure.
[purpose] Demo uniform self-heating is equivalent to isothermal simulation.
------------------------
\lastip_examples\thermal\thermal_bound
[title] Thermal boundaries.
[material] AlGaAs QW.
[structure] Ridge waveguide laser with SiO2 cover cooled to 77K.
[purpose] To demo the set up of pure thermal boundary.
------------------------
\lastip_examples\thermal\thermal_trans
[title]Thermal transient simulation for bulk InGaAsP laser.
[material]Bulk InGaAsP at 1.3 um.
[structure]Bulk 1D DH InGaAsP laser.
[comment] Demo of thermal transient simulation.
------------------------
\lastip_examples\transient\eye_diagram
[title] Calculation of eye diagram
[material] SQW GaAs/AlGaAs
[comments] Generation of eye diagram from transient simulation data.

------------------------
\lastip_examples\transient\fourier
[title] Modulation response using Fourier transform technique
[material] SQW GaAs/AlGaAs
[structure] 1D GRIN-SCH-SQW laser.

------------------------
\lastip_examples\transient\trans_bulk
[title] Transient simulation bulk 1D DH laser.
[material] Bulk InGaAsP/InP.
[structure] 1D bulk het. laser.
[comment] Demo of large signal modulation simulation.
------------------------
\lastip_examples\transient\trans_GaAs
[title] Transient and power spectrum RWD laser.
[material] SQW GaAs/AlGaAs
[comments] Large and small signal analysis of GRIN-SCH-SQW laser modulation.
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------------------------
\lastip_examples\tunneling\ingaalp_650nm
[titel] Short wavelength InGaAlP laser
[material] MQW InGaAlP/GaAs emitting at 650 nm.
[structure] 2D non-planar ridge structure.
[comments] Use of tunneling and grading junction to reduce resistance.
------------------------
\lastip_examples\tunneling\schottky_diode
[title] Study of tunneling effects.
[structure] 1D Schottky diode.
[material] Bulk GaAs.
[comments] Demo of tunneling effect in Schottky contact.
------------------------
\lastip_examples\type2_MQW\GaAsSb
[title] A simple type-II electrically pumped laser of Sb based material
[material] cx-GaAsSb to form type-II QW complex
[structure] 1D laser
[purpose] To provide a simple demonstration of setting up a type-II QW laser.
------------------------
\lastip_examples\type2_MQW\type2_setup
[title] A simple type-II electrically pumped laser
[material] cx-AlGaAs with artificial band offset to form type-II QW complex
[structure] 1D laser
[purpose] To provide a simple demonstration of setting up a type-II QW laser.
------------------------
\lastip_examples\valence_mixing\8x8chuang
[title] Comparison of different k.p theory for zincblende quantum well
[material] InGaAsP/InGaAsP at 1.55 microns.
[structure] MQW structure laser.
[purpose] Comparing results and speed of 4x4, 6x6 and 8x8 k.p theory
------------------------
\lastip_examples\valence_mixing\8x8compare
[title] Comparison of different k.p theory for zincblende quantum well
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure.
[purpose] Comparing results and speed of 4x4, 6x6 and 8x8 k.p theory
------------------------
\lastip_examples\valence_mixing\compare_chuang
[title] Comparing k.p model with Chuang’s data.
[material] Quantum well of InGaAsP grown on InP.
[structure] Single quantum well.
[comment] Study of k.p model accuracy as compared with published data
------------------------
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\lastip_examples\valence_mixing\gaas_mixing
[title] k.p model in AlGaAs devices.
[material] Quantum well of AlGaAs/AlGaAs at 0.83 um.
[structure] Single quantum well.
[comment] Study of valence mixing effect in AlGaAs system.
------------------------
\lastip_examples\valence_mixing\inp15_mixing
[title] Valence mixing effect in strained InGaAsP.
[material] Strained quantum well of InGaAsP/InP at 1.55 um.
[structure] Strained single quantum well.
[comment] Study of valence mixing effect in InGaAsP/InP system.
------------------------
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H.3 PICS3D Examples

