CROSLIGHT Software Inc.

Crosslight Device Simulation
Software

Crosslight Device Simulation Software General Manual

All rights reserved

Trademark Notice

LASTIP, PICS3D, APSYS, PROCOM, SimuCenter, SimuLastip, SimuPics3d, SimuApsys, LayerBuilder, Layer3d, GeoEditor, CrosslightView, CrosslightEdit are trademarks of Crosslight Software Inc.

Copyright Notice

Duplication and distribution of this document are permitted for educational or academic purposes only.

Contents

I OVERVIEW 29
1 INTRODUCTION 31
1.1 How to use this manual 31
1.2 What is Crosslight Software? 32
1.3 What is APSYS ? 32
1.4 What is LASTIP? 33
1.5 What is PICS3D ? 35
2 INSTALLATION 37
2.1 System Requirements 37
2.2 Installation 37
2.3 Additional Software 38
3 BASIC FILES AND PROCEDURES 39
3.1 For the Impatient 39
3.2 How Crosslight Simulation Program Works 40
3.3 Defining the device structure 45
3.4 Creating a good mesh 54
3.5 Material parameters 56
3.6 Previewing Physical Properties 60
3.7 Setting up a simulation 62
3.8 Running a simulation 64
3.9 Output Data Organization 70
3.10 Analyzing the Results 70
4 CONVERGENCE ISSUES 75
4.1 Choice of voltage or current bias 75
4.2 Special bias considerations for PICS3D 77
4.3 Unphysical boundary 78
4.4 Thermal runaway 78
4.5 Coarse mesh 78
4.6 Fine mesh 79
4.7 Use of basic variables 80
4.8 Slow transient technique 80
4.9 Poor initial guess solution 81
4.10 Current-blocking structures 82
4.11 Use of Auxiliary Ohmic Contacts 84
4.12 Bandgap reduction technique 84
4.13 Negative differential mobility issues 85
II PHYSICAL AND NUMERICAL MODELS 87
5 DRIFT-DIFFUSION MODEL 89
5.1 Basic equations 89
5.2 Boundary Conditions 97
5.3 Pure Resistor Regions and Metal Macros 102
5.4 Bandgap Narrowing Effect 104
5.5 Trap Models 105
6 NUMERICAL TECHNIQUES AND 3D SIMULATION 107
6.1 Numerical Techniques 107
6.2 The Cylindrical Coordinate System 112
6.3 3D Modeling in Semiconductors 115
6.4 3D modeling in PICS3D 119
7 AC ANALYSIS AND HIGH FREQUANCY PARAMETERS 123
7.1 Theory 123
7.2 Numerical techniques in AC analysis 127
7.3 Two-Port Network Parameters 128
7.4 AC Photo-response 129
7.5 Laser Diode Modulation Response 130
8 QUANTUM WELLS AND INTERBAND TRANSITIONS 131
8.1 Quantum Well Models 131
8.2 Self-consistent carrier density model 139
8.3 Interband Optical Transition 144
8.4 Refractive Index Model 155
8.5 Optical Gain with Many Body Coulomb Interaction 158
8.6 Local Gain and Optical Confinement 161
8.7 Exciton Electro-absorption in Quantum Wells 164
8.8 Franz - Keldysh Effect 169
8.9 Interband Optical Transition Model for Quantum Dots 171
9 IMPACT IONIZATION AND TUNNELING 175
9.1 Impact Ionization Model 175
9.2 Intraband Quantum Tunneling 179
9.3 Interband Tunneling in Semiconductors 189
10 FINER POINTS ABOUT QUANTUM WELLS 195
10.1 Band Offset In Strained Quantum Well 195
10.2 Intraband Relaxation Times and Gain Broadening 201
10.3 Quantum Well Capture and Escape Processes 211
10.4 Dynamic Behavior of Quantum Capture and Escape 213
11 THERMAL EFFECTS IN SEMICONDUCTORS 219
11.1 Temperature dependent parameters 219
11.2 Isothermal temperature variation 220
11.3 Heat flow and temperature distribution 220
11.4 Heat sources 221
11.5 Thermal boundary 223
12 WAVEGUIDE OPTICAL MODES 225
12.1 Introduction 225
12.2 Scalar Wave Equation For Lateral Modes 225
12.3 Vectorial Helmholtz wave equation 226
12.4 Far-field computation 232
12.5 Enhanced Effective Index Method 233
12.6 Perfectly Matched Layer Boundary 241
12.7 Optical Pumping and Incident Light 243
13 WURTZITE STRAINED MQW 245
13.1 Introduction 245
13.2 Bulk Band Structure 246
13.3 Wurtzite dipole moments 249
13.4 MQW Model - Valence Mixing 254
13.5 Polarization and interface charges 254
13.6 Non-Polar and Semi-Polar materials 255
13.7 Nomenclature 256
III PRODUCT SPECIFIC MODELS 259
14 APSYS SPECIFIC MODELS 261
14.1 Time-Dependent Traveling Wave Equations 261
14.2 Theories of Light Emitting Diodes 261
14.3 Resonant Cavity Light Emitting Diode Model 271
14.4 2D Photonic Crystal Power Extraction Model 272
14.5 Ray Tracing Simulation 274
14.6 Strained Si or Si/SiGe Quantum Well Model 281
14.7 Conduction and Recombination in OLED 287
14.8 Organic Semiconductor Emission Spectrum Model 289
14.9 Diffusion of Excitons in Organic Semiconductor 294
14.10 Nomenclature 294
15 LASTIP SPECIFIC MODELS 301
15.1 Stimulated Emission and Rate Equation 301
16 PICS3D-SPECIFIC MODELS I: Longitudinal Modeling 305
16.1 Introduction 305
16.2 Basic Equations 305
16.3 The Green's Function Method 306
16.4 Longitudinal Modes and Complex Frequencies 307
16.5 Coupled Wave Equations 309
16.6 Transfer Matrix Formulas 311
16.7 Bragg wavelength and related reference parameters 313
16.8 Coupled Wave Equations For Second Order Grating 315
16.9 3D Optical Amplifier Model 330
16.10 Beam Propagation Method 330
16.11 Device structures 330
16.12 Slope Efficiency Issues: 3D vs. 2D Simulation 331
17 PICS3D-SPECIFIC MODELS II: VCSEL Theory 339
17.1 Introduction 339
17.2 Lateral Modes: Fiber-Like Index Model 339
17.3 Effective Index Method for VCSELs 341
17.4 Longitudinal Modes in VCSEL 343
18 PICS3D-SPECIFIC MODELS III: Spectrum and Modulation Re- sponse 347
18.1 Update notes 347
18.2 Multi-mode complex pole expansion 348
18.3 Mode Spectrum 349
18.4 Time-Dependent Solution of Longitudinal Modes 349
18.5 AC modeling in PICS3D 354
18.6 Analytical model 354
IV SELECTED TUTORIAL EXAMPLES 357
19 APSYS EXAMPLES 359
19.1 Introduction 359
19.2 A_tutorial 361
19.3 LED_GaN__MQW $\backslash 2 d \backslash$ InGaN 368
19.4 solar_cell \backslash Si_simple 383
20 LASTIP EXAMPLES 391
20.1 Introduction 391
20.2 A_tutorial $\backslash 1 \mathrm{D}$ _laser 393
20.3 A_tutorial $\backslash 1$ D_therm 401
20.4 A_tutorial \backslash basic_ridge 409
21 PICS3D EXAMPLES 417
21.1 Introduction 417
21.2 A tutorial 419
21.3 amplifier_3D \backslash inp13amp 432
21.4 $\mathrm{DBR} \backslash 3$ section_tunable 439
21.5 VCSELS \backslash jim_vcsel 452
V REFERENCE 465
22 COMMAND SYNTAX 467
22.1 Introduction 467
22.2 2nd_harmonic 467
22.3 3d_amplifier_model 468
22.4 3d_attachment 469
22.5 3d_plane_control 470
22.6 3d_solution_method 471
22.7 3drayplot_angle 472
22.8 3drayplot_bias 474
22.9 3drayplot_phi 475
22.10 3drayplot_project 476
22.11 3drayplot_spectrum 478
22.12 3drayplot_surfpower 478
22.13 3drayplot_theta 479
22.14 a_bar 480
22.15 a_bulk 480
22.16 a_well 481
22.17 absorption 481
22.18 ac_bar 481
22.19 ac_bulk 482
22.20 ac_light 482
22.21 ac_parameters 484
22.22 ac_sparse_solver 486
22.23 ac_voltage 487
22.24 ac_well 491
22.25 active_macro_override 492
22.26 active_reg 492
22.27 active_reg_zdim 499
22.28 active_temper 500
22.29 acz bar 501
22.30 acz well 501
22.31 add_acmemory 501
22.32 add_arnoldimemory 502
22.33 add_boundary 502
22.34 add_mainmemory 503
22.35 add rcled lambertian 504
22.36 add_thermalmemory 504
22.37 adjust_active_reg 505
22.38 adjust_column_screening 505
22.39 adjust_doping 506
22.40 adjust_layer_screening 506
22.41 affinity 507
22.42 a1 bar 507
22.43 a2_bar 507
22.44 a3 bar 507
22.45 a4_bar 507
22.46 a5_bar 508
22.47 a6 bar 508
22.48 a1 bulk 508
22.49 a2_bulk 508
22.50 a3 bulk 508
22.51 a4 bulk 508
22.52 a5_bulk 508
22.53 a6 bulk 509
22.54 a1_well 509
22.55 a2_well 509
22.56 a3 well 509
22.57 a4_well 509
22.58 a5_well 509
22.59 a6 well 509
22.60 align_complex 510
22.61 alignment_ref 510
22.62 alpha_n 510
22.63 alpha_p 510
22.64 alpha_wavel 510
22.65 analytical_gain 511
22.66 auger_n 512
22.67 auger_p 512
22.68 auto_tunneling 512
22.69 az bar 513
22.70 az well 513
22.71 b_bar 513
22.72 b well 514
22.73 back index 514
22.74 back_reflection 514
22.75 band discont 514
22.76 band_discont_right 515
22.77 band_distance 515
22.78 band_gap 517
22.79 band offset 517
22.80 bandgap_narrow 518
22.81 bandgap_optical_gen 518
22.82 barrier_correction_by_qw_model 518
22.83 basic_var_symbol 519
22.84 begin_bpmplot 519
22.85 begin_cavity 519
22.86 begin_complex 521
22.87 begin_qwire_complex 522
22.88 begin_zdir_complex 523
22.89 begin_zmater 524
22.90 bend extern 524
22.91 bend_xy_plane 525
22.92 beta mte 526
22.93 beta n 527
22.94 beta_p 527
22.95 bias_output_at_maximum 527
22.96 bias_output_curr_flux 529
22.97 bias_output_ii_integral 530
22.98 bias_output_longitudinal 531
22.99 bias_output_mater_average 532
22.100 bias_output_near_point 533
22.101 bias_output_peak_wavelength 534
22.102 bias_output_spatial_integral 535
22.103 bias_output_tunneling 536
22.104 bias_output_wave_average 537
22.105 blank area 539
22.106 bottom contact 540
22.107 boundary_smooth 540
22.108 boundary _xpoint 541
22.109 bpm 542
22.110 bpm_coupled_mode 545
22.111 bpm_initial_import 546
22.112 bpm_longmode_splot 546
22.113 bpm_multimode 547
22.114 bpmintegr_xy 548
22.115 bpmplot_xy1d 549
22.116 bpmplot_xyz1d 550
22.117 bpmsplot_xy 551
22.118 bpmsplot_xz 551
22.119 bpmsplot_yz 552
22.120 bulk_dos_model 552
22.121 bulk treatment 553
22.122 bulk xfunc1 554
22.123 bulk_xfunc2 554
22.124 bulk xfunc3 554
22.125 bulk xfunc 4 554
22.126 bulk_xfunc5 554
22.127 bulk xfunc6 554
22.128 bulk xfunc7 555
22.129 bulk_xfunc8 555
22.130 bulk xfunc9 555
22.131 c11 bar 555
22.132 c12_bar 555
22.133 c13 bar 555
22.134 c33 bar 555
22.135 c44_bar 556
22.136 c11 bulk 556
22.137 c12 bulk 556
22.138 c13_bulk 556
22.139 c33 bulk 556
22.140 c44 bulk 556
22.141 c11_well 556
22.142 c12 well 557
22.143 c13_well 557
22.144 c33_well 557
22.145 c44 well 557
22.146 column 558
22.147 column_position 559
22.148 compact_junction_region 559
22.149 compact_semiconductor_model 560
22.150 complex_region 562
22.151 complex_var_symbol 563
22.152 compute_inductance 563
22.153 cond_band2_edge 564
22.154 cond_band3_edge 564
22.155 cond_band1_valley 564
22.156 cond_band2_valley 565
22.157 cond_band3_valley 565
22.158 cond dos mass ratio n 565
22.159 cond_dos_mass_ratio_p 566
22.160 cond1_mass_para 566
22.161 cond2_mass_para 567
22.162 cond1_mass_perp 567
22.163 cond2_mass_perp 568
22.164 cond1_para_e_dep_mass1 568
22.165 cond1_para_e_dep_mass2 568
22.166 cond2_para_e_dep_mass1 568
22.167 cond2_para_e_dep_mass2 569
22.168 cond1_perp_e_dep_mass1 569
22.169 cond1_perp_e_dep_mass2 569
22.170 cond2_perp_e_dep_mass1 569
22.171 cond2_perp_e_dep_mass2 569
22.172 cond1_valley_prop1 569
22.173 cond2_valley_prop1 570
22.174 contact 570
22.175 contact_heating 573
22.176 contact metal interface 573
22.177 convention 574
22.178 couple_input_power 574
22.179 couple_next 575
22.180 cplot_xy 575
22.181 cplot_xyz 577
22.182 csuprem_mask 578
22.183 current_conc 579
22.184 cylindrical 580
22.185 dbr truncate 581
22.186 define_alias 582
22.187 define_cavity 583
22.188 define material 584
22.189 define_symbol 584
22.190 define__vertical_position 585
22.191 delta real index caxis 587
22.192 delta so bar 587
22.193 delta_so_well 587
22.194 delta1 bar 587
22.195 delta2 bar 588
22.196 delta3_bar 588
22.197 delta1 bulk 588
22.198 delta2 _bulk 588
22.199 delta3 bulk 589
22.200 delta1_well 589
22.201 delta2 well 589
22.202 delta3 well 589
22.203 d1_bar 589
22.204 d2 bar 589
22.205 d3 bar 590
22.206 d4_bar 590
22.207 d 5 bar 590
22.208 d6 bar 590
22.209 d1_bulk 590
22.210 d2 bulk 590
22.211 d3 bulk 590
22.212 d4_bulk 591
22.213 d5 bulk 591
22.214 d6 bulk 591
22.215 d1_well 591
22.216 d2 well 591
22.217 d3 well 591
22.218 d4_well 591
22.219 d5 well 592
22.220 d6_well 592
22.221 diagonal_split 592
22.222 dielectric constant 593
22.223 differential_gain 593
22.224 direct_eigen 594
22.225 disconnect zmesh 596
22.226 do_raytrace_3d 596
22.227 dopant_ionization_model 602
22.228 doping 603
22.229 double mesh 610
22.230 dox_efield0_pf_elec 612
22.231 dox efield0 pf hole 613
22.232 dox_el_weight 613
22.233 dox_exciton_eg 614
22.234 dox_extern_spectrum 614
22.235 dox_gaussian_divj 615
22.236 dox_gaussian_sdj 615
22.237 dox_hopping_energy 615
22.238 dox_peak_abs 615
22.239 dox_vib_quanta 615
22.240 dox xp coupling 615
22.241 dox2_el_weight 615
22.242 dox2_extern_spectrum 616
22.243 dox3_el_weight 617
22.244 dox3_extern_spectrum 617
22.245 dox4_el_weight 618
22.246 dox4_extern_spectrum 619
22.247 dox5_el_weight 619
22.248 dox5_extern_spectrum 620
22.249 edge_curve 621
22.250 eeim_optic 622
22.251 effective medium 624
22.252 effective_miniband_model 624
22.253 efield0 pf elec 625
22.254 efield0_pf_hole 626
22.255 eg0_bar 626
22.256 eg0_bulk 626
22.257 eg0_well 627
22.258 e15_bulk 627
22.259 e31 bulk 627
22.260 e33_bulk 627
22.261 elec_carr_loss 627
22.262 elec_dos_energy 628
22.263 electron_mass 628
22.264 electron_mobility 629
22.265 electron ref dens 629
22.266 electron sat vel 629
22.267 eliminate_mesh 630
22.268 embedded material 631
22.269 end_bpmplot 631
22.270 end_cavity 632
22.271 end_complex 632
22.272 end_loop 632
22.273 end_qwire_complex 632
22.274 end_same_complex 632
22.275 end_zdir_complex 632
22.276 end zmater 632
22.277 endloopif 633
22.278 equilibrium 633
22.279 evaluate_parameter 635
22.280 exclude from electrical 636
22.281 export_3dgeo 637
22.282 export_fdtd_inputdata 637
22.283 export_gain_data 637
22.284 export_kp_data 638
22.285 export_kp_para 638
22.286 export_layers_to_suprem 639
22.287 export_raytrace 639
22.288 export_to_iccap_mdm_file 640
22.289 export_wave 643
22.290 ext_funck ($\mathrm{k}=1 . .9$) 644
22.291 external cir 644
22.292 external_heat_source 644
22.293 external_spice_cir 645
22.294 external stress band model 645
22.295 extract_contour 646
22.296 farfield 647
22.297 farfield_couple 649
22.298 fdtd_background_mater 650
22.299 fdtd_CLFDTD_control 651
22.300 fdtd_data_analysis 651
22.301 fdtd_define_region 653
22.302 fdtd_dispersion 655
22.303 fdtd_far_field 660
22.304 fdtd_field_monitor 662
22.305 fdtd fourier 663
22.306 fdtd_glass_coating 664
22.307 fdtd_group_monitors 667
22.308 fdtd model 667
22.309 fdtd_modify 676
22.310 fdtd_monitor_box 677
22.311 fdtd_output_structure 678
22.312 fdtd_plane_refl 679
22.313 fdtd_plane_trans 680
22.314 fdtd_push_job 680
22.315 fdtd_replace_FDTDgrid 681
22.316 fdtd_replace_mater 682
22.317 fdtd source 683
22.318 fit_gain_wavel 685
22.319 force_last_barrier_offset 686
22.320 fourier_power 687
22.321 flux_plot 688
22.322 freq_control 688
22.323 front index 689
22.324 front reflection 689
22.325 full_ionization 690
22.326 gain_density 691
22.327 gain_module 692
22.328 gain_spectrum 694
22.329 gain_spon 696
22.330 gain_wavel 698
22.331 gammak_bar 699
22.332 gammak_well 700
22.333 generation_rate 700
22.334 get_active_layer 701
22.335 get_data 703
22.336 get_raytrace_data 704
22.337 global_model_setting 705
22.338 grating_compos 707
22.339 grating_model 708
22.340 grade_active_mater 710
22.341 graphene_index_model 712
22.342 group1 712
22.343 half_mesh 712
22.344 heat_flow 713
22.345 heat_flow_simple 717
22.346 heteroj_capture 717
22.347 hole_carr_loss 719
22.348 hole_dos_energy 719
22.349 hole mass 720
22.350 hole_mobility 720
22.351 hole ref dens 720
22.352 hole_sat_vel 721
22.353 ignore_local_current 721
22.354 impact_baraff 721
22.355 impact_chynoweth 722
22.356 impact_dopant_dependent 724
22.357 impact_lackner 725
22.358 impact_lackner 726
22.359 impact_model 727
22.360 impact_okuto_crowell 729
22.361 import_basic 730
22.362 import_complex 731
22.363 import_gain_data 732
22.364 import_kp_data 739
22.365 import_fdtd_data 739
22.366 import_qcl_gain_para 740
22.367 import_raytrace 741
22.368 include 742
22.369 independent_mqw 742
22.370 independent_zdir_mqw 742
22.371 index_field_dependence 743
22.372 index_model 744
22.373 index_spectrum 746
22.374 index_wavel 747
22.375 init_wave 748
22.376 inner_bar_gain 754
22.377 insert_mesh_order 755
22.378 insert_mesh_plane 755
22.379 insert_mesh_range 756
22.380 integer_func 756
22.381 interface 757
22.382 interface_leakage 761
22.383 interface_mesh 761
22.384 interface_trap_capacitor 762
22.385 internal_z_xpoint 762
22.386 integer_func 763
22.387 internal_xpoint 763
22.388 isolate_complex 764
22.389 isolate_mesh_segment 764
22.390 jdos_energy 765
22.391 kane_para_f_bar 765
22.392 kane_para_f_well 765
22.393 kp _model_setting 766
22.394 lastip_compact_model 769
22.395 lateral mode3d 769
22.396 lattice_bar 770
22.397 lattice base 770
22.398 lattice_bulk 771
22.399 lattice_c_base 771
22.400 lattice c bar 771
22.401 lattice_c_bulk 771
22.402 lattice_c_constant 772
22.403 lattice_c_well 772
22.404 lattice_constant 772
22.405 lattice_well 773
22.406 lax_mass_bar 773
22.407 lax_mass_well 773
22.408 layer 774
22.409 layer_conf 776
22.410 layer_height_ref 777
22.411 layer_input_convention 777
22.412 layer_mater 779
22.413 layer_position 782
22.414 layer_type 784
22.415 layers_for_semicrafter 786
22.416 lband bar 787
22.417 lband well 788
22.418 led_control 788
22.419 led eff distr 791
22.420 led_farfield 791
22.421 led_simple 792
22.422 led_spectrum 792
22.423 led_top_coating 793
22.424 left_contact 794
22.425 lifetime model 794
22.426 lifetime_n 795
22.427 lifetime_p 795
22.428 light_current 795
22.429 light_power 799
22.430 light_power_qwip 803
22.431 linear heat 805
22.432 load_macro 806
22.433 load_mesh 807
22.434 longitudinal 809
22.435 loop_integer 812
22.436 loop_real 812
22.437 loopif 813
22.438 low_field_mobility_model 814
22.439 lplot_xy 826
22.440 lplot_xy_qw_states 827
22.441 lplot_xyz 828
22.442 makebend_dome 829
22.443 makebend_rectangle_based_pyramid 831
22.444 makebend_tilt 833
22.445 mass_density 834
22.446 mass_gamma_bar 834
22.447 mass_gamma_bulk 834
22.448 mass_gamma_well 835
22.449 mass l bar 835
22.450 mass_l_well 835
22.451 mater_var 836
22.452 material 838
22.453 material 3d 840
22.454 material_label_define 841
22.455 material lib 842
22.456 material_par 843
22.457 max_electron_mob 845
22.458 max_hole__mob 846
22.459 mesh__output 846
22.460 microcavity __model 846
22.461 microcavity__exit 847
22.462 min_electron_mob 848
22.463 min _hole_mob 848
22.464 minispice 848
22.465 mmb _gaintable 854
22.466 mobility__xy 856
22.467 mode__srch 858
22.468 modify__bias_output 860
22.469 modify__bulk__macro 860
22.470 modify __gain 861
22.471 modify_layer_height 862
22.472 modify__light__spectrum 864
22.473 modify__opt_gen_rate 865
22.474 modify__plot 865
22.475 modify_qw 867
22.476 modify __taper__height 875
22.477 modify__vector__plot 876
22.478 modify__wurtzite 876
22.479 modu_bias 878
22.480 monitor_emission 879
22.481 more_dos_fermi_output 879
22.482 more_output 880
22.483 more_spectrum_output 883
22.484 more_sym__polygon 884
22.485 more_tcadmesh 885
22.486 more_trap_output 886
22.487 multimode 887
22.488 multimode__detect 889
22.489 multimode mirror 890
22.490 nca__deltapot 890
22.491 nca__deltapot_right 891
22.492 negf_model 892
22.493 negf__plot 895
22.494 new__inset__planes 895
22.495 newton_freeze_carrier 896
22.496 newton__par 896
22.497 no__auto__workfunction 904
22.498 nonlocal__path 905
22.499 nonlocal_transp_model 906
22.500 nonlocal_transp_region 907
22.501 norm_field 909
22.502 ohmic junction 909
22.503 oled_control 910
22.504 optic_coating 910
22.505 optical__axis 911
22.506 optical_field 913
22.507 organic_exciton__diff 915
22.508 outer section 916
22.509 output 916
22.510 output_suprem__mesh 917
22.511 ox_dopant_el_transfer 917
22.512 ox_el__weight 918
22.513 ox_exciton_eg 919
22.514 ox_extern_spectrum 919
22.515 ox_gaussian__sdj 920
22.516 ox_gaussian__divj 920
22.517 ox__hopping_energy 921
22.518 ox_life_field__dependence 921
22.519 ox_peak_abs 922
22.520 ox__vib_quanta 922
22.521 ox_xp_coupling 923
22.522 oxd_diff_length 923
22.523 oxd lifetime 924
22.524 oxd__quench 924
22.525 oxd2_diff_length 925
22.526 oxd2 lifetime 926
22.527 oxd 2 __quench 926
22.528 para__extract 927
22.529 parallel_linear solver 929
22.530 passive_3d 930
22.531 passive__carr__loss 931
22.532 passive_fiber 932
22.533 pc__led__model 933
22.534 pf__model_setting 934
22.535 piezo_d11 934
22.536 piezo__d22 935
22.537 piezo__d33 935
22.538 piezo__d31 935
22.539 piezo__d32 935
22.540 piezo__d24 935
22.541 piezo_d15 936
22.542 plot__1d 936
22.543 plot_ac_curr 939
22.544 plot_2d 940
22.545 plot_3d 942
22.546 plot_3dcolor 943
22.547 plot_3dmesh 944
22.548 plot_3dvtk 945
22.549 plot_ac_curr 946
22.550 plot_ac_laser 949
22.551 plot_ac_minispice 950
22.552 plot_ac__modal_gain 951
22.553 plot_ac_parameters 952
22.554 plot_bias 954
22.555 plot_data 956
22.556 plot_longitudinal 957
22.557 plot_mesh 958
22.558 plot_minispice 959
22.559 plot_more_dos_fermi 961
22.560 plot_more_spectrum 961
22.561 plot_more_trap 962
22.562 plot_multilayer_optics 962
22.563 plot_qw_raw_data 963
22.564 plot_rtgain 964
22.565 plot_scan 965
22.566 plot_spectrum 969
22.567 pml 969
22.568 point 970
22.569 poisson_ratio 971
22.570 polarization 971
22.571 polarization_charge 971
22.572 polarization_charge_model 972
22.573 polygon 974
22.574 previous_layer 974
22.575 print_active_layer 975
22.576 print_macro 975
22.577 print_optowizard_data 976
22.578 print_sparse_matrix 976
22.579 prop_constant_model 977
22.580 put_mesh 978
22.581 q_transport 980
22.582 q_transport_mqw_bundle 996
22.583 qc_laser_preview 996
22.584 qc laser vs current 998
22.585 qc_net_gain_spectrum 999
22.586 qcl_3level_model 1000
22.587 qcl_lo_phonon_scattering 1003
22.588 qcl_period_location 1003
22.589 qcl_qw_region 1004
22.590 qcl_temperature_model 1004
22.591 qdot_individual 1005
22.592 qdot_layer_mater 1005
22.593 qdot_material 1007
22.594 qwell_normal 1009
22.595 qw_optics_control 1010
22.596 qw_trap_assisted_tunneling 1011
22.597 qwip_model 1013
22.598 qwip_preview 1013
22.599 qwire_complex_region 1014
22.600 radiation_heavy_ion 1015
22.601 radiative_boundary 1018
22.602 radiative_recomb 1018
22.603 raw_output 1019
22.604 rcled dbr 1020
22.605 rcled_model 1021
22.606 rcled_optic_layer 1024
22.607 rcled_plot_y 1025
22.608 rcled_power_angle 1026
22.609 rcled_refl_coating 1026
22.610 rcled_spectrum 1027
22.611 rcled_spectrum_angle 1028
22.612 rcled_surface_plot_xy 1029
22.613 re_emission 1029
22.614 real_func 1031
22.615 real index 1031
22.616 real_index_spec 1031
22.617 rec_absorb_pow_dens 1032
22.618 regrid 1033
22.619 reload mater 1035
22.620 remove_section 1035
22.621 renumber mater 1035
22.622 replace_macrofile 1036
22.623 report_node 1037
22.624 restart 1037
22.625 right_contact 1038
22.626 ring_structure 1038
22.627 rotation 1038
22.628 rtgain_phase 1039
22.629 rt3d_contact_reflector 1040
22.630 scale_radiative_recomb 1042
22.631 scan 1044
22.632 scan function 1051
22.633 section 1053
22.634 section air 1057
22.635 section_location 1057
22.636 self_consistent 1058
22.637 set_3dray_internal_interface 1061
22.638 set_3dray_mirror 1062
22.639 set_active_reg 1062
22.640 set barrier width 1062
22.641 set fdtd interface 1063
22.642 set_include 1064
22.643 set index 1064
22.644 set_initial_stress 1065
22.645 set_lp_mode_index 1065
22.646 set_minority_carrier 1066
22.647 set_negative_stim 1066
22.648 set_polarization 1066
22.649 set_screening_factor 1069
22.650 set_stress 1070
22.651 set_temperature 1070
22.652 set_wavelength 1071
22.653 set_xydata_for_scan 1071
22.654 setup_raytrace 1072
22.655 shal_acpt_level 1073
22.656 shal__acpt_level_i 1073
22.657 shal_dnr_level 1073
22.658 shal dnr level 1073
22.659 shear_modulus 1074
22.660 shift_affinity 1074
22.661 solve lateral wave 1074
22.662 sp.rate_wavel 1075
22.663 sparse_eigen_solver 1076
22.664 special_suprem_contact 1077
22.665 spec _heat 1078
22.666 splot_xyz 1079
22.667 splot_xy 1081
22.668 spont_charge 1082
22.669 start_loop 1083
22.670 start_qwire_complex 1084
22.671 start_same_complex 1084
22.672 stop 1085
22.673 strain_bar 1085
22.674 strain well 1085
22.675 strained_mobility 1086
22.676 stretch_vertical_line 1087
22.677 stress solution 1089
22.678 suprem_contact 1090
22.679 suprem_impurity_define 1091
22.680 suprem_property 1092
22.681 suprem_to_apsys_material 1094
22.682 sym_polygon_for_semicrafter 1094
22.683 sym_polygon_quantum_well 1096
22.684 sym_polygon_taper 1096
22.685 symbol_variable 1097
22.686 taper_between_segments 1098
22.687 taper_outer_boundary 1099
22.688 tau_density 1100
22.689 tau_energy 1101
22.690 tau model 1101
22.691 tau_temperature 1102
22.692 tax mass bar 1103
22.693 tax mass well 1103
22.694 temp_dep_macro_table 1104
22.695 temperature 1105
22.696 thermal interf 1105
22.697 thermal_kappa 1106
22.698 thermal_kappa_xy 1106
22.699 tmass_gamma_bar 1107
22.700 tmass_gamma_bulk 1108
22.701 tmass_gamma_well 1108
22.702 top_contact 1109
22.703 trap_assisted_tunnel_junc 1110
22.704 trap_assisted_tunneling 1111
22.705 trap_conc_1 1114
22.706 trap_conc_2 1115
22.707 trap conc 3 1115
22.708 trap_conc_4 1115
22.709 trap_conc_5 1115
22.710 trap_conc_6 1115
22.711 trap_conc_7 1115
22.712 trap_conc_8 1115
22.713 trap_conc_9 1115
22.714 trap_excitation 1116
22.715 trap_level_i 1116
22.716 trap_ncap_i 1117
22.717 trap_pcap_i 1117
22.718 trap_type_1 1117
22.719 trap_type_2 1117
22.720 trap_type_3 1118
22.721 trap_type_4 1118
22.722 trap_type_5 1118
22.723 trap_type_6 1118
22.724 trap_type_7 1118
22.725 trap_type_8 1118
22.726 trap_type_9 1118
22.727 traplevel_stddev_1 1118
22.728 traplevel_stddev__2 1119
22.729 traplevel_stddev_3 1119
22.730 traplevel_stddev_4 1119
22.731 traplevel_stddev__5 1119
22.732 traplevel_stddev_6 1119
22.733 traplevel_stddev__7 1119
22.734 traplevel_stddev__8 1119
22.735 traplevel_stddev_19 1120
22.736 traplevel_tail_1 1120
22.737 traplevel_tail_2 1120
22.738 traplevel_tail_3 1120
22.739 traplevel_tail_4 1120
22.740 traplevel_tail_5 1120
22.741 traplevel_tail_6 1120
22.742 traplevel_tail_7 1121
22.743 traplevel_tail_8 1121
22.744 traplevel_tail_9 1121
22.745 tunneling 1121
22.746 tunnel_junc 1126
22.747 two_photon_carr 1129
22.748 two_photon_loss 1129
22.749 type2_qw_setting 1130
22.750 unified_schottky_local_tunneling 1132
22.751 use_bulk_affinity 1132
22.752 use__bulk_bandgap 1133
22.753 use_bulk_property 1133
22.754 use macrofile 1133
22.755 user_defined_mobility 1134
22.756 use sor 1136
22.757 valj_mass_para $(\mathrm{j}=1 . .3)$ 1137
22.758 valj_mass_perp $(\mathrm{j}=1 . .3)$ 1138
22.759 valj_para_e_dep_mass1 $(\mathrm{j}=1 . .3)$ 1140
22.760 valj_para_e_dep__mass2 $(\mathrm{j}=1 . .3)$ 1140
22.761 valj_perp_e_dep_mass1 $(\mathrm{j}=1 . .3)$ 1140
22.762 valj_perp_e_dep_mass2 $(\mathrm{j}=1 . .3)$ 1141
22.763 val1_valley_prop1 1141
22.764 val2_valley_prop1 1141
22.765 val2_valley_prop1 1141
22.766 val_bandj_edge $(\mathrm{j}=2,3)$ 1141
22.767 vcsel_cavity_region 1142
22.768 vcsel_model 1143
22.769 vcsel_section 1147
22.770 vectorial_wave 1150
22.771 vertical_dbr_layer_mater 1151
22.772 view_dipole 1152
22.773 view_ganvalence 1153
22.774 view_zincblende_valence 1153
22.775 view_kpsubband 1154
22.776 view_kpwave 1154
22.777 view_macro 1155
22.778 view_vtkfile 1155
22.779 virtual_time_setting 1155
22.780 vplot_xy 1156
22.781 vplot_xyz 1157
22.782 wave_boundary 1158
22.783 waveguide_input 1160
22.784 wurtzite_offset_model 1160
22.785 x_position 1161
22.786 y_position 1162
22.787 young_modulus 1163
22.788 z_structure 1163
22.789 zdir_cx 1166
22.790 zdir_light_source 1167
22.791 zener 1168
22.792 zero_doping 1169
22.793 zincblende_offset_model 1169
22.794 zplane_label 1170
22.795 zplane_position 1171
22.796 zsegment_setting 1171

VI APPENDICES 1173

A WAVE EQUATION FOR PERFECTLY MATCHED LAYER 1175
B MATERIAL PARAMETERS 1177
B. 1 Introduction 1177
B. 2 Rules for macros 1178
B. 3 Zincblende passive macro 1189
B. 4 Zincblende active macro 1193
B. 5 Wurtzite passive macro 1197
B. 6 Wurtzite active macro 1205
C MODIFIED SCHARFETTER-GUMMEL FORMULA FOR HOT ELECTRONS 1219
C. 1 Current Flow in Hydrodynamic Model 1219
C. 2 Discretization for Hot Electron Current 1221
C. 3 Hot Electron Current with Equal Energy 1223
D GREEN'S FUNCTION AND SPONTANEOUS EMISSION 1225
D. 1 Maxwell Equations 1225
D. 2 Conventions 1227
D. 3 Basic Wave Equation 1228
D. 4 The Green's Function 1230
D. 5 Longitudinal Green's Function 1230
D. 6 Green's Function for an AR Coated Waveguide 1233
D. 7 Diffusion Coefficient of the Langevin Forces 1236
E THEORY OF POWER SPECTRUM 1241
F NOMENCLATURE 1247
G POST-PROCESSING \& PLOTTING VARIABLES 1253
G. 1 Bias-dependent Variables 1253
G. 2 Scalar Variables 1257
G. 3 Vectorial Variables 1262
H SUPPORTED EXAMPLES 1265
H. 1 APSYS Examples 1265
H. 2 LASTIP Examples 1294
H. 3 PICS3D Examples 1309

BIBLIOGRAPHY
 1317

INDEX
1331

Part I

OVERVIEW

Chapter 1

INTRODUCTION

1.1 How to use this manual

If you have not yet installed the software, you should read Chap. 2 and then install the software. Afterwards, you should read Chap. 3 to get started.