pics3d_examples\A_tutorial
[title] A tutorial example of PICS3D.
[structure] Bulk DH laser, InGaAsP, DFB grating.
[purpose] To illustrate the set up of a PICS3D simulation.
------------------------
pics3d_examples\AC_analysis\edge
[title] AC analysis for edge laser for PICS3D.
[structure] Bulk DH laser, InGaAsP, DFB grating.
[purpose] To illustrate the set up of a an AC analysis.
------------------------
pics3d_examples\AC_analysis\vcsel
[title] AC analysis for a simple VCSEL with finely tuned MQW location.
[structure] Simple VCSEL with MQW.
[comment] AC analysis method is similar to LASTIP
------------------------
pics3d_examples\amplifier_3d\amp2mode
[title] Semiconductor Optical Amplifier (SOA) with multi-lateral mode
[structure] DH InGaAsP/InP 1.3 micron, ridge waveguide
[comment] 2 lateral modes are included in simulation
------------------------
pics3d_examples\amplifier_3d\BPM_multimode
[title] BPM-SOA 3D model with multimode initialization
[structure] Tapered ridge waveguide quantum well SOA
[comment] Use of multiple lateral mode initial BPM solution
------------------------
pics3d_examples\amplifier_3d\inp13amp
[title] 3D model of semiconductor optical amplifier (SOA).
[structure] DH InGaAsP/InP 1.3 micron.
[comment] Same as the tutorial exmple except DFB gratings removed.
------------------------
pics3d_examples\amplifier_3d\transient
[title] 3D traveling wave optical amplifier (SOA).
[structure] DH InGaAsP/InP 1.3 micron.
[comment] Same as the tutorial exmple except DFB gratings removed.
------------------------
pics3d_examples\blue_LD
[title] A Simplified MQW GaN blue LED/LD
[material] InGaN/InGaN MQW.
[structure] N-contact placed on the side.
------------------------
pics3d_examples\BPM\mask_taper
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[title] Set up of 3D simulation of tapered structure laser using mask.
[structure] AlGaAs SQW laser with ridge width tapered.
[comment] Use of gemerate_mask program to set up structure
------------------------
pics3d_examples\BPM\symmetric_taper
[title] 3D simulation of tapered structure laser using BPM.
[structure] AlGaAs SQW laser with ridge width tapered.
[comment] Use of BPM in two segments with different mesh structures.
------------------------
pics3d_examples\BPM\taper
[title] 3D simulation of tapered structure laser using BPM.
[structure] AlGaAs SQW laser with ridge width tapered.
[comment] Use of BPM in two segments with different mesh structures.
------------------------
pics3d_examples\broad_area
[title] Broad area high power laser simulation by PICS3D.
[structure] FP laser with 0.5um AlGaAs bulk active layer.
[purpose] To simulate broad area laser PICS3D simulation.
------------------------
pics3d_examples\csuprem_wavegd_stack
[title] BPM simulation of stacked taper waveguide
[structure] silicon waveguides with tapers
[comment] Use of taper and taper_range for complex taper structures
------------------------
pics3d_examples\DBR\3section_tunable
[title] Multi-Section MQW Tunable DBR Laser Simulation
[structure] MQW, passive phase tuning, passive DBR tuning sections.
[purpose] To illustrate the set up of a multi-sectional DBR laser.
------------------------
pics3d_examples\DBR\fiber_grating
[title] Simulation of fiber-grating DBR laser
[structure] MQW InGaAsP/InP emitting at 1.49 um with fiber-grating section.
[comment] Use of fiber/external-cavity option.
------------------------
pics3d_examples\DBR\sampled_grating
[title] Modeling sampled grating DBR laser.
[structure] InGaAsP MQW laser with sampled DBR grating.
[comment] Use of "ref_pitch" and "pitch" to define complex gratings.
------------------------
pics3d_examples\DFB_trans
[title] 3D Transient simulation.
[structure] 1D bulk DH laser emitting at 1.3 um.
[purpose] To illustrate the set up of transient simulation.
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------------------------
pics3d_examples\EAM_DFB_trans
[title] Two-segment EAM-DFB simulation
[structure] MQW InGaAsP EAM-DFB laser emitting at 1.55 um with multi-section.
[comment] Use of self-consistent MQW in EAM modeling
------------------------
pics3d_examples\edge_LD_transient
[title] Transient simulation for bulk 1D DH laser.
[structure] 1D bulk heterojunction laser.
[comment] Demo of large signal modulation simulation.
------------------------
pics3d_examples\facet_effect
[title] Simulation of Laser Facet Effect Using 3D-Flow Model
[structure] Multiple segment MQW laser.
[comment] Full 3D laser simulation with material variation in z-direction.
------------------------
pics3d_examples\grating_2nd
[title] Second order grating DFB laser.
[structure] AlGaAs bulk DH laser at 0.86 um, 2nd order DFB gratings.
[comment] Set up of 2nd order grating; Surface emitting modes.
------------------------
pics3d_examples\hybrid_laser
[title] Hybrid silicon laser
[structure] InP based 1.3 micron laser grown on top of silicon waveguide
[comment] Structure built on Intel-UCSB announcement with taper added
------------------------
pics3d_examples\mplane_InGaN
[title] 3D simulation of InGaN/GaN LD with PICS3D
[device] MQW InGaN/GaN laser
[comment] Generation and import of m-plane gain data in PICS3D
------------------------
pics3d_examples\multicavity
[title] Simulation of a multiple cavity laser structure
[material] GaAs/AlGaAs at 0.81 and 0.84 microns.
[structure] 3-column, 2 SQW structures.
------------------------
pics3d_examples\pa_waveguide\EAM
[title] 3D Electro-Absorption modulator simulation.
[structure] SQW EAM of AlGaAs.
[comment] Use of "self_consistent" and "photo-absorbing waveguide" options.
------------------------
pics3d_examples\pa_waveguide\franz_keldysh
[title] 3D bulk electro-absorption modulator simulation.
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[structure] Bulk InGaAsP material operating at 1.32 um as EAM.
[comment] Use of Franz-Keldysh model with "photo-absorbing waveguide" option.
------------------------
pics3d_examples\pa_waveguide\waveguide_pd
[title] 3D-Waveguide photodetector
[structure] Bulk DH InGaAsP for 1.3-micron detection.
[comment] Use of C-RTG method for waveguide PD modeling
------------------------
pics3d_examples\pump_laser
[title] 3D Pumped Edge Emitting Laser.
[structure] SQW of GaAs/AlGaAs.
[comment] Use of "light_power" to provide a shorter pump wavelength.
------------------------
pics3d_examples\ring_laser
[title] Simulation of a ring laser
[material] InGaAsP MQW for 1.55 emission
[structure] A single ring waveguide
------------------------
pics3d_examples\SLD\2peaks
[title] 3D model of super-luminescent diodes (SLD) emitting with 2 peaks
[structure] SQW SLD of GaAs/AlGaAs with two different SQW
[comment] Use of multiple wavelength to cover wide emissioin range
------------------------
pics3d_examples\SLD\ase_signal_linewidth
[title] 3D semiconductor optical amplifier modeling with input linewidth
[structure] DH InGaAsP/InP 1.3 micron.
[comment] Demo of signal+ASE spectrum plotting
------------------------
pics3d_examples\SLD\ase_signal_spec
[title] 3D semiconductor optical amplifier model with input spectrum
[structure] DH InGaAsP/InP 1.3 micron.
[comment] SOA with continuous input power spectrum.
------------------------
pics3d_examples\SLD\SLD_1mode
[title] 3D model of super-luminescent diodes (SLD)
[structure] Bulk DH InGaAsP/InP 1.3 micron
[comment] Based of 3D SOA with zero input power
------------------------
pics3d_examples\SLD\SLD_2mode
[title] Super-luminescent diodes (SLD) model with multi-lateral modes
[structure] Bulk DH InGaAsP/InP 1.3 micron, ridge waveguide
[comment] 2 lateral modes are included in simulation
------------------------
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pics3d_examples\spiral_laser
[title] Simulation of a spiral laser
[structure] MQW InGaAsP/InP emitting at 1.49 with ring + straight waveguide
[comment] Use of mixed cylindrical and rectangle coordinates.
------------------------
pics3d_examples\thermal
[title] Thermal simulation of SQW GaAs/AlGaAs laser.
[structure] FP SQW GaAs/AlGaAs laser.
[comment] Please note the mode hopping effects.
------------------------
pics3d_examples\VCSELS\2mqw
[title] A VCSEL with two MQW regions
[structure] VCSEL with two MQW region joined by tunneling junction
[comment] Higher voltage is required to turn on current
------------------------
pics3d_examples\VCSELS\DBR_index_profile
[title] A simple VCSEL with imported DBR index profile
[structure] Simple VCSEL with MQW.
[comment] Index profile may contain linearly graded index profile.
------------------------
pics3d_examples\VCSELS\extern_cavity
[title] A VCSEL with external air-gap cavity
[structure] MQW VCSEL with air-gap mirror
[comment] Threshold depends on both DBR and external mirror
------------------------
pics3d_examples\VCSELS\GaN_VCSEL
[title] GaN-VCSEL template
[structure] Electrical pumped VCSEL at 0.41 um
[comment] Property senstive to choice of macro and polarization charge
------------------------
pics3d_examples\VCSELS\jim_vcsel
[title] A simple VCSEL with finely tuned MQW location.
[structure] Simple VCSEL with MQW.
[comment] The location of MQW is critical for tuning of wavelength.
------------------------
pics3d_examples\VCSELS\jim_vcsel_self
[title] A simple VCSEL with finely tuned MQW location.
[structure] Simple VCSEL with MQW. Also 3 layers per period in DBR mirror.
[comment] The location of MQW is critical for tuning of wavelength.
------------------------
pics3d_examples\VCSELS\lambda_as_layer_unit
[title] A simple VCSEL with finely tuned MQW location.
[structure] Simple VCSEL with MQW.
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[comment] The location of MQW is critical for tuning of wavelength.
------------------------
pics3d_examples\VCSELS\nonsymmetric
[title] Full 3D multi-mode simulation of non-symmetric VCSEL
[structure] MQW VCSEL with non-symmetric top point contact.
[comment] Demo of multiple segment simulation in cylindrical system.
------------------------
pics3d_examples\VCSELS\pump_vcsel
[title] Simulation of an optically pumped VCSEL
[structure] Simple VCSEL with MQW.
[comment] Use of shorter wavelength to generate carriers in MQW.
------------------------
pics3d_examples\VCSELS\rectangle
[title] A simple rectangle VCSEL with finely tuned MQW position.
[structure] Rectangle VCSEL with MQW.
[comment] Comparison of cylindrical with rectangle VCSEL
------------------------
pics3d_examples\VCSELS\surface_relief
[title] Simulation of surface relieved VCSEL
[structure] MQW VCSEL with outer cavity part relieved.
[comment] Use of multicavity option to treat the relieved outer cavity
------------------------
pics3d_examples\VCSELS\VCSEL_2mode_trans
[title] Transient simulation of multiple lateral modes for a VCSEL.
[structure] AlGaAs MQW VCSEL.
[comment] Two lateral modes are almost equally pumped to lasing.
------------------------
pics3d_examples\VCSELS\VCSEL_2modes
[title] Multiple lateral modes for a VCSEL.
[structure] AlGaAs MQW VCSEL.
[comment] Two lateral modes are almost equally pumped to lasing.
------------------------
pics3d_examples\VCSELS\VCSEL_eim_oxide
[title] Fused junction VCSEL at 1.55 um with oxide layer confinement.
[structure] MQW VCSEL combining AlGaAs and InGaAsP system.
[comment] Use of EIM-VCSEL model.
------------------------
pics3d_examples\VCSELS\vcsel_macro_DBR
[title] A simple VCSEL with finely tuned MQW location.
[structure] Simple VCSEL with MQW. Also 3 layers per period in DBR mirror.
[comment] The location of MQW is critical for tuning of wavelength.
------------------------
pics3d_examples\VCSELS\VCSEL_thermal_oxide
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[title] Thermal simulation of VVSEL with oxide layer confinement
[structure] MQW VCSEL with oxide layer, DBR with anisotropic properties
[comment] Use of tau_model for temp. dependent intraband scattering broadening
------------------------
pics3d_examples\VCSELS\VCSEL_transient
[title] Transient simulation for VCSEL using single lateral mode
[structure] Simple VCSEL with MQW
[comment] To demonstrate the lasing oscillation in VCSEL
------------------------
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bulk_xfunc3, 552
bulk_xfunc4, 552
bulk_xfunc5, 552
bulk_xfunc6, 552
bulk_xfunc7, 553
bulk_xfunc8, 553
bulk_xfunc9, 553

c11_bar, 553
c11_bulk, 554
c11_well, 554
c12_bar, 553

c12_bulk, 554
c12_well, 555
c13_bar, 553
c13_bulk, 554
c13_well, 555
c33_bar, 553
c33_bulk, 554
c33_well, 555
c44_bar, 554
c44_bulk, 554
c44_well, 555
calibration to experimental data, 150
capabilities, 31, 32, 34
capture coefficients, 89
capture cross section, 1115
capture, k-space, 210
capture, real space, 209
Carrier density, 133
carrier flux, 88
carrier fluxes, 106
carrier number, 894
carrier statistics, 90
carrier transport, 209
carrier-carrier scattering, 148
CCD, 78
cell size, 665
change_variable, 78
Chirp Grating, 329
column, 556
column_position, 557
compact_junction_region, 557
compact_semiconductor_model, 558
complex frequencies, 305
complex structure, 135
complex_index1, 1018
complex_index1 , 1022
complex_index2, 1018
complex_index2 , 1022
complex_index3 , 1022
complex_index4 , 1022
complex_index5 , 1022
complex_region, 560
complex_var_symbol, 561
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compute_inductance, 561
conc_points , 1008
conc_range, 694, 1008, 1073
cond1_mass_para, 564
cond1_mass_perp, 565
cond1_para_e_dep_mass1, 566
cond1_para_e_dep_mass2, 566
cond1_perp_e_dep_mass1, 567
cond1_perp_e_dep_mass2, 567
cond1_valley_prop1, 567
cond2_mass_para, 565
cond2_mass_perp, 566
cond2_para_e_dep_mass1, 567
cond2_para_e_dep_mass2, 567
cond2_perp_e_dep_mass1, 567
cond2_perp_e_dep_mass2, 567
cond2_valley_prop1, 568
cond_band1_valley, 562
cond_band2_edge, 562
cond_band2_valley, 563
cond_band3_edge, 562
cond_band3_valley, 563
cond_dos_mass_ratio_n, 563
cond_dos_mass_ratio_p, 564
connect_planes , 942
contact, 568
contact description, 54
contact_heating, 571
contact_metal_interface, 571
continuity equations, 105
continuous traps, 103, 1114
convention, 572
convergence, 73
convolution integral, 148
core_radius , 930
cos_amp , 1049
cos_constant , 1049
cos_period , 1049
cos_phase , 1049
Coulomb enhancement, 490
Coulomb Potential, 163
couple_input_power, 572
couple_next, 573