If you already have experience with the software and want to know more about the models implemented in the packages, please go to the relevant chapters in the manual:

- Part I contains a rough overview of how the software works and how to fix common convergence problems. We strongly urge all new users of the software to read these chapters thoroughly.
- Part II gives a description of the physical and numerical models common to all our device simulators and is recommended for all users.
- Part III gives a description of certain physical and numerical models that are used only in specific device simulators. Users of our other tools can safely skip the chapters that do not concern them.
- Part IV contains product-specific tutorial examples. Since some concepts reoccur in various devices, users are encouraged to read though all the tutorials: even if an example cannot be run, it can still provide valuable insight into the software.
- Part V explains the various commands used in our software and their syntax. All users should refer to it as needed.

1.2 What is Crosslight Software?

Crosslight Software provides a number of technology computer aided design (TCAD) simulation packages: PICS3D, LASTIP and APSYS. These packages are designed to simulate semiconductor electronic or optoelectronic devices. We shall also refer to these simulation software packages as simulators. It also provides growth process modeling tools (CSUPREM, PROCOM) which are beyond the scope of this document.

Crosslight simulators are based on finite element analysis in $2 / 3$ dimensions. They involve a large number of sophisticated physical and numerical models; our purpose here is to give a complete description of these models.

1.3 What is APSYS ?

APSYS is a general purpose 2D/3D modeling software program for semiconductor devices. Based on finite element analysis, it includes many advanced physical models such as hot carrier transport, heterojunction models and thermal analysis. APSYS offers a very flexible and simulation environment for modern semiconductor devices.

1.3.1 Applications

APSYS has a wide range of applications and can handle almost all semiconductor devices:

- 1. Silicon MOSFET, bipolar transistors and CCD.
- 2. HBT based on SiGe, AlGaAs and InGaAsP.
- 3. GaAs MESFET and Photodectors.
- 4. GaN HEMT.
- 5. Light Emitting Diodes (LED).
- 6. Electro-absorption modulators.
- 7. Organic semiconductor devices (OLED).
- 8. Compound, thin film and multi-junction Solar Cells.

The main restriction of APSYS is that it does not include the photon rate equation necessary for laser modeling. As such, it is a complimentary tool to LASTIP and PICS3D which are specifically designed for laser simulations.

1.3.2 Capabilities

APSYS can solve self-consistently the hydrodynamic equations, the heat transfer equations as well as the conventional drift-diffusion equations. Data generated by APSYS include the following:

- 1)Current versus voltage (I-V) characteristics.
- 2)2D potential, electric field and current distributions.
- 3)2D distributions of electron and hole concentrations.
- 4) 2 D distributions of hot carrier temperatures in the hydrodynamic model.
- 5) 2 D distributions of lattice temperature for the heat transfer model.
- 6)Band diagrams under various bias conditions.
- 7)Results of AC small signal analysis for any frequency range. Extraction of 2-port AC parameters such S- and Y- parameters.
- 8)Quantum well subband structure with valence mixing model for quantum devices.
- 9) 2 D distributions of occupancy and concentration of deep level traps in a semiconductor.
- 10)2D optical field distribution for photonic devices such as photodetectors.
- 11)Spontaneous emission spectrum as a function of current for LED.
- 12)All of the above as a function of time (transient model).
- 13)All of the above at different environment temperatures.

1.4 What is LASTIP ?

LASTIP (LASer Technology Integrated Program) is a powerful device simulation program designed to simulate the operation of a semiconductor laser in two dimensions (2D). Given the structural and material properties, it produces a large amount of simulation data to describe the lasing characteristics.
Based on well established physical models, it provides the user with a quantitative insight into various aspects of a semiconductor laser. It can be used as a computer aided design (CAD) tool to optimize existing lasers or to assess new designs. With the physical models and advanced capabilities of LASTIP, the user can concentrate on device optimization and design while leaving all the numerical modeling work to the computers.

1.4.1 Applications

LASTIP can be used to model the electrical and optical behaviors of semiconductor lasers on a 2D cross section. Most cavity designs are supported and there are no restrictions on the emission wavelength or material composition, provided that the material parameters are known.

Since it is limited to a 2D analysis, LASTIP should only be used to model devices with little longitudinal variation. In practice, this means Fabry-Perot lasers.

1.4.2 Capabilities

LASTIP solves the appropriate differential equations for both quantum well and bulk semiconductor lasers. LASTIP can be used to analyze a large number of physical variables. These include (but are not limited to) the following:

- 1) Light versus current (L-I) characteristics.
- 2) Current versus voltage (I-V) characteristics.
- 3) 2 D potential, electric field and current distributions.
- 4) 2 D distributions of electron and hole concentrations.
- 5) Band diagrams under various bias conditions.
- 6) Quantum well subband structure with valence mixing model.
- 7) 2D distributions of occupancy and concentration of deep level traps in a semiconductor.
- 8) 2 D optical field distribution.
- 9) 2D local optical gain distribution.
- 10) Modal gain spectrum as a function of current.
- 11) Spontaneous emission spectrum as a function of current.
- 12) Far-field distribution.
- 13) All of the above as a function of time (transient model).
- 14) All of the above at different temperatures.

1.5 What is PICS3D ?

PICS3D (Photonic Integrated Circuit Simulator in 3D) is a three dimensional (3D) simulator for laser diodes and related waveguiding photonic devices/circuits.
Based on 3D finite element analysis, it solves the semiconductor and optical wave equations to provide an accurate description of the device characteristics. When calibrated with specific material/process, it can be used as a computer-aided design tool to optimize existing devices or to assess new designs.

1.5.1 Applications

PICS3D is designed to simulate a variety of semiconductor optoelectronic devices including the following:

- 1. Fabry-Perot (FP) lasers.
- 2. Distributed Feedback (DFB) lasers.
- 3. Distributed Bragg Reflector (DBR) lasers.
- 4. Semiconductor Optical Amplifiers (SOA).
- 5. Waveguide photodetectors.
- 6. Vertical Cavity Surface Emitting Lasers (VCSELs).
- 7. External cavity lasers.
- 8. Fiber grating lasers.
- 9. Electrode absorption modulators (EAM).
- 10. Multisection/Multielectrode DFB or DBR lasers.
- 11. Multisection photonic integrated circuit combining more than one of the above devices.

Note that FP lasers can also be modeled with LASTIP so there is an overlap in modeling capabilities. There are important differences though: the 2D model of LASTIP is quicker and easier to converge than PICS3D but does not include any longitudinal variation effects. LASTIP will also assume lasing occurs at the modal gain peak where as PICS3D considers the position of the longitudinal cavity modes. It is up to the user to determine which of these tools best suits their needs.

1.5.2 Capabilities

PICS3D is a provides a full 3D analysis by coupling multiple 2D cross-sections of a waveguiding device with a round-trip gain equation based on the propagation in the longitudinal direction. Both quantum well and bulk semiconductor lasers can be modeled. Advanced quantum well models (such as k.p theory) are implemented, which allows the user to model strained quantum wells. The semiconductor materials implemented include ternary/quaternary III-V materials, nitrides and many others: additional materials can be defined as needed by the user.
The capabilities of simulation include the following:

- 1) Light versus current (L-I) characteristics.
- 2) 3D potential, electric field and current distributions.
- 3) 3D distributions of electron and hole concentrations.
- 4) Band diagrams under various bias conditions.
- 5) Quantum well subband structure with valence mixing model.
- 6) 3 D distributions of occupancy and concentration of deep level traps in a semiconductor.
- 7) 3D optical field distribution.
- 8) 3D local optical gain distribution.
- 9) Full multiple mode emission spectra at different power levels.
- 10) Lasing wavelength, output power and longitudinal photon density distribution as a function of bias current.
- 11) Characteristics of DFB lasers with spatial and spectral hole burning effects.
- 12) Full multi-mode simulation of DFB lasers.
- 13) Relative Intensity Noise (RIN), Frequency Noise (FM) and spectral linewidth under different bias conditions.
- 14) Static tuning and dynamic modulation characteristics of single- and multielectrode DFB or DBR lasers.
- 15) Second harmonic distortion in a laser system under direct current modulation.

Chapter 2

INSTALLATION

2.1 System Requirements

The minimum system requirements are a Pentium 4 CPU (or equivalent) with 256 MB of memory, at least 200 MB of available hard disk space and 250 MB of swap space. The recommended configuration has at least 1 GB of RAM to limit the use of the slower virtual memory/swap space.
For large-scale simulations and/or very dense meshes, you may need to run a 64 -bit version of the software in order to access sufficient memory. This will require both a 64 -bit capable CPU and a 64 -bit operating system. In these situations, you may also benefit from using the multi-CPU solvers to speed up certain calculations. Please consult Crosslight for details.

2.2 Installation

The installation program will guide you through the installation process. Versionspecific instructions may come with your installation CD or download. After installation, the program may be launched from the Start menu.

Note that unless specifically instructed to do so, you should not install multiple software packages in the same directory. This may cause version errors between shared files.

If you are using a version of the software controlled by a dongle key, you also need to install the dongle driver at this time. The driver file should be included on your installation CD.

If you are using a remote license, please make sure that your computer has access to the internet. Some of the programs will need to access a server in our office to
validate your license so make sure to configure your firewall appropriately. Consult your IT department or Crosslight for assistance.

2.3 Additional Software

By default, Crosslight uses Gnuplot (http://www.gnuplot.info/) to view simulation results. This is done by generating Postscript (.ps) files: we recommend installing Ghostview (http://pages.cs.wisc.edu/~ghost/) if you do not have a viewer for .ps files.
Results may also be plotted without additional software by using our CrosslightView program.

Chapter 3

BASIC FILES AND PROCEDURES

3.1 For the Impatient

To start the Crosslight software, (supposing you are using LASTIP; APSYS and PICS3D follow the same routine), click on Start -> Programs -> Lastip_20xx.xx. The Simucenter window will pop up, which is the main Graphical User Interface of Crosslight Software: most simulation tasks can be accomplished from within this interface. Depending on the software you are using, this window may be labeled SimuLASTIP, SimuAPSYS or SimuPICS3D: we will use SimuCenter as a common name for all these programs.
At this point, any problems with your license will stop the program. If this should occur, contact the Crosslight support staff for assistance.

We have produced several introductory movies to help users get started. Please click on HELP from the Simucenter main menu and select "Movies: Getting Started". Have fun watching this and the other included movies !!!

After watching the movies, you may want be tempted to start modeling your own devices right away. However, we strongly urge you to take the time to work through the included tutorial examples to learn how to use the software. No matter how eager you are, the learning curve can be quite steep and you will benefit in the long run from a slower approach.

Even after you work on the examples, it is preferable to use an existing example as a basis for your own simulations. Whenever possible, you should modify existing designs step by step to fit your needs rather than make an entirely new simulation from scratch.

To run an existing simulation (such as the tutorial examples), click on File->Open

Project from within Simucenter to browse and select an existing project in the examples directory. Load the project by clicking on the .sol, .gain or .spj file. To act on the input files, right-click and select the appropriate action from the pop-up menu:

1. Run the "*.layer" files to "process and generate the .geo files.
2. Run the "*.geo" files to generate the mesh.
3. (Optional) Run the "*.mplt" files to inspect the mesh generated if you wish to know if the mesh is reasonable.
4. (Optional) Run "*.gain" files to preview the gain spectrum or other critical physical variables. If no .gain files exist, you can create a basic file by rightclicking the .mater file.
5. Run the main equation solver with the "*.sol" input file .
6. (Optional) Analyze and plot the results with the " *.plt" input files.
7. (Optional) Results can also be plotted by using CrosslightView. This can launched by right-clicking on the .std files in SimuCenter or with the main menu: "Action \rightarrow View Results \rightarrow CrosslightView". The program can also be launched independently from the Start Menu.

3.2 How Crosslight Simulation Program Works

A simulation is controlled by one or more input files which define the device structure and the simulation parameters. There are three basic input file types with different file extensions: .layer, .sol and .plt. These are used (respectively) to input the device structure/generate the mesh, solve the equations and plot the results. In some cases, intermediate input files are also needed for the simulation; this will be described below.

Each input file contains a collection of statements recognized by the program; these statements allow the user to interact with the program. Although the input files have been designed to be processed by a stand-alone command-line program, Crosslight has also created a number of user interface programs to facilitate the creation of these input files; these are also described in the following sections.

3.2.1 Input / Output Files

The overall file structure is show in Fig. 3.1. As we discussed previously, the main input files are .layer, .sol and .plt. There are also other auxiliary input/output files

Only shaded files need to be set up by user

Figure 3.1: Overall file structure and flow chart of Crosslight device simulators
that the user needs to know in order to use the simulation software effectively. We give a detailed description of the most important ones below:

1. .geo. The main input file that describe the full details of the device geometry and the initial mesh allocation.
2. .sol. The main input file that defines the material properties and controls the bias and other conditions of main equation solver.
3. .layer. An important auxiliary input file that uses the layer structure description to generate the .geo, .doping and .mater files,
4. .doping which contains doping information that is to be included in the .sol file.
5. .mater which contains material information that is to be included in the .sol file.
6. .mplt can be used to plot the mesh generated from .geo file.
7. .gain file is another important auxiliary input file that can be used to preview the optical gain spectrum, spontaneous emission rate spectrum, quantum well subbands, and other critical physical properties. This may be used by the user to do some preliminary estimates before the full simulation is performed.
8. .out files may appear as .out_0001, .out_0002, etc... These are numerical output data from the main equation solver. They can be used by the .plt program to be plotted. These output files are not meant to be understood by the user.
9. .std files may appear as .std_0001, .std_0002, etc.. These are another form of numerical output data from the main equation solver. They can be used by the CrosslightView program to be displayed in 3D color graphics.
10. .plt file is used to plot the data in .out output files. The program calls the public domain software GNUPLOT to display the graphics in various computer platforms and printers. Typically, Postscript files (.ps) are used as the GNUPLOT output.

3.2.2 The direct approach

Since the core simulation software interacts directly with the input files (.layer, .sol and .plt), the direct approach is to directly edit these files.
While at first, a basic input file may be created with one of the setup tools provided, direct control has several advantages for advanced users:

1. Allows the user to use the full capabilities of the software.
2. Can create of new simulations by modifying an older example or merging parts of different examples.
3. Easier to reproduce problems when technical support is required. If an error is encountered, the basic input files can simply be emailed for assistance.
4. Text files are portable across systems: being able to use the direct approach means not having to rely on setup tools which may not be available on other computer platforms.

3.2.3 Input Statement Syntax

To modify the input files, it is helpful to grasp the basic syntax used for statements:

- Comment lines start with " $\$$ " and will be ignored during file processing.
- Each line can only have a maximum of 80 characters and any information after this limit will be ignored during processing.
- Statements that need to be split up due to their length should use the continuation symbol "\&\&". Characters after the continuation symbol will be ignored.
- Each line can only contain one statement.
- Each statement starts with a keyword which may or may not be followed by parameters specified with " $=$ ". Some parameters may have a default value and do not need to be specified while others are mandatory and must be defined by the user.
- Each parameter has its own type (character string, integer or floating point value). Using a value of the wrong type is an error.
- Certain values need to be grouped for input (e.g. a set of (x, y) coordinates). The following symbols are invisible to the parser used for processing and may be used to group data: space, ",", " (", ")"," [", "]", " \{" and " \}".
- Certain statements (esp. those used to describe material properties such as band_gap) can be used more than once. If so, then the last value issued takes precedence.

In some cases, a formula or table may be used instead of defining a value for a material parameter. Please consult Part V and Appendix B for detailed information on the syntax of statements and parameters as well as rules for mathematical functions that can be used in the input.

3.2.4 The Setup Utility Programs

At first, creating the main input files (.layer, .sol and .plt) from scratch may be difficult because of the need to learn the syntax and the large number of parameters that need to set to define a simulation.

However for many structures, it is possible to create a simplified input file where fewer parameters will need to be adjusted to meet user requirements. The command-line setup programs allow you do this:

1. SetupLayer prompts the user to enter material layer thickness, doping and material composition parameters. It will generate the .layer file which may then be used to generate .geo, .doping and .mater
2. SetupApsys, SetupLastip, or SetupPics3d can be used to produce the .sol, .gain and .plt input files.

3.2.5 The graphic user interface

In addition to the command-line setup programs, Crosslight has developed GUI tools to facilitate the process of creating input files and running a simulation.
At the time of printing of this manual, the following tools are available:

1. SimuCenter: at its heart, a simple text editor for the input files. However, it also integrates various device setup utilities and graphic input/output programs and can launch the main solver. It also includes online help capabilities as well as a "Wizard" to assist with use of the various commands. This should be the starting point of any simulation.
2. LayerBuilder which generates layers of material used to build a device. Reads and creates .layer files to define simple device structures.
3. GeoEditor which allows the user to draw complex devices with irregular shapes that are compatible with the .geo input file format. Should be used instead of LayerBuilder when the device structure does not follow the typical layer/column pattern found in most devices.
4. CrosslightView. A 3D color graphic display tool using the OpenGL technology. Compatible with the .std file format.

Please refer to the online manuals for specific help on these programs. They can be accessed from the "Help" menu in SimuCenter.

3.3 Defining the device structure

Although the main simulator recognizes only the finite element mesh, it is important to correctly define the device structure first. The basic input file used for this is the ".geo" file. It provides a versatile and flexible geometric data specification for finite element analysis. Virtually any device geometry or material variation may be handled by the ".geo" data format. However, it relies on absolute point coordinates to define polygon corner points so it may be tedious to use this format for simple devices.

Therefore, we have created a separate program called LAYER to help generate the ".geo" file easily. The LAYER program is controlled by a simpler input file with file extension "layer". The .layer specification allows simultaneous definition of the device geometry, doping, material information and mesh parameters.

The following subsections describe the ".geo" and and "layer" input file formats. Serious users of the simulator should study the ".geo" input file format. For beginners or casual users, "layer" input file may be sufficient.

In this section, we will also show how to use some of the command-line tools to define and process these input files. Note that these tools can also be accessed via SimuCenter by right-clicking on the input file and selecting the appropriate action. We will also use LASTIP for this example but the process is essentially the same for APSYS and PiCS3D.

3.3.1 SetupLayer

To create a basic .layer file, we can use the setuplayer command-line program. Let us illustrate its use by using this very simple 1D laser diode structure:

$1 \mu \mathrm{~m}$	$\mathrm{Al}_{0.5} \mathrm{Ga}_{0.5} \mathrm{As}$	$\mathrm{p}=1 \mathrm{e} 24 \mathrm{~m}^{-} 3$
$0.2 \mu \mathrm{~m}$	GaAs	undoped, active region
$1 \mu \mathrm{~m}$	$\mathrm{Al}_{0.5} \mathrm{Ga}_{0.5} \mathrm{As}$	$\mathrm{n}=1 \mathrm{e} 24 \mathrm{~m}^{-} 3$

Please note that when we enter the layer structure, we start from bottom as layer \#1 and work our way up until the top layer is reached.

The program is called as follows:

C:\Work>c:\crosslig\lastip\setuplayer.exe -layer test1

Setting up file:test1.layer

```
We assume a 1D layer structure on the xy-plane.
    Please enter the device width (um)
    (Or half width if it is a symmetric device)
    [typical:1-5 um]
1.5
    Please enter the total number of mesh points
        for all the layers; typical [20-40]
30
    Enter the maximum mesh spacing:
        typical [0.1 - 0.5 um]
0.25
            Please enter the layer structure starting from
            bottom as layer 1
    For layer number
                        1
    Please enter layer thickness (um)
1
    Please select doping (1/m^3):
    n-doping: (1) 2.0e24; (2) 1.5e24
        (3) 1.0e24; (4) 0.5e24; (5) other n-doping
        (6) undoped
    p-doping: (7) 2.0e24; (8) 1.5e24
        (9) 1.0e24; (10) 0.5e24; (11) other p-doping
3
```

Is there DFB/DBR grating structure in this layer? [y/n] n

Is this layer an active layer (y / n) ?
n

Please enter layer bulk material macro to be used
(1) gaas -- bulk GaAs
(2) inp -- bulk InP
(3) ingaas -- bulk InGaAs
(4) algaas -- bulk AlGaAs
(5) ingaasp -- bulk InGaAsP (matched to InP)
(6) ingaasp_xy -- bulk InGaAsP (strained)
(7) Enter another macro name other than the above

```
4
    Do you wish to grade Al [y/n] ?
n
    Please enter the Al composition [0-1]
0.5
    Next?
        (1) next layer
        (2) go back to a previous layer
        (so that I can re-enter parameters)
        (3) repeat the previous few layers
            (as in a MQW device)
        (4) finish.
        (5) cancel without generating input file.
1
```

 For layer number
 2
 Please enter layer thickness (um)
 0.2
Please select doping (1/m^3):
n-doping: (1) 2.0e24; (2) 1.5 e 24
(3) 1.0 e 24 ; (4) 0.5 e 24 ; (5) other n-doping
(6) undoped
p-doping: (7) 2.0e24; (8) 1.5e24
(9) 1.0 e 24 ; (10) 0.5 e 24 ; (11) other p-doping
6

Is there DFB/DBR grating structure in this layer? [y/n] n

Is this layer an active layer (y / n)? y

Please enter active layer material macro quantum subbands, gain, etc.

Please enter the active region material system
(1) AlGaAs/AlGaAs --- quantum well
(2) InGaAs/AlGaAs --- strained quantum well
(3) InGaAsP/InP --- InGaAsP/InGaAsP strained quantum well/barrier; substrate=InP.
(4) AlGaAs --- bulk AlGaAs
(5) InGaAsP --- bulk InGaAsP lattice matched to InP
(6) InGaAsP/GaAs --- InGaAsP/InGaAsP strained quantum well/barrier; substrate=GaAs.
(7) InGaAlAs/InP --- InGaAlAs/InGaAlAs strained quantum well/barrier; substrate=InP.
(8) GaN --- bulk GaN (9) AlGaN --- bulk AlGaN
(10) InGaN --- bulk InGaN
(11) InGaN/AlGaN -- strained well/barrier; substrate $=$ GaN.
(12) InGaAlP/GaAs --- In (1-xw-yw) Ga (xw) Al (yw)P /In (1-xb-yb) Ga (xb)Al (yb)P; substrate=GaAs
(13) InGaN/InGaN --- Strained well grown on material lattice matched to GaN.
(14) Active macro other than the above

4
Enter Al composition (0 to 1)

Please enter layer bulk material macro to be used
(1) gaas -- bulk GaAs
(2) inp -- bulk InP
(3) ingaas -- bulk InGaAs
(4) algaas -- bulk AlGaAs
(5) ingaasp -- bulk InGaAsP (matched to InP)
(6) ingaasp_xy -- bulk InGaAsP (strained)
(7) Enter another macro name other than the above

4
Please enter the Al composition [0-1]
0
Next?
(1) next layer
(2) go back to a previous layer
(so that I can re-enter parameters)
(3) repeat the previous few layers
(as in a MQW device)
(4) finish.
(5) cancel without generating input file.

1

For layer number 3

Please enter layer thickness (um)
1

```
Please select doping (1/m^3):
n-doping: (1) 2.0e24; (2) 1.5e24
    (3) 1.0e24; (4) 0.5e24; (5) other n-doping
    (6) undoped
    p-doping: (7) 2.0e24; (8) 1.5e24
    (9) 1.0e24; (10) 0.5e24; (11) other p-doping
9
```

 Is there DFB/DBR grating structure in this layer? [y/n]
 n
Is this layer an active layer (y / n)?
n
Please enter layer bulk material macro to be used
(1) gaas -- bulk GaAs
(2) inp -- bulk InP
(3) ingaas -- bulk InGaAs
(4) algaas -- bulk AlGaAs
(5) ingaasp -- bulk InGaAsP (matched to InP)
(6) ingaasp_xy -- bulk InGaAsP (strained)
(7) Enter another macro name other than the above
4
Do you wish to grade Al [y/n] ?
n
Please enter the Al composition [0-1]
0.5
Next?
(1) next layer
(2) go back to a previous layer
(so that I can re-enter parameters)
(3) repeat the previous few layers
(as in a MQW device)
(4) finish.
(5) cancel without generating input file.
4
Generating .layer file

For your convenience, the setup parameters you have just typed in have been saved in a file named setup_script.txt.
You may modify the script file and use it (to avoid typing the same parameters all over again)
when you run the SetupLayer program next time, as follows: [path] setuplayer.exe -vlayer mydevice < setup_script.txt This may be launched from the SimuCenter or from DOS prompt

This is the resulting file (test1.layer):
\$file:test1.layer
begin_layer
column column_num=1 $\mathrm{w}=0.150000 \mathrm{E}+01$ mesh_num=2 $\mathrm{r}=1$.
bottom_contact column_num=1 from=0 to= $0.150000 \mathrm{E}+01$ \&\& contact_num=1 contact_type=ohmic
\$
layer_mater macro_name=algaas \&\&
var_symbol1=x var1= $0.500000 \mathrm{E}+00$ \&\&
column_num=1
layer $d=0.100000 \mathrm{E}+01 \mathrm{n}=13$ \&\&
n_doping1 $=0.100000 \mathrm{E}+25$ \&\&
$r=0.800000 \mathrm{E}+00$
\$
layer_mater macro_name=algaas \&\&
var_symbol1=x var1= $0.000000 \mathrm{E}+00$ \&\&
active_macro=AlGaAs \&\&
avar_symbol1=xw avar1= 0.000000E+00 \&\&
column_num=1
layer $\mathrm{d}=0.200000 \mathrm{E}+00 \mathrm{n}=5$ \&\&
shift_center= -0.111111E-01 \&\&
$r=-0.120000 \mathrm{E}+01$
\$
layer_mater macro_name=algaas \&\&
var_symbol1=x var1= $0.500000 \mathrm{E}+00$ \&\&
column_num=1
layer $d=0.100000 \mathrm{E}+01 \mathrm{n}=11$ \&\&
p_doping1 $=0.100000 \mathrm{E}+25$ \&\&
$r=0.120000 \mathrm{E}+01$
$\$$
top_contact column_num=1 from=0 to= 0.150000E+01 \&\&
contact_num=2 contact_type=ohmic
end_layer

We will explain the .layer file in the following subsection.

3.3.2 Growing the layers: .layer files

The "layer" format is a simplified way to define the device structure. It is meant to be processed and generate the .geo file that is required for mesh generation. It also produces other input files that will be used for the main solver (.mater and .doping). From the command-line, this processing is done with the layer.exe program:

C:\Work>c:\crosslig\lastip\layer.exe test1.layer

Note that if you are using the SimuCenter GUI, this can also be accomplished by right-clicking on the .layer file and choosing the "Process ..." option.

The .layer format is based on the idea that most devices are grown by depositing several parallel layers on top of each other. Extra features such as etching and regrowth can be modeled by allowing lateral variation of the materials through the use of multiple columns.

These layers and columns define the grid lines that serve as polygon boundaries in the .geo file. The .layer format simplifies the .geo definition since it automatically numbers the polygons and calculates the corner point's absolute coordinates. The only thing required is knowledge of the the layer thicknesses and column widths.
Before proceeding any further, let us look at the structure of the .layer file we are using as an example. The relevant file contents are bracketed by begin_layer and end_layer. To process layers, the program needs to know how many columns are involved so the next set of commands will be the column statements: columns must be numbered $1,2,3, \ldots$ starting from the left. Layers are not numbered: they are added automatically from the bottom up as the .layer file is processed from beginning to end.
column statements define the width of the columns and also control the lateral mesh allocation. In this particular case, we only have one column with 2 mesh points so there is no real lateral variation allowed: we refer to this as a 1D simulation. This is the simplest kind of device we can build and also the quickest to model.
As each layer is being processed, there must be one layer_mater statement for each column to define the material. For example, to define a ridge or regrowth, the material in column 2 would be different than in column 1. Material numbers in .geo are generated automatically when new macro definitions are found and assigned to the relevant polygon.
If no material is to be defined in a particular column, use the "void" macro; this will prevent any mesh from being allocated in this region. Note that in some cases, this will affect the physics of the simulation by shifting the position of the boundaries. In that case, the "vacuum" or "air" macro may be used instead; this will define an insulator region so mesh points will be allocated but there will be no current flow.

Active regions can be recognized by the two different macros they define. The reason for this will be explained in more detail in section 3.5.

After the layer__mater statements, there must also be a layer statement to define the layer thickness as well as the vertical mesh information. In that sense, layer is very similar to the column statement which provides size and lateral mesh information for the columns.

The layer statement also provides doping information with n__dopingj or p_dopingj where j is the column number. It is also possible to define doping for each column in the layer__mater statement but layer provides additional tools to linearly grade doping levels. Also, note that doping is defined in m^{-3} for input purposes; care should be taken to convert from the commonly used cm^{-3} units as low doping levels can lead to poor convergence.

The last statements define equipotential boundary regions and may be placed anywhere in the file after the column statements. top_contact and bottom_contact define contact regions in a given column on the top or bottom of the layer stack. Position information defines the extent of the contact with respect to the contact width.

Note that our usual convention is to grow devices n-side down and to use electrode $\# 1$ as the n electrode. This choice mostly influences the sign of the current on the electrodes when bias is applied and is for convenience's sake only.

3.3.3 Dealing with polygons: .geo files

This section is for experienced users, beginning uses can safely skip it.
The .layer example above produces this output file (test1.geo) when processed:

```
begin_geometry
point label=a001 xy=[ 0.000000000000E+000 0.0000000000000E+000 ]
point label=a002 xy=[ 0.000000000000E+000 0.100000000000E+001 ]
point label=a003 xy=[ 0.000000000000E+000 0.1200000000000E+001 ]
point label=a004 xy=[ 0.000000000000E+000 0.220000000000E+001 ]
$
point label=b001 xy=[ 0.150000000000E+001 0.000000000000E+000 ]
point label=b002 xy=[ 0.150000000000E+001 0.1000000000000E+001 ]
point label=b003 xy=[ 0.150000000000E+001 0.1200000000000E+001 ]
point label=b004 xy=[ 0.150000000000E+001 0.2200000000000E+001 ]
$
polygon name=p001 4_points=[ a001 b001 b002 a002 ] material= 1 &&
    boundary_1=[ a001 b001 ] &&
    limits_1=[ 0.000000000000E+000 0.150000000000E+001 ]
```

```
polygon name=p002 4_points=[ a002 b002 b003 a003 ] material= 2
polygon name=p003 4_points=[ a003 b003 b004 a004 ] material= 1 &&
    boundary_2=[ b004 a004 ] &&
    limits_2=[ 0.000000000000E+000 0.150000000000E+001]}
$
end_geometry
begin_meshgen
internal_xpoint xp_size= 0.2000E-03
put_mesh polygon=p001 edge=[ b001 b002 ] &&
    point_from= 0.000000000000E+000 point_to= 0.100000000000E+001 &&
    number= 13 ratio= 0.800000000000E+000
put_mesh polygon=p002 edge=[ b002 b003 ] &&
    point_from= 0.000000000000E+000 point_to= 0.200000000000E+000 &&
    shift_center= -0.111111000000E-001 &&
    number= 5 ratio= -0.120000000000E+001
put_mesh polygon=p003 edge=[ b003 b004 ] &&
    point_from= 0.000000000000E+000 point_to= 0.100000000000E+001 &&
    number= 11 ratio= 0.120000000000E+001
$
put_mesh polygon=p001 edge=[ a001 b001 ] &&
    point_from= 0.000000000000E+000 point_to= 0.150000000000E+001 &&
    number= 2 ratio= 0.100000000000E+001
$
mesh_output mesh_outfile=test1.msh order=yes
end_meshgen
```

The first half of a .geo file is bracketed by the begin__geometry and end_geometry statements.

Within this section, point coordinates are assigned labels using the point statement. Polygons are then defined by using point labels in counter-clockwise order with the polygon statement.
Each polygon is also identified by its material number. Different materials require different polygons so that material boundaries can be modeled accurately. As a rule, an insulator macro must be given a larger material number than a semiconductor.

One major limitation of the .geo format is that it requires that if two polygons touch each other, the shared edges must fully overlap. For complex geometries, it is recommended to sketch out the polygons and point labels to avoid errors caused by this limitation. In certain cases, it may be necessary to sub-divide polygons in order to ensure this rule is always enforced.

Boundary regions occupy part of an edge and can be defined either in the polygon or add__boundary statements. In our device simulators, these are used to define
equipotential boundaries (i.e. contacts). In the above example, these boundaries have been inherited from the contact definitions in the .layer file.

While polygons can be triangles, trapezoids are preferred since it is easier to refine the mesh afterwards. All .geo files obtained by processing .layer will be based on trapezoids due to its grid format.

For rounded edges, the edge_curve statement may be used to add a concave or convex arcs.

The second half of the .geo format deals with mesh allocation and will be discussed in the next section.

3.4 Creating a good mesh

In order to run the simulation, we will need a finite element mesh based on the geometry and material properties of our device. Usually, the mesh data file is given a .msh file extension and it is generated by processing a .geo file. In our example, the mesh file is generated with this command:

C:\Work>c:\crosslig\lastip\geometry.exe test1.geo

Note that if you are using the SimuCenter GUI, this can also be accomplished by right-clicking on the .geo file and choosing the "Generate ..." option.

This will produce a .msh file that contains mesh point and triangle element information as well as a .mplt file that can used to plot the mesh.

3.4.1 Mesh definition in .layer files

In the previous section, the mesh allocation was done automatically by the setuplayer program. To modify the number of mesh points, the mesh_num parameter in column and the n parameter in layer must be changed. The number of mesh points in this system will be roughly $\sum($ mesh_num $) \times \sum(n)$; some extra mesh points may be added at certain interfaces.

To control the distribution of mesh points within a layer or column, use the r and shift_center parameters of column and layer. These parameters will be part of various put__mesh statements in the .geo file when the .layer file is processed. For a more detailed explanation of these parameters, consult the reference section for the put__mesh statement.

3.4.2 Mesh definition in .geo files

This section is for experienced users, beginners may safely skip it.
The second half of a .geo file controls the mesh generation and is bracketed by the begin_meshgen and end_meshgen statements.
The basic statement for this section is the put__mesh statement which directly allocates the mesh along the edges of a polygon. If your .geo file is a converted .layer file, these statements will be initialized with the mesh parameters from the column and layer statements. Note that just like in .layer, the distribution of mesh points along an edge can be controlled.
To mesh the inside of the polygons, mesh lines will automatically propagate from one side of a polygon to its opposite edge and continue on to neighboring polygons until termination. For triangles, it assumed that each edge is opposed to the other two but trapezoid edges oppose each other in pairs. Crossing mesh lines are then sub-divided into mesh triangles.

It is therefore not necessary to mesh all polygon edges as the mesh lines propagate automatically. Conflicting or redundant put__mesh statements will be overridden and the last statement issued will have precedence. Note that un-meshed edges will also be assigned a default minimum mesh when detected; this should be shown as a warning message when the .geo file is processed.
It is recommended that the user practice setting up a simple mesh to get used to the mesh generator before attempting a more complicated design.

Optionally, you can also use double__mesh to double the mesh density in a specified region of a polygon or half_mesh to reduce it. This gives users additional control on the local mesh density without over-meshing the entire device.

3.4.3 Troubleshooting mesh

An unsatisfactory mesh is a major cause of non-convergence. The first step to troubleshooting a mesh is plot it as shown above and check that the mesh distribution is OK.

The next step is to check if the mesh is too coarse. While it can be tempting to put fine mesh everywhere in a device, this is not practical. For example, if the mesh is too dense, the simulation time may be prohibitively long. Also, the memory requirements may go beyond what the mesh generator supports or even beyond what your computer allows. The latter is unlikely in a 1D/2D simulation but often occurs with 3D simulations on 32-bit systems.
Therefore, we must make an effort to allocate mesh points intelligently and concentrate them only where needed. In general, the mesh must be dense near sharp
material interfaces (e.g. contacts, boundaries between different materials or different doping levels, etc...) and near other regions where the electrical properties change rapidly over a small distance (e.g. areas where there is current crowding, tunnel junctions, etc...).
There is no systematic error analysis that can help you determine if a mesh is dense enough. It is recommend that you plot available simulation results to ensure that material properties and important quantities like the band diagram are well-sampled.
However, there is a refine__mesh statement that can assist you in this task. This command can add mesh points anywhere the change in material parameters between neighboring mesh points exceeds a specified amount. This will generate a new mesh file that can be used in future simulations.

Additional discussions on this topic can be found in Chap. 4.

3.5 Material parameters

3.5.1 Material Macros

In the Crosslight system, many material parameters are needed to model the physical behavior of devices. Each of these parameter is defined through a separate statement such as band_gap. For convenience, these parameters are lumped together into a "macro". In this context, a "macro" is a groups of material parameters commands lumped together under the same name: this makes it easy to set all of the material properties for a given material using a single command.
In order to be used by the software, each material property must be assigned to the right mesh points. This is done by using material numbers ($1,2,3, \ldots$) which are defined along with the mesh polygons in the .geo file. Note that we do the same for contacts to facilitate the application of bias to the simulation: voltage_1 or current_1 refers to bias on electrode \# 1 .

The link between the material numbers and the macro name can be seen in the .mater file that is produced when a .layer file is processed:

```
contact num= 1 type=ohmic
contact num= 2 type=ohmic
load_macro name=algaas mater= 1 &&
    var_symbol1=x var1= 0.5000E+00
load_macro name=algaas mater= 2 &&
    var_symbol1=x var1= 0.0000E+00
get_active_layer name=AlGaAs mater= 2 &&
    var_symbol1=xw var1= 0.0000E+00
```

active_reg mater= 2 \&\&
thickness $=0.200000000000 \mathrm{E}+000$
When using the .layer format to input the device layout, material numbers are assigned automatically by layer.exe and transferred to the .geo file. If the .geo format is used to input the device layout directly, the material numbers for each mesh polygon must be defined manually; material macros must also be assigned manually for each material.

In this example, we see that there are two kinds of macros: passive and active. In our convention, passive macros are recognized by their lowercase names and are loaded with load__macro. Active macros can have mixed-case names and are loaded with get__active__layer.

Passive macros define bulk material properties such as bandgap, carrier mobility and refractive indexes. Active macros define material parameters needed to calculate the optical properties (gain/absorption, spontaneous emission) of this material. Active macros also come in different flavors: bulk, QW and complex QW. The differences between the different models are discussed further in Sec. 8.1.
Typically, only the active regions of light-emitting devices need to use active macros: the optical transitions in other layers can safely be assumed to be at wavelengths that are not of interest. The main reason to use active macros in a certain region is that the light emission from that layer is of great interest to the device simulation: for example the active region of a laser device or LED controls almost all of the interesting device properties.
An exception to the above rule is regions where quantum confinement occurs (e.g. HEMTs or certain MOSFET channel designs) and a 2D electron gas (2DEG) is expected. In that case, the active macro for a QW must be used in the channel as the active macros enable the quantum-mechanical solvers. This is purely a historical accident as Crosslight tools were originally designed to model laser diodes; new users may find it beneficial to keep this tidbit of information in mind as it explains many of our design choices.
The actual parameters defined in a macro are outside the scope of this section. However users who wish to examine the content of the default macros should look to their installation directory (default is $\mathrm{c}: \backslash$ crosslig). The default macros are contained in the crosslight.mac (silicon, GaAs and most III-V compounds) and more.mac (nitrides, organic semiconductors, metals) files. A few sample macros are also included in Appendix B.

Additional help regarding macro syntax is included in the header of these files. This can be of help to advanced users who wish to create new material definitions or who have access to better material data and want to override the default material parameters. However, it is $\boldsymbol{S T R O N G L Y}$ recommended that the default macro files not be altered in any way since that would affect all the simulations that use these
files.
Instead, the use__macrofile statement can be used to load a custom or modified macro file for use in a simulation. Material parameters can also be overwritten directly in the simulation file by re-issuing the statement that defines it once the macros have been loaded.

Simplified Complex QW Library (SCXLIB)

Starting with the 2014 version of the software, a simplified model is being introduced to define material parameters. We have found that new users often make mistakes when invoking the passive and active material macros separately and sometimes define conflicting sets of material parameters: for example, the QW active macro declaration may define a certain barrier composition but the barrier layers themselves have another.

To avoid this common problem and ease the learning curve of the software, we have introduced the concept of a "library" which is simply a wrapper around the "macro" concept. When a material is declared with a library, a single set of input parameters is given in the layer file. The file is then processed and macro invocations are adjusted to correctly send the parameter values to the right variable names.

The definition of quantum well regions is also simplified using the library system. In the .layer file, each quantum well layer is simply tagged (model=quantum_well) as follows:

```
layer_mater column_num=1 mater_lib=AlGaAs &&
    var_symbol1=x grade_var=1 &&
    grade_from=0.71 grade_to=0.33
layer d=0.15 n=10 r=1
layer_mater column_num=1 mater_lib=AlGaAs &&
    var_symbol1=x grade_var=1 &&
    grade_from=0.33 grade_to=0.0 &&
    model=quantum_well
layer d=0.001 n=5 r=1
layer_mater column_num=1 mater_lib=AlGaAs &&
    var_symbol1=x var1=0. model=quantum_well
layer d=0.005 n=25 r=1
layer_mater column_num=1 mater_lib=AlGaAs &&
    var_symbol1=x grade_var=1 &&
    grade_from=0.0 grade_to=0.33 &&
```

```
    model=quantum_well
layer d=0.001 n=5 r=1
layer_mater column_num=1 mater_lib=AlGaAs &&
    var_symbol1=x grade_var=1 &&
    grade_from=0.33 grade_to=0.71
layer d=0.15 n=10 r=1
```

The software will automatically look to the neighboring layers without the quantum well tag to define the outer barrier regions; if multiple neighboring layers are tagged as a quantum well, then they all belong to the same quantum-confined region. This system thus automatically uses complex QW macros for the tagged layers (and outer barriers) to support this kind of aggregation. The resulting band profile and wavefunctions can be seen in Fig. 3.2.

Note that existing users of the software may continue to use the old macro system indefinitely and that older input files will continue to work as before. For new users however, we strongly recommend the use of this new library method: we will progressively update our tutorial examples in the coming years to reflect this. There is one small caveat though: the "macro" and "library" systems cannot co-exist in the same .layer file.

Figure 3.2: A sample complex QW set up using the simplified "library" method.

3.6 Previewing Physical Properties

Before the main equation solver is used it may be a good idea to preview physical properties such as the optical gain/absorption spectrum. For example, this can help confirm that the gain curve is centered on the right wavelength in a laser design.

This can be done with a ".gain" file. A basic input file can be created by right-clicking on the .mater file in SimuCenter or by running the setuplastip/setupapsys/setuppics3d program as follows:

```
C:\Work>c:\crosslig\lastip\setuplastip -gain test1
```

Setting up input file:
test1.gain
You may use it to plot the gain/loss spectrum
and other physical properties
Enter estimated operating wavelength in um
for example 0.82:
0.82
Enter carrier density range in $m * *(-3)$
for example:
5.e23 1.e25
1e23 5e24
Enter temperature in degrees Kelvin
300
Please enter the graphics device
(1) postscript (2) window (3) x11
Your choice?
1
Please select the physical properties to plot
(1) gain spectrum
(2) spontaneous emission rate
(3) index change spectrum
(4) current vs. active region density
(5) alpha factor spectrum
(6) gain vs. active region density
(7) quantum well subbands (k.p)
(8) dipole moment vs. k (k.p)
(9) 1 - 4 above
(10) 1 - 6 above
(11) finish
10

```
Enter your next choice (1-11)
```

11

Done
This will produce the following file:

```
$file:test1.gain
begin_gain
plot_data plot_device=postscript
temperature temp= 0.3000E+03
include file=test1.mater
gain_wavel wavel_range=[ 0.8000E+00 0.8400E+00] &&
    conc_range=[ 0.1000E+24 0.5000E+25] &&
    curve_number=20
sp.rate_wavel wavel_range=[ 0.8000E+00 0.8400E+00] &&
    conc_range=[ 0.1000E+24 0.5000E+25] &&
    curve_number=20
index_wavel wavel_range=[ 0.8000E+00 0.8400E+00] &&
    conc_range =[ 0.1000E+24 0.5000E+25] &&
    init_conc=1.5e24 &&
    curve_number=20
current_conc conc_range=[ 0.1000E+24 0.5000E+25] &&
    data_point=30 &&
    use_macro=yes fit_outfile=tmp.data
alpha_wavel wavel_range=[ 0.8000E+00 0.8400E+00] &&
    conc_range=[ 0.1000E+24 0.5000E+25] &&
    curve_number=20
gain_density conc_range=[ 0.1000E+24 0.5000E+25] &&
    wavel_range=[ 0.8000E+00 0.8400E+00] &&
    data_point=30
end_gain
```

The .gain file includes the material definitions of the .mater file through the include statement. It also defines the isothermal temperature used for the following calculations. A series of statements then produces a set of curves to preview the physical properties of the first active region found in the .mater file.

To plot these curves, right-click on the .gain file in SimuCenter or use the command line:

C:\Work>c:\crosslig\lastip\lastip.exe test1.gain
C:\Work>c:\crosslig\lastip\psplot.bat test1.ps
If there is more then one active region defined in .mater that you wish to preview, replace the .mater include statement with the desired active region definition.

3.7 Setting up a simulation

The .sol file is the main simulation input used in Crosslight. It consolidates all the device structural information as well as the material and simulation parameters.

Once again, a basic input file can be created with the command-line setup tools or by right-clicking on an empty .sol file in SimuCenter:

```
C:\Work>c:\crosslig\lastip\setuplastip -sol test1
    Setting up .sol file for filebase=test1
    Please enter the cavity length (um):
200
    Please enter the expected emission wavelength (um):
0.83
    Please enter 1 for 1D laser optical wave boundary
    Please enter 2 for other 2D laser boundary
1
    Please enter the current bias you wish to apply (mA)
100
    Please enter the contact number for the n-type laser contact
    (look up .layer or .geo file if necessary)
1
    Generating .sol file
```

The exact dialogue that will be shown is different for APSYS, LASTIP and PICS3D but the basic principles stay the same. Since we are using LASTIP in this example, we get this .sol file:

```
$file:test1.sol
begin
load_mesh mesh_inf=test1.msh
include file=test1.mater
include file=test1.doping
output sol_outf=test1.out
newton_par damping_step=5. max_iter=100 print_flag=3
use_sor max_iter=3000 print_sor=noprint
init_wave &&
    length= 0.2000E+03 backg_loss=500. &&
    boundary_type=[2 2 1 1] init_wavel= 0.8300E+00 mirror_ref=0.32 &&
    wavel_range=[ [ 0.8100E+00 0.8500E+00]
equilibrium
```

```
newton_par damping_step=1. print_flag=3
scan var=voltage_1 value_to= -0.1345E+01 print_step= 0.1345E+01 &&
    init_step= 0.2689E+00 min_step=1.e-5 max_step=0.5
scan var=current_1 value_to= 0.2500E+03 print_step= 0.2500E+03 &&
    init_step= 0.2500E+01 min_step=1.e-5 max_step= 0.2500E+02
end
```


There are a few categories of statements that are commonly used in .sol files.

3.7.1 Input/output

In this category, we include all the statements that are used to load previously generated data such as the mesh (load__mesh) or merge other input files (include) that define the material parameters and doping profiles.
The output statement defines a base name that will be used for the output data files. It is generally considered a good idea to used the same base name for input and output files: this is what the command-line setup program does by default.
Using the same base file name ensures that the GUI programs can detect and handle the files correctly.

3.7.2 Physical models

This next set of statements should be located after the input/output statements and varies a lot for each software and indeed, for any given simulation. These statements turn on certain physical models that needed for that particular simulation.
In this example, the use__sor statement is used to define a basic 1D mode solver. The init__wave statement defines the boundary conditions for the waveguide as well as other critical parameters for the device (length, mirror reflectivity, background losses, etc...).
Depending on the type of simulation, other statements may be used in this section. For example, a solar cell in APSYS would use the light__power statement to define the optical pumping conditions.

3.7.3 Bias statements

This category includes the statements that are used to call the Newton solver and find the state of the device under bias. These statements must therefore be preceded by at least one newton_par statement to control the solver parameters.

The first of these statements is equilibrium. It calls the Newton solver to get the initial solution of the device under thermal equilibrium conditions: this means only the Poisson equation is solved and the net current is zero for both electrons and holes. This is a required first step before bias can be applied.

Subsequent bias is applied with the scan statement. The variable controls which electrode is biased as well as the type of bias which is applied: for example, voltage $\backslash _1$ is the voltage on electrode $\# 1$. Multiple bias variables can be applied simultaneously.
Time is also available as a variable for transient simulations. Note that if you start a transient simulation, it is a good idea to consistently continue to use the time variable as you may otherwise encounter convergence difficulties.

3.8 Running a simulation

To run a simulation, you may right-click the .sol file from SimuCenter or call the main solver from the command line:

C:\Work>c:\crosslig\lastip\lastip.exe test1.sol

This will produce the following output (truncated for convenience):

```
---------------------------------------------------------------------
\begin{tabular}{|c|c|c|c|c|c|}
\hline \# & \# & \#\#\#\#\# & \#\#\#\#\#\#\# & \#\#\# & \#\#\#\#\#\# \\
\hline \# & \# \# & \# \# & \# & \# & \# \# \\
\hline \# & \# \# & \# & \# & \# & \# \# \\
\hline \# & \# \# & \#\#\#\#\# & \# & \# & \#\#\#\#\#\# \\
\hline \# & \#\#\#\#\#\#\# & \# & \# & \# & \# \\
\hline \# & \# \# & \# \# & \# & \# & \# \\
\hline \#\#\#\#\#\#\# & \# \# & \#\#\#\#\# & \# & \#\#\# & \# \\
\hline
\end{tabular}
Version: 2009.04.01
Build-date: [y/m/d/h]=2009/ 4/26/14
Copyright (c) 1995-2008, Crosslight Software Inc.
Portions of This Software Copyright (c) 1995-2008, National Research Council of Canada
Licensed to:
Evaluation User
Simulation for Device:


Solving equations at equilibrium

Error report for equations and variables:
it\# eqns potential
\(1 \quad 0.440 \mathrm{E}+04 \quad 0.747 \mathrm{E}+04\)
\(2 \quad 0.414 \mathrm{E}+04 \quad 0.326 \mathrm{E}+04\)
\(3 \quad 0.849 \mathrm{E}+03 \quad 0.435 \mathrm{E}+03\)
\(4 \quad 0.112 \mathrm{E}+03 \quad 0.921 \mathrm{E}+02\)
\(5 \quad 0.549 \mathrm{E}+02 \quad 0.217 \mathrm{E}+02\)
\(6 \quad 0.423 \mathrm{E}+02 \quad 0.127 \mathrm{E}+02\)
\(7 \quad 0.256 \mathrm{E}+02 \quad 0.704 \mathrm{E}+01\)
\(8 \quad 0.126 \mathrm{E}+02 \quad 0.318 \mathrm{E}+01\)
```

 9 0.129E+02 0.365E+01
 10 0.114E+02 0.422E+01
11 0.301E+01 0.112E+01
12 0.147E+01 0.459E+00
13 0.299E+00 0.929E-01
14 0.107E-01 0.326E-02
15 0.131E-04 0.388E-05
16 0.487E-09 0.424E-09
Calculate optical index change
Direct eigen solver at lambda= 0.830000000000000
Select modes with max index:
3.64984451858962
Start Arnoldi eigen solver
sigma= (763.400219073982,0.000000000000000E+000)
End of Arnoldi eigen solver
Eigen Value=[0.694621E+003 0.140020E+002] Eqn. Error= 0.2731E-09
Cmplx lateral modal index for z-segment:
1

```
1 (3.48172365230206,3.508816922721083E-002)

Searching for modal gain peak.
Modal gain (1/m): -359812.782918322
At lambda= 0.850000000000000
Active Reg.\# 1 Average Conc. \((n \& p)=0.7683 E+230.1429 E+24\)
Save bias data and continue.
Lambda (um) \(=0.850000000000000\)
Lateral mode(s)= 1
Emitted Power (mW) :
\begin{tabular}{llll} 
(Mode) & (Total) & (Front) & (Back) \\
1 & \(0.4674 \mathrm{E}-32\) & \(0.2337 \mathrm{E}-32\) & \(0.2337 \mathrm{E}-32\)
\end{tabular}

Solver converged at
Voltage: (Volt) 0.0000E+00 0.0000E+00
Current: (A/m) 0.0000E+00 0.0000E+00

Data set \# 1 printed at
Voltage: (Volt) 0.0000E+00 0.0000E+00
Current: (A/m) 0.0000E+00 0.0000E+00
light: \(\quad 0.4674 \mathrm{E}-32\)

Printing 2D/3D data to output file
Data file:test1.out_0001

Generating .std file
Completed .std file
```

======Statement: scan=====

```
scan number-> 1

Solving equations with bias.

Changing: voltage_1 with step: \(0.2689 \mathrm{E}+00\)
Error report for equations and variables:
\begin{tabular}{rlllll} 
it\# & eqns & potential & elec & hole & other \\
1 & \(0.182 \mathrm{E}+02\) & \(0.273 \mathrm{E}+03\) & \(0.273 \mathrm{E}+03\) & \(0.272 \mathrm{E}+03\) & \(0.913 \mathrm{E}-25\) \\
2 & \(0.181 \mathrm{E}+02\) & \(0.164 \mathrm{E}+03\) & \(0.164 \mathrm{E}+03\) & \(0.164 \mathrm{E}+03\) & \(0.588 \mathrm{E}-25\) \\
3 & \(0.180 \mathrm{E}+02\) & \(0.937 \mathrm{E}+02\) & \(0.937 \mathrm{E}+02\) & \(0.936 \mathrm{E}+02\) & \(0.841 \mathrm{E}-25\) \\
4 & \(0.178 \mathrm{E}+02\) & \(0.502 \mathrm{E}+02\) & \(0.502 \mathrm{E}+02\) & \(0.501 \mathrm{E}+02\) & \(0.110 \mathrm{E}-24\) \\
5 & \(0.175 \mathrm{E}+02\) & \(0.249 \mathrm{E}+02\) & \(0.249 \mathrm{E}+02\) & \(0.250 \mathrm{E}+02\) & \(0.129 \mathrm{E}-24\) \\
6 & \(0.168 \mathrm{E}+02\) & \(0.113 \mathrm{E}+02\) & \(0.113 \mathrm{E}+02\) & \(0.130 \mathrm{E}+02\) & \(0.136 \mathrm{E}-24\) \\
7 & \(0.153 \mathrm{E}+02\) & \(0.469 \mathrm{E}+01\) & \(0.468 \mathrm{E}+01\) & \(0.634 \mathrm{E}+01\) & \(0.136 \mathrm{E}-24\) \\
8 & \(0.120 \mathrm{E}+02\) & \(0.187 \mathrm{E}+01\) & \(0.187 \mathrm{E}+01\) & \(0.329 \mathrm{E}+01\) & \(0.250 \mathrm{E}-24\) \\
9 & \(0.559 \mathrm{E}+01\) & \(0.826 \mathrm{E}+00\) & \(0.822 \mathrm{E}+00\) & \(0.235 \mathrm{E}+01\) & \(0.711 \mathrm{E}-24\) \\
10 & \(0.510 \mathrm{E}-02\) & \(0.505 \mathrm{E}+00\) & \(0.506 \mathrm{E}+00\) & \(0.195 \mathrm{E}+01\) & \(0.153 \mathrm{E}-23\) \\
11 & \(0.393 \mathrm{E}-02\) & \(0.428 \mathrm{E}+00\) & \(0.428 \mathrm{E}+00\) & \(0.111 \mathrm{E}+01\) & \(0.197 \mathrm{E}-23\) \\
12 & \(0.624 \mathrm{E}-03\) & \(0.414 \mathrm{E}+00\) & \(0.414 \mathrm{E}+00\) & \(0.480 \mathrm{E}+00\) & \(0.298 \mathrm{E}-23\) \\
13 & \(0.116 \mathrm{E}-03\) & \(0.224 \mathrm{E}+00\) & \(0.224 \mathrm{E}+00\) & \(0.331 \mathrm{E}+00\) & \(0.251 \mathrm{E}-23\) \\
14 & \(0.223 \mathrm{E}-04\) & \(0.699 \mathrm{E}-02\) & \(0.700 \mathrm{E}-02\) & \(0.577 \mathrm{E}-02\) & \(0.315 \mathrm{E}-24\) \\
15 & \(0.224 \mathrm{E}-07\) & \(0.469 \mathrm{E}-08\) & \(0.398 \mathrm{E}-07\) & \(0.540 \mathrm{E}-04\) & \(0.302 \mathrm{E}-27\) \\
16 & \(0.953 \mathrm{E}-11\) & \(0.102 \mathrm{E}-13\) & \(0.422 \mathrm{E}-12\) & \(0.127 \mathrm{E}-08\) & \(0.399 \mathrm{E}-36\) \\
Modal & Gain \& Mirror Loss \([1 / \mathrm{m}]\) & \(-0.359304 \mathrm{E}+006\) & \(0.569717 \mathrm{E}+004\) \\
Calculate optical index change & & &
\end{tabular}

Direct eigen solver at lambda= 0.850000000000000
Select modes with max index:
3.64995114629961

Start Arnoldi eigen solver
sigma \(=(727.940677315902,0.000000000000000 \mathrm{E}+000)\)
End of Arnoldi eigen solver
Eigen Value \(=\left[\begin{array}{c}0.661040 E+0030.955849 E+001] ~ E q n . ~ E r r o r=~ 0.2910 E-09 ~\end{array}\right.\)
Cmplx lateral modal index for \(z\)-segment: 1
1 (3.47827733528838,2.514625154027444E-002)

Searching for modal gain peak.
Modal gain (1/m): -354284.287056734

At lambda= 0.850000000000000
Active Reg.\# 1 Average Conc. (n\&p) \(=0.8041 \mathrm{E}+230.1469 \mathrm{E}+24\)
Save bias data and continue.
Lambda (um) \(=0.850000000000000\)
Lateral mode(s)= 1
Emitted Power (mW):
(Mode) (Total) (Front) (Back)
\(1 \quad 0.1829 \mathrm{E}-22 \quad 0.9147 \mathrm{E}-23 \quad 0.9147 \mathrm{E}-23\)

Solver converged at
Voltage: (Volt) -0.2689E+00 0.0000E+00
Current: (A/m) 0.2316E-10 -0.2289E-10
...etc....
...etc....
...etc....
...etc....

Changing: current_1 with step: 0.9872E+01
Error report for equations and variables:
it\# eqns potential elec hole other
\(1 \quad 0.642 \mathrm{E}+02 \quad 0.119 \mathrm{E}-01 \quad 0.735 \mathrm{E}-02 \quad 0.534 \mathrm{E}-02 \quad 0.132 \mathrm{E}-01\)
\(2 \quad 0.387 \mathrm{E}+01 \quad 0.344 \mathrm{E}-04 \quad 0.222 \mathrm{E}-04 \quad 0.263 \mathrm{E}-04 \quad 0.622 \mathrm{E}-04\)
\(3 \quad 0.125 \mathrm{E}-01 \quad 0.359 \mathrm{E}-08 \quad 0.307 \mathrm{E}-09 \quad 0.337 \mathrm{E}-08 \quad 0.201 \mathrm{E}-06\)
\(4 \quad 0.813 \mathrm{E}-04 \quad 0.123 \mathrm{E}-11 \quad 0.413 \mathrm{E}-12 \quad 0.145 \mathrm{E}-11 \quad 0.131 \mathrm{E}-08\)
\(5 \quad 0.460 \mathrm{E}-06 \quad 0.131 \mathrm{E}-12 \quad 0.262 \mathrm{E}-13 \quad 0.155 \mathrm{E}-13 \quad 0.141 \mathrm{E}-10\)
Modal Gain \& Mirror Loss [1/m] 0.569680E+004 0.569717E+004
Calculate optical index change
Direct eigen solver at lambda= 0.850000000000000
Select modes with max index:
3.65739599522727

Start Arnoldi eigen solver
sigma \(=\) (730.913284438270,0.000000000000000E+000)
End of Arnoldi eigen solver
Eigen Value \(=[0.663343 \mathrm{E}+003-0.154368 \mathrm{E}+000]\) Eqn. Error= 0.5271E-09
Cmplx lateral modal index for \(z\)-segment:
1
1 (3.48423999577868,-4.054128695061282E-004)
Searching for modal gain peak.
Modal gain (1/m): 5696.79608291268
At lambda= 0.850000000000000
```

Active Reg.\# 1 Average Conc. (n\&p)= 0.1743E+25 0.1813E+25
Save bias data and continue.
Lambda (um)= 0.850000000000000
Lateral mode(s)= 1
Emitted Power(mW):
(Mode) (Total) (Front) (Back)
1 0.6664E+02 0.3332E+02 0.3332E+02
Solver converged at
Voltage: (Volt) -0.1978E+01 0.0000E+00
Current: (A/m) 0.2500E+03 -0.2500E+03
Data set \# 3 printed at
Voltage: (Volt) -0.1978E+01 0.0000E+00
Current: (A/m) 0.2500E+03 -0.2500E+03
light: 0.6664E+02
Printing 2D/3D data to output file
Data file:test1.out_0003
Generating .std file
Completed .std file
Date(d/m/y): 15 5 2009
Time(s/m/h): 16 34

```

Every time a bias step is attempted, the previously converged solution will serve as the initial guess to the Newton solver. The type of bias step as well as its value is also shown in the log.

Once the Newton solver is called, it will iteratively attempt to reduce the equation error, which indicates how well the discretized equations are being satisfied. If the equations are exactly solved at the end of an iteration, then this value will be zero.

It also tries to minimize the variable error in order to get a stable solution. This is done by comparing the solution between successive iterations: the difference should go to zero once the solution stabilizes.

This is shown in the \(\log\) in tabular form with each column having its own meaning:
it\# : iteration number
eqns : equation error
potential : error on the potential variables
elec : error on the electron variables (electron concentration or quasi-fermi level)
hole : error on the hole variables (hole concentration or quasi-fermi level)
other : error on other variables not listed above (usually, photon density)

If a bias step should fail to converge, it is usually because the previously converged solution is a poor initial guess for this bias step. In that case, there is a builtin algorithm to retry with a smaller bias step which may have a better chance of converging.

If this procedure should also fail, then examining the evolution of the equation and variable errors may provide clues on how to improve convergence.

\subsection*{3.9 Output Data Organization}

For performance reasons, we do not print all output data at every bias step taken. Instead, we divide the output data into two categories: bias-dependent data (scan_data) and structural/spectral data (xy_data).

The former includes bias current, voltage, laser power, etc... and is accumulated at every bias step. The latter includes position-dependent data like the carrier densities and certain spectral values like the modal gain which is only printed at specified intervals. This printing occurs either when a scan statement is finished, as specified by the print_step parameter of the scan statement. Whenever structural data is printed, any accumulated scan-dependent data is also printed.

By convention, the output file names are defined by the output statement in "*.sol" and by adding a numbered extension "_\#\#\#\#". The extension is always _0001 for the equilibrium calculations and increases by one every time printing of the data is requested.

This means that all output data is assigned a "data set number" for later use. For example, let us supposed that there is a scan from 0 V to 1 V with max_step=0.3. Then the following data sets would be produced: \#1 (equilibrium), \#2 ( 0.3 V ), \#3 \((0.6 \mathrm{~V}), \# 4(0.9 \mathrm{~V})\) and \(\# 5\) (end of scan at 1 V\()\). This can be confirmed by examining the ".sol.msg" file which contains a list of all data sets printed in a simulation and the associated bias value.

\subsection*{3.10 Analyzing the Results}

To plot data, you can either use the CrosslightView GUI or use a .plt file. This input file is responsible for post-processing and can created in the same way as the other input files: by right-clicking in SimuCenter or using the command line:
```