Coupled MQW, 183
Courant factor, 672
cplot_xy, 573
cplot_xyz, 575
csuprem_mask, 576
current bias, 73
current boundary, 99
current continuity equations, 87
current densities, 88
current flow, 1217
current_conc, 577
curve_math, 952
curve_number, 1073
cylindrical, 578

d1_bar, 587
d1_bulk, 588
d1_well, 589
data_file, 694, 789, 937, 940, 947, 949,

952, 1011, 1027, 1073, 1150
data_file , 1098, 1100
data_file , 942
data_file , 1023
data_file , 1025
data_point, 694, 1073
data_point , 1098, 1100
dataset_end, 952
dataset_start, 952
DBR, 33, 311, 329
dbr_truncate, 579
deep level traps, 89
define_alias, 580
define_cavity, 581
define_material, 582
define_symbol, 582
define_vertical_position, 583
delta1_bar, 585
delta1_bulk, 586
delta1_well, 587
delta2_bar, 586
delta2_bulk, 586
delta2_well, 587
delta3_bar, 586
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delta3_bulk, 587
delta3_well, 587
delta_affinity, 1072
delta_real_index_caxis, 585
delta_so_bar, 585
delta_so_well, 585
density , 1100
density of states, 90, 179
density_end , 1098
density_start , 1098
detect_ratio, 887
DFB, 311, 329, 332, 748
DFB, gain/loss coupled, 329
DFB, phase shifted, 329
diagonal_split, 590
dielectric_constant, 591
differential_gain, 591
dipole enhancement, 145
direct_eigen, 592
directory, 852
disconnect_zmesh, 594
discretization, 106
dispersion, 653
distance_range , 1023
Distributed Bragg Reflector, 33
distributed feedback laser, 33
do_raytrace_3d, 594
donor_type2 , 1090
dopant_index_from, 915
dopant_index_to , 915
dopant_ionization_model, 600
doping, 601
doping profile, 601
double_mesh, 53, 608
dox2_el_weight, 613
dox2_extern_spectrum, 614
dox3_el_weight, 615
dox3_extern_spectrum, 615
dox4_el_weight, 616
dox4_extern_spectrum, 617
dox5_el_weight, 617
dox5_extern_spectrum, 618
dox_efield0_pf_elec, 610

dox_efield0_pf_hole, 611
dox_el_weight, 611
dox_exciton_eg, 612
dox_extern_spectrum, 612
dox_gaussian_divj, 613
dox_gaussian_sdj, 613
dox_hopping_energy, 613
dox_peak_abs, 613
dox_vib_quanta, 613
dox_xp_coupling, 613
dynamic behavior, 211

e15_bulk, 625
e31_bulk, 625
e33_bulk, 625
edge, 619
edge_curve, 52, 619
EEIM, 231
eeim_optic, 620
effective index, 231, 339
effective mass, 132, 133
effective Rydberg, 163
effective_medium, 622
effective_miniband_model, 622
efficiency, 329
efield0_pf_elec, 623
efield0_pf_hole, 624
efield_ref , 915
eg0_bar, 624
eg0_bulk, 624
eg0_well, 625
eigenfunctions, 233
EIM, 231
EIM/VCSELs, 339
el_frac_non_active , 913
elastic scattering, 210
elec_capture, 715
elec_carr_loss, 625
elec_dos_energy, 626
elec_level , 1098, 1100
electro-absorption, 162
electrode, 568, 647
electron affinities, 96
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electron affinity, 505
electron_mass, 626
electron_mobility, 627
electron_ref_dens, 627
electron_sat_vel, 627
eliminate_mesh, 628
embedded_material, 629
end, 952
end , 1055
end_bpmplot, 629
end_cavity, 630
end_complex, 630
end_geometry, 51
end_loop, 630
end_meshgen, 53
end_qwire_complex, 630
end_same_complex, 630
end_zdir_complex, 630
end_zmater, 630
endloopif, 631
envelope function approx., 134
equilibrium, 631
Esaki junction, 188
evaluate_parameter, 633
exciton, 162
exciton absorption, 166
excitons, 292
exclude_from_electrical, 634
experimental data, 150
export_3dgeo, 635
export_eeimmsg, 620
export_fdtd_inputdata, 635
export_gain_data, 635
export_kp_data, 636
export_kp_para, 636
export_layers_to_suprem, 637
export_raytrace, 637
export_spectrum, 1011
export_to_iccap_mdm_file, 638
export_wave, 641
ext_funck, 642
external cavity, 33
external circuit, 846, 883

external_heat_source, 642
external_stress_band_model, 643
extract_contour, 644
extraction efficiency, 472
extrap_conc , 1008
extrap_energy, 1008
extrap_pn_ratio , 1008
extrap_temper , 1008

Fabry-Perot, 32, 33, 300, 306, 329
facet, 947
factor_file, 863
far-field, 658, 675
far-field distribution, 230
farfield, 645
farfield_couple, 647
FDTD, 649, 651, 653, 658, 660–662, 665,

674–681, 737
fdtd_background_mater, 648
fdtd_CLFDTD_control, 649
fdtd_data_analysis, 649
fdtd_define_region, 651
fdtd_dispersion, 653
fdtd_far_field, 658
fdtd_field_monitor, 660
fdtd_fourier, 661
fdtd_glass_coating, 662
fdtd_group_monitors, 665
fdtd_mesh_density, 666
fdtd_model, 665
fdtd_modify, 674
fdtd_monitor_box, 675
fdtd_output_structure, 676
fdtd_plane_refl, 677
fdtd_plane_trans, 678
fdtd_push_job, 678
fdtd_replace_FDTDgrid, 679
fdtd_replace_mater, 680
fdtd_source, 681
FEM, 109
Fermi level splitting, 74
Fermi-Dirac distributions, 90
FFP, 658, 675



INDEX 1337

fiber grating, 33
fiber-like, 337
field induced emission, 91
field_dep_curves, 1073
field_range, 1073
file , 635, 636
finite element method, 109
fit_gain_wavel, 683
fld_center, 1156
flux_plot, 686
FM, 34
force_last_barrier_offset, 684
fourier_power, 685
Franz-Keldysh, 493
franz_keldysh, 490
free-carrier loss, 490
freeze_carrier, 894
freq_control, 686
from, 937
front_back, 888
front_index, 687
front_reflection, 687
full_ionization, 688

gaas_mater , 1090
gain broadening, 148
gain function, 150
gain preview, 508, 513, 577, 591, 626, 689,