C:\Work>c:\crosslig\lastip\setuplastip -plt test1
Setting up .plt file for filebase=test1
Please enter the graphics device
(1) postscript (2) window (3) x11
Your choice?
1
Generating .plt file
Adding a new plot to .plt file
Please select the type of plot:
(1) 1d plot along y
(2) 1d plot along x
(3) 2d contour plot
(4) 2d vector plot
(5) 3d surface plot
(6) I-V characteristics
(7) I-t characteristics
(8) L-I characteristics
(9) finish
plot_type?
8
Please enter the electrode number for I
I_electrode_num?
1
Adding a new plot to .plt file
Please select the type of plot:
(1) 1d plot along y
(2) 1d plot along x
(3) 2d contour plot
(4) 2d vector plot
(5) 3d surface plot
(6) I-V characteristics
(7) I-t characteristics
(8) L-I characteristics
(9) finish
plot_type?
1
Please enter the x-position of the 1d plot
(1) at 0
(2) at $1 / 10$ xsize

```
```

 (3) at 1/4 xsize
 (4) at 1/2 xsize
 (5) at 3/4 xsize
 (6) at xsize
 x-position?
 4
Please enter the variable you wish to plot
(1) electron concentration (2) hole concentration
(3) trap concentration (4) potential
(5) both electron \& hole conc. (6) energy bands
(7) elec current [x-component] (8) elec current [y-component]
(9) hole current [x-comp] (10) hole current [y-comp]
(11) displac. curr. [x-comp] (12) displac. curr. [y-comp]
(13) total current [x-comp] (14) total current [y-comp]
(15) x-comp. electric field (16) y-comp. electric field
(17) trap occupancy (18) optical generation rate
(19) optical field (20) hot electron energy
(21) donor concentration (22) acceptor concentration
(23) radiative recombination (24) Auger recombination
(25) SRH recombination (26) lattice temperature
(27) electron conc difference between nodes
(28) wave intensity (29) local gain
(30) stimulated recombination
variable?
28
Adding a new plot to .plt file
Please select the type of plot:
(1) 1d plot along y
(2) 1d plot along x
(3) 2d contour plot
(4) 2d vector plot
(5) 3d surface plot
(6) I-V characteristics
(7) I-t characteristics
(8) L-I characteristics
(9) finish
plot_type?
9

```

This creates the following:
\$file:test1.plt
```

begin_pstprc
plot_data plot_device=postscript
get_data main_input=test1.sol \&\&
sol_inf=test1.out \&\&
xy_data=[[$$
\begin{array}{ll}{3}&{3}\end{array}
$$] scan_data=[1 3
plot_scan scan_var=current_1 \&\&
variable=laser_power
plot_1d variable=wave_intensity \&\&
from=[0.7500E+00 0.0000E+00] \&\&
to=[0.7500E+00 0.2200E+01]
end_pstprc

```

To run this .plt file, you can right click on the file in SimuCenter or use the command line again:

C:\Work>c:\crosslig\lastip\lastip test1.plt
C:\Work>c:\crosslig\lastip\psplot test1.ps

This will produce two plots. The first is the LI curve for the whole simulation: the specified scan_data range in get_data covers the whole simulation. The second plot will be the wave intensity profile at the last bias point (\#3).
Note that certain seldom-used variables are not (by default) available for plotting. To make them available, you may need to use the more_output statement in the .sol file and re-run the simulation.

\section*{Chapter 4}


\section*{CONVERGENCE ISSUES}

This chapter deals with convergence of the sparse matrix solver. In most cases, the simulator will attempt to correct the problem by using a smaller bias step but there are cases where the equation and variable error terms cannot be reduced properly. This will stall the progress of the simulation and cause the simulator to print an error message.
There are several possible causes of convergence difficulties: we have tried to discuss the most common problems and their solution in the following sections. Note that there may be several different solutions to the same problem.
Please report all other cases of non-convergence to Crosslight for technical assistance. However, please keep in mind that the the simpler the structure, the easier it is to debug. If possible, start from a simplified 1D device that works and progressively iterate towards your final design until the convergence problem appears.

\subsection*{4.1 Choice of voltage or current bias}

The choice of voltage or current bias affects the convergence and stability of the Newton solver. In order to guarantee convergence, small changes in the applied bias should always result in small changes in the overall solution.
One particular situation where current bias is not appropriate is when the total amount of current flowing in the device is very small. Under these conditions, the actual current amount may fluctuate due to lack of numerical precision, making it difficult to use current bias. This situation can be detected by observing the net current over all the electrodes: if the sum is not zero, then Kirchoff's Current Law is violated and the current is too low to use as a control variable.

The solver can also enter a non-convergent state if the applied voltage bias is much higher than the turn-on voltage. Since the conductivity increases exponentially with
bias in a typical diode, seemingly small changes in voltage can result in very large changes of the solution.

This leads us to a simple general rule:
- Use voltage bias for devices with high resistance
- Use current bias for devices with low resistance

For example, a typical diode under forward bias has low resistance past its turn-on point but high resistance at lower bias or under reverse bias conditions. With these two extremes in mind, the following general strategy is recommended when setting up a simulation under forward bias:
1. Solve for equilibrium solution
2. Apply voltage until \(80-90 \%\) of the built-in bias value is reached. It is also possible to automatically terminate a voltage scan when a certain current is reached by using the auto_finish parameter in the scan statement.
3. Verify that Kirchoff's Current Law is satisfied at this bias point
4. Apply current bias until desired value is reached

For laser devices, the photon coupling adds some complications that need to be considered. Once threshold is reached, the carrier concentration and Fermi-level splitting at the junction are pinned by the large stimulated recombination term. It is almost impossible to apply any voltage bias (which is roughly equal to the Fermi level splitting at the junction) without disturbing the solution.

Therefore, under lasing conditions, the only way to perform the simulation properly is to use current controlled bias. The general strategy outlined above should be slightly revised to ensure that the current scan starts below threshold.
For non-laser devices, there are a few typical applications where, based on the experience of the Crosslight team, the consistent use of voltage bias is strongly recommended:
- Devices based on organic semiconductors (OLED) and other materials with wide bandgap
- Devices with a large contact resistance
- Solar cells and photodectors

\subsection*{4.2 Special bias considerations for PICS3D}

In PISC3D, the coupling of the photon density is more complicated than in LASTIP so it is not included by default. This introduces some extra steps that must be taken when defining the applied bias in a simulation.
In order to turn on the photon coupling, we need to know how many photons are in each longitudinal modes. This can be obtained by evaluating the round-trip gain equation (RTG) which is a function of the longitudinal index and gain profiles. However, these profiles are also affected by the local photon density through longitudinal spatial hole burning (LSHB) so it is difficult to set the initial guess.

To solve this conundrum, we consider the case where the laser cavity is below threshold. It is then safe to assume that the photon density is close enough to zero that the index profile is unaffected by LSHB. We can then use the unperturbed index profile to get an initial estimate of the photon density.
It is therefore required that the scan preceding the introduction of the photon coupling use the auto_finish=rtgain condition to terminate. This will calculate the positions of the longitudinal modes as well as provide an initial guess of the photon density in each mode.
However, the choice of the RTG value on which to terminate this scan can have a strong influence on the simulation and its convergence. If it is too high, then the photon density may not be as close to zero as originally thought and the initial guess may be inaccurate when the photon coupling is turned on. On the other hand, if the ending value is too low, then some modes critical to the simulation may be missing from the initial mode search. As a compromise, we suggest that the RTG ending value be set just above the transparency density of the gain material.
With this in mind, let us revise the general strategy from above for PICS3D use:
1. Solve for equilibrium solution
2. Apply voltage until \(80-90 \%\) of the built-in bias value is reached. It is also possible to automatically terminate a voltage scan when a certain current is reached by using the auto_finish parameter in the scan statement.
3. Verify that Kirchoff's Current Law is satisfied at this bias point
4. Apply current bias with auto_finish=rtgain. The peak value of the RTG should be high enough to offset the mirror losses while still being less than 1.0 (in order to avoid the lasing threshold).
5. Double-check the modes found in the mode search to make sure all relevant modes are included.
6. Apply current bias with solve_rtg=yes until desired value is reached

For highly resistive devices or VCSELs with very low threshold currents, it may be advisable to merge steps \(2 \& 4\) and use the auto_finish=rtgain condition during the voltage scan. A second termination condition using auto2_finish can be used to ensure the current is large enough for the final step.

\subsection*{4.3 Unphysical boundary}

When the boundary condition is not reasonable, it may cause convergence problems. One such example occurs when an Ohmic contact is too close to an active region or an area with large splitting of IMREF's.

The Ohmic contact is an ideal boundary that forces the IMREF's to the same equilibrium level. Such an abrupt change may be hard for the continuity equation to follow and therefore, lead to a loss of convergence.

Another common case of non-convergence is in thermal simulations where the an external heat resistor is attached to a contact which is too close to the self-heating region.

\subsection*{4.4 Thermal runaway}

Since material properties are affected by temperature effects, convergence may be adversely affected if the temperature increases too quickly in the device. In that case, the solution from a previous bias step may be too poor to use as the initial guess of the next bias step.

In that case, the only remedy is to use smaller bias steps to ensure a smooth increase in temperature. The max_step parameter of the scan statement may be used to control the step size.

The heat__flow statement also supports a max_temp_incr parameter that will force the use of a smaller step if the temperature increase is too high. However, this can cause a simulation to fail if the smaller step falls below the minimum allowed by the min_step parameter in scan.

\subsection*{4.5 Coarse mesh}


A coarse mesh is a common cause of non-convergence. It is wise to stop the simulation and plot the bands, the distribution of potential and the carrier concentrations at the point of failure or at a previous data set. Inspection of the plots may enable you to locate rough mesh points in regions where solutions vary rapidly with distance or
are poorly sampled.
In particular, you should make sure to have sufficient mesh points near these regions of interest:
- Barriers formed by Schottky contacts, heterojunctions or boundaries between different doping levels
- Interband/intraband tunnel junctions
- Regions with strong current crowding
- Quantum well regions where there are many energy levels and the wave functions must be sampled correctly
- Regions where the optical mode peaks

For a given number of mesh points, their distribution within a given layer can also have an influence on convergence. If one of the above situations occurs within a layer, mesh point ratios should be used to put denser mesh near the region of interest. If there is a region of interest on both sides of a layer, symmetric mesh point distribution should be considered. For more details on mesh point ratios, consult the reference manual for the put_mesh, layer and column statements.
If an increased number of mesh points is still called for, then you may wish to try automatic mesh refinement with the refine__mesh command.

If a refined mesh does not help, try to reduce the complexity of the device (e.g. try a 1D device with similar structure). Testing a simple device may help you to find out the cause of the problem in the more complex device. Sometimes you may find that the solution has difficulty converging for a particular type of junction. This can be caused by approximations made to boundary conditions, or by unintentionally imposing unrealistic boundary conditions.

\subsection*{4.6 Fine mesh}

Just as coarse mesh can lead to lack of convergence, too fine a mesh can sometimes also cause problems. In particular, regions with very low resistivity (metals, highlydoped contact regions, etc...) are at risk. The reason for this is simple: if the whole layer has a very small voltage drop, then the \(\Delta V\) between closely-spaced mesh points can become negligible.
In the limiting case of a material with low resistivity, applying Ohm's law in this situation will result in a situation where \(\Delta I=\frac{\Delta V}{R} \rightarrow \frac{0}{0}\) and the current between
closely-spaced mesh points becomes numerically unstable. The simulator will usually print a message about its inability to accurately control the current in this situation.

We note that this is a very rare situation that can usually be remedied by simply altering the distribution of mesh points in the low-resistance region.

\subsection*{4.7 Use of basic variables}

The default basic variables in our simulator are the potential and quasi-Fermi levels. In some structures with many current blocking or high resistance regions, the solution at low bias is difficult to obtain with high accuracy. Devices of this type includes laser diodes (LD) with highly doped current blocking layers, junction field effect transistors (JFET) and charge coupled devices (CCD).
The reason is that under high resistance, the current is so small that to satisfy the current continuity equation within a small but finite tolerance, there are actually many possible solutions for the quasi-Fermi levels. As a consequence, the variables tend to vary between these many solutions and refuse to converge to a unique solution. Since the value itself of the quasi-Fermi levels is not small under these conditions, this fluctuation cannot simply be neglected.

The choice of electron and hole concentrations as the basic solution variable avoids the fluctuation problem mentioned above. The minority carrier concentration density is too low to show up in the error vector and we do not care about the accuracy of the minority carriers in those regions with low current densities.

The newton_par statement provides the parameter change__variable to allow the user to switch from Fermi levels to carrier concentrations. However, use of carrier concentration also has drawbacks.

The accuracy for minority carriers may not be accurate. The variables may also vary over 20 orders of magnitudes and as a result, the inversion of the Jacobian matrix may cause numerical overflow problems. Therefore, some of the off-diagonal matrix elements must be reduced artificially which may affect the overall solution.

\subsection*{4.8 Slow transient technique}

For structures with high resistivity or with complicated high doping, convergence may be difficult at low bias before current is turned on. For example, nitride-based MQW structures with strong polarization interface charges are known to be difficult to converge.

One useful and surprisingly powerful technique is the Ťslow transientŤ method. For example, we may have an original difficult step:
scan var=voltage_1 value=-3.5
We can replace this with:
scan var=voltage_1 value=-3.5 var2=time value2_to=1.0

This means that the voltage will be increased over the course of 1 second. This is slow enough that transient effects will be minimal (since carrier lifetimes are in the ns range). However, the time step is also small enough that the displacement current makes a numerically significant contribution to the current continuity equations.

There is physical and numerical basis for such a method: highly insulating regions inherently cause instabilities with the current continuity equation simply because the system may flip between different states that have similar steady state currents.
In reality, this flip is facilitated by a transient charging/discharging current which drives the system into the correct physical steady state. As a matter of fact, one can make the point that there is no such thing as steady state: just the limiting case where \(d t \rightarrow \infty\). Adding a transient component merely restores some of the original physics to the equations.
Such a technique has been used to tackle some conventionally difficult cases such as floating poly gate in MOSFET and highly insulating organic/insulator structures.

\subsection*{4.9 Poor initial guess solution}

As is well known for Newton's method, a poor initial guess solution may cause the solution to diverge. Such a situation is normally not a concern because the simulator has automated the procedure of finding the best guess solution. If a solution is not found with an initial guess solution from a previous bias, then the simulator automatically reduces the bias step and tries a new Newton iteration.
As mentioned previously, simulations of some structures with highly doped current blocking layers have difficulty converging at low bias because of high resistance. A poor initial guess may cause problems in this situation. One may wish to avoid the solution at low bias by applying a large initial bias step. If the device structure is relatively simple this trick often works.

In a case where the device structure is complicated and the doping of the current blocking layer is high, this trick may fail. One of the reasons for such a failure is that the guess solution (equilibrium solution) is too far away from the solution at high bias. Such a condition is worsened by high doping at the current blocking layer.
A trick to overcome the convergence difficulty is to solve for an " easy device" at high bias first. Then the solution from the " easy device" is used to initialize the
solution for the " target device" at high bias. Here the " easy device" has the same mesh and geometric structure as the " target device" except the current blocking layer is lightly doped. For the simulator, a structure with a lightly doped blocking layer is an easy structure.

\subsection*{4.10 Current-blocking structures}

\subsection*{4.10.1 n-p-n \& p-n-p junctions}

Convergence may be difficult for structures which use n-p-n or p-n-p junction to block the current flow for a certain region. This kind of design is commonly used in buried heterostructure ( BH ) lasers.

This type of structure requires special attention since the use of quasi-Fermi levels as the default variables often causes convergence difficulties. As mentioned in a previous section, the change of variable from Fermi levels to carrier concentrations may avoid such convergence problems. However, if the Fermi levels solution is desired for any reason, or if the use of new variables fails, the following techniques may be used to force the convergence of the solver using quasi-Fermi levels.

Current-blocking structures have difficulty converging because more material regions are involved. The heavy doping in the current blocking layer also tends to cause trouble, because the current flow condition there is very different from that in the other regions.

To guarantee good convergence, we must supply the simulator with a good guess solution at a reasonably high bias voltage. Slowly ramping up the bias voltage does not always help because low bias itself is a problem, as was discussed in previous sections.

We recommend the following trick whenever a heavily doped current-blocking structure shows non-convergence:
1. Create an identical structure with lightly doped current blocking layer. Declare this lightly doped current blocking layer as having a "new_doping" instead of the usual "doping".
2. Run the simulator for this structure and ramp up the voltage to \(80-90 \%\) of the bandgap of the active region. This should be much easier than before since we are dealing with a structure where the doping has been artificially reduced.
3. Ramp up the doping density in the blocking layer (marked as "new_doping") to a realistic doping level.
4. Now that the device structure/doping is what we intend to simulate, continue the simulation with current bias and other standard simulation tasks.

\subsection*{4.10.2 Barriers/Superlattices}

High barriers ( \(\gg k T\) ) may block current injection if only thermionic emission is considered. They are commonly found at Schottky contacts or at material/doping interfaces. Quantum tunneling may be required to overcome this and allow the current to flow properly. Periodic structures may also support miniband tunneling at some carrier energies (Esaki-Tsu model).
The user is advised to consult Chapter 9 for a more complete discussion of tunneling models.

\subsection*{4.10.3 Insulating layers}

In our software, insulating materials such as \(\mathrm{SiO}_{2}\) are often described by a special kind of macro (material type=insulator). Regions using these macros are special in that the current continuity equation is not solved: instead, the current is explicitly set to zero. This means that features that enhance the current (tunneling, impact ionization, etc...) will not function since they would multiply a current value that is exactly zero.

In order for these features to function, the zero current must be replaced with a numerically small value that better represents reality. This can be done by considering the insulator material as a wide bandgap semiconductor. For example, users may substitute the sio2 macro for s-sio2 in their design.

\subsection*{4.10.4 Deep MQW regions}

Very deep and shallow QWs such as those found in nitride-based devices may block current if we assume that all carriers are thermalized (i.e. Drift-Diffusion model). This can manifest itself as an unrealistically high turn-on voltage since a stronger field is required to get the current flowing.

A non-local/quantum transport correction term can facilitate the current injection and solve the related convergence issues. This can be turned on by using the q_transport statement.

\subsection*{4.11 Use of Auxiliary Ohmic Contacts}

A powerful technique to force the simulation software to converge is the use of auxiliary ohmic contacts. For some complex devices, certain high resistance areas are far away from any boundaries. For example, a p-n-i-p-n structure under reverse bias condition has its i-region well isolated from the ohmic contacts. As a result, the variables may fluctuate in the i-region and we may have a convergence problem no matter how fine the mesh spacing is.

In such a case, we may add an auxiliary ohmic contact to be attached to a single mesh point in the isolated high resistant region. When we use voltage control on the auxiliary contact, the solver should be easier to converge because the new contact prevents the variables from fluctuating in the high resistance region.

However, the voltage control on the contact may cause current to flow in or out of it while in reality, no current should exist in such a contact. To eliminate the effects of the auxiliary contact, we can use current control to reduce its current to zero after the desired bias on the other electrodes has been obtained.

For example, in the above p-n-i-p-n structure (see Fig. 4.1), we wish to reverse bias to breakdown at about 10 volts. We can simultaneously ramp up the voltages at the auxiliary contact to about 5 volts to ensure convergence. After the device breaks down and current starts to flow at around 10 volts of total bias, we can use current control to force the current at the auxiliary contact to be zero, thus eliminate its effects on the device. Without the the auxiliary contact, the above device would be difficult to bias to breakdown.

\subsection*{4.12 Bandgap reduction technique}

Wide bandgap materials are hard to converge since their intrinsic carrier densities are low. The reverse junction current is orders of magnitude lower than their narrow bandgap counterparts. The problem is more serious if impact ionization is involved because the surge of ionization current in reverse junction may never be detected by the numerical solver since the reverse current is below the numerical floating point accuracy.

One technique is to artificially reduce the bandgap first, achieve the desired bias current and finally increase the semiconductor bandgap back to its original value.

For example:
```

equilibrium bandgap_reduction = 0.2
scan var=voltage_1 value_to = -0.5
scan var=current_1 value_to = 10e-3

```


Figure 4.1: Schematic for the use of auxiliary contact for a p-n-i-p-n reverse biased structure.
scan var=bandgap_reduction value_to=0.0 var2=current_1 value2_to=10e-3 scan var=voltage_1 value_to \(=0.0\)

This reduces the original bandgap value by \(20 \%\) (e.g. \(1 \mathrm{eV} \rightarrow 0.8 \mathrm{eV}\) ) and increases the bias to the desired value. Afterwards, the bandgap is restored to its original value while keeping the desired bias current fixed; the voltage will change to match.
As a final step, we get the IV curve by ramping down the bias: since the bandgap was altered during when the bias was ramped up, the IV curve is incorrect for this region. In this situation, care should be taken to only plot data from the last scan statement.

\subsection*{4.13 Negative differential mobility issues}

For materials with negative differential mobility due to transition of electrons from the \(\Gamma\) band to L and/or X bands, convergence may become a problem when the applied voltage is high. Examples of such problems are a HEMT under high voltage bias and a laser diode under high current injection condition.
The steady state solution can be driven into non-convergence because of the negative differential resistance due to the special field dependence mobility as shown in Fig. 4.2 (as defined by the "n.gaas" velocity model in the gaas macro).

In reality, the device may be driven into unstable or oscillation states (Gunn effect) at some bias points. We rarely see such kind of negative I-V characteristics in steady


Figure 4.2: Field dependence electron velocity of undoped GaAs. The solid curve is the "n.gaas" mobility model while the dash curve is the "beta" model.
state measurements. A possible explanation is that the field/current adjusts itself in the region of negative resistance in the form of transient redistribution and the steady state terminal I-V curve bypasses the peak of negative resistance.

Thus, to overcome the non-convergence in steady state simulation in such a situation, we suggest using a different form of mobility model (such as the "beta" model, as illustrated by dash line in Fig. 4.2).

An alternative method to overcome the non-convergence is to use transient simulation while biasing the FET. This method means the simulator and the computer hardware must work harder.

\section*{Part II}

\section*{PHYSICAL AND NUMERICAL MODELS}


\section*{Chapter 5}

\section*{DRIFT-DIFFUSION MODEL}

This chapter provides a description of the basic theories used in all of Crosslight's simulation software packages. The variety of physical phenomena in a semiconductor require many different physical models. However, the drift-diffusion (DD) model is the most basic since many of the well known characteristics of a semiconductor device such as the capability to amplify electrical signal may be explained using the DD theory.
This chapter will also explain the boundary conditions and basic properties such as mobility and pure resistor behavior.

\subsection*{5.1 Basic equations}

The basic equations[1] used to describe the semiconductor device behavior are Poisson's equation:
\[
\begin{equation*}
-\nabla \cdot\left(\frac{\epsilon_{0} \epsilon_{d c}}{q} \nabla V\right)=-n+p+N_{D}\left(1-f_{D}\right)-N_{A} f_{A}+\sum_{j} N_{t j}\left(\delta_{j}-f_{t j}\right) \tag{5.1}
\end{equation*}
\]
and the current continuity equations for electrons and holes:
\[
\begin{align*}
& \nabla \cdot J_{n}-\sum_{j} R_{n}^{t j}-R_{s p}-R_{s t}-R_{a u}+G_{o p t}(t)=\frac{\partial n}{\partial t}+N_{D} \frac{\partial f_{D}}{\partial t}  \tag{5.2}\\
& \nabla \cdot J_{p}+\sum_{j} R_{p}^{t j}+R_{s p}+R_{s t}+R_{a u}-G_{o p t}(t)=-\frac{\partial p}{\partial t}+N_{A} \frac{\partial f_{A}}{\partial t} . \tag{5.3}
\end{align*}
\]

These equations govern the electrical behavior (e.g., I-V characteristics) of a semiconductor device.

Optionally, two more equations are used to described the carrier energy \((w)\) or the carrier temperature distribution. This is not to be confused with the lattice temperature; the former is a description of how the carrier distribution deviates from Fermi-Dirac distribution. Such a model is also referred to as the hydrodynamic model.

Our theory here is based on the formulation derived by Azoff [2][3]. For simplicity, we only present the equations for hot electrons. The corresponding equations for hot holes are completely analogous:
\[
\begin{gather*}
\nabla \cdot S+R_{n} w-\nabla E_{c} \cdot J_{n}+\frac{n\left(w-w_{0}\right)}{\tau_{w}}+\frac{\partial(n w)}{\partial t}=0  \tag{5.4}\\
S=-\frac{5}{3} J_{n} w-\frac{10}{9} \mu_{n} n w \nabla w \tag{5.5}
\end{gather*}
\]
where \(w\) is the total energy of an electron and \(w_{0}=3 k T / 2\) is the electron energy at equilibrium. \(S\) is the electron energy flux intensity and \(\tau_{w}\) is the energy relaxation time.

Definitions of symbols are listed in the nomenclature at the end of this chapter. More details about the derivation and discretization of the hydrodynamic model is given in the Appendix.

The primary function of our simulator is to solve these equations self-consistently for the electrostatic potential, \(V\), the electron and hole concentrations ( \(n, p\) ) and the electron and hole energies \(\left(W_{n}, W_{p}\right)\).
From theories of semiconductor device physics [1] the carrier flux densities \(J_{n}\) and \(J_{p}\) in Equations (5.2) and (5.3) can be written as functions of the carrier concentration and the quasi-Fermi levels:
\[
\begin{align*}
J_{n} & =n \mu_{n} \nabla E_{f n}  \tag{5.6}\\
J_{p} & =p \mu_{p} \nabla E_{f p} \tag{5.7}
\end{align*}
\]
where \(\mu_{n}\) and \(\mu_{p}\) are mobilities of electrons and holes. For convenience, we use carrier flux density and current density interchangeably even though they differ by a factor of electron charge.

For the hydrodynamic model, the expression for the electron (or hole) current is modified:
\[
\begin{equation*}
J_{n}=\mu_{n}\left\{-n \nabla\left[\psi+\chi+\gamma_{n}\right]+\frac{2}{3} \nabla(n w)-n w \nabla \ln \left(m_{n}\right)\right\} \tag{5.8}
\end{equation*}
\]

More details about the current flow expression in the hydrodynamic model is given in the Appendix.

\subsection*{5.1.1 SRH and Auger recombination}

The software treats carrier recombination due to deep level traps [Shockley-ReadHall (SRH) recombination] using:
\[
\begin{align*}
& R_{n}^{t j}=c_{n j} n N_{t j}\left(1-f_{t j}\right)-c_{n j} n_{1 j} N_{t j} f_{t j}  \tag{5.9}\\
& R_{p}^{t j}=c_{p j} p N_{t j} f_{t j}-c_{p j} p_{1 j} N_{t j}\left(1-f_{t j}\right) \tag{5.10}
\end{align*}
\]
where \(n_{1 j}\) is the electron concentration when the electron quasi-Fermi level coincides with the energy level \(E_{t j}\) of the \(j\) th trap. A similar definition applies to \(p_{1 j}\).
Under transient conditions, the following trap dynamic equation is valid [4]:
\[
\begin{equation*}
N_{t j} \frac{\partial f_{t j}}{\partial t}=R_{n}^{t j}-R_{p}^{t j} \tag{5.11}
\end{equation*}
\]

The capture coefficients \(c_{n j}\) and \(c_{p j}\) for electrons and holes relate to the lifetime of the carrier due the \(j\) th recombination center by the following relation:
\[
\begin{align*}
& \frac{1}{\tau_{n j}}=c_{n j} N_{t j}  \tag{5.12}\\
& \frac{1}{\tau_{p j}}=c_{p j} N_{t j} \tag{5.13}
\end{align*}
\]

One can show that Equations (5.9) to (5.13) are equivalent to the standard expression of the SRH model [1] under steady state conditions.
The capture coefficients can be further expressed as:
\[
\begin{align*}
c_{n j} & =\sigma_{n j} \bar{v}_{n}  \tag{5.14}\\
\bar{v}_{n} & =\sqrt{\frac{8 k T}{\pi m_{n}}}  \tag{5.15}\\
c_{p j} & =\sigma_{p j} \bar{v}_{p}  \tag{5.16}\\
\bar{v}_{p} & =\sqrt{\frac{8 k T}{\pi m_{p}}}
\end{align*}
\]

A trap (or recombination center) is completely specified by its density \(N_{t j}\), capture cross sections \(\sigma_{n j}\) and \(\sigma_{p j}\), and energy level \(E_{t j}\).
The Auger recombination rate is given by
\[
\begin{equation*}
R_{a u}=\left(C_{n} n+C_{p} p\right)\left(n p-n_{i}^{2}\right), \tag{5.18}
\end{equation*}
\]
where the Auger coefficients \(C_{n}\) and \(C_{p}\) depends on the type of material simulated.

\subsection*{5.1.2 Carrier statistics}

The electron and hole concentrations in semiconductors are defined by Fermi-Dirac distributions and a parabolic density of states which, when integrated, yield [1]:
\[
\begin{align*}
& n=N_{c} F_{1 / 2}\left(\frac{E_{f n}-E_{c}}{k T}\right)  \tag{5.19}\\
& p=N_{v} F_{1 / 2}\left(\frac{E_{v}-E_{f p}}{k T}\right) \tag{5.20}
\end{align*}
\]
where \(F_{1 / 2}\) is the Fermi integral of order one-half.
For the convenience of numerical evaluation, the approximation proposed by Bednarczyk and Bednarczyk is used [5]:
\[
\begin{gather*}
F_{1 / 2}(x) \approx\left(e^{-x}+\xi(x)\right)^{-1}  \tag{5.21}\\
\xi(x)=\frac{3}{4} \sqrt{\pi}[\nu(x)]^{3 / 8}  \tag{5.22}\\
\nu(x)=x^{4}+50+33.6 x\left\{1-0.68 \exp \left[-0.17(x+1)^{2}\right]\right\} \tag{5.23}
\end{gather*}
\]

This expression is accurate to within \(0.4 \%\) of error in all ranges.
In the limit of low carrier concentration Equations (5.19) and (5.20) reduce to the familiar Boltzmann statistics:
\[
\begin{align*}
& n=N_{c} \exp \left(\frac{E_{f n}-E_{c}}{k T}\right)  \tag{5.24}\\
& p=N_{v} \exp \left(\frac{E_{v}-E_{f p}}{k T}\right) \tag{5.25}
\end{align*}
\]

The program uses the more general Fermi-Dirac statistics of Equations (5.19), (5.20) and (5.21) by default.

\subsection*{5.1.3 Incomplete ionization of impurities}

The simulation program can accurately account for the incomplete ionization of shallow impurities in semiconductors. The occupancies \(f_{D}\) and \(f_{A}\) are used to describe the degree of ionization. It is assumed that the shallow impurities are in equilibrium with the local carriers and therefore the occupancy of the shallow impurities can be described by:
\[
\begin{align*}
f_{D} & =\frac{1}{1+g_{d}^{-1} \exp \left[\left(E_{D}-E_{f n}\right) / k T\right]}  \tag{5.26}\\
f_{A} & =\frac{1}{1+g_{a}^{-1} \exp \left[\left(E_{A}-E_{f p}\right) / k T\right]} \tag{5.27}
\end{align*}
\]
where the subscripts \(D\) and \(A\) are used to denote shallow donors and acceptors, respectively. The degeneracy levels are automatically set to \(g_{d}=2\) and \(g_{a}=4\).

From the discussions of Section 5.1.1, the occupancy of a deep level trap can be determined through the trap dynamic equation, Equation (5.11). In general the deep trap is not in equilibrium with the carriers (i.e., the trap does not share the same quasi-Fermi level as the carriers).
From Equations (5.9), (5.10) and (5.11), one obtains the following expression for the trap occupancy under steady state conditions:
\[
\begin{equation*}
f_{t j}=\frac{c_{n j} n+c_{p j} p_{1 j}}{c_{n j}\left(n+n_{1 j}\right)+c_{p j}\left(p+p_{1 j}\right)} \tag{5.28}
\end{equation*}
\]

In the case of surface states or surface recombination centers, the software allows for the distribution of dense traps near the surface region. This provides a mechanism for the surface charge states as well as for surface recombination. Fermi level pinning effects on a semiconductor surface can be modeled using this approach.

In a transient simulation the trap occupancy is a function of time, depending on the trap capture rates as well as on the local carrier concentrations. The program uses Equation (5.11) to determine the trap states at each transient time step.
By default the simulation software assumes incomplete ionization of dopants with energy level defined by the level parameter in the doping statement. The dopants of a specific material may be forced to be fully ionized with the command full__ionization.
For a more accurate model of incomplete ionization in heavily-doped semiconductors, the Mott transition model can also be used.

\subsection*{5.1.4 Poole-Frenkel model of incomplete ionization}

The Poole-Frenkel effect (also Frenkel-Poole effect or field induced emission) was originally used to describe field dependent thermionic emission from traps in the bulk of an insulator [1]. This mechanism is, however, equally applicable to incomplete ionization of impurities in semiconductors.
Under an electric field \(F\), the electrostatic potential near an impurity center is modified and the effective work function or the ionization energy is reduced by:
\[
\begin{equation*}
\Delta E_{P F}=\sqrt{\frac{q F}{\pi \epsilon_{0} \epsilon}} \tag{5.29}
\end{equation*}
\]

The Poole-Frenkel model is implemented by shifting the ionization energy by \(\Delta E_{P F}\). The field dependence of this shift introduces some complication into the discretized Poisson's equation. The reason is that at each node, additional work must be done to search for the maximum field component surrounding the node.

Another complication associated with the Poole-Frenkel model occurs at the ohmic contacts, because the simulator solver is set up such that the built-in potential at an ohmic contact is always fixed, or in other words, the dopant energy level or the Imref at the contact is fixed relative to the band edges. Such an assumption contradicts with the Poole-Frenkel model which changes the ionization energy and the Imrefs as the applied field is varied.

To overcome this difficulty, the ionization energy at the contact is allowed to be shifted to a constant value before the simulation. Without such a shift in the ionization energy at the contact, the ohmic contact may behave like a Schottky contact because of a large fixed built-in potential.
The Poole-Frenkel model is important when the ionization energy is large and the temperature is low (e.g., 100 meV at 100K). Without such a model, the semiconductor may have an unrealistic high resistance.
By default, this model is turned off and can be enabled using the parameter pf__model of the doping statement.

\subsection*{5.1.5 Heavy doping effects}

The Mott transition occurs at high doping concentrations, when the distance between impurities/dopants becomes comparable to the Bohr radius. It has been shown[6] that the effective Bohr radius \(a_{B}^{*}\) and critical impurity concentration \(N_{\text {crit }}\) are determined by:
\[
\begin{align*}
& a_{B}^{*}=\frac{\epsilon_{r}}{m^{*} / m_{0}} 0.53 \AA  \tag{5.30}\\
& N_{\text {crit }}^{1 / 3}=\frac{1}{4 a_{B}^{*}}\left(\frac{\pi}{3}\right)^{\frac{1}{3}} \tag{5.31}
\end{align*}
\]
where \(\epsilon_{r}\) is the relative dielectric constant and \(m^{*}\) is the carrier effective mass. The ionization energy of the impurity as a function of the concentration can then be obtained by:
\[
\begin{equation*}
E_{D}=E_{D 0}\left[1-\left(N_{D} / N_{c r i t}\right)^{1 / 3}\right] \tag{5.32}
\end{equation*}
\]

A similar expression exists for acceptors. This model is activated by default for all shallow dopants in Crosslight Software.
The applicability of this model to deeper dopants such as \(\mathrm{GaN}: \mathrm{Mg}\) is not as well understood so a maximum ionization energy of 100 meV is used to switch the Mott transition on/off. This behavior can be controlled on a per-material basis using the dopant__ionization__model command.

The ionization energy can also be manually controlled by the user to match measured values. There are multiple ways of doing so but the most convenient methods are:
- The adjust_doping statement in the layer file. This overrides the level parameter of the doping statement generated by layer.exe.
- The shal__acpt__level and shal_dnr_level commands can be implemented as parameter overrides in the input files or as part of a material macro. These commands are flexible and can even be used to create custom formulas for the activation energy dependence on the dopant concentration.

\subsection*{5.1.6 Carrier mobility}

The carrier mobilities \(\mu_{n}\) and \(\mu_{p}\) account for the scattering mechanism in electrical transport.

One of the main effects on the mobility is the local electrical field [1]. The software provides several analytical formulas of field dependent mobility:
- 1. The simplest mobility model uses constant mobilities \(\mu_{0 n}\) and \(\mu_{0 p}\) for electrons and holes, respectively, throughout each material region in the device. This model should not be confused with constant velocity: constant mobility means linear velocity.
- 2. Another simplified field dependent mobility model is the two-piece mobility model:
\[
\begin{gather*}
\mu_{n}= \begin{cases}\mu_{0 n} & \text { for } F<F_{0 n} \\
v_{s n} / F & \text { for } F \geq F_{0 n} .\end{cases}  \tag{5.33}\\
v_{s n}=\mu_{0 n} F_{0 n} \tag{5.34}
\end{gather*}
\]
for the electron mobility. \(F_{0 n}\) is a threshold field beyond which the electron velocity saturates to a constant.
Similar expressions can be defined for holes:
\[
\begin{gather*}
\mu_{p}= \begin{cases}\mu_{0 p} & \text { for } F<F_{0 p} \\
v_{s p} / F & \text { for } F \geq F_{0 p} .\end{cases}  \tag{5.35}\\
v_{s p}=\mu_{0 p} F_{0 p} \tag{5.36}
\end{gather*}
\]

We note that this model may be used to approximate a constant velocity model by setting a very low of \(F_{0}\) so that the velocity is saturated throughout the useful simulation range.
- 3. The Canali or beta model[7] is commonly used in the literature and has the following form for electrons and holes, respectively:
\[
\begin{align*}
\mu_{n} & =\frac{\mu_{0 n}}{\left(1+\left(\mu_{0 n} F / v_{s n}\right)^{\beta_{n}}\right)^{1 / \beta_{n}}}  \tag{5.37}\\
\mu_{p} & =\frac{\mu_{0 p}}{\left(1+\left(\mu_{0 p} F / v_{s p}\right)^{\beta_{p}}\right)^{1 / \beta_{p}}} \tag{5.38}
\end{align*}
\]
- 4. The transferred electron model[7] or n.gaas model is used in many III-V compound semiconductors which exhibit negative differential resistance due to the transition of carriers into band valleys with lower mobility [1]. The software has implemented the following field dependent model for this case:
\[
\begin{equation*}
\mu_{n}=\frac{\mu_{0 n}+\left(v_{s n} / F_{0 n}\right)\left(F / F_{0 n}\right)^{3}}{1+\left(F / F_{0 n}\right)^{4}} \tag{5.39}
\end{equation*}
\]
- 5.Poole-Frenkel is the name given by Crosslight to the hopping mobility model commonly used for organic semiconductors; this movement is very similar to the Poole-Frenkel effect (Frenkel-Poole emission) in insulators[1] with an exponential field-dependent term determining the probability of a highly localized carrier moving from one site to another.
The mobility from this model may be expressed using the following formula:
\[
\begin{equation*}
\mu=\mu_{0} \exp \left[\left(F / F_{c r}\right)^{p x}\right] \tag{5.40}
\end{equation*}
\]
- 6. A modified transferred-electron mobility model designed for GaN devices[7]. See beta_mte for details.
- 7. User-defined mobility model. More details can be found in the reference section under user__defined__mobility.

Besides the field dependence of the mobility, another important effect is the impurity dependence of the low field mobility [1]. The program by uses the following formulas by default:
\[
\begin{align*}
& \mu_{0 n}=\mu_{1 n}+\frac{\left(\mu_{2 n}-\mu_{1 n}\right)}{1+\left(\frac{N_{D}+N_{A}+\sum_{j} N_{t j}}{N_{r n}}\right)^{\alpha_{n}}}  \tag{5.41}\\
& \mu_{0 p}=\mu_{1 p}+\frac{\left(\mu_{2 p}-\mu_{1 p}\right)}{1+\left(\frac{N_{D}+N_{A}+\sum_{j} N_{t j}}{N_{r p}}\right)^{\alpha_{p}}} \tag{5.42}
\end{align*}
\]
where the various parameters are fitting parameters from experimental data which may also be temperature-dependent. Additional impurity models may be invoked through low_field__mobility__model.

In many applications, the mobility is anisotropic and also depends on the vertical field. A number of vertical field dependent model (such as the Lombardi model) are implemented within the statement of mobility_xy.

\subsection*{5.2 Boundary Conditions}

The boundary conditions for the electrical part [Equations (5.1) to (5.3)] include ohmic contacts, Schottky contacts, Neumann (reflective) boundaries, lumped elements and current controlled contacts. For the hot carrier equations, the boundary condition here is the contact carrier temperature.

\subsection*{5.2.1 Ohmic contact}

Ohmic contacts are implemented as simple Dirichlet boundary conditions, where the surface potential and electron and hole quasi-Fermi levels ( \(V_{s}, E_{f n}^{s}, E_{f p}^{s}\) ) are fixed. The minority and majority carrier quasi-Fermi potentials are equal and set to the applied bias of the electrode:
\[
\begin{equation*}
\phi_{n}^{s}=\phi_{p}^{s}=-E_{f n}^{s}=-E_{f p}^{s}=V_{\text {applied }} \tag{5.43}
\end{equation*}
\]

The potential \(V_{s}\) at the boundary is fixed at a value consistent with zero space charge:
\[
\begin{equation*}
-n+p+N_{D}\left(1-f_{D}\right)-N_{A} f_{A}+\sum_{j} N_{t j}\left(\delta_{j}-f_{t j}\right)=0 \tag{5.44}
\end{equation*}
\]

With the solution of \(V_{s}\) and Equation (5.43) one can use Equations (5.19) and (5.20) to calculate \(n_{s}\) and \(p_{s}\).
It should be pointed out that the purpose of creating an Ohmic contact in a simulation is to have a boundary condition which does not disturb the area of simulation but provides a path for current flow. This is in contrast to the Schottky contact which can be either injecting or depleting carriers, depending on the polarity of the bias.

In most device simulations, the ideal Ohmic contact with a charge neutral assumption is sufficient as a good carrier injector if the contact area is highly doped or if the carrier injection requirement is not too high. If the vicinity of the contact has low doping or if a high level of carrier injection is required, the ideal Ohmic contact described above ceases to be a valid model for a realistic Ohmic metal contact. In such a case, the simulator refuses to inject carriers into the device, no matter how large the bias current is.

To avoid this problem, remember to use high doping in the vicinity of an ideal Ohmic contact region. Otherwise, a low barrier Schottky contact may also be used.

\subsection*{5.2.2 Schottky contacts}

Schottky contacts to the semiconductor are defined by the barrier height of the electrode metal and a surface recombination velocity.

The surface potential at a Schottky contact is defined by:
\[
\begin{equation*}
V_{s}=\chi-\chi_{r e f}-\phi_{b}+V_{\text {applied }} \tag{5.45}
\end{equation*}
\]
where \(\chi\) and \(\chi_{\text {ref }}\) are the electron affinities of the semiconductor and a reference material, respectively, and \(\phi_{b}\) is the Schottky barrier height.

Note that this applies only for n-contacts. For p-contacts, this equation needs to be modified by the semiconductor bandgap to calculate the proper hole barrier. The sum of the barrier heights for electron and holes is expected to be equal to the bandgap [1].

In general, the quasi-Fermi levels \(E_{f n}^{s}\) and \(E_{f p}^{s}\) are no longer equal to \(V_{\text {applied }}\) and are defined by a current boundary condition at the surface instead:
\[
\begin{align*}
J_{s n} & =\gamma_{n} \bar{v}_{n}^{\text {therm }}\left(n_{s}-n_{e q}\right),  \tag{5.46}\\
J_{s p} & =\gamma_{p} v_{p}^{\text {therm }}\left(p_{s}-p_{e q}\right), \tag{5.47}
\end{align*}
\]
where \(J_{s n}\) and \(J_{s p}\) are the electron and hole currents at the contact, \(n_{s}\) and \(p_{s}\) are the actual surface electron and hole concentrations, and \(n_{e q}\) and \(p_{e q}\) are the equilibrium electron and hole concentrations if infinite surface recombination velocities are assumed (i.e. \(\phi_{n}=\phi_{p}=V_{\text {applied }}\) ).

The thermal recombination velocities are given by:
\[
\begin{align*}
\bar{v}_{n}^{\text {therm }} & =\sqrt{\frac{k T}{2 m_{n} \pi}},  \tag{5.48}\\
\bar{v}_{p}^{\text {therm }} & =\sqrt{\frac{k T}{2 m_{p} \pi}}, \tag{5.49}
\end{align*}
\]

The constants \(\gamma_{n}\) and \(\gamma_{p}\) provide a mechanism to include any correction (e.g. due to tunneling) to the standard theory.

\subsection*{5.2.3 Abrupt heterojunctions}

An abrupt junction is also considered a boundary condition in the program because most physical quantities are discontinuous at the interface. Similar to a Schottky contact, an abrupt heterojunction exhibits non-ohmic behavior, such as rectification effects.

The physical model used by the software for current transport across the junction is the thermionic emission model [1]. A similar expression for the current flux across the junction can be defined as:
\[
\begin{align*}
J_{h n} & =\gamma_{h n} \bar{v}_{b n}^{\text {therm }}\left(n_{b}-n_{b 0}\right),  \tag{5.50}\\
J_{h p} & =\gamma_{h p} \bar{v}_{b p}^{\text {therm }}\left(p_{b}-p_{b 0}\right), \tag{5.51}
\end{align*}
\]
where \(n_{b}\) and \(p_{b}\) denote the electron and hole concentrations, respectively, on the barrier side of the junction. \(n_{b 0}\) and \(p_{b 0}\) are the corresponding concentrations when the quasi-Fermi levels are the same as those on the opposite side. These equations ensure that, when the quasi-Fermi levels on both sides of the barriers are the same, the net current is zero. The derivation of the boundary conditions of the above equations can be found in Refs. [8] and [9].
The thermal recombination velocities are given by:
\[
\begin{align*}
\bar{v}_{b n}^{\text {therm }} & =\sqrt{\frac{k T}{2 m_{b n} \pi}}  \tag{5.52}\\
\bar{v}_{b p}^{\text {therm }} & =\sqrt{\frac{k T}{2 m_{b p} \pi}}
\end{align*}
\]

Other symbols have similar meanings as those in Section 5.2.2.
The abrupt heterojunction model described here is important to accurately model the thermionic emission behavior (e.g. temperature dependence) of a device using an abrupt heterojunction as a means of carrier confinement.
The abrupt junction model has its limitations, however, especially when both sides of the junction are heavily doped with the same type of dopant (e.g. donors). In such a case, the Fermi level is strongly pinned at the band edges on both sides, and the potential barrier is forced to form a sharp peak above the Fermi level. Since the peak region in the barrier is strongly depleted of carriers, the resistance is very high according to Equation (5.6). If this junction happens to be reverse biased (i.e. the carriers on the barrier side tend to be more depleted when the bias is applied), the high resistance can cause an unrealistically large voltage drop there.

Fortunately, the difficulty associated with a highly doped abrupt heterojunction does not occur very often near the active regions, because junctions there are rarely heavily doped with the same dopant on both sides. If the heavily doped contact region has an abrupt heterojunction, problems may arise. An example of this is \(\mathrm{GaAs} / \mathrm{AlGaAs}\), which may have a heavily doped GaAs substrate under the heavily doped cladding region.

In most cases the abrupt junction model implemented in the program is adequate. In setting up a new device structure one may ignore the problem mentioned above unless the simulation result shows an unrealistically large voltage drop. The user may be able to spot such a problem just from simulator's run-time printout. For example, if the printout shows shows that 10 Volts are needed to pass a few mA of current, it usually indicates there is a barrier of some kind.
By plotting the band diagram, it should be possible to locate if an abrupt junction is causing this problem. If so, we can replace the abrupt junction with a graded barrier without affecting any active regions. Usually a graded barrier with grading length of \(100 \AA\) or so is adequate to replace the heavily doped junction that is causing the
trouble.
This limitation of the program arises from the assumption of drift-diffusion as the key transport mechanism. In reality the main mechanism of carrier transport across the thin and sharp barrier is quantum tunneling.

\subsection*{5.2.4 Neumann boundaries}

Along the outer non-contacted edges of simulated devices, homogeneous reflecting Neumann boundary conditions are imposed so that current only flows out of the device through the contacts. Additionally, in the absence of surface charge along such edges, the normal electric field component goes to zero. In a similar fashion, current is not permitted to flow from the semiconductor into an insulating region; further, at the interface between two different materials, the difference between the normal components of the respective electric displacements must be equal to any surface charge present along the interface.

\subsection*{5.2.5 Lumped elements}

Lumped elements have been created to cut down the number of grid points to discretize some device structures, thereby saving CPU time. Lumped resistance might be useful in a simulation of a semiconductor device structure with a substrate contact located far away from the active region. If the whole structure were to be simulated, a tremendous number of grid points, probably more than half, would be wasted to account for a purely resistive region of the device. Because CPU time is generally a superlinear function of the number of grid points, including such regions can be quite expensive.

Applying this boundary condition creates an extra unknown \(\left(V_{s}\right)\), the voltage on the semiconductor contact, which if defined by Kirchoff's equation:
\[
\begin{equation*}
\frac{V_{\text {applied }}-V_{s}}{R_{s}}-\sum_{i=1}^{N_{b}}\left(J_{n}+J_{p}\right)=0 \tag{5.54}
\end{equation*}
\]
where \(N_{b}\) is the number of boundary grid points associated with the electrode of interest.

Note that this auxiliary equation, due to the currents inside the summation, has dependencies on the values of potential and carrier concentrations at the nodes on the electrode as well as all nodes directly adjacent to the electrode. It is important to remember that a lumped element contact will have a single voltage (or potentialadjusted for possible doping non-uniformity) associated with the entire electrode.

The simulator should be used as much as possible to calculate any resistance components that might be included as lumped elements. For instance, in the case of sub-
strate resistance of a semiconductor device, one could just simulate the n-substrate with ohmic contacts at both ends. From the plot of the contact current versus voltage, the resistance can be directly extracted from the slope.

\subsection*{5.2.6 Current boundary condition}

The current boundary condition is a very important option in the simulation of device. For example, when a laser diode is biased beyond threshold, the gain and carrier concentration essentially saturate. This also causes the bias voltage to saturate, while the current continues to rise because of stimulated emission. Under such conditions, operating the simulator at a voltage-controlled mode would cause the current to jump to huge values for a small increase in voltage.

In some devices (not necessarily lasers), the terminal current is a multi-valued function of the applied voltage. This condition implies that for some voltage boundary conditions, a numerical procedure may end up, depending on the initial guess solution, with a solution in either of two distinct and stable states. Furthermore, a condition of primary interest is at the trigger point, where \(d V / d I=0\), which is difficult to obtain with a simple voltage boundary condition. Additionally, it is nearly impossible to compute any solutions in the negative resistance regime with voltage inputs.
A possible alternative to the difficult situation mentioned above would be to define a current controlled boundary condition, since voltage can be thought of as a single-valued function of the terminal current. Such a boundary condition has been implemented in the software, as an auxiliary equation with an additional unknown boundary potential. Like the lumped element case, a Kirchoff equation is written at the contact points:
\[
\begin{equation*}
J_{\text {source }}-\sum_{i=1}^{N_{b}}\left(J_{n}+J_{p}\right)=0 . \tag{5.55}
\end{equation*}
\]

Note that unlike the lumped element case, \(J_{\text {source }}\) is a constant specified by the user and has no dependence on the boundary potential \(V_{s}\) (the \(V_{s}\) dependence is buried in the summation). Since the full Newton's method is used for the solution of all equations in the program, no degradation of convergence has been observed for current controlled simulations.
The choice of a voltage or current bias is mostly a function of the \(d I / d V\) slope; this is explained in more detail in Sec. 4.1. For regions where \(d I / d V\) is small, the voltage boundary condition is definitely preferable; this occurs frequently below the turn-on voltage or under reverse bias conditions. If the opposite is true, then the current bias is preferable.
It is not uncommon for the negative resistance regime of certain devices to have a slope \(d I / d V\) very close to zero. Such behavior should be considered when using a
current source to trace out an entire I-V curve. It might be preferable to switch back to a voltage source after passing the trigger point.

\subsection*{5.3 Pure Resistor Regions and Metal Macros}

For resistors and metals, we assume the following conditions are true:
- Charge neutrality: we assume that the space charge at any point is always zero even when current flows.
- Zero diffusion current: the distribution of carriers is uniform enough that only drift current exists.
- Equilibrium carrier density: we assume that carrier density stays constant even when current flows so that no recombination occurs.
- Uniform material properties throughout the layer.

Under such assumptions, the Poisson and current continuity equations reduce to:
\[
\begin{gather*}
\nabla \cdot\left(\frac{\epsilon_{0} \epsilon_{d c}}{q} \nabla V\right)=0  \tag{5.56}\\
\nabla \cdot J=0 \tag{5.57}
\end{gather*}
\]

These can be combined into a single equation by writing the drift current as:
\[
\begin{equation*}
J=\sigma \nabla V \tag{5.58}
\end{equation*}
\]

Therefore, only the Poisson equation needs to be solved in metal/resistor regions.

\section*{Model History}

Crosslight's metal models have undergone a number of major changes over the years so it is important to document the history of these changes for existing users.

\section*{Pseudo-metal semiconductor}

Prior to the 2007.3 version, the standard metal model described above was used to represent resistors. However, this model had some limitations. For semiconductor regions, the drift-diffusion model solves three equations so solving a single equation
for certain points did not integrate very well other models such as our small-signal AC solver or the quantum tunneling code.

To simplify integration of metals with these models, starting from version 2007.3, Crosslight's device simulators approximated a resistor region as a special kind of semiconductor with a heavy carrier mass ( \(\sim 10\) ) and very small bandgap ( 0.1 eV ). This approach allowed the semiconductor to duplicate many properties of metals including Fermi level pinning. However, the need to define an equivalent carrier mobility (to match the desired metal resistivity) introduced a dependency on the carrier density. As this was controlled by the increased DOS mass, there was a mismatch with the conduction/transport mass used in the quantum tunneling formulation which required further corrections.
Feedback from users has ultimately demonstrated that this pseudo-metal semiconductor approach has its own set of limitations, especially with thicker layers. As of the October 2014 version, this approach is now considered obsolete and the pre-2007 standard model has been restored. However, our AC and quantum tunneling models have now been improved and may be used in conjunction with resistors.

\section*{Band alignment}

Starting with version 2013, a subroutine was added to automatically adjust the work function of resistors and align it with the affinity of the neighboring semiconductor. This was done to facilitate the use of metals which, in most applications, are used for ohmic contacts. However, since thermionic emission is used at all internal boundaries, Schottky contacts of poor quality may be formed if the affinity of the resistor macro is not adjusted properly. An example of this is ITO which can be either a p (for GaN) or \(n\) (for OLED) contact metal depending on the application: the affinity needed to successfully inject the correct carriers changes greatly in these two cases.

The pre-2013 Schottky-like behavior can be recovered using the no__auto__workfunction statement. This may be necessary in cases where the Schottky behavior is expected, when the effect of the metal's affinity must be studied, or in thermal simulations where affinity shifts due to temperature may ruin the automatic alignment process.

\section*{Interaction with quantum tunneling models}

One should exercise caution when setting up quantum tunneling between a metal macro and a semiconductor barrier. When using the propagation matrix approach, the program uses the default density of state (DOS) mass from the macro to define the tunneling probability; put differently, tunneling depends on the kinetic energy of an individual particle. However, the DOS mass is a measure of the shape of the \(E(k)\) dispersion relation and describes "how many" carriers there are in a band rather than
"how fast" those carriers are traveling. These two mass values may not always be the same.

Luckily, the DOS mass is not needed in the current version of the metal/resistor macros and unlike previous the pseudo-metal approach, we no longer need to calculate an equivalent carrier mobility. Instead, we use experimental data and the mobility-carrier density relationship is completely abstracted away:
\[
\begin{equation*}
\sigma=\frac{1}{\rho}=q\left(\mu_{n} n+\mu_{p} p\right) \tag{5.59}
\end{equation*}
\]

The tunneling transport mass in our model is thus defined in the following way:
- 1 Internally, the DOS mass of metal/resistor macros is set at a default value of 0.1 for n and p . This can be overridden by explicitly declaring the DOS mass in the resistor macro.
- 2 The transport mass is calculated using a ratio of 1:1 with the DOS mass. This ratio may be overridden using the commands cond__dos__mass_ratio_n and cond__dos__mass__ratio__p.

\subsection*{5.4 Bandgap Narrowing Effect}

It is observed experimentally that the shrinkage of bandgap occurs when impurity concentration is particulary high, eg. \(n_{i m p}>10^{23} \mathrm{~m}^{-3}\). This effect is so called bandgap narrowing effect which is ascribed to the emerging of the impurity band formed by the overlaped impurity states. The bandgap narrowing model proposed by Slotboom is given by