694–696, 717, 745, 763, 1098–1100
gain saturation, 153
gain spectrum, 38, 169
gain suppression, 153
gain, bulk material, 149
gain, non-linear, 153
gain_correction, 620
gain_density, 689
gain_module, 690
gain_spectrum, 692
gain_spon, 694
gain_wavel, 696
gamma_detail , 1098, 1100
gamma_subband, 1150
gammak_bar, 697

gammak_well, 698
gen_datafile , 801
gen_datatype , 801
generation_rate, 698
generic_impurity , 1090
get_active_layer, 699
get_data, 701
get_raytrace_data, 702
global_model_setting, 703
grade_active_mater, 708
grading, 834, 839
graphene_index_model, 710
grating_compos, 705
grating_dia_ratio, 931
grating_height, 931
grating_model, 706
Green’s function, 304
grid_sizes, 940, 943
group1, 710, 841
group_index , 930
gsn_dt , 1049
gsn_s1 , 1049
gsn_s2 , 1049
gsn_t1 , 1049

half-width, 148
half_mesh, 53, 710
HDF5 format, 665
heat flow, 218
heat_flow, 711, 1102
heat_flow_simple, 715
Heaviside step function, 305
heavy hole, 131
height, 619
height_range, 931
Henry, 304, 306
heteroj_capture, 715
heteroj_scrn_factor, 913
heterojunction, 177
hh_or_lh , 1098, 1100
high resistant junction, 184
hole burning, 329
hole_capture, 715
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hole_carr_loss, 717
hole_dos_energy, 717
hole_level , 1098, 1100
hole_mass, 718
hole_mobility, 718
hole_ref_dens, 718
hole_sat_vel, 719
Holstein model, 287
hopping, 94
hot electrons, 1217
hydrodynamic model, 1217

ignore_local_current, 719
imag_part, 937
impact_baraff, 719
impact_chynoweth, 720
impact_dopant_dependent, 722
impact_lackner, 723
impact_mean_free_path, 724
impact_model, 725
impact_okuto_crowell, 727
import_basic, 728
import_complex, 729
import_fdtd_data, 737
import_gain_data, 730
import_kp_data, 737
import_qcl_gain_para, 738
import_raytrace, 739
impurity dependence, 94, 508, 627, 718,

812, 843, 844, 846
Incident Light, 241, 292
incident light, 797, 801
incident_power , 801
include, 740
include_data, 694
incomplete ionization, 90–92, 504, 600,

601, 932, 1071
independent_mqw, 740
independent_zdir_mqw, 740
index change, 153
index change model, 742
index_cladding , 930
index_core , 930

index_field_dependence, 741
index_model, 742
index_spectrum, 744
index_wavel, 745
init_wave, 746
initialize_bpm, 885
inner_bar_gain, 752
input files, 38
input_file, 937, 947, 949
insert_mesh_order, 753
insert_mesh_plane, 753
insert_mesh_range, 754
Insulators, 81
integer_func, 754, 761
integration, 940
integration_xrange, 940
integration_yrange, 940
interband absorption, 142
interband transition, 143
interband transitions, 153
interband tunneling, 187
interface, 755
interface_leakage, 759
interface_mater, 715
interface_mesh, 759
interface_trap_capacitor, 760
intern_loss , 930
internal extra point, 760, 761
internal loss, 300
internal_xpoint, 761
internal_z_xpoint, 760
intervalence band absorption, 494
intra-band scattering, 145
isolate_complex, 762
isolate_mesh_segment, 762
isothermal, 218

Jacobian matrix, 107
jdos_energy, 763
JFET, 78
joule, 711
junction_type, 1008

k-space, 131
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k.p theory, 34
kane_para_f_bar, 763
kane_para_f_well, 763
Kazarinov, 306
Kerr, 741
Kirchoff, 98, 99
kp_model_setting, 764
Kramers-Kronig formula , 153

label, 968
label , 1049
Landsberg model, 148, 150
Langevin force, 304, 1241
lastip_compact_model, 767
latchup, 1042
lateral mode, 223
lateral_mode3d, 767
lattice_bar, 768
lattice_base, 768
lattice_bulk, 769
lattice_c_bar, 769
lattice_c_base, 769
lattice_c_bulk, 769
lattice_c_constant, 770
lattice_c_well, 770
lattice_constant, 770
lattice_well, 771
lax_mass_bar, 771
lax_mass_well, 771
layer, 772
layer1 , 1018
layer1 , 1022
layer2 , 1018
layer2 , 1022
layer3 , 1022
layer4 , 1022
layer5 , 1022
layer_conf, 774
layer_height_ref, 775
layer_input_convention, 775
layer_mater, 777
layer_position, 780
layer_type, 782

layer_xrange, 774
layer_yrange, 774
layers_for_semicrafter, 784
lband_bar, 785
lband_well, 786
lbdata_num, 1156
LED extraction, 472
led_control, 786
led_eff_distr, 789
led_farfield, 789
led_simple, 790
led_spectrum, 790
led_top_coating, 791
left_contact, 792
length, 1055
LET, 1013
lifetime_model, 792
lifetime_n, 793
lifetime_p, 793
light hole, 131
light ray propagation, 272
light_current, 793
light_dir , 801
light_power, 797, 1165
light_power_qwip, 801
limit_gain, 1169
limits_i, 972
linear_heat, 803
linewidth enhancement factor, 153
load_macro, 804
load_mesh, 61, 805
local gain, 159
localized, 137
longitudinal, 807
Longitudinal Graded Index laser, 329
longitudinal modes, 305, 808
loop_integer, 810
loop_real, 810
loopif, 811
Lorentzian function, 146, 148, 150
loss, 479, 1127
low_field_mobility_model, 812
lplot_xy, 824
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lplot_xy_qw_states, 825
lplot_xyz, 826
lumped elements , 98
Luttinger-Kohn, 492
Luttinger-Kohn Hamiltonian, 133, 134

macro library, 804, 834
macro1, 1034
macro2, 1034
macroj, 1131
main_input, 701
makebend_dome, 827
makebend_rectangle_based_pyramid, 829
makebend_tilt, 831
many-body effects, 490
Martin, 148
mass_density, 832
mass_gamma_bar, 832
mass_gamma_bulk, 832
mass_gamma_well, 833
mass_l_bar, 833
mass_l_well, 833
mater, 1072
mater_from , 915
mater_to , 915
mater_var, 834
material, 836, 972
material parameters, 54, 1175
material_3d, 838
material_label_define, 839
material_lib, 840
material_par, 841, 1029
max_electron_mob, 843
maximum equation error, 67
maximum variable error, 67
Maxwell equation, 303
McCall, 309
mesh, 38, 109
mesh generation, 52, 500, 538, 619, 805,

844, 956, 968, 972, 976
mesh generation, layer, 538, 556, 772, 777,

792, 1003, 1036, 1107
mesh generation, z, 1161

mesh refinement, 77, 608, 710, 1031
mesh, coarse, 76
mesh, fine, 77
mesh_output, 844
mesh_points, 1055
micro cavity, 581
microcavity_exit, 845
microcavity_model, 844
min_electron_mob, 846
minispice, 846
mmb_gaintable, 852
mobility, 88, 93, 508, 517, 524, 525, 561,