\[
\begin{equation*}
\Delta E_{g}=E_{r e f}\left\{\ln \frac{n_{i m p}}{n_{r e f}}+\sqrt{\ln ^{2} \frac{n_{i m p}}{n_{r e f}}+0.5}\right\} \tag{5.60}
\end{equation*}
\]
where \(E_{\text {ref }}, n_{r e f}\) and \(n_{i m p}\) represent energy parameter, density parameter and impurity concentration, respectively.
In case of silicon, \(E_{r e f}\) and \(n_{r e f}\) were obtained by fitting experiment, which yeilds
\[
\begin{align*}
E_{r e f} & =0.009[V]  \tag{5.61}\\
n_{r e f} & =10^{23}\left[\mathrm{~m}^{23}\right] \tag{5.62}
\end{align*}
\]

It should be noted that the bandgap narrowing effect is doping dependent effect, whereas the many body effect, which reduces band gap as well, is carrier dependent effect.

It should also be pointed out that the macro system in Crosslight software provides an easy way for user to define any kind of bandgap narrowing model since dopant density is an internal variable automatically passed to any macro functions, including the bandgap.

\subsection*{5.5 Trap Models}


A deep level trap located with the semiconductor bandgap is described by both the charge property (deep donor or deep acceptor) as it appears in Poisson's equation and by a rate equation with capture and escape terms:
\[
\begin{align*}
& R_{n}^{t j}=c_{n j} n N_{t j}\left(1-f_{t j}\right)-c_{n j} n_{1 j} N_{t j} f_{t j},  \tag{5.63}\\
& R_{p}^{t j}=c_{p j} p N_{t j} f_{t j}-c_{p j} p_{1 j} N_{t j}\left(1-f_{t j}\right) \tag{5.64}
\end{align*}
\]

Traps can be defined as either localized defects using the doping statement or as an integral part of a material using the material statement. The latter method is especially convenient when dealing with amorphous materials like a-Si:H. When combining the two methods, the following rules are used:
- 1. Load all macros and initialize trap properties and trap level models if any material statements define traps.
- 2. Get trap information from doping statement regarding trap concentration and level. This will affect all materials in a given area since doping is done at the mesh level and does not distinguish by material.
- 3.
- If (2) exists for traps, we should now have density, level and charge-types. Calculate capture cross section according to material lifetime for trap_1 only.
- If (2) does NOT exist, assume a low mid-gap donor of 1.e6 \(1 / \mathrm{m} 3\). Then, calculate capture cross section according to material lifetime for trap_1 only.
- 4. Check trap_conc_i commands. If they exist, we ADD that concentration to that obtained in (2).
- 5. Check for trap_level_i statements which override values obtained from (2) and (3).
- 6. Check for trap__ncap_i and trap_ncap_i statements that override values obtained from (3).

The software is limited to only a few species of traps (defined by numeric labels) but a single species of trap can represent many different trap levels within the bandgap. In the extreme of densely populated traps such as those appearing in amorphous materials, it is more convenient to use a continuous function to describe the energy distribution of the trap levels.

As of the 2015 version, the software supports Gaussian, exponential tail and uniform trap distributions.

\section*{Trap Photo-Excitation}

When the photon energy of light is less than the semiconductor bandgap, it is still possible to generate photo-carriers if deep level traps are sensitive to light. Electrons and holes being trapped in the deep level trap centers require less than bandgap energy to be excited to the conduction or valence bands. We shall refer to this process as trap photo-excitation.

In such a case, the Schokley-Read-Hall recombination terms of the drift-diffusion must be revised to include photo-carrier generation terms due to emission from traps \(\left(G_{t n}\right.\) and \(\left.G_{t p}\right)\) :
\[
\begin{align*}
& R_{n}^{t j}=c_{n j} n N_{t j}\left(1-f_{t j}\right)-c_{n j} n_{1 j} N_{t j} f_{t j}-G_{t n}  \tag{5.65}\\
& R_{p}^{t j}=c_{p j} p N_{t j} f_{t j}-c_{p j} p_{1 j} N_{t j}\left(1-f_{t j}\right)-G_{t p} \tag{5.66}
\end{align*}
\]

We will derive the generation term \(G_{t n}\) from the consideration that it must be proportional to trap density and electron occupancy. It must also be proportional to light intensity. Let us recall the photon generation term of direct electron-hole pairs:
\[
\begin{equation*}
G_{e h}=v_{g} S \alpha \tag{5.67}
\end{equation*}
\]
where \(v_{g}\) is the group velocity of light, \(S\) the photon density and \(\alpha\) the absorption coefficient.

In analogy, we can write down the trap excitation term as:
\[
\begin{equation*}
G_{t n}=v_{g} S N_{t j} f_{t j} \sigma_{x n} \tag{5.68}
\end{equation*}
\]
where \(\sigma_{x n}\) has the unit of area and shall be defined as the trap photo-excitation cross section. Please note that this cross section times the amount of trapped electrons (i.e., \(N_{t j} f_{t j}\) ) may be compared with usual bulk material absorption coefficient in units of \(1 / \mathrm{m}\).

Similarly, trap excitation for holes is given by:
\[
\begin{equation*}
G_{t p}=v_{g} S N_{t j}\left(1-f_{t j}\right) \sigma_{x p} \tag{5.69}
\end{equation*}
\]

To activate this model, the user should use the trap_excitation statement.

\section*{CHAPTER 6}

\section*{NUMERICAL TECHNIQUES AND 3D SIMULATION}

This chapter discusses numerical issues related to solving the drift-diffusion equations on a discretized \(2 / 3\) dimensional finite element mesh. The 3D mesh may be regarded as a collection of 2D planes with carefully constructed plane-to-plane finite element connectivity. The reduction of 3D into 2D in case of cylindrical symmetry is also discussed.

\subsection*{6.1 Numerical Techniques}

\subsection*{6.1.1 Introduction}

All Crosslight software packages involve solving the drift-diffusion equations along with a few others, mostly related to the optical part of the device simulation. Since a substantial amount of computation time is spent on the DD equations, we shall concentrate mainly on the numerical techniques related to them here.

Equations (5.1) to (5.3) describe the electrical behavior of the bulk or quantum well semiconductor devices. Poisson's equation (Equation 5.1) governs the electrostatic potential and the continuity equations (Equations (5.2)-(5.3)), govern the carrier concentrations.

These differential equations are discretized as described in the next section. The resulting set of equations is coupled and nonlinear. Consequently, there is no method to solve the equations in one direct step. Instead, solutions must be obtained by a nonlinear iteration method, starting from some initial guess. The solution methods are detailed in subsection 6.1.3, and the choice of initial guess is explained in subsection 6.1.4.

\subsection*{6.1.2 Discretization}

To solve the device equations on a computer, they must be discretized on a simulation grid. That is, the continuous functions of the PDE's are represented by vectors of function values at the nodes, and the differential operators are replaced by suitable difference operators. Instead of solving for four unknown functions (potential, electron and hole concentrations, and the electron or hole energy), the simulator solves for \(3 N\) or \(4 N\) unknown numbers, depending on the model choice, where N is the number of grid points.

The key to discretizing the differential operators on a general triangular grid is the box method [10]. Each equation is integrated over a small polygon enclosing each node, yielding 4 N nonlinear algebraic equations for the unknown potential, concentrations and the wave amplitude. The integration equates the flux into the polygon with the sources and sinks inside it, so that conservations of current and electric flux are built into the solution.

The integrals involved are performed on a triangle by triangle basis, leading to a simple and elegant way of handling general surfaces and boundary conditions. In this case the integral is simply replaced by a summation of the integrand evaluated at the node multiplied by the area surrounding it.

In the case of the continuity equations, the carrier fluxes must be evaluated with care; the classic finite difference formulas are modified as first demonstrated by Scharfetter and Gummel (SG-formula) in 1969 [11]. From the user's point of view, the discretization is completely automatic and no intervention is required.

For the hydrodynamic model, the SG-formula for discretization must be modified. The details are worked out in the Appendix.

\subsection*{6.1.3 Newton's method}

We discuss the numerical solution of drift-diffusion equations. In Newton's method, all of the variables in the problem are allowed to change during each iteration, and all of the coupling between variables is taken into account. Due to this, the Newton algorithm is very stable, and the solution time is nearly independent of bias conditions.

The basic algorithm is a generalization of the Newton-Raphson method for the root of a single equation. Equations (5.1)-(5.3) can be written as:
\[
\begin{align*}
F_{v}^{j}\left(V^{j 1}, E_{f n}^{j 1}, E_{f p}^{j 1}\right) & =0,  \tag{6.1}\\
F_{n}^{j}\left(V^{j 1}, E_{f n}^{j 1}, E_{f p}^{j 1}\right) & =0,  \tag{6.2}\\
F_{p}^{j}\left(V^{j 1}, E_{f n}^{j 1}, E_{f p}^{j 1}\right) & =0, \tag{6.3}
\end{align*}
\]
where \(j\) runs from 1 to N , and \(j 1\) includes \(j\) itself plus its surrounding mesh points.

Equations (6.1) to (6.3) represent a total number of \(3 N\) equations, which is sufficient to solve for \(3 N\) variables: \(\left(V^{1}, E_{f n}^{1}, E_{f p}^{1}, V^{2}, E_{f n}^{2}, E_{f p}^{2}, \ldots, V^{N}, E_{f n}^{N}, E_{f p}^{N}\right)\).
Once the equations are discretized in the above form, standard Newton techniques can be used to solve for them. These involve the evaluation of the Jacobian matrix to linearize Equations (6.1) to (6.3), followed by a linear solver (involving LU factorization of the matrix) and finally, nonlinear iteration to get the final solution. Since the Jacobian matrix is sparse, sparse matrix techniques are used to improve the computation speed.
The major acceleration of a Newton iteration is the Newton-Richardson method, whereby the Jacobian matrix is only refactored when necessary. When it is not necessary to factorize, the iterative method using the previous factorization is employed. The iterative method is extremely fast provided the previous factorization is reasonable. Frequently the Jacobian need only be factorized only once or twice per bias point using the Newton-Richardson method, as opposed to the twenty to thirty times required in the conventional Newton method. The decision to refactor is made on the basis of the decrease per step of the maximum error of both the equation residuals and the variable differences. This mechanism has been automated within the program and no user intervention is needed.

\subsection*{6.1.4 Initial guess and adaptive bias stepping}

Several types of initial guess solutions are used in the simulator. The first is the simple charge neutral assumption used to obtain the first (equilibrium) bias point. For the wave equation, the guess solution is a delta function at the center of the active region. This is the starting point of any device simulation.
Any later solution with applied bias needs an initial guess of some type, obtained by modifying one or two previous solution(s). When only one previous solution is available, the solution currently loaded is used as the initial guess, modified by setting the applied bias at the contact points. The same is true for the wave equation. When two previous solutions with two different biases are available, it is possible to obtain a better initial guess by extrapolating the two previous solutions All of these steps are automated within the program and no user intervention is needed.
A schematic of the biasing strategy is given in Figure 6.1.
As in any Newton method, convergence strongly depends on the wise choice of the initial guess solution. In principle, the Newton nonlinear iteration should always converge as long as the initial guess is close enough to the solution. The closer the initial guess is to the solution, the fewer nonlinear iterations are required to reach convergence. The program takes this fact into account and implements an adaptive method to control the bias step after the successful convergence of the previous solution.


Figure 6.1: Flow diagram of how the simulator performs a typical simulation.

Assuming that the previous solution takes \(K_{1}\) number of iterations for a bias step of \(\Delta V_{1}\) to reach convergence and the user believes (by experience) that the optimal number of iterations should be \(K_{0}\), the current bias step \(\Delta V_{2}\) is adjusted to \(\Delta V_{2}=\) \(\Delta V_{1} K_{0} / K_{1}\). In this way an optimal step can be determined such that the nonlinear Newton iteration is controlled to converge within \(K_{0}\) iterations. Again this procedure is completely automated for the user.
One common cause of convergence problems in a Newton method is oscillations in the solution. This usually occurs when the initial guess is poor and the solver overshoots the solution. In order to prevent this, a damping value has been implemented which prevents the solver to change the solution too much between successive iterations. This value is defined in the newton__par statement. A small damping value will damp the oscillations effectively but may cause slower convergence. A large value allows faster convergence when the initial guess is poor but carries a larger risk of oscillations.

Another important topic for the Newton solver is the choice of solver variables: please refer to section 4.7 for details.

\subsection*{6.1.5 Transient simulation}

The method used to discretize the differential equations in time is the backward Euler method. Its basic approximation is the following equation:
\[
\begin{equation*}
\frac{\partial S}{\partial t}=\frac{S(t)-S(t-\Delta t)}{\Delta t} \tag{6.4}
\end{equation*}
\]

This method has the advantages of being highly stable and recovers the steady state solution in the limit \(\Delta t \rightarrow \infty\).

Strictly speaking, the simulation system has more than 5 sets of equations when the trap dynamic equation (Equation (5.11)) is also included in a transient simulation. However, this equation is only dependent on local variables and can be solved before the major Newton step involving all mesh points.

Once all the equations are discretized in terms of solution of the previous time step, one can treat the solution of the present time step using the same method as for the steady state solution, i.e. one can linearize the discretized equations and use Newton's method to solve them.

\subsection*{6.1.6 Mesh issues}

Correct allocation of the grid is a crucial issue in device simulation. The number of nodes in the grid \((N)\) has a direct influence on the simulation time, where the number of arithmetic operations necessary to achieve a solution is proportional to \(N^{p}\) where \(p\) usually varies between 1.5 and 2 .

Because the different parts of a device have very different electrical and optical behavior, it is usually necessary to allocate a fine grid to some regions and a coarse grid to others. Whenever possible, it is desirable not to allow the fine grid in some regions to spill into regions where it is unnecessary, in order to maintain a reasonable simulation time. For more mesh allocation suggestions, please refer to sections 4.5 and 4.6.
The first step in mesh generation is to specify the device boundaries and the region boundaries for each material. The program uses triangles and trapezoids as the basic building blocks to describe an arbitrary device. Furthermore, the edge of each polygon can be bent to the desired shape.

The basic operation in the mesh generator after the boundaries have been defined is to draw lines parallel to the edges of the polygons (see Figure 6.2). This way one obtains, smaller trapezoids which can be bisected into two triangles (the basic elements in the finite element method).
Another basic operation is doubling the mesh density in a specified region as shown in the example of Figure 6.2. This is accomplished by drawing a new line between the old mesh lines. Repeating this operation, one can manually generate a mesh with any variation of mesh densities.
The simulator has provided another practical approach to automatic mesh generation and refinement. The mesh is refined according to the variation of specified physical quantities. For example, in a case where the potential variation between two adjacent nodes is greater than a value specified by the user, the program will automatically


Figure 6.2: Schematic for the basic operations in the mesh generator. Two mesh lines in the \(d_{2}\) direction, are used to double the mesh near the center of the polygon.
allocate additional mesh points between the two nodes. More detail can be found in the description of the statement refine__mesh in the reference section.

\subsection*{6.2 The Cylindrical Coordinate System}

\subsection*{6.2.1 Introduction}

Since many devices are fabricated with cylindrical symmetry (e.g. VCSELs, photodetectors), it is a good idea to establish a cylindrical coordinate system for device simulation. By making use of the rotational symmetry, we can reduce the threedimensional coordinate system to a two-dimensional one. To do so, we first consider our differential equation systems under a general coordinate system. Then, we apply the theory to the cylindrical system.

\subsection*{6.2.2 Some general considerations for an arbitrary coordinate system}

Our purpose is to re-write the drift-diffusion equation, usually written in cartesian coordinates, \((\mathrm{x}, \mathrm{y}, \mathrm{z})\), in the new coordinate \(\operatorname{system}\left(q_{1}, q_{2}, q_{3}\right)\) which are orthogonal to each other. We start by considering a small distance along each of the three
coordinates:
\[
\begin{equation*}
d s_{j}=H_{j} d q_{j}, H_{j}=\sqrt{\left(\frac{\partial x}{\partial q_{1}}\right)^{2}+\left(\frac{\partial y}{\partial q_{2}}\right)^{2}+\left(\frac{\partial z}{\partial q_{3}}\right)^{2}} . \tag{6.5}
\end{equation*}
\]

Then the gradient of a scalar variable \(u\) is given by:
\[
\begin{equation*}
\nabla u=\frac{1}{H_{1}} \frac{\partial u}{\partial q_{1}} \mathbf{e}_{\mathbf{1}}+\frac{1}{H_{2}} \frac{\partial u}{\partial q_{2}} \mathbf{e}_{\mathbf{2}}+\frac{1}{H_{3}} \frac{\partial u}{\partial q_{3}} \mathbf{e}_{\mathbf{3}} \tag{6.6}
\end{equation*}
\]
where \(\mathbf{e}_{\mathbf{j}}\) is used to denote the unit vector for each of the new coordinates.
Let us derive the expression for the divergence, \(\nabla \cdot \mathbf{A}\) of an arbitrary vector \(\mathbf{A}\). We consider a small volume defined within from \(q_{1}\) to \(q_{1}+d q_{1}, q_{2}\) to \(q_{2}+d q_{2}\), and \(q_{3}\) to \(q_{3}+d q_{3}\). The out-going flux (A ) though the surfaces at \(q_{1}\) and \(q_{1}+d q_{1}\) of this small volume is given by:
\[
\begin{equation*}
\left.\left(A_{1} H_{2} H_{3}\right)\right|_{q_{1}+d q_{1}} d q_{2} d q_{3}-\left.\left(A_{1} H_{2} H_{3}\right)\right|_{q_{1}} d q_{2} d q_{3}=\frac{\partial}{\partial q_{1}}\left(A_{1} H_{2} H_{3}\right) d q_{1} d q_{2} d q_{3} \tag{6.7}
\end{equation*}
\]

Similarly, the flux through surfaces at \(q_{2}\) and \(q_{2}+d q_{2}\) is given by:
\[
\begin{equation*}
\frac{\partial}{\partial q_{2}}\left(A_{2} H_{3} H_{1}\right) d q_{1} d q_{2} d q_{3} \tag{6.8}
\end{equation*}
\]
and the flux through surfaces at \(q_{3}\) and \(q_{3}+d q_{3}\) is given by:
\[
\begin{equation*}
\frac{\partial}{\partial q_{3}}\left(A_{3} H_{1} H_{2}\right) d q_{1} d q_{2} d q_{3} \tag{6.9}
\end{equation*}
\]

The divergence is defined as the the total out-going flux divided by the volume under consideration:
\[
\begin{equation*}
\nabla \cdot \mathbf{A}=\frac{1}{H_{1} H_{2} H_{3}}\left[\frac{\partial}{\partial q_{1}}\left(H_{2} H_{3} A_{1}\right)+\frac{\partial}{\partial q_{2}}\left(H_{3} H_{1} A_{2}\right)+\frac{\partial}{\partial q_{3}}\left(H_{1} H_{2} A_{3}\right)\right] \tag{6.10}
\end{equation*}
\]

\subsection*{6.2.3 Cylindrical coordinate system}

The relation between the old \(\left(x_{1}, y_{1}, z_{1}\right)\) and the new coordinate system \(\left(r, \theta, z_{r}\right)\) is given by:
\[
\begin{align*}
x_{1} & =r \cos \theta  \tag{6.11}\\
y_{1} & =r \sin \theta \\
z_{1} & =z_{r}
\end{align*}
\]

To avoid confusion with the ( \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) ) system used in our simulation software, we have used a new set of symbols here. In our simulator, \(x, y\) are the lateral and vertical
coordinates of a 2D plane and \(z\) is a depth coordinate used to stack planes. In the cylindrical system, the \(z_{r}\) axis is usually normal to the layers and corresponds to \(y\) so that \(r\) corresponds to \(x\).
It is easy to find that:
\[
\begin{equation*}
H_{r}=1, H_{\theta}=r, H_{z}=1 \tag{6.12}
\end{equation*}
\]

Therefore, the gradient is given by:
\[
\begin{equation*}
\nabla u=\frac{\partial u}{\partial r} \mathbf{e}_{\mathbf{r}}+\frac{1}{r} \frac{\partial u}{\partial \theta} \mathbf{e}_{\theta}+\frac{\partial u}{\partial z_{r}} \mathbf{e}_{\mathbf{z}} \tag{6.13}
\end{equation*}
\]
and the divergence is given by:
\[
\begin{equation*}
\nabla \cdot \mathbf{A}=\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r A_{r}\right)+\frac{\partial}{\partial \theta}\left(A_{\theta}\right)+\frac{\partial}{\partial z_{r}}\left(r A_{z}\right)\right] \tag{6.14}
\end{equation*}
\]
or
\[
\begin{equation*}
\nabla \cdot \mathbf{A}=\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta} A_{\theta}+\frac{\partial}{\partial z_{r}} A_{z} \tag{6.15}
\end{equation*}
\]

\subsection*{6.2.4 Application to devices with cylindrical symmetry}

For device with cylindrical symmetry, \(\frac{\partial}{\partial \theta}\) yields zero. The operators of gradient and divergence become:
\[
\begin{gather*}
\nabla u=\frac{\partial u}{\partial r} \mathbf{e}_{\mathbf{r}}+\frac{\partial u}{\partial z_{r}} \mathbf{e}_{\mathbf{z}}  \tag{6.16}\\
\nabla \cdot \mathbf{A}=\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r A_{r}\right)+\frac{\partial}{\partial z_{r}}\left(r A_{z}\right)\right] \tag{6.17}
\end{gather*}
\]

Therefore it is easy to see that in the cylindrical system, all we need to do is to replace \(\mathbf{A}\) by rA and multiply \(\frac{1}{r}\) in front of the differential operators.
Our next task is to convert the new differential equation into a suitable discretization scheme for the cylindrical system. Let us recall how we discretize the drift-diffusion equation in the old coordinate system. We evaluate the gradient (the electric field or the current density vector) for each boundary of the finite box which we create for the neighboring elements. We then sum up the total flux and divide it by the area of the finite box. In the new system, we need to multiply the flux by \(r\) which is evaluated at the boundary point. We also divide the total flux by the area of the finite box and by \(r\) evaluated at the center of the box (or the center point).
It is obvious that we should keep in mind that the missing dimension is no longer infinite but has rotational symmetry. For example, we need to integrate current density over the \(2 \pi\) radians to get the total current.

\subsection*{6.3 3D Modeling in Semiconductors}

\subsection*{6.3.1 Introduction}

For historical reasons and previous limitations on available computer power, most of the Crosslight Software packages are written for a two-dimensional cross-section of a semiconductor device. Recent progress has allowed computer power to increase significantly so we can now consider doing 3D simulations on a desktop PC.
Some outstanding issues must be resolved to extend the solver from 2D to 3D:
- The user input/interface should be a natural extension of a 2 D simulation. All material macros in 2D should be usable in 3D. All physical models and boundary conditions must be extendable to 3D.
- A useful 3D simulation should be able to handle geometry and material variation in the z -dimension easily.
- Smart memory management scheme must be developed so that the 3D package can be run on anything from a laptop to a supercomputer.

We have successfully overcome most of these difficulties and created an option for 3D modeling. We call this capability "3D-Current Flow" or "3D-Flow" since it allows current to flow both in all three dimensions. We will explain the design ideas behind this model in the following subsections.

\subsection*{6.3.2 From 2D to 3D}

Three-dimensional mesh generation is very complex and is still the subject of intense research by many groups. However, we have a two-dimensional mesh generation and refinement system which works very well: it is natural to extend this system as far as we can.

As usual, we find the parallel cross sections of a device that has the most variation in physical variables and define them as \(x, y\) planes. Within these planes, we use the same 2D mesh generation routines as before. The \(z\) direction will have a relatively slower variation and can be sparsely meshed to reduce the overall number of mesh points: every \(z\) mesh point will be accompanied by a 2 D mesh plane.

For example, a ridge waveguide laser would use the waveguide cross-section as the \(x, y\) direction and the \(z\) axis would be the longitudinal propagation axis. On the other hand, an LED with complex electrode shapes would define the \(x, y\) planes to be parallel to the electrodes and the \(z\) axis would be perpendicular to the QW layers. In a cylindrical system, 3D simulations imply a lack of rotational symmetry and the \(x, y\) (or \(r, z_{r}\) ) planes would stack together in the \(\theta\) direction.

\subsection*{6.3.3 3 D structure and material input}

A 3D simulation in .sol is always defined by using the 3d__solution__method statement with the option 3d_flow=yes. Other options can also be added to control the way the mesh planes connect to each other as will be explained later in this chapter.

The next step of the input is to define regions that have the same material properties and composition. These are called "segment" or "z-segment" and are defined by the z__structure statement. A segment can have multiple mesh planes: these will share the same material properties such as bandgap and doping but physical variables such as potential and carrier concentrations are allowed to change between planes.
To define a 3D volume, at least 2 mesh planes must be defined. However, at least 3 mesh planes must be present to get a variation along the z-axis. Segments containing a single mesh plane are allowed but must have zero thickness: additional planes and segments will be needed to define a 3D volume.
After all the z_structure statements have been issued, multiple load__mesh statements must be issued. Each of these statements must use the zseg_num parameter to identify the segment they belong to. In the special case where there is only a single segment, this can be omitted and \(z s e g \_n u m=1\) will be assumed.

After the mesh has been loaded, the material properties for each segments must be defined. This must be done inside blocks bracketed by begin_zmater ... end_zmater These blocks must also be numbered by zseg_num with the exception of the case with a single segment: in this case, \(z s e g \_n u m=1\) will be assumed and the _zmater statements can be omitted.

Material properties that need be defined in this way include:
- material declarations: load__macro and define__material
- active region declarations: active__reg and get__active__layer
- doping statements
- contact definitions

Note that for material declarations, a macro should be loaded only once, in the segment where a material first appears. Further occurrences of this material should invoke define__material instead of load__macro.

Just as materials can reoccur between segments, so can contacts the same boundary conditions applies everywhere and the electrode current is also summed up for all segments. If each segment is to be biased independently from the other, then different contact numbers must be used. For example, it is possible for a tunable DBR laser to have a shared bottom electrode ( \(\# 1\) ) with split top contacts for the gain (\#2), tuning (\#3) and DBR (\#4) segments.

The 2D .layer files can be used in a 3D simulation to facilitate this input: the .mater and .doping files it generates can be included inside the _zmater blocks. However, when processed by itself, a layer file will always number materials \(1,2,3, \ldots\) as it encounters them which can cause conflicts between segments. To avoid this, make sure to use the previous_layer statement to refer to the preceding segment's layer file: this will fix numbering issues and will also detect materials that have already been declared so it will issue define__material statements where appropriate.
However, contacts in each 2D layer file should be numbered according to the final 3 D structure and whether or not they will be shared between segments.

\subsection*{6.3.4 3D mesh generation}

As explained above, the three-dimensional mesh consists of a series of two-dimensional mesh planes stacked together. The position of these mesh planes is determined by the length of the segments and the number of planes that have been assigned. This number must be assigned manually by the user, just like the number of mesh points in a column or layer.
When a segment has multiple planes, there will usually be planes at the beginning and end of the segment. If there are multiple segments, this can cause a problem since two mesh planes cannot exist in the same \(z\) position. The software has two ways of dealing with this, depending on the value of the xy_compatible_mesh parameter in 3d__solution__method:
- If set to "no" (the default), mesh planes on either side of the segment boundary will be shifted by a small value.
- If set to "yes", then one of conflicting the planes will be eliminated and no shifting is required.

Care should be taking when using xy_compatible_mesh=yes. If there is a heterojunction at a segment boundary, then eliminating the extra plane can have disastrous consequences on convergence. Just like the 2D case, the closely spaced mesh points on either side of the junction are needed to get convergence.
For the other planes inside a segment, their position can be also be controlled via mesh point ratios: the z__structure statement supports a feature similar to that of put__mesh in the 2D mesh generator.

\subsection*{6.3.5 Discretization in 3D}

As explained in subsection 6.1.2, every mesh point has a polygon associated with it. To connect mesh points between planes, we extrude this polygon in either direction


Figure 6.3: Schematic of taper lines between two different segments.
to the midpoint of the preceding and following mesh plane. This forms prism-like 3D objects that are different from the traditional tetrahedral elements used in 3D FEM.

Flux conservation is consistent with the box method described earlier: connecting mesh points are assigned part of the flux based on the overlap between the two extruded polygons. A projection is used to account for the case where the two mesh planes are not parallel.

\subsection*{6.3.6 Taper structures}

To explain how tapers are handled in the software, we need to introduce the concept of "taper lines" as illustrated in Fig. 6.3.
Consider a structure with a taper extending from points A1-B1 on segment 1 to A2B2 on segment 2. We define a "taper line" A1-C1 on segment 1 and a corresponding taper line A2-C2 (point C2 is hidden behind the figure). These taper lines are used to extend a particular boundary from one plane to the corresponding boundary on the other.

This will divide the mesh on either side of the taper line and force mesh points to connect across planes without crossing the taper lines: this is especially important when dealing with semiconductor/insulator interfaces. As a result, the extrusion process described above no longer follows the \(z\) axis: it follows taper lines.
To define a taper in .sol, two segments must be defined with the taper_pointsj
parameters: multiple sets of taper points can be used to define multiple taper lines. The two segments must not overlap and the taper region will extend in the empty space between the last plane of the first segment and the first plane of the second segment.
Note that a very common misconception is that material properties in tapers are linearly interpolated between planes: for the electrical calculations, this is completely untrue. Tapers only control the connectivity between mesh planes: actual mesh planes must be assigned at various \(z\) positions in order to sample the variation of physical properties.

\subsection*{6.3.7 3D simulator control}

Once the 3D material data and mesh has been created, a 3D simulation is relatively straightforward. The .sol file works the same as before and bias can still be applied to specified electrodes. When the Newton solver is called, all mesh planes will be solved simultaneously to obtain the 3 D solution. The main difference is that 2 D simulations use currents in A/m units (since the \(z\) depth is not known). A 3D simulation, just like a cylindrical simulation, can compute the full current in Amperes.
For simulations with split contacts between segments, we advise caution when biasing as you may inadvertently create a short between neighboring electrodes in certain situations. This can usually be avoided by biasing multiple electrodes simultaneously.
For plotting results, the .plt file can still be used: plotting statements such as lplot__xy, lplot__xyz, vplot_xy, etc... can be used to view 3D data. CrosslightView can also plot data from 3D simulations.

\subsection*{6.4 3D modeling in PICS3D}

PICS3D adds an extra complication to the 3D modeling. As will be discussed in Chapter 16 and Sec. 18.4, the lasing behavior is controlled by an additional set of equations which depend on the longitudinal round-trip gain (RTG). These equations are based on the propagation of the optical mode in the cavity and are most often written using transfer matrix formalism.
As such, RTG evaluation requires gain and index profiles at various points in the cavity. These points can be considered an "optical mesh" and do not necessarily match the position of the electrical mesh planes described in the previous section. The optical mesh always follows the direction of the light propagation in the cavity so by the usual convention, it always follows the z-direction. For edge emitting devices like DFB lasers, the z-direction is defined as the direction in which x-y mesh planes are stacked: we will assume we are dealing with such a device for the rest of this
section.
With this in mind, we can consider how to evaluate the RTG equations. The problem here is one of consistency: to calculate the propagation, the gain profile is needed which requires knowing the local photon density and the associated longitudinal hole burning. However, the photon density itself is only known by calculating the RTG.

In older versions of PISC3D, the solution to this problem was to use a quasi-3D approach and tabulate the gain at various photon densities. The RTG equations were then solved separately from the main Newton solver to get the photon density and longitudinal gain profile. However, this method sometimes led to convergence issues.

As of version 2008, PICS3D couples the RTG equations and solves them in the main Newton solver. The RTG equations are still use the "optical mesh" but the modal gain and index for the propagation are directly interpolated from the electrical mesh at every iteration of the Newton solver. This means that all PICS3D simulations must be done in full 3D. For edge-emitting devices, PICS3D relies on the ability to solve multiple electrical mesh planes simultaneously to interpolate the gain and index profiles on the optical mesh. This increased self-consistency makes the model fully 3 D and greatly increases the convergence and stability of the software.

As a result, all edge-emitting laser simulations in PICS3D must use the 3d__solution_ method statement with 3d_flow=yes. However, the \(\mathbf{z} \_\)connect option is available to turn on or off the electrical coupling between mesh planes: only the ability to interpolate the gain from multiple mesh planes is actually required. In many devices, the longitudinal current contribution is negligible so turning off the electrical connection between mesh planes has a few advantages:
- it can often result in a smaller and more stable sparse matrix since the connecting elements between planes will be left out of the sparse matrix entirely
- it can avoid unintentionally shorting contacts between segments in certain bias configurations

\subsection*{6.4.1 3D VCSEL modeling in PICS3D}

For cylindrical devices such as VCSELs, the z-axis is as defined in Sec. 6.2. This means that the propagation is normal to the QW layers and the optical mesh is perpendicular to what is used in edge-emitting devices. In addition, rotational symmetry implies that only a single mesh plane is required to do a full 3D model: 3d__solution__method is not required for most cases.

However, the same basic principles of the coupled RTG method still apply: optical properties are derived from the electrical mesh points and used to calculate the mode propagation. The coupled RTG equations are solved in the main Newton
solver alongside the rest of the electrical problem.

\section*{CHAPTER 7}

\section*{AC ANALYSIS AND HIGH FREQUANCY PARAMETERS}

For many users of Crosslight simulation software, assessment of high frequency performance of their devices is a key reason of the modeling. Analysis of high frequency behavior of a semiconductor device is more than solving the wave propagation in a passive medium. The response of a semiconductor to high frequency modulation is rather complex and requires special transformation of the drift-diffusion equations. This chapter gives an outline of the AC analysis theory for semiconductor devices.

\subsection*{7.1 Theory}

\subsection*{7.1.1 Introduction}


AC small signal analysis for semiconductor equations was first developed by Laux [12] in 1985. A modified version of this technique including the deep level trap model was later developed by Li and Dutton [13]. We shall follow their formulation in this section. We derive the formulas in subsection 7.1.2. The numerical techniques are given in section 7.2.