627, 718, 719, 728, 729, 836, 843,
844, 846, 907

mobility, two-piece model, 93
mobility_xy, 854
modal_base, 620
mode, 1148, 1150
mode_index, 647, 774, 940, 943
mode_num, 885, 887, 888
mode_srch, 856
model_points, 931
modify_bias_output, 858
modify_bulk_macro, 858
modify_gain, 859
modify_layer_height, 860
modify_light_spectrum, 862
modify_opt_gen_rate, 863
modify_plot, 863
modify_qw, 865
modify_taper_height, 873
modify_vector_plot, 874
modify_wurtzite, 874
modu_bias, 876
modulators, 33
momentum matrix elements, 143
monitor_emission, 877
more_dos_fermi_output, 877
more_output, 878
more_spectrum_output, 881
more_sym_polygon, 882
more_tcadmesh, 883
more_trap_output, 884
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Mott transition, 92, 600
muller_functol, 620
muller_maxit, 620
muller_vartol, 620
multi-frontal, 714
multi-lateral mode, 153, 224, 300, 885
multiband mixing, 132
multimode, 34, 153, 224, 300, 885
multimode_detect, 887
multimode_mirror, 888
multisection DFB/DBR, 33
multisection PIC, 33

n_doping_level , 1090
n_doping_level2 , 1090
n_lbdata, 1156
n_ubdata, 1156
n_variables, 952
name, 972
nca_deltapot, 888
nca_deltapot_right, 889
near-field distribution, 230
negative differential resistance, 94, 837
negative mobility, 83
negf_model, 890
negf_plot, 893
Neumann boundaries , 98
new_doping, 632, 1048
new_inset_planes, 893
Newton’s method, 106, 894
Newton’s method, initial guess, 79, 107
Newton-Raphson method, 106
Newton-Richardson, 107
newton_freeze_carrier, 894
newton_par, 894
nitride_mater , 1090
no_auto_workfunction, 902
noise, 354
nomenclature, 88, 1245
non-convergence, 53, 73
non-local transport, 978, 994
non-ohmic behavior, 96
non-parabolic bands, 131

non-polar nitride, 874
nonlocal_path, 903
nonlocal_transp_model, 904
nonlocal_transp_region, 905
norm_field, 907
num, 1095
numerical techniques, 105

ohmic contact, 95
ohmic_junction, 907
OLED, 285, 287
oled_control, 908
optic_coating, 908
optical amplifiers, 33
optical confinement, 159
optical gain, 142
Optical generation, 666
optical mode, 223
Optical Pumping, 241, 292
optical transition, 142
optical_axis, 909
optical_field, 911
Organic semiconductor, 285, 287, 292
organic_exciton_diff, 913
organization, output data, 68
outer_section, 914
output, 914
output data organization, 68
output files, 38
output_suprem_mesh, 915
overlap integral, 148, 152
ox_dopant_el_transfer, 915
ox_el_weight, 916
ox_exciton_eg, 917
ox_extern_spectrum, 917
ox_gaussian_divj, 918
ox_gaussian_sdj, 918
ox_hopping_energy, 919
ox_life_field_dependence, 919
ox_peak_abs, 920
ox_vib_quanta, 920
ox_xp_coupling, 921
oxd2_diff_length, 923
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oxd2_lifetime, 924
oxd2_quench, 924
oxd_diff_length, 921
oxd_lifetime, 922
oxd_quench, 922
oxide_mater , 1090
oxynitride_mater , 1090

p_doping_level , 1090
p_doping_level2 , 1090
para_extract, 925
parallel_linear_solver, 927
parameterize , 1008
passive_3d, 928
passive_carr_loss, 929
passive_fiber, 930
Pauli matrix, 309
pc_led_model, 931
peltier, 711
period_number , 1018
period_thickness, 1011
pf_model_setting, 932
photo-carrier, 103, 1114
Photo-excitable, 103, 1114
photonic crystal, 270
photonic_crystal, 581
photoresist_mater, 1090
pick_xmode, 885
pick_ymode, 885
piezo_d11, 932
piezoelectric effect, 138
pinning effects, 91
Platzman, 309
plot_1d, 934
plot_2d, 938
plot_3d, 940
plot_3dcolor, 941
plot_3dmesh, 942
plot_3dvtk, 943
plot_ac_curr, 944
plot_ac_laser, 947
plot_ac_minispice, 948
plot_ac_modal_gain, 949

plot_ac_parameters, 950
plot_bias, 952
plot_data, 954
plot_device, 962
plot_longitudinal, 955
plot_mesh, 956
plot_minispice, 957
plot_more_dos_fermi, 959
plot_more_spectrum, 959
plot_more_trap, 960
plot_multilayer_optics, 960
plot_qw_raw_data, 961
plot_rtgain, 962
plot_scan, 963
plot_spectrum, 967
PML, 239, 666, 845, 967
pml, 967
pn_ratio, 694, 1073
pn_ratio , 1098, 1100
pn_ratio_points , 635
pn_ratio_points , 1008
pn_ratio_range , 1008
pn_ratio_range , 635
Pockels, 741
point, 51, 968
point_ll, 940, 1156
point_ur, 940, 1156
points, 647
Poisson’s equation, 87, 105
poisson_ratio, 969
polar_num, 885
polarization, 969
polarization, TE, 144
polarization, TM, 144
polarization_charge, 969
polarization_charge_model, 970
poly_mater , 1090
polygon, 51, 972
Poole-Frenkel model, 91, 932
position label, 1159, 1160
positive_current_flow, 572
post-processing, 573, 644, 692, 701, 824–