\subsection*{7.1.2 Basic formulas}

We re-write the basic semiconductor equations and trap dynamic model as follows:
\[
\begin{gather*}
-\nabla \cdot\left(\frac{\epsilon_{0} \epsilon_{d c}}{q} \nabla V\right)=-n+p+N_{D}\left(1-f_{D}\right)-N_{A} f_{A}+\sum_{j} N_{t j}\left(\delta_{j}-f_{t j}\right)  \tag{7.1}\\
\nabla \cdot J_{n}-\sum_{j} R_{n}^{t j}-R_{s p}-R_{s t}-R_{a u}+G_{o p t}(t)=\frac{\partial n}{\partial t}+N_{D} \frac{\partial f_{D}}{\partial t}  \tag{7.2}\\
\nabla \cdot J_{p}+\sum_{j} R_{p}^{t j}+R_{s p}+R_{s t}+R_{a u}-G_{o p t}(t)=-\frac{\partial p}{\partial t}+N_{A} \frac{\partial f_{A}}{\partial t}  \tag{7.3}\\
R_{n}^{t j}-R_{p}^{t j}=N_{t j} \frac{\partial f_{t j}}{\partial t} \tag{7.4}
\end{gather*}
\]
where:
\[
\begin{align*}
& R_{n}^{t j}=c_{n j} n N_{t j}\left(1-f_{t j}\right)-c_{n j} n_{1 j} N_{t j} f_{t j}  \tag{7.5}\\
& R_{p}^{t j}=c_{p j} p N_{t j} f_{t j}-c_{p j} p_{1 j} N_{t j}\left(1-f_{t j}\right) \tag{7.6}
\end{align*}
\]

The basic variables involved in the AC analysis are \(V\), the potential; \(n\) and \(p\), the electron and hole concentrations, respectively; and \(f_{t j}\), the trap occupancy of the jth trap species. To simplify our derivation, we use the following notation to represent Equations (7.1) to (7.4):
\[
\begin{gather*}
F_{1}\left(V, U_{n}, U_{p}, f_{t j}\right)=0  \tag{7.7}\\
F_{2}\left(V, U_{n}, U_{p}, f_{t j}\right)=\left(\frac{\partial n}{\partial U_{n}}+N_{D} \frac{\partial f_{D}}{\partial U_{n}}\right) \frac{\partial U_{n}}{\partial t}  \tag{7.8}\\
F_{3}\left(V, U_{n}, U_{p}, f_{t j}\right)=\left(-\frac{\partial p}{\partial U_{p}}+N_{A} \frac{\partial f_{A}}{\partial U_{p}}\right) \frac{\partial U_{p}}{\partial t}  \tag{7.9}\\
H_{j}\left(U_{n}, U_{p}, f_{t j}\right)=N_{t j} \frac{\partial f_{t j}}{\partial t} \tag{7.10}
\end{gather*}
\]
where we have changed the variables \(n\) and \(p\) into \(U_{n}\) and \(U_{p}\), their respective normalized quasi-Fermi levels. For the electron or hole transport equations ( \(F_{2}\) or \(F_{3}\) ) the first term on the right hand side represents \(\frac{\partial n}{\partial t}\) or \(\frac{\partial p}{\partial t}\), giving the time dependence of electron or hole concentration; the second term gives the time-dependent change in carrier concentration associated with the trap dynamics.
In general, the AC input signal (voltage) and solution variables are expressed as:
\[
\begin{equation*}
\xi=\xi_{0}+\Delta \xi e^{i \omega t} \tag{7.11}
\end{equation*}
\]
where \(\xi_{0}\) is the DC solution and \(\Delta \xi\) is the complex AC solution under a modulation frequency \(\omega=2 \pi f\). This form \(\xi\) can represent any variable of the system \(\left(\mathrm{V}, U_{n}\right.\), \(U_{p}\), or \(f_{t j}\) ) as a complex solution.

By substituting \(\xi\) back into the trap equation and doing a Taylor series expansion to first order at the DC solution, Equation (7.4) becomes:
\[
\begin{equation*}
\frac{\partial H_{j}}{\partial U_{n}} \Delta U_{n}+\frac{\partial H_{j}}{\partial U_{p}} \Delta U_{p}+\frac{\partial H_{j}}{\partial f_{t j}} \Delta f_{t j}=N_{t j} i \omega \Delta f t j \tag{7.12}
\end{equation*}
\]

Solving the above for \(\Delta f_{t j}\) gives:
\[
\begin{align*}
\Delta f_{t j} & =\left(\frac{\partial H_{j}}{\partial U_{n}} \Delta U_{n}+\frac{\partial H_{j}}{\partial U_{p}} \Delta U_{p}\right)\left(N_{t j} i \omega-\frac{\partial H_{j}}{\partial f_{t j}}\right)^{-1}  \tag{7.13}\\
\Delta f_{t j} & =\frac{-\frac{\partial H_{j}}{\partial U_{n}}\left(\frac{\partial H_{j}}{\partial f_{t j}}+i \omega N_{t j}\right) \Delta U_{n}-\frac{\partial H_{j}}{\partial U_{p}}\left(\frac{\partial H_{j}}{\partial f_{t j}}+i \omega N_{t j}\right) \Delta U_{p}}{\left(N_{t j} \omega\right)^{2}+\left(\frac{\partial H_{j}}{\partial f_{t j}}\right)^{2}} \tag{7.14}
\end{align*}
\]
which can be rewritten as:
\[
\begin{equation*}
\Delta f_{t j}=F_{n}(\omega) \Delta U_{n}+F_{p}(\omega) \Delta U_{p} \tag{7.15}
\end{equation*}
\]

By similarly expanding the Poison equation and electron and hole continuity equations as a first order Taylor Series and then substituting the above expression for \(\Delta f_{t j}\), we obtain the following equations:
\[
\begin{align*}
\frac{\partial F_{1}}{\partial V} \Delta V+\frac{\partial F_{1}}{\partial U_{n}} \Delta U_{n}+\frac{\partial F_{1}}{\partial U_{p}} \Delta U_{p}+ & \frac{\partial F_{1}}{\partial f_{t j}}\left(F_{n} \Delta U_{n}+F_{p} \Delta U_{p}\right) \\
& =0  \tag{7.16}\\
\frac{\partial F_{2}}{\partial V} \Delta V+\frac{\partial F_{2}}{\partial U_{n}} \Delta U_{n}+\frac{\partial F_{2}}{\partial U_{p}} \Delta U_{p}+ & \frac{\partial F_{2}}{\partial f_{t j}}\left(F_{n} \Delta U_{n}+F_{p} \Delta U_{p}\right) \\
& =\left(\frac{\partial n}{\partial U_{n}}+N_{D} \frac{\partial f_{D}}{\partial U_{n}}\right) i \omega \Delta U_{n}  \tag{7.17}\\
\frac{\partial F_{3}}{\partial V} \Delta V+\frac{\partial F_{3}}{\partial U_{n}} \Delta U_{n}+\frac{\partial F_{3}}{\partial U_{p}} \Delta U_{p}+ & \frac{\partial F_{3}}{\partial f_{t j}}\left(F_{n} \Delta U_{n}+F_{p} \Delta U_{p}\right) \\
& =\left(-\frac{\partial p}{\partial U_{p}}+N_{A} \frac{\partial f_{A}}{\partial U_{p}}\right) i \omega \Delta U_{p} \tag{7.18}
\end{align*}
\]

We rewrite these 3 equations in \(3 \times 3\) matrix form as:
\[
\begin{equation*}
(J+D) \xi=0 \tag{7.19}
\end{equation*}
\]
for each mesh point in the semiconductor, where the J matrix or Jacobian contains the first 3 terms in each equation while D contains the remaining terms concerning the traps and the right-hand side of the equation.

Using this notation with \(\xi=\left(\Delta V, \Delta U_{n}, \Delta U_{p}\right)\) the D matrix at each point is of the form:
\[
D=\left(\begin{array}{ccc}
0 & \frac{\partial F_{1}}{\partial f_{t_{j}}} F_{n}(\omega) & \frac{\partial F_{1}}{\partial f_{t_{j}}} F_{p}(\omega)  \tag{7.20}\\
0 & -\left(\frac{\partial n}{\partial U_{n}}+N_{D} \frac{\partial f_{D}}{\partial U_{n}}\right) i \omega+\frac{\partial F_{2}}{\partial t_{j}} F_{n}(\omega) & \frac{\partial F_{2}}{\partial f_{t_{j}}} F_{p}(\omega) \\
0 & \frac{\partial F_{3}}{\partial f_{t j}} F_{n}(\omega) & -\left(-\frac{\partial p}{\partial U_{p}}+N_{A} \frac{\partial f_{A}}{\partial U_{p}}\right) i \omega+\frac{\partial F_{3}}{\partial f_{t j}} F_{p}(\omega)
\end{array}\right)
\]

Consider the boundary points and the internal mesh points separately so that:
\[
\begin{equation*}
J \rightarrow J+J_{B} \tag{7.21}
\end{equation*}
\]
and
\[
\begin{equation*}
D \rightarrow D+D_{B} \tag{7.22}
\end{equation*}
\]

The matrix equation can then be rewritten in a separated form for internal and boundary mesh points as follows:
\[
\begin{equation*}
(J+D) \xi+\left(J_{B}+D_{B}\right) \xi_{B}=0 \tag{7.23}
\end{equation*}
\]

AC Dirichlet boundary conditions imply that \(\Delta U_{n}\) and \(\Delta U_{p}=0\) so that the AC voltage drive at the contact has the boundary solution:
\[
\xi_{B}=\left(\begin{array}{c}
\Delta V_{B}  \tag{7.24}\\
0 \\
0
\end{array}\right)
\]
where \(\Delta V_{B}\) is the applied AC voltage of one volt.
Since the first column in the D matrix must be zero the matrix equation becomes:
\[
\begin{equation*}
(J+D) \xi=-J_{B} \cdot \xi_{B} \equiv B \tag{7.25}
\end{equation*}
\]

To simplify the numerics, we now wish to write equations involving only real numbers:
\[
\begin{align*}
D & =D_{r}+i D_{i}  \tag{7.26}\\
\xi & =\xi_{r}+i \xi_{i} \tag{7.27}
\end{align*}
\]

The matrix is thus rewritten as:
\[
\begin{equation*}
\left(J+D_{r}+i D_{i}\right)\left(\xi_{r}+i \xi_{i}\right)=B \tag{7.28}
\end{equation*}
\]

By expanding the real and imaginary parts, a new expanded matrix can be written:
\[
\left(\begin{array}{cc}
J+D_{r} & -D_{i}  \tag{7.29}\\
D_{i} & J+D_{r}
\end{array}\right)\binom{\xi_{r}}{\xi_{i}}=\binom{B}{0}
\]

\subsection*{7.2 Numerical techniques in AC analysis}

Our task has been reduced to solving the expanded matrix equation detailed in the previous subsection. The AC solution matrix \(\left(\xi_{r}, \xi_{i}\right)\) is easily solved using the sparse matrix inverter to invert the expanded Jacobian and multiply by the matrix on the RHS. However, the inversion can be slow because the expanded Jacobian J+D is twice the order of original Jacobian matrix obtained from the DC solution. We use direct solution techniques to perform the matrix inversion so that convergence is guaranteed for all frequencies.

In our simulator, the AC analysis is implemented as a post-processor, i.e., the analysis is done after the DC solution is obtained from the main solver input file (with .sol extension). This is done in two steps:
- The AC analysis matrix is constructed from Jacobian matrix elements used for DC simulation. To enable export of the additional data from the usual DC analysis, we use the more__output statement.
- The AC analysis is activated by the input file with extension .plt. The input file must specify which data set (thus the DC bias condition) is used for the AC analysis. The statement ac__voltage is used to apply a 1V AC signal on one of the contacts (or electrodes). The resulting AC current data are stored in an output file defined by the user for later plotting.
- Once the AC current is calculated, a statement such as plot__ac__curr is used to plot the results.

The basic outputs are the complex AC currents at all the electrodes and the AC current distribution, in response to the applied AC voltage (one volt) at one of the electrodes. The following important quantities can be extracted from the AC current:
- The conductance matrix elements are computed from the real part of the electrode AC current with one volt applied AC bias at one of the electrodes.
- The capacitance matrix elements are computed from the imaginary part of the electrode AC current, divided by \(\omega\), with one volt applied AC bias at one of the electrodes.
- The current gain can be computed from ratio of the AC current magnitudes between two electrodes, with one volt applied AC bias at one of the electrodes.
- The voltage gain is slightly more complicated. It must be done in two steps. For example, we wish to obtain the voltage gain \(\frac{\Delta V_{2}}{\Delta V_{1}}\). This may be written as:
\[
\begin{equation*}
\frac{\Delta V_{2}}{\Delta V_{1}}=\frac{\Delta I_{2}}{\Delta V_{1}} \times \frac{\Delta V_{2}}{\Delta I_{2}} \tag{7.30}
\end{equation*}
\]


Figure 7.1: Schematics of a general 2-port network. Please note the direction of current flow.
which means we must apply the ac__voltage command twice to two different electrodes to obtain the individual ratios.

\subsection*{7.3 Two-Port Network Parameters}

Linear networks, or nonlinear networks operating with signals sufficiently small to cause the networks to respond in a linear manner, can be completely characterized by parameters measured at the network terminals (ports) without regard to the contents of the networks. Once the parameters of a network have been determined, its behavior in any external environment can be predicted without regard to the contents of the network. We shall introduce some useful 2-port parameters in this section and explain how they are extracted from DC simulations.

A general 2-port network is indicated in Fig. 7.1. Please note that the positive direction of the current flow is different than in the simulator and all 2-port parameters related to current flow direction will be different by a sign from current flow calculated from the simulator which assigns a positive sign to all current flowing out of a device.

In an AC analysis of semiconductor devices, it is common to share one contact for the input and output. For example, it is often convenient to use the common emitter configuration in a bipolar transistor. By default, all contacts of a device have zero AC voltage bias from a DC simulation. Thus, it is sufficient to specify a single contact as input or output since all other contacts are grounded in AC voltages.

Such a situation is ideal for the computation of the Y-parameters which are defined as follows (referring to Fig. 7.1).
\[
\begin{align*}
I_{1} & =Y_{11} V_{1}+Y_{12} V_{2} \\
I_{2} & =Y_{21} V_{1}+Y_{22} V_{2} \tag{7.31}
\end{align*}
\]

It is often convenient to express the Y-parameters relative to the system characteristic admittance \(Y_{c}=1 / Z_{c}\) where \(Z_{c}\) is the system characteristic impedance (often set to be 50 Ohm ). We denote the relative admittance using lower case letters here, for example, \(y_{11}=Y_{11} / Y_{c}\).
Based on our discussions in previous sections, the complete set of Y-parameters can be obtained if we excite the device twice, once at the input and once at the output contact. Once the Y-parameters are obtained, the important S-parameters can be computed from the following equations (please refer to any text books on microwave theories):
\[
\begin{align*}
& s_{11}=\frac{\left.\left(1-y_{11}\right)\left(1+y_{22}\right)+y_{12} y_{21}\right)}{\left(1+y_{11}\right)\left(1+y_{22}\right)-y_{12} y_{21}} \\
& s_{12}=\frac{-2 y_{12}}{\left(1+y_{11}\right)\left(1+y_{22}\right)-y_{12} y_{21}} \\
& s_{21}=\frac{-2 y_{21}}{\left(1+y_{11}\right)\left(1+y_{22}\right)-y_{12} y_{21}} \\
& s_{22}=\frac{\left(1+y_{11}\right)\left(1-y_{22}\right)+y_{12} y_{21}}{\left(1+y_{11}\right)\left(1+y_{22}\right)-y_{12} y_{21}} \tag{7.32}
\end{align*}
\]

The theories discussed in this section strongly suggest a convenient way of studying the 2-port parameters: if you wish to understand the S-parameters, always go back to the Y-parameters which may be easily understood from a simple AC-voltage excitation of the input or output. Also, a convenient way to check the correctness of 2-port parameters should be to plot the Y-parameters which may be compared with AC-current responses from single-terminal excitations, keeping in mind the sign difference mentioned earlier in this section.

\subsection*{7.4 AC Photo-response}

In standard AC analysis, the AC source is voltage applied to one of the electrodes. The source of perturbation appears as the \(B\) vector on the right hand side of Equation 7.28 and is non-zero only at boundary nodes where the AC voltage is applied.

When a device is illuminated by a modulated optical signal, similar modulation vector can be set up. The contribution of the optical signal comes from the generationrecombination term which is distributed throughout the whole area sensitive to the
light signal. Therefore, the vector \(B\) is non-zero in all mesh points where there is light illumination.

To activate the AC photo-response model, the approach is similar to that of AC voltage but instead of using ac__voltage, we use ac__light. The output results are shown as AC current on a certain electrode, much in the same way as for an AC voltage bias.

\subsection*{7.5 Laser Diode Modulation Response}

Laser diode modulation response is a special case of AC analysis with additional variable of photon density. Similar to the AC photo-response described in the previous section, the same photon-carrier interaction is through the same generation/stimulated recombination term: \(R_{s t}=v_{g} g_{m} S(x, y, z)\) where \(v_{g}\) is the group velocity of light, \(g_{m}\) is the modal optical gain and \(S\) is the bulk photon density. In the case of photo-sensitive devices, the optical gain becomes negative and carriers are generated instead of annihilated. An additional photon rate equation must be solved together with all other equations of the drift-diffusion system.

To activate the modulation model, AC small voltage excitation (through ac__voltage) is used. The corresponding AC current is computed and used in the plotting the laser diode modulation response.

\section*{Chapter 8}

\section*{QUANTUM WELLS AND INTERBAND TRANSITIONS}

This chapter presents the quantum well models and related interband optical transitions in Crosslight simulation software. Different levels of approximations for quantum well models are described along with the corresponding optical gain/absorption calculations. The theory of many-body gain enhancement implemented in the software is also explained near the end of the chapter.

\subsection*{8.1 Quantum Well Models}

\subsection*{8.1.1 Introduction}

Quantum well models are among the most sophisticated models used in Crosslight Software and there are different levels of approximation available. They are summarized in Fig. 8.1 and detailed below:
- 1. The simple (also the default) quantum model assumes a a single, symmetric, flat-band and step-wise potential profile. Quantum wells in a MQW region are assumed to be isolated from each other and the wave functions do not overlap.
- 2. The complex MQW removes the restriction of symmetry and allows us to treat asymmetric wells (2a) or coupling between wells (2b).
- 3. The self-consistent MQW model removes the restriction of flat-band and couples the potential with charge density in a self-consistent manner. This can be used in isolated quantum wells (3a) or in a coupled complex MQW (3b).

Note that an extra layer of complexity/accuracy can be introduced by considering valence mixing models when solving the Hamiltonian.

\section*{Default: symmetric and isolated QW}


Figure 8.1: Different levels of approximation for quantum wells models in Crosslight

\subsection*{8.1.2 Simple quantum wells}

When a confining potential well gets narrow, it is necessary to treat it as a quantum well. We consider the case of a simple quantum well without external applied field. All the quantum levels for the sub-bands of \(\Gamma, L\), light holes and heavy holes (and crystal field holes for wurtzite) are computed from well known formulas in quantum mechanics for a square quantum well [14].
As the external field is applied, we allow the quasi-Fermi level to vary as a function of distance. The density of states and quantum levels are assumed to be the same as if there were no applied field.

The quantum well levels are calculated at every bias point during an actual simulation because the bandgap of the active region is a function of carrier density. As the bias increases, the higher carrier density in the quantum well reduces the bandgap and changes the quantum well depth. Therefore the quantum levels must be recomputed at every bias point.

Note that by default, the heavy and light holes are assumed to be parabolic and decoupled. A simplification has been made so that, by default, all the in-plane effective masses of heavy hole or light hole subbands are assumed to be same. If the user wishes to alter the effective mass of a particular subband, the software allows him/her to do so with the modify__qw statement.

\subsection*{8.1.3 Anisotropic parabolic approximation}

Inclusion of biaxial strain in a quantum-well has become a common practice for many heterojunction devices. Strain offers an additional degree of freedom and can produce some desirable effects such as lower threshold current for a laser diode.
Strain is known to cause the valence band of a III-V semiconductor to split into separate light hole (LH) and heavy hole (HH) bands (or CH for wurtzite structure) which are strongly non-parabolic. A rigorous treatment of strain effects on the band structure is rather complicated [15] and the gain function involves an integration over k-space.
We may approximate the non-parabolic band structure by an anisotropic parabolic one. One can show that with proper choices of parameters, a good approximation to the non-parabolic band structure can be obtained. This approximation greatly simplifies the calculation of gain, spontaneous emission and carrier concentration and allows the incorporation of strain effects into the program.
For zincblende structures, a simplified analytical band structure of a strained quantum well has been developed [15] using an efficient decoupling method to transform the original \(4 \times 4\) valence band Hamiltonian into two blocks of \(2 \times 2\) upper and lower Hamiltonians. As a result of the decoupling, an analytical expression can be derived [15]. To be consistent with our convention the \(y\)-axis (equivalent to the \(z\)-axis in [15]) is defined to be perpendicular to the quantum-well plane and the \(z\)-axis to be along the direction of light propagation.
We use the following expression for the bulk valence band energy [15]:
\[
\begin{align*}
&-E=\frac{\hbar^{2} \gamma_{1}}{2 m_{0}}\left(k_{x}^{2}+k_{y}^{2}\right) \pm\left[\left(\frac{\hbar^{2} \gamma_{2}}{2 m_{0}}\left(k_{x}^{2}-2 k_{y}^{2}\right)+\zeta\right)^{2}\right. \\
&+3\left(\frac{\hbar^{2} \gamma_{2}}{2 m_{0}} k_{x}^{2}\right)^{2}\left.+12\left(\frac{\hbar^{2} \gamma_{3}}{2 m_{0}}\right)^{2} k_{x}^{2} k_{y}^{2}\right]^{1 / 2}  \tag{8.1}\\
& \varepsilon=\frac{a_{0}-a(x)}{a_{0}}  \tag{8.2}\\
& \delta E_{s h}=b\left(1+2 \frac{c_{12}}{c_{11}}\right) \varepsilon  \tag{8.3}\\
& \zeta=\frac{1}{2} \delta E_{s h} \tag{8.4}
\end{align*}
\]
where the valence band is given in the \(k_{x}-k_{y}\) plane. The information on strain is contained in \(\zeta\); compressive strain is represented by a negative \(\zeta\).
The valence band mixing effect for bulk material has been taken into account since the coupling between heavy and light holes has been included in the above equations.

Note that the in-plane direction for Equation (8.1) is the [100] crystal direction, and is different from the [110] direction. For many applications, it is desirable to average the energy dispersion in both the [100] and [110] directions. One can show that the average can be approximated by replacing \(\gamma_{2}\) in the second term under the square root of Equation (8.1) by \(\left(\gamma_{2}+\gamma_{3}\right) / 2\) : this is called the axial approximation. The simulator provides an option to turn on this approximation.
To convert the non-parabolic bulk band structure into a suitable form, the software fits the valence band to the following anisotropic parabolic band expression, over a range large enough to cover all the optical transitions in k -space:
\[
\begin{equation*}
E=-\frac{\hbar^{2}}{2 m_{v x} m_{0}} k_{x}^{2}-\frac{\hbar^{2}}{2 m_{v y} m_{0}} k_{y}^{2} \tag{8.5}
\end{equation*}
\]

The quality of the fit is found to be reasonable for practical cases. Such an approximation is appropriate not only because of the reasonable quality of the fit, but also because the approximation has not lost the basic effects of strain, i.e., it causes the symmetry in the band structure to be broken.
The splitting of the heavy and light hole bands is described as [15]:
\[
\begin{align*}
\delta E_{h y}= & 2 a\left(1-c_{12} / c_{11}\right) \varepsilon  \tag{8.6}\\
E_{g}^{h h}= & E_{g}^{u}+\delta E_{h y}-\delta E_{s h}  \tag{8.7}\\
E_{g}^{l h}= & E_{g}^{u}+\delta E_{h y} \\
& +\frac{1}{2}\left[\delta E_{s h}+\Delta-\sqrt{\Delta^{2}+9 \delta E_{s h}^{2}-2 \delta E_{s h} \Delta}\right] \tag{8.8}
\end{align*}
\]

Once the band structure is simplified to an anisotropic parabolic form, the program uses a one-band model to solve for the subbands of the quantum well from the effective masses perpendicular to the quantum well plane. By default, the mixing between different subbands is ignored and all the subbands of heavy holes (or light holes) are assumed to have the same effective in-plane mass. The resulting subbands from such a theory agree qualitatively with k.p theories with multiband full mixing effects, especially for subbands near the band edges and near the \(\Gamma\) center. Since the most important subbands are those near the band edges, the subband model here is expected to be reasonable. This approach of a one-band model with parabolic subbands has been used extensively for many years and is included in many frequently cited papers (see for example, [16]-[17]).

Once the parabolic subbands are found, one can apply conventional approaches to treat the carrier concentration and the optical transition probabilities. Specifically, the effective mass perpendicular to the plane \(\left(m_{v y}\right)\) determines the quantum subband levels (or quantum confinement effects) and the optical transition energies. The (2D) density of states and joint density of states of each subband depends on the effective mass in the plane ( \(m_{v x}\) ).

For those users who wish to adjust in-plane effective masses for different subbands, so that the theory here agrees with other k.p models, the program provides an option to do so. That is, the user can shift a subband level or change a subband in-plane mass to match any other theory.

\subsection*{8.1.4 Carrier density in anisotropic parabolic approximation}

We use the effective masses parallel to the plane of the quantum well for the evaluation of carrier concentrations.
\[
\begin{align*}
& n=\sum_{j} \rho_{j}^{x 0} k T \ln \left[1+e^{\left(E_{f n}-E_{j}\right) / k T}\right]+\text { unconfined electrons }  \tag{8.9}\\
& p=\sum_{i} \rho_{i}^{x 0} k T \ln \left[1+e^{\left(E_{i}-E_{f p}\right) / k T}\right]+\text { unconfined holes } \tag{8.10}
\end{align*}
\]
where the subscript \(i\) denotes all confined states for the heavy and light holes, and \(j\) designates those for the \(\Gamma\) and \(L\) bands. The unconfined carriers are calculated using Fermi statistics as described in Section 5.1.2. Note that the effective mass perpendicular to the plane, \(\left(m_{v y}\right)\), affects the quantum levels and therefore the distribution of carriers in the quantum well.

\subsection*{8.1.5 Valence mixing}

Early theories of bulk and quantum well semiconductor lasers assumed parabolic subbands for both the conduction and valence bands. Many early classic papers on quantum well semiconductor lasers used the concept of effective mass, which is equivalent to the parabolic band approximation. A partial list of publications includes Refs.[16, 17].
The reason for the use of parabolic band, regardless of its inaccuracy, is very simple: the computation of the energy subbands is not the end of the story and one has to use the subbands to calculate other more interesting physical quantities, such as the optical gain. Calculation of the optical gain for a non-parabolic subband is not easy and one is much better off staying with a parabolic band approximation.
More recent theories of quantum well subbands are mostly based on k.p theory with valence band mixing effects. These usually involve solving a \(4 \times 4\) [15], \(6 \times 6\) [18] or \(8 \times 8[19,20]\) Hamiltonian of the Luttinger-Kohn type and imposing an envelope function approximation in solving the quantum well subband structures (e.g. [21]). The valence subband structures obtained from this approach are complicated and heavily mixed in many cases. For some cases, the effective masses of some of the
hole subbands are negative at the \(\Gamma\) point in k-space, making it impossible to use analytical approaches.

Generation of the subbands using a valence mixing model is not difficult and has been done previously by many authors [15, 18-20, 22]. In contrast, the computation of quasi-Fermi level and optical transition probabilities is not easy because the subbands are non-parabolic and the wave functions can be heavily mixed.

The detailed formulation of k.p theory for quantum well subband structure calculations has been described in many publications. We have closely followed the formulas of S.L Chuang [15]. Details will not be repeated here; rather, an outline of physical models is presented to give an overview of the theory.

In the k.p theory for a bulk crystal, the basic problem is the following: given the energy level and wave function at a symmetry point of the k-space (e.g. the \(\Gamma\) point), how does one calculate the band structure near such a symmetry point?
Based on the symmetry properties of the crystal, a \(4 \times 4\) or \(6 \times 6\) Luttinger-Kohn Hamiltonian for the \(\Gamma\) valence band can be constructed, depending on how many valence bands are involved. As a solution of the bulk Luttinger-Kohn Hamiltonian, the energy dispersion is expressed in terms of Luttinger numbers and quadratic equations in k [23] [24]. Note that the energy is accurate to the \(k^{2}\) term and no further. The wave function at a general k-point is expressed as a linear combination of the wave function at the symmetry point.
If the solid crystal is under perturbation, one may assume that the perturbed wave function can still be expressed as a linear combination of the wave functions at the symmetry point. Within the envelope function approximation, the wave function of the perturbed crystal (due to the potential of a quantum well or of an impurity) can be written as (see Eq. (IV.12) in [23]):
\[
\begin{equation*}
\Psi=\sum_{j=1} F(\mathbf{r}) \phi_{j}(\mathbf{r}) \tag{8.11}
\end{equation*}
\]
where \(\phi\) is the periodic part of the Bloch function obtained at the \(\Gamma\) point in the absence of any perturbation. In the work of Luttinger and Kohn [23], the perturbing impurity potential was assumed to be "gentle" and involving only tens of meV. Today the application of the envelope function approximation has been very much broadened.

For a quantum well, the envelope function \(F(\mathbf{r})\) in the linear combination is determined by two boundary conditions: the continuity of the wave function and the continuity of the current density. As a result of the solution of the envelope function, the subband energy dispersion and the wave function can be obtained. Due to the non-vanishing off-diagonal terms in the Luttinger-Kohn Hamiltonian, the wave function is a mixture of heavy hole and light hole functions (hence the name valence mixing).

In general, the valence subband structure obtained from such a model has the following features:
- 1. The energy and wave function at the \(\Gamma\) point are the same as those derived from the decoupled methods discussed in previous sections. This makes it possible to label each subband as heavy hole and light hole based on the base function there. For this reason, many concepts developed in the effective mass approximation can still be used. For example, the selection rule and matrix element for optical transitions at or near the \(\Gamma\) point can still be used.
- 2. The key difference of this model is the anti-crossing behavior of the subbands in the valence mixing model, i.e., the subband of the light hole can not cross that of the heavy hole. This causes some major discrepancies for structures where light holes and heavy holes are close. The software has captured this major feature of anti-crossing by adjusting the in-plane effective masses of the subbands so that the subbands do not cross each other.
- 3. Some of the subbands have negative effective masses at the \(\Gamma\) point. In the effective mass theory for optical gain calculation, negative masses are not allowed. Therefore, at first glance, there is nothing one can do about this in the effective mass theory. If one takes another look at the subband structure over a larger k-range, the effective mass eventually returns to a positive value. If a large enough k fitting range is considered, one can still approximate the funny-looking subband by a parabolic band with positive effective mass. The approximation is not so bad considering the density of states is to be broadened by a scattering lifetime, and the exact location of the energy level is meaningless in a practical calculation anyway.

In summary, Crosslight simulator has two levels of models regarding strains and valence mixing effects. By default, the simulator fits the non-parabolic bulk valence band dispersion with two parabolic curves in each direction to obtain anisotropic effective masses. Efficient computation of carrier density and interband optical transition may be achieved this way. By setting valence__mixing=yes in the active_reg or set__active_reg statements, a full computation of subbands using k.p theory is performed. Carrier densities and interband optical transitions are obtained using numerical integral over the non-parabolic subbands, resulting in longer computation time.

\subsection*{8.1.6 Complex MQW active regions}

In previous subsections, it has been implied that quantum wells in an MQW system do not couple with each other. This is a reasonable approximation if the wells are far apart and the wave function decays significantly in the barriers. There are
circumstances in which we need to consider the effect of coupling between quantum wells.

Initially, it appeared that extension of a non-coupled model to a coupled one should be straightforward: just use the potential for two wells instead of one. However in an actually simulation, we must solve problem of localizing the carriers in a complex coupled MQW structure.

Consider the simple case of two wells. As the two wells are brought closer together, the degenerate subbands start to split. From the view point of wave mechanics, the wave function of each energy level belong to both wells. However, drift-diffusion theory (classical theory) requires that we must know where the carriers are located.

Therefore, we face the task of deciding which well will be assigned the carriers from each coupled confined state. Similarly, for optical interband transition, the process takes place in the whole coupled complex structure. Again, we must decide in which well a given transition takes place. The situation is like quantum tunneling where we have a contradiction: the wave nature in a quantum theory versus the particle nature in drift-diffusion theory. We must create a reasonable method to bridge the gap.
For carrier density calculation, we localize the coupled confined states as follows. Suppose the probability of finding an electron of a confined state in well 1 is \(p_{1}\) and that of well 2 is \(p_{2}\). In general, \(p_{1}+p_{2}<1\) and the remaining probability is spent in the barriers. We consider that the electron is localized in well 1 with a probability of \(p_{1} /\left(p_{1}+p_{2}\right)\). Similar consideration is given for holes.

For optical transition from the valence band to the conduction band, we regard the optical process take place in well 1 with a chance of \(p_{1} q_{1} /\left(p_{1} q_{1}+p_{2} q_{2}\right)\), where \(q_{1}\) and \(q_{2}\) are probabilities of finding the hole in well 1 and 2 , respectively.

Note that as we relax the approximations of the simple QW model, it may also be desirable to have quantum well designs with non-symmetric barriers. The same system is used as with the coupled well situations: complex MQW macros. These special macros must be used to define a complex structure and use "type=strained_complex" in the layer_type statement. By convention, complex macros have names start with " \(c x\)-" in the material database.

Regions where the complex active region is defined must be labeled by the statements begin_complex and end_complex. This will be done automatically by layer.exe if a complex macro is used. Users should remember that since the whole MQW structure needs to be solved at once, barrier layers must also invoke the complex MQW macros.

Some restrictions are present in the complex MQW macros. The first is that an odd number of layers must be used: this is normally not a problem since most designs use a barrier/well/..../barrier layout. If need be, split one of the outer barriers into two to get an odd number of layers.

Related to this assumption, the software will only calculate the gain in even-numbered layers since they are presumed to be wells. For complicated structures such as wells with graded compositions or Type II band alignment (where the electrons and holes are localized in different layers), this can cause a problem. Use the inner__bar_gain statement to force gain calculations in all the layers of the complex MQW. Also note that outer barriers are always excluded from the gain calculations as they only serve as a boundary layers where the wave can decay before reaching zero: see Fig. 8.4 below.

As alternative to the above, complex quantum well regions can also be declared using the "library" method of Sec. 3.5. This automatically declares all tagged layers as being part of the same quantum-coupled region and does not rely on the barrier/well/barrier approximation for the inner barriers. Outer barriers are still excluded from the gain calculations though.

\subsection*{8.2 Self-consistent carrier density model}

\subsection*{8.2.1 Localized confined states}

As we discussed previously, the default approach in our simulator is to solve the quantum confined states in flat-band condition (assuming no electric field). When there is a local variation of potential, we assume it is small enough that flat-band solution is still valid but only introduces a local correction to the confined energy level (see Fig. 8.2).
For simplicity of numerical computation, we also assume that carrier density is only confined within the well and is computed according to the local Fermi level and local confined energy level. The following formula for confined 2D carrier electron density is used:
\[
\begin{align*}
n_{2 D}(x, y) & =\frac{1}{d_{w}} \sum_{j} \rho_{j}^{0} k T \ln \left[1+\exp \left[\left(E_{f n}(x, y)-E_{j}(x, y)\right) / k T\right]\right], \quad \text { inside well } \\
& =0, \quad \text { outside well } \tag{8.12}
\end{align*}
\]
where \(d_{w}\) is the well thickness. The subscript \(j\) denotes all confined states.Please note that both the Fermi level and confined level are assumed to be spatially dependent. \(\rho_{j}^{0}\) is the 2 D density of states.
The variation of the confined level \(E_{j}(x, y)\) follows that of potential, much in the same way the conduction band edge follows the potential change (see Fig. 8.2). Please note that the spatial variation in this model is uniform except for variations introduced by variation in Fermi level and confined level. We shall refer to this model as "uniform profile" density model.


Figure 8.2: Default model of quantum well carrier density calculation.

The above model is simple to implement and efficient to compute. It gives the right MQW behavior if the realistic band structure is close to flat-band condition and we do not care about the details of the carrier density within the scale of the quantum well. Such is the case of most MQW lasers under lasing condition when the band structure is close to flat-band under forward bias and high injection condition.
However, we may run into trouble if the details of carrier density indeed matter when the well is heavily tilted to one-side or another due to strong electrical field such as piezoelectric field. We will consider this case in the next subsection.