826, 863, 934, 938, 940–943, 948,
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950, 954, 961, 963, 1077, 1079
power_couple , 801
power_loss , 1024
power_refl , 1024
previous_layer, 972
print_active_layer, 973
print_macro, 973
print_optowizard_data, 974
print_sparse_matrix, 974
profile , 801
prop_constant_model, 975
pulse_dt , 1049
pulse_s1 , 1049
pulse_s2 , 1049
pulse_t1 , 1049
pulse_tf , 1049
pulse_tr , 1049
pure_index_loss, 620
put_mesh, 52, 53, 976

q_transport, 978, 994
qc_laser_preview, 994
qc_laser_vs_current, 996
qc_net_gain_spectrum, 997
qcl_3level_model, 998
qcl_lo_phonon_scattering, 1001
qcl_period_location, 1001
qcl_qw_region, 1002
qcl_temperature_model, 1002
qdot_individual, 1003
qdot_layer_mater, 1003
qdot_material, 1005
quantum capture, 209, 978, 994
quantum cascade laser, 994, 996–998, 1001
quantum dots, 169
quantum escape, 209, 978, 994
quantum flyover, 978, 994
Quantum Transport, 81
quantum transport, 209
Quantum Tunneling, 177
quantum tunneling, 98
Quantum well, 129
quantum well, 129, 143

quantum well laser, 32, 34
quantum well model, 865
quantum well, valence mixing, 133
quantum well,complex, 141
quantum well,valence mixing, 141
quantum wells, 279
quantum wells,complex, 135
quantum wells,simple, 130
quantum-MOS, 142
quasi-Fermi levels, 88, 89, 148
qw_optics_control, 1008
qw_silicon_mater , 1090
qw_thick , 1090
qw_trap_assisted_tunneling, 1009
qw_xrange , 1090
qwell_normal, 1007
QWIP, 801
qwip_model, 1011
qwip_period , 801
qwip_preview, 1011
qwire_complex_region, 1012

radiation_heavy_ion, 1013
radiative mode, 239
radiative_boundary, 1016
radiative_recomb, 1016
rate equation, 299
raw_output, 1017
ray tracing, 272
RCLED, 269, 879
rcled_dbr, 1018
rcled_mix_lambertian, 502
rcled_model, 1019
rcled_optic_layer, 1022
rcled_plot_y, 1023
rcled_power_angle, 1024
rcled_refl_coating, 1024
rcled_spectrum, 1025
rcled_spectrum_angle, 1026
rcled_surface_plot_xy, 1027
re_emission, 1027
real_func, 1029
real_index, 1029
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real_index_spec, 1029
rec_absorb_pow_dens, 1030
recombination, Auger, 89, 510
recombination, SRH, 89
recombination, surface, 91
recombination, thermal, 96
rectangle, 931
rectangular barrier, 181
red shift, 147
reduction, 82
reference concentration, 311
reference index, 311
reference wavelength, 311
refl_phase_in_pi, 1024
refraction, 272
refractive index, 1029
regrid, 1031
reload_mater, 1033
remove_section, 1033
renumber_mater, 1033
replace_macrofile, 1034
report_node, 1035
Resistor Regions, 100
Resonant cavity, 269
restart, 1035
results, 68
returned, 1095
right_contact, 1036
RIN, 34, 354
ring laser, 1036
ring_structure, 1036
rotation, 1036
rt3d_contact_reflector, 1038
RTG method, 34, 75, 117, 345, 348, 351,

421, 422, 445, 446, 454, 457, 469,
749, 975

rtgain_data, 962
rtgain_phase, 1037

S-parameters, 127
scalar wave, 223
scale_abs_spec , 801
scale_add_variable, 1023

scale_curr, 647
scale_lit, 647
scale_power, 952
scale_radiative_recomb, 1040
scale_variable , 1023
scale_x, 952
scale_y, 952
scan, 1042
scan variables, 1047, 1251
scan_data, 701
scan_function, 1049
scan_num, 1069
scanline, 1069
scanvar , 1069
scanvar_facet , 1069
scanvar_horizontal_power , 1069
scanvar_mode_index , 1069
scanvar_scale , 1069
scanvar_scale_curr , 1069
scanvar_scale_horizontal , 1069
scanvar_scale_lit , 1069
Schottky contact, 177, 539
Schottky contacts, 95, 96
Screened Potential, 163
screening, 969, 970, 1064
SCXLIB, 56, 197, 516, 684, 840
sec_num, 1055
sec_num , 930
second harmonic distortion, 34, 354
section, 1051
section_air, 1055
section_location, 1055
self-consistent, 137, 138
self_consistent, 1056
semi-classical, 180
semi-polar nitride, 874
set_3dray_internal_interface, 1059
set_3dray_mirror, 1060
set_active_reg, 1060
set_barrier_width, 1060
set_fdtd_interface, 1061
set_include, 1062
set_index, 1062
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set_initial_stress, 1063
set_lp_mode_index, 1063
set_minority_carrier, 1064
set_negative_stim, 1064
set_polarization, 1064
set_screening_factor, 1067
set_stress, 1068
set_temperature, 1068
set_wavelength, 1069
set_xydata_for_scan, 1069
setup_raytrace, 1070
SetupApsys, 58, 60
SetupLastip, 58, 60
SetupPics3d, 58, 60
shal_acpt_level, 1071
shal_acpt_level_i, 1071
shal_dnr_level, 1071
shal_dnr_level_i, 1071
shape, 619
shear_modulus, 1072
Sheet density, 691
shift_affinity, 1072
Shockley-Read-Hall, 89
Si/SiGe, 279
side, 789
silicon_mater , 1090
sin_amp , 1049
sin_constant , 1049
sin_period , 1049
sin_phase , 1049
Slotboom model, 102
SMSR, 1243
SOA, 328
sol_inf, 701
solve_lateral_wave, 1072
SOR, 911, 1134
sor_par, 1134
sort_imag, 620
sort_modepeak, 885
sort_modespan, 885
sp.rate_wavel, 1073
sparse_eigen_solver, 1074
spatial hole burning, 334

spec_heat, 1076
special_suprem_contact, 1075
spectral dep. index, 1029
spectral hole-burning, 34
spectrum, 287
spectrum_points, 1011
spectrum_tau, 1011
spinor, 310
splot_xy, 1079
splot_xyz, 1077
spont_charge, 1080
spontaneous emission, 301, 1073
spontaneous emission rate, 146
spontaneous recombination coefficient, 1016
SRH, 89
SRH recombination, 793
stack_refl, 1025
standard output, 68
standing_wave, 962
start, 952
start , 1055
start_loop, 1081
start_qwire_complex, 1082
start_same_complex, 1082
statistics, 90
std_wave_range, 962
steady state, 91
stimulated emission, 299
stop, 1083
Stormer, 148
strain, biaxial, 131
strain, compressive, 131
strain_bar, 1083
strain_well, 1083
strained silicon, 279
strained_mobility, 1084
stress_solution, 1087
stretch_vertical_line, 1085
structures, 328
subbands, anti-crossing, 135
subbands, non-parabolic, 133
subbands, parabolic, 133
subpixel averaging, 666
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sum_2ndmode, 647
superlattice, 872
suprem_contact, 1088
suprem_impurity_define, 1089
suprem_property, 1090
suprem_to_apsys_material, 1092
surf_elec_dens , 801
surface states, 91
surface_mater, 931
surface_y, 931
surface_y_label, 931
sym_polygon_for_semicrafter, 1092
sym_polygon_quantum_well, 1094
sym_polygon_taper, 1094
symbol, 582
symbol_variable, 1095
symmetric, 647
symmetry properties, 134

taper_between_segments, 1096
taper_outer_boundary, 1097
tapered structure, 329
tau_density, 1098
tau_energy, 1099
tau_model, 1099
tau_temperature, 1100
tax_mass_bar, 1101
tax_mass_well, 1101
TE, 1148
TE/TM mode, 490
temp, 1103
temp_dep_macro_table, 1102
temp_end , 1100
temp_start , 1100
temper_points , 635
temper_points , 1008
temper_range , 1008
temper_range , 635
temperature, 1103
temperature dependence, 97, 498
temperature variation, 217
thermal model, 218
thermal_interf, 1103

thermal_kappa, 1104
thermal_kappa_xy, 1104
thermionic emission, 96
theta, 647
thomson, 711
TM, 1148
tmass_gamma_bar , 1105
tmass_gamma_bulk , 1106
tmass_gamma_well , 1106
to, 937
top_contact, 1107
top_emission, 931
top_emission , 1025
transfer matrix, 306
transfer_fraction, 915
transfer_from_host, 915
transient, 91
transient conditions, 89
transient simulation, 108
transparency, 181
trap absorption, 103, 1114
trap distribution, 103, 1114
trap dynamic equation, 89, 91
trap emission, 103, 1114
trap_assisted_tunnel_junc, 1108
trap_assisted_tunneling, 1109
trap_conc_1, 1112
trap_conc_2, 1113
trap_conc_3, 1113
trap_conc_4, 1113
trap_conc_5, 1113
trap_conc_6, 1113
trap_conc_7, 1113
trap_conc_8, 1113
trap_conc_9, 1113
trap_excitation, 1114
trap_index, 940, 943
trap_level_i, 1114
trap_ncap_i, 1115
trap_pcap_i, 1115
trap_type_1, 1115
trap_type_2, 1115
trap_type_3, 1116
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trap_type_4, 1116
trap_type_5, 1116
trap_type_6, 1116
trap_type_7, 1116
trap_type_8, 1116
trap_type_9, 1116
traplevel_stddev_1, 1116
traplevel_stddev_2, 1117
traplevel_stddev_3, 1117
traplevel_stddev_4, 1117
traplevel_stddev_5, 1117
traplevel_stddev_6, 1117
traplevel_stddev_7, 1117
traplevel_stddev_8, 1117
traplevel_stddev_9, 1118
traplevel_tail_1, 1118
traplevel_tail_2, 1118
traplevel_tail_3, 1118
traplevel_tail_4, 1118
traplevel_tail_5, 1118
traplevel_tail_6, 1118
traplevel_tail_7, 1119
traplevel_tail_8, 1119
traplevel_tail_9, 1119
tunnel junction, 188
tunnel_junc, 1124
Tunneling, 177
tunneling, 1119, 1124
tunneling current, 182
Tunneling transparency, 181
two-photon absorption, 490, 498, 929, 1060,

1127
Two-Port Network, 126
two_photon_carr, 1127
two_photon_loss, 1127
type , 1049
Type II band alignment, 512, 888, 889
type2_qw_setting, 1128

ubdata_num, 1156
unconfined, 866
unified_schottky_local_tunneling, 1130
uniform model, 260

uniform_extraction, 801
unphysical, 76
use_bulk_affinity, 1130
use_bulk_bandgap, 1131
use_bulk_property, 1131
use_gain_spec, 852
use_index_spec, 852
use_macrofile, 1131
use_sor, 1134
use_spon_spec, 852
user_datafile , 1049
user_defined_mobility, 1132

val1_valley_prop1, 1139
val2_valley_prop1, 1139
val_bandj_edge, 1139
valence band mixing, 131
valence mixing, 133, 141, 490
valj_mass_para, 1135
valj_mass_perp, 1136
valj_para_e_dep_mass1, 1138
valj_para_e_dep_mass2, 1138
valj_perp_e_dep_mass1, 1138
valj_perp_e_dep_mass2, 1139
var_num, 952
variable, 937, 940, 943, 952, 1027
variable , 1023
variable_range , 1023
variables, 1251
variation, 1095
VCSEL, 33, 332
vcsel_cavity_region, 1140
vcsel_model, 1141
vcsel_section, 1145
Vector Helmholtz, 224
vectorial variables, 1260
vectorial_wave, 1148
vertical_dbr_layer_mater, 1149
view_dipole, 1150
view_ganvalence, 1151
view_kpsubband, 1152
view_kpwave, 1152
view_macro, 1153
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view_vtkfile, 1153
view_xrot, 940
view_xrot , 942
view_zincblende_valence, 1151
view_zrot, 940
view_zrot , 942
virtual_time_setting, 1153
voltage bias, 73
vplot_xy, 1154
vplot_xyz, 1155
vtk_file, 943

watch point, 665
Wave Equation, 224
wave equation, 303, 592, 746, 911, 1134
wave-guiding structure, 303
wave_boundary, 1156
waveguide PD, 33
waveguide_input, 1158
wavel_points , 1008
wavel_range, 694, 1073
wavel_range , 1008
wavelength, 908, 1069
wavelength , 801
wavelength_range, 1011
wavelength_range , 1025
wi , 620
WKB theory, 178, 182
wurtzite active, 1203
wurtzite_offset_model, 1158

x-root, 234
x1_label, 1156
x2_label, 1156
x_end_label , 1018, 1024
x_end_label , 1022
x_position, 1159
x_range, 931
x_start_label , 1018, 1024
x_start_label , 1022
xrange, 940, 943, 947, 949, 1027
xrange , 942
xsearch_imag, 620
xsearch_range, 620

xsearch_real, 620
xy, 968
xy-mode, 260
xy_data, 701

y-mode, 260
y-root, 234
y1_label, 1156
y2_label, 1156
y_at_bottom , 1018
y_on_top , 1018, 1024
y_on_top , 1022
y_position, 1160
y_start_label , 1018
Yee lattice, 671
ymode_num, 885
young_modulus, 1161
yrange, 940, 943, 947, 949, 1027
yrange , 942

z connect, 469
z_structure, 1161
zdir_cx, 1164
zdir_light_source, 1165
zener, 1166
Zener diode, 187
Zener tunneling, 187
zero_doping, 1167
Zielinski, 149
zincblende_offset_model, 1167
zplane_label, 1168
zplane_position, 1169
zrange, 940, 943
zrange , 942
zseg_num, 1033, 1169
zsegment_setting, 1169
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