The above discussion is limited to electron density but discussion for hole density is completely similar.

\subsection*{8.2.2 Self-consistent carrier density distribution}

When the potential well is under strong electric field such as in the case of piezoelectric field, the well will be tilted to one side. The confined wave function will also be tilted to one side (see Fig. 8.3). Furthermore, the optical transition between conduction and valence band will have a different dipole moment than under flat-band condition. The tilting of the well will have strong consequences to current overflow which may affect the device performance.

As an option in our software, the self-consistent electron density is given as
\[
\begin{equation*}
n_{2 D}(x, y)=\sum_{j} g_{n}^{j}(y) \rho_{j}^{0} k T \ln \left[1+\exp \left[\left(E_{f n}(x, y)-E_{j}\right) / k T\right]\right] \tag{8.13}
\end{equation*}
\]


Figure 8.3: Schematics of the self-consistent carrier density model for a single quantum well.
where \(g_{n}^{j}(y)\) is the electron wave function assuming the well is parallel to x-axis. The confined level \(E_{j}\) is no longer a function of position. Computation of the above density distribution requires more work because the density at one point depends on a global function \(g_{n}^{j}(y)\). We also have to update the wave function and confined energy levels at different biases.

Similar expressions can be obtained for the hole subbands.
To achieve complete self-consistency, the following procedures are used:
- 1) At equilibrium, solve the potential using flat-band approximation. The default uniform profile model is used for the density. This gives us the initial potential distribution.
- 2) At equilibrium, solve the potential again with potential obtained in 1) above. The self-consistent density model is used. A new density profile is obtained in this step.
- 3) Iterate 2) above until numerical self-consistency is achieved for density profile and potential distribution.
- 4) Once we achieve self-consistency in equilibrium after a number of numerical iterations, we increase the bias and repeat 2) and 3) above.


Figure 8.4: Schematic diagram explaining the self-consistent wave boundary conditions

\subsection*{8.2.3 Wave function boundary conditions}

When solving the Schrödinger equation under self-consistent conditions, the most important parameters are the boundary conditions on the left and right side of the QW or MQW region. We will use the example of a single quantum well in Fig. 8.4 to explain in detail.

Analytical solutions to the Schrödinger equation state that the wave functions decays to zero at infinity. In a numerical solution, we must use a finite value instead: one may assume an infinite potential wall a certain distance away from the QW region. In order not to perturb the position of the energy levels or the shape of the wave function, a large enough value must be used. However, larger values can cause numerical accuracy issues so by default, a distance equal to three times the well width is used. This may be overridden by the left__mesh and right__mesh parameters of modify__qw.

In addition, we place some restrictions to the shape of the confining potential. The potential profile used in the solution must not extend too far since stable confined quantum states may not exist when one side of the potential is lowered too much by the applied field. Therefore, we choose a reasonable distance (wave_range in the self_consistent statement) to truncate the potential profile (at points band d) on Fig. 8.4 and artificially extend the potential (to points c and e of the figure instead of the original a and f). Note that the value of wave_range may be cut short if a material interface is detected.

The wave function outside the region specified by wave_range is ignored and trun-
cated to zero. This does not affect the shape of the wave function or the position of the energy levels like the position of left__mesh and right__mesh. It only forces the wave to be normalized to the \([\mathrm{b}, \mathrm{d}]\) range. This may cause a bit of inaccuracy in the carrier distribution if the wave has not decayed sufficiently but this model prevents perturbations near the artificial boundary wall from affecting the results of the simulation. We also note that any states with energies above the confining potential at both ends of this range are considered unconfined states.
After this adjustment of the potential profile, reasonable confined states can be obtained in most cases. If more confined states are required than those provided by this fix, the parameters more_cond_energy and more__val_energy of the modify_qw statement may be used to increase the search range for confined levels.

\subsection*{8.2.4 MQW regions}

By default, the software will treat multiple wells with same composition as the same active region in order to save on computation time. When a self-consistent calculation is used, this approximation is no longer valid since even identical wells can be subjected to different local potentials.

In order to force the software to treat individual wells as different active regions, use the independent_mqw statement in the .layer file. This will assign different material numbers to every quantum well. Users should expect a slower simulation with this setting since more computational work is required.

\subsection*{8.2.5 Cases of valence mixing and complex MQW}

In the case of valence mixing model, the valence subbands are no longer parabolic and we must abandon the formulas given in the previous subsections. The confined hole density can be written as an integral over the non-parabolic subbands \(E_{j}(k)\) :
\[
\begin{equation*}
p=\sum_{j} g_{p}^{j}(y) \frac{1}{2 \pi} \int_{-\infty}^{E_{k}(0)}\left[1-f_{v}\left(E_{j}(k), E_{f p}\right)\right] d k^{2} \tag{8.14}
\end{equation*}
\]
where \(f_{v}\) is the Fermi function for the valence band.
For complex MQW with coupled wells, the same expression can be used except that we need to use a proper density partition scheme to make sure that the correct portion of carrier density from a quantum level be allocated to each well.
An additional complication arises for thick complex MQW regions under a strong local potential. The entire MQW region will be tilted but, as mentioned above, the confined energy levels are no longer a function of position in a self-consistent simulation. This means that sometimes, the solver will find energy levels only at the
outer edges of the complex MQW region: the wave functions for these levels may have very poor overlap.

\subsection*{8.2.6 Quantum wells in quantum-MOS and HEMT}

When the gate of an MOS structure is under bias, the interface of silicon and SiO 2 forms a triangular-well for electrons or holes, depending on the polarity of the bias. A similar situation arises in high mobility electron field effect transistors (HEMT) where the internal electric field causes the heterojunction to form a triangular well to confine the 2D electron gas system.

A triangular well formed in such a way may be regarded as a special case of a quantum well discussed above. To derive such a structure from a simple symmetric flat-band quantum well we take the following steps:
- 1. The left barrier is lowered to the point of zero barrier height
- 2. External and internal electric field is allowed to tilt the potential in such a way that a triangular well is formed between the bottom of the well and right barrier.

Thus, a realistic quantum well model for quantum-MOS and HEMT may be achieved if we apply the complex-MQW and self-consistent models to a non-symmetric quantum well. Since our models are well established for quantum wells with two barriers, we prefer to treat triangular wells as if they have a left-barrier of zero height.

In the case of quantum-MOS, some special treatment is required since the conduction band should be treated with anisotropic electron masses which may affect the conduction band quantum states, depending on the crystal orientation with respect to the SiO 2 .

\subsection*{8.3 Interband Optical Transition}

\subsection*{8.3.1 Introduction}

Many direct-bandgap devices handled by Crosslight simulation software interact with light in one way or another. For indirect bandgap devices such as silicon MOS, this section may be skipped.

For active devices such as laser diodes and LED's, the interband optical gain and spontaneous emission spectrum are important. For photo-sensitive devices such as photo-detectors, the interband absorption (opposite of gain) is important.

In this section, we start with the basic theory of optical gain based on a parabolic band structure. The parabolic band model is the default model and is also our starting point for more complex optical gain models. The parabolic band restriction may be removed if a numerical integral is used to replace the effective masses.
Note that the formulas for quantum wells we consider here are rather general and are also applicable to bulk material. In the case of bulk material, only one subband need to be considered with three-dimensional reduced density of states.

\subsection*{8.3.2 Interband transition model}

Similar to the derivation of the absorption coefficients for a solid, the local gain due to a transition from a conduction band labeled \(j\) to a valence band labeled \(i\) can be written as [25],
\(Z^{\prime}\)
\[
\begin{align*}
g_{i j}\left(E_{i j}^{0}\right)= & \int P_{i j}\left(\frac{\epsilon_{1}}{\bar{n} c}\right) \rho_{i j} d E_{i j} \\
= & \int\left(\frac{2 \pi}{\hbar}\right)\left|H_{i j}\right|^{2}\left(f_{j}-f_{i}\right) \delta\left(E_{i j}-\hbar \omega\right)\left(\frac{\epsilon_{1}}{\bar{n} c}\right) \rho_{i j} d E_{i j} \\
= & \left(\frac{2 \pi}{\hbar}\right)\left|H_{i j}\right|^{2}\left(f_{j}^{\prime}-f_{i}^{\prime}\right)\left(\frac{\epsilon_{1}}{\bar{n} c}\right) \rho_{i j}  \tag{8.15}\\
& \rho_{i j}=\rho_{i j}^{0} h\left(\hbar \omega-E_{i j}^{0}\right)  \tag{8.16}\\
& \left|H_{i j}\right|^{2}=\left(\frac{q}{m_{0}}\right)^{2}\left(\frac{2 \hbar \omega}{4 \epsilon_{1} \epsilon_{0} \omega^{2}}\right) M_{i j}^{2} \tag{8.17}
\end{align*}
\]
where \(\bar{n}\) is the real part of the refractive index. \(f_{i}\) and \(f_{j}\) are the Fermi functions for the \(i\) th and the \(j\) th levels, respectively, and \(f_{i}^{\prime}\) and \(f_{j}^{\prime}\) are given by
\[
\begin{align*}
& f_{i}^{\prime}=\left\{1+\exp \left[\left(E_{i}^{0}-\frac{m_{i j}}{m_{i}}\left(E-E_{i j}^{0}\right)-E_{f p}\right) / k T\right]\right\}^{-1}  \tag{8.18}\\
& f_{j}^{\prime}=\left\{1+\exp \left[\left(E_{j}^{0}+\frac{m_{i j}}{m_{j}}\left(E-E_{i j}^{0}\right)-E_{f n}\right) / k T\right]\right\}^{-1} \tag{8.19}
\end{align*}
\]

Note that the above formulas for the gain are rather general and are applicable to quantum wells as well as to bulk material. In the case of bulk material, only one pair of energy bands need be considered. Three-dimensional reduced density of states and bulk momentum matrix elements are to be used. In the case of quantum wells, many subbands in both the valence band and the conduction band need to be considered. 2D density of states and quantum well momentum matrix elements are to be used. Therefore one can consider the expression for the bulk material as a special case of that for quantum wells. The following discussion assumes the formulas for quantum wells.

The gain function is the sum of \(g_{i j}\) over all the subbands for the allowed transitions. The software uses the following expression for the density of electrons and holes in the quantum well:
\[
\begin{align*}
& n=\sum_{j} \rho_{j}^{0} k T \ln \left[1+e^{\left(E_{f n}-E_{j}\right) / k T}\right]+\text { unconfined electrons }  \tag{8.20}\\
& p=\sum_{i} \rho_{i}^{0} k T \ln \left[1+e^{\left(E_{i}-E_{f_{p}}\right) / k T}\right]+\text { unconfined holes } \tag{8.21}
\end{align*}
\]
where the subscript \(i\) denotes all confined states for the heavy and light holes, and \(j\) designates those for the \(\Gamma\) and \(L\) bands. The number of unconfined carriers are calculated using Fermi statistics as described in Section 5.1.2.

At the current stage of model development the software assumes that the electron states outside the quantum wells can be treated as unbound states so that three dimensional Fermi statistics can be applied to these regions for the carrier density. This assumption is reasonable in most applications, and greatly simplifies the simulation since the potential profile is generally a strong function of bias voltages.

All the quantum levels for the sub-bands of \(\Gamma\), \(L\), light holes and heavy holes are computed from well known formulas in quantum mechanics for a square quantum well [14]. The quantum well levels are calculated at every bias point during an actual simulation because the bandgap of the active region is a function of carrier density. As the bias increases, the higher carrier density in the quantum well reduces the bandgap and changes the quantum well depth. Therefore the quantum levels must be re-computed at every bias point in a self-consistent simulation.

Note that by default, the heavy and light holes are assumed to be decoupled and can be treated separately. Simplification has been made so that, by default, all the inplane effective masses of heavy hole or light hole subbands are assumed to be same. If the user wishes to alter the effective mass of a particular subband, the simulator allows him/her to do so with the "modify_qw" statement. Further discussion on the effect of valence band mixing is given in Sections 8.1.3 and 8.1.5.

The simulator uses TE (transverse electromagnetic) mode as the default. The user should set the polarization mode to TM (transverse magnetic) mode if a large tensile strain is present in the material. We use the following anisotropic dipole moment for
the heavy and light hole transitions in a quantum well [26]:
\[
\begin{align*}
A_{h h} & =\frac{3+3 \cos ^{2}\left(\theta_{e}\right)}{4} \quad(T E)  \tag{8.22}\\
A_{l h} & =\frac{5-3 \cos ^{2}\left(\theta_{e}\right)}{4} \quad(T E)  \tag{8.23}\\
A_{h h} & =\frac{3-3 \cos ^{2}\left(\theta_{e}\right)}{2}(T M)  \tag{8.24}\\
A_{l h} & =\frac{1+3 \cos ^{2}\left(\theta_{e}\right)}{2}(T M)  \tag{8.25}\\
M_{h h} & =A_{h h} O_{i j} M_{0}  \tag{8.26}\\
M_{l h} & =A_{l h} O_{i j} M_{0} \tag{8.27}
\end{align*}
\]
where \(A_{h h}\) and \(A_{l h}\) are the quantum well dipole moment enhancement factors. \(M_{0}\) is the dipole moment of the bulk material given by the following expression:
\[
\begin{equation*}
M_{0}=\frac{1}{6} \frac{m_{0}}{m_{e}} \frac{E_{g 0}\left(E_{g 0}+\Delta\right)}{E_{g 0}+2 \Delta / 3} . \tag{8.28}
\end{equation*}
\]
\(\cos \left(\theta_{e}\right)\) is defined as
\[
\begin{array}{rr}
\cos \left(\theta_{e}\right)=E_{e j} /\left[E_{e j}+m_{r} / m_{e}\left(E-E_{i j}\right)\right] & \text { for } E>E_{i j}^{0} \\
\cos \left(\theta_{e}\right)=1 & \text { for } E \leq E_{i j}^{0} . \tag{8.30}
\end{array}
\]
where \(E_{e j}\) is the electron confined subband energy of level j and \(m_{r}\) is the reduced mass.

A few interesting points about dipole enhancement are discussed here. The above equations show that the heavy hole transition is favored under TE polarization while the light hole is favored for TM polarization. With a particular polarization (TE or TM) the bulk moment is split between the heavy and light holes and they average out to the bulk moment. It is interesting to note that the light hole under TM has a larger dipole moment than the heavy hole under TE. Therefore, from the point of view of the larger dipole moment, the light hole transition is very attractive. A major drawback for light hole transition is that, due to light mass, the quantum mechanic wave function tends to spread out more than for the heavy hole. As a result, the overlap integral ( \(O_{i j}\) above) is reduced.

\subsection*{8.3.3 Lorentzian model of gain broadening}

Broadening of intra-band scattering significantly reduces the local gain function and must be considered. To describe the broadening of the quantum levels, the software
uses a line shape function \(L()\) in a convolution integral with the optical gain. The final expression for the gain function in the quantum well then becomes
\[
\begin{equation*}
g_{q w}=\sum_{i=j} \int g_{i j}\left(E_{x}\right) \tau / \hbar L\left[\left(E_{x}-E_{i j}^{0}\right) /(\hbar / \tau)\right] d E_{x} \tag{8.31}
\end{equation*}
\]

The simplest line shape function is the Lorentzian shape function:
\[
\begin{equation*}
L\left(E_{x}-E_{i j}^{0}\right)=\frac{1}{\pi} \frac{\Gamma_{0}}{\left(E_{x}-E_{i j}^{0}\right)^{2}+\Gamma_{0}^{2}}, \tag{8.32}
\end{equation*}
\]
where \(\Gamma_{0}\) is the constant half width of the shape function.
The expression in Equation (8.31) cannot be integrated analytically and an efficient numerical approach for the evaluation of the integral is necessary to perform the 2 -D simulation. The program has approximated the Fermi functions \(f_{i}\) and \(f_{j}\) with linear combinations of four exponential terms, which gives an error of less than \(0.04 \%\) . The Lorentzian shape function is approximated with a linear combination of three exponential terms to give an error of less than \(1.2 \%\) for a range of -8 to +8 for a standard Lorentzian function.

Equation (8.31) is used to evaluate the stimulated emission and dielectric constants in the basic equations at all the points of the 2D mesh.

The corresponding local loss can be written as
\[
\begin{equation*}
\alpha_{q w}=-\alpha_{f n} n-\alpha_{f p} p-\alpha_{a c t}, \tag{8.33}
\end{equation*}
\]
where the first two terms are due to free carrier absorption in the quantum well. \(\alpha_{a c t}\) is an adjustable background loss term to account for losses in the active quantum well for mechanisms other than interband transitions and free carrier absorption.

When a laser is biased near threshold, the current is mainly determined by the spontaneous emission rate and/or Auger recombination. Therefore the evaluation of the spontaneous emission rate is important. The following expression for the spontaneous emission rate is used [27]:
\[
\begin{equation*}
r_{s p}^{q w}(E)=\sum_{i=j}\left(\frac{2 \pi}{\hbar}\right)\left|H_{i j}\right|^{2} f_{j}^{\prime}\left(1-f_{i}^{\prime}\right) D(E) \rho_{i j} \tag{8.34}
\end{equation*}
\]
where \(\mathrm{D}(\mathrm{E})\) is the optical mode density in the material which has a refractive index of \(\bar{n}\), given by [27],
\[
\begin{equation*}
D(E)=\frac{\bar{n}^{3} E^{2}}{\pi^{2} \hbar^{3} c^{3}} \tag{8.35}
\end{equation*}
\]

The software has used the same broadening line shape functions for the spontaneous emission spectrum in Equation (8.34) as for the gain function. This allows the user to compare his/her experimental data with the broadened spontaneous spectrum.

The broadened spontaneous emission spectrum is, however, not used in the main simulation. The reason is that since carrier recombination involves emission at all frequencies, it is only necessary to integrate the un-broadened spectrum in Equation (8.34) over all possible frequencies:
\[
\begin{equation*}
R_{s p}^{q w}=\int_{0}^{\infty} r_{s p}^{q w}(E) d E \tag{8.36}
\end{equation*}
\]

Note that Equations (8.31) and (8.36) are given in terms of the quasi-Fermi levels which can be treated directly as variables for the Newton's method used by the software.

The choice of \(\tau\) is important since it reduces the peak gain and directly determines the threshold current. Also note that the lasing frequency is determined by the maximum of the modal gain \(g_{m}\) at the present injection level rather than the local gain \(g\), since it is the modal gain that appears in the rate equation. The former is an average gain over the optical field. For simplicity the software uses the wavelength at the peak mode gain as the single wavelength appearing in the wave equation.

The effective bandgap for optical gain calculations is reduced because of exchange effects [16]. Such a bandgap shrinkage is given by: \(\Delta E_{g}=A_{x}\left(\frac{n+p}{2}\right)^{1 / 3}\). Since this term increases with carrier concentration, it causes a "red shift" tendency in the optical gain spectrum as the carrier concentration is increased. The peak optical gain also has a "blue shift" tendency due to the band filling effect (i.e., the Fermi level separation becomes larger as more subbands are filled). The blue shift effect is usually stronger than the red shift effect due to bandgap shrinkage, and one often observes a blue shift in experiment [28] [29].

In the case of anisotropic parabolic approximation for strained quantum wells, the optical gain formulas can simply be extended by using the in-plane quantities (labeled "x") as follows. The local gain due to a transition from the \(j^{\text {th }}\) in the conduction band to \(i^{\text {th }}\) in the valence band is
\[
\begin{align*}
g_{i j}\left(E_{i j}^{0}\right) & =\left(\frac{2 \pi}{\hbar}\right)\left|H_{i j}\right|^{2}\left(f_{j}^{\prime}-f_{i}^{\prime}\right)\left(\frac{\epsilon_{1}}{\bar{n} c}\right) \rho_{i j}^{x}  \tag{8.37}\\
\rho_{i j}^{x} & =\rho_{i j}^{x 0} h\left(\hbar \omega-E_{i j}^{0}\right)  \tag{8.38}\\
\left|H_{i j}\right|^{2} & =\left(\frac{q}{m_{0}}\right)^{2}\left(\frac{2 \hbar \omega}{4 \epsilon_{1} \epsilon_{0} \omega^{2}}\right) M_{i j}^{2} \tag{8.39}
\end{align*}
\]
where \(f_{i}\) and \(f_{j}\) are the Fermi functions for the \(i^{\text {th }}\) and the \(j^{\text {th }}\) levels, respectively. The gain function is the sum of the \(g_{i j}\) over all allowed transitions.

Similar to the treatment of the gain function, the spontaneous emission rate can be written as
\[
\begin{equation*}
r_{s p}^{q w}(E)=\sum_{i, j}\left(\frac{2 \pi}{\hbar}\right)\left|H_{i j}\right|^{2} f_{j}^{\prime}\left(1-f_{i}^{\prime}\right) D(E) \rho_{i j} \tag{8.40}
\end{equation*}
\]
where \(D(E)\) is the optical mode density.
The program assumes that the dipole moment of a strained quantum well system is the same as that for its unstrained counterpart. This assumption should be accurate near the \(\Gamma\) point. As in the case of the unstrained quantum well, the overlap integral in the dipole moment is assumed to be k-independent in this model.

\subsection*{8.3.4 Landsberg model of gain broadening}

The simplest model for gain broadening is to use the following Lorentzian function in a convolution integral:
\[
\begin{equation*}
g(E)=\int g^{0}\left(E_{1}\right) F_{l}\left(E_{1}-E\right) d E_{1}, \tag{8.41}
\end{equation*}
\]
where \(g^{0}\) is the gain function without broadening. The Lorentzian function is given by the expression:
\[
\begin{equation*}
F_{l}\left(E_{1}-E\right)=\frac{1}{\pi} \frac{\Gamma_{0}}{\Gamma_{0}^{2}+\left(E_{1}-E\right)^{2}}, \tag{8.42}
\end{equation*}
\]
where \(\Gamma_{0}\) is the half-width of the broadened energy level and is assumed constant. The assumption of constant \(\Gamma_{0}\) means that the gain spectrum is broadened to the same degree across the whole spectrum. The advantage of this model is that it is relatively simple to implement and results in a most stable solution in the 2D simulations.

According to Landsberg's model, the broadening across the spectrum should not be uniform.

The basic mechanism for Landsberg's model is carrier-carrier scattering. The original formulas were derived for bulk material [30] [31] and were extended successfully by Zielinski et.al. [28] [29] for quantum well laser modeling. This model is phenomenological and is the most simple form of non-Lorentzian shape function. The success of such a model in comparison with experiment is very encouraging [28] [29].

According to Landsberg's model [30] [31] [32], the half-width \(\Gamma\) is a complicated function of the transition energy which has its maximum value at the bottom of the band (or band edge) and decreases to zero as the energy approaches the quasi-Fermi level. Therefore the half-width is a function of both the transition energy and the carrier density. The software has used the following approximation according to Martin and Stormer [32]:
\[
\begin{equation*}
F_{l}\left(E_{1}-E\right)=\frac{1}{\pi} \frac{\Gamma\left(E_{1}\right)}{\Gamma\left(E_{1}\right)^{2}+\left(E_{1}-E\right)^{2}}, \tag{8.43}
\end{equation*}
\]
where
\[
\Gamma\left(E_{1}\right)=\Gamma_{0}\left[1-2.229 \frac{E_{1}}{E_{f n}-E_{f p}}+1.458\left(\frac{E_{1}}{E_{f n}-E_{f p}}\right)^{2}-0.229\left(\frac{E_{1}}{E_{f n}-E_{f p}}\right)^{3}\right]
\]
\[
\begin{equation*}
\text { for } E_{f n}-E_{f p} \geq 0 \& 0 \leq E_{1} \leq E_{f n}-E_{f p} \tag{8.44}
\end{equation*}
\]

For bulk material a \(\Gamma_{0}\) value of 1.2 meV was found. For quantum wells the broadening is much larger (up to 30 meV ). The implementation of this model is important for accurate modeling of the gain spectrum, especially for quantum wells. The maximum broadening \(\Gamma_{0}\) in the Landsberg model is treated as a fitting parameter for the case of quantum wells.
Note that Equation 8.44 is valid only when the peak gain is positive, i.e., only when the difference between the quasi-Fermi levels is greater than the bandgap of the quantum well subbands. The transition energy must also be between the band gap and this difference. To extend the spectrum to other conditions, the formulas proposed by Zielinski et.al. [28] are used:
\[
\begin{array}{lll}
g(E) & = & I_{\text {conv }}\left(g^{0}, E\right) \\
g(E) & =I_{\text {conv }}\left(g^{0}, E\right)+g^{0}(E) & \text { for } E \geq E_{f n}-E_{f p},  \tag{8.46}\\
E_{f n}-E_{f p}
\end{array}
\]
with
\[
\begin{align*}
I_{c o n v}\left(g^{0}, E\right)= & \sum_{i, j} \int_{E_{i j}}^{E_{f n}-E_{f p}} \frac{1}{\pi} \frac{\Gamma\left(E_{1}\right) d E_{1}}{\Gamma\left(E_{1}\right)^{2}+\left(E_{1}-E\right)^{2}} \\
& \text { for } E_{f n}-E_{f p} \geq E_{i j} \tag{8.47}
\end{align*}
\]
and
\[
I_{\text {conv }}\left(g^{0}, E\right)=0
\]
\[
\begin{equation*}
\text { for } E_{f n}-E_{f p}<E_{i j} \tag{8.48}
\end{equation*}
\]

The two-piece function is continuous across the spectrum because because \(g^{0}(E)=0\) when \(E=E_{f n}-E_{f p}\).
In the current version of the software, no broadening is imposed on the gain of the bulk material for two reasons. First, the level broadening coefficient is relatively small ( 1.2 meV ), and second, the un-broadened gain spectrum does not have a sharp edge near the bandgap as in the quantum well case. Therefore the error caused by not using broadening in bulk material gain is relatively small.

\subsection*{8.3.5 Landsberg broadening and experimental data}

This Section gives an example of how the user can calibrate the gain model with experimental data. For a description of the program's commands and syntax, please refer to the Reference Manual. The gain function here uses the Landsberg broadening formula, discussed in Section 8.3.4, which is based on well established physical models for emission spectra from recombination of electron-hole pairs. It uses an energy and carrier density dependent half width in the Lorentzian broadening function. The broadening results in a more symmetric quantum well gain spectrum than the Lorentzian broadening function with constant \(\Gamma\). The Landsberg model is usually in close agreement with experiment and is strongly recommended when an experimental gain spectrum is used for the purpose of calibration.

The experimental gain data are taken from Ref. [29]. Since the details of the multiple quantum well system were not given in the reference (except for the composition and well width), the optical confinement factor was fitted according to the information accompanying the published data.
Here, two sets of experimental data for quantum well and bulk InGaAs/InP are used to compare with the results from the gain module of the software. Detailed input files can be found in the standard examples that come with installation of the software. The input files are named "lands.gain", which models the multiple quantum well device, and "lands2.gain", which models the bulk device.

Implementation of the Landsberg broadening model is very simple. The parameter broadening=landsberg is set in the statement active_reg in "*.sol". First we consider an InGaAs/InP quantum well structure of well thickness \(0.0105 \mu \mathrm{~m}\). A carrier scattering lifetime of \(0.2 \times 10^{-13}\) seconds is used, and a background loss of \(45 \mathrm{~cm}^{-1}\) is assumed for this structure. The result of the program's gain spectrum together with the experimental data from Ref. [29] is given in Figure 8.5.
In another example, the bulk InGaAs/Inp structure is considered. The background loss is again assumed to be \(45 \mathrm{~cm}^{-1}\). The optical gain spectrum for the bulk material along with experimental data from Ref. [29] is given in Figure 8.6.
To plot experimental data on the same plot as the simulated gain curve, the parameter include_data is used in the file "lands.gain". The quantum well model of the software agrees with the published data very well using the same carrier density as that suggested in Ref. [29]. The carrier density for the bulk material is slightly different from the value suggested in Ref. [29] in order to obtain a good fit of the data. This slight difference may be due to the lack of broadening for bulk material gain in the program. Note that the current version of the software assumes the broadening effect is negligible for bulk material (which is a good approximation compared with quantum well gain). In both cases the quality of the fit and the values of the parameters are reasonable according to the information given in Ref. [29].


Figure 8.5: Gain spectrum of \(\operatorname{InGaAs} / \mathrm{InP}\) quantum well structure as compared with experimental data. Landsberg type gain broadening is used in the gain model.


Figure 8.6: Gain spectrum for bulk \(\operatorname{InGaAs/InP~as~compared~with~experimental~}\) data.

\subsection*{8.3.6 Gain integral with valence mixing}

In the case of valence mixing, the valence bands are not parabolic and we must use a different formula for the optical gain spectrum. Based on theories developed in Ref. [33], the gain spectrum can be expressed in numerical integration over \(k_{t}\).
\[
\begin{equation*}
g(E)=\frac{g_{0}}{2 \pi t E} \sum_{i, j} \int_{0}^{\infty} \frac{(\pi / \Gamma) f_{d i p}\left(k_{t}\right) M_{b}\left(f_{j}-f_{i}\right) d k_{t}^{2}}{1+\left(E_{c j}\left(k_{t}\right)-E_{k p i}\left(k_{t}\right)-E\right)^{2} / \Gamma^{2}} \tag{8.49}
\end{equation*}
\]
where \(t\) is the quantum well thickness; \(\Gamma=\hbar / \tau_{\text {scat }}\) is broadening due to intraband scattering relaxation time \(\tau_{s c a t} ; E_{c j}\) is the \(j\) th conduction subband; \(E_{k p i}\) is the ith valence subband from the k.p calculation; the sum is over all possible valence and conduction subbands; \(g_{0}\) is a constant defined as
\[
\begin{equation*}
g_{0}=\frac{\pi q^{2} \hbar}{\varepsilon_{0} c m_{0}^{2} \bar{n}} \tag{8.50}
\end{equation*}
\]
where \(q\) is free electron charge; \(\bar{n}\) is the real part of the refractive index; all other symbols have their usual meanings.
\(M_{b}\) is the bulk dipole momentum given by:
\[
\begin{equation*}
M_{b}=\frac{1}{6} \frac{m_{0} q}{m_{c}} \frac{E_{g 0}\left(E_{g 0}+\Delta_{s o}\right)}{E_{g 0}+(2 / 3) \Delta_{s o}} \tag{8.51}
\end{equation*}
\]
where \(E_{g 0}\) is the unstrained bandgap; \(m_{c}\) is the effective mass of the conduction band; \(\Delta_{\text {so }}\) is spin-orbit coupling energy.

The dipole factor due to non-parabolic subbands are given by the following overlap integral for the case of symmetric well:
\[
\begin{align*}
& f_{\text {dip }}=(3 / 2)\left[<c\left|g_{1}\left(k_{t}, z\right)>^{2}+(1 / 3)<c\right| g_{2}\left(k_{t}, z\right)>^{2}\right]  \tag{TE}\\
& f_{\text {dip }}=2<c \mid g_{2}\left(k_{t}, z\right)>^{2} \quad(T M)
\end{align*}
\]
where \(\mid c>\) is the conduction band wave function; \(\mid g_{1}>\) and \(\mid g_{2}>\) are the valence band envelop function.
\(f_{j}\) and \(f_{i}\) are the Fermi functions expressed as follows:
\[
\begin{align*}
f_{j}^{-1} & =1+\exp \left[\frac{1}{k T}\left(E_{c j 0}+\frac{\hbar^{2} k_{t}^{2}}{2 m_{0} m_{c}}-E_{f n}\right)\right] \\
f_{i}^{-1} & =1+\exp \left[\frac{E_{k p i}\left(k_{t}\right)}{k T}\right] \tag{8.53}
\end{align*}
\]
where \(E_{c j 0}\) is the bottom of \(j\) th conduction subband.

\subsection*{8.3.7 Non-linear gain model}

Conventional optical gain is a concept based on linear response theory, i.e., only first order perturbation is used to treat a system under an external optical field. For semiconductor lasers, it is often necessary to include the higher order effects (or nonlinear effects). The optical gain tends to decrease as a function of photon density when non-linear effects are included. Such an effect is also called gain suppression.
The non-linear gain effect is responsible for the spectral hole burning effect in semiconductor lasers [34].
The non-linear gain effect is commonly expressed as [34].
\[
\begin{equation*}
g=g_{0}(1-\epsilon S) \tag{8.54}
\end{equation*}
\]
where \(\epsilon\) is the non-linear gain suppression coefficient which is not to be confused with the dielectric constant, and \(S\) is the photon density. Since the correction term is typically of the order of a few percent, one can use the following alternative form:
\[
\begin{equation*}
g=\frac{g_{0}}{1+\epsilon S} \tag{8.55}
\end{equation*}
\]

Such a formula has the numerical advantage that the correction term can never make the optical gain negative. Equation (8.55) has the same format as the gain saturation for a simple, two-level system [35].
In the case of multi-lateral modes, the photon density \(S\) is replaced by the sum of the densities of all the modes.

\subsection*{8.4 Refractive Index Model}

\subsection*{8.4.1 Index change due to interband transitions}

In many applications, especially DFB lasers in fiber optic communications, the change of refractive index as a function of injection carriers is an important parameter. It affects the laser linewidth, FM noise and modulation characteristics. Therefore it is desirable for laser designers to evaluate the index change for a particular device structure. The program implements such a change in refractive index due to interband optical transitions based on the standard Kramers-Kronig formulas.

A modified version of the Kramers-Kronig formula relating the real and imaginary parts of the refractive index of an arbitrary material can be written as [36]:
\[
\begin{equation*}
\Delta \bar{n}(E)=-\frac{c \hbar}{\pi e} \int_{0}^{\infty} \frac{\Delta g\left(E^{\prime}\right)-\Delta g(E)}{\left(E^{\prime}-E\right)\left(E^{\prime}+E\right)} d E^{\prime} \tag{8.56}
\end{equation*}
\]

The integral above is difficult to evaluate numerically because of the singularity at \(E=E^{\prime}\). To obtain an accurate integral, we separate it into the following three parts:
\[
\begin{align*}
\Delta \bar{n}(E)= & -\frac{c \hbar}{\pi e} \int_{0}^{\infty} \frac{\Delta g\left(E^{\prime}\right)-\Delta g(E)}{\left(E^{\prime}-E\right)\left(E^{\prime}+E\right)} d E^{\prime} \\
= & -\frac{c \hbar}{\pi e} \int_{0}^{E-\varepsilon} \frac{\Delta g\left(E^{\prime}\right)-\Delta g(E)}{\left(E^{\prime}-E\right)\left(E^{\prime}+E\right)} d E^{\prime} \\
& -\frac{c \hbar}{\pi e} \int_{E+\varepsilon}^{\infty} \frac{\Delta g\left(E^{\prime}\right)-\Delta g(E)}{\left(E^{\prime}-E\right)\left(E^{\prime}+E\right)} d E^{\prime} \\
& -\frac{c \hbar}{\pi e} \int_{E-\varepsilon}^{E+\varepsilon} \frac{\Delta g\left(E^{\prime}\right)-\Delta g(E)}{\left(E^{\prime}-E\right)\left(E^{\prime}+E\right)} d E^{\prime} \tag{8.57}
\end{align*}
\]
where \(\varepsilon\) is a small number. The third term may be written as
\[
\begin{equation*}
-\frac{c \hbar}{\pi e} \frac{d g}{d E} \int_{E-\varepsilon}^{E+\varepsilon} \frac{1}{E^{\prime}+E} d E^{\prime} \tag{8.58}
\end{equation*}
\]
and this can be evaluated analytically.
To ensure the correct implementation of the standard model, we have compared our calculations with experimental data obtained by C.H. Henry et.al. [36] for a bulk GaAs material system. The calculation is done at transparency conditions. Note that in Henry's paper, the transparent density was estimated to be about \(0.8 \times 10^{24} \mathrm{~m}^{-3}\) while our calculation gives a value of \(1.5 \times 10^{24} \mathrm{~m}^{-3}\). Since our value of transparent density agrees with values from a more recent theory by Vahala et.al.[37], we have decided to use this theoretical value here. Our result (also included in LASTIP's examples under examples/index_change/henry.gain) agrees well with that from Henry's paper (see Figure 8.7).
Once the index change is calculated, it is trivial to compute the alpha factor (or the linewidth enhancement factor), which is very important for DFB lasers and related devices used in telecommunications. Again we have calculated the index change for bulk GaAs (see Figure 8.8) and find that the results are similar to those from theoretical calculations by Vahala et.al. [37].

It is clear from Figures 8.7 and 8.8 that the index change is very sensitive to the wavelength being used. Therefore any effort to improve the alpha factor or the index change should take into account the spectral dependence. A small shift in the operating wavelength may mean a large improvement or degradation.

\subsection*{8.4.2 Other models of index change}

Crosslight software also implemented for the following forms of index change model.


Figure 8.7: Index change with respect to equilibrium. The index change is evaluated at transparent conditions for bulk GaAs material. The points are experimental data from the work of C.H. Henry et.al.


Figure 8.8: The linewidth enhancement factor (alpha factor) as a function of wavelength at two different carrier densities \(\left(1.8 \times 10^{24} \mathrm{~m}^{-3}\right.\) and \(\left.2.5 \times 10^{24} \mathrm{~m}^{-3}\right)\).
- 1) Use a line with enhancement factor \(\alpha_{l w}\) to compute the index change based on local gain change as follows.
\[
\begin{equation*}
\Delta \bar{n}(E)=-\frac{\alpha_{l w}}{2 k_{0}}\left(g-g_{0}\right) \tag{8.59}
\end{equation*}
\]
- 2) Free-carrier/plasma part \({ }^{1}\) :
\[
\begin{equation*}
\Delta \bar{n}(E)=-\frac{q^{2} n}{2 m_{e} \omega^{2} \varepsilon_{0} \bar{n}} \tag{8.60}
\end{equation*}
\]
- 3) Linear model:
\[
\begin{equation*}
\Delta \bar{n}(E)=\left[a_{n}^{(a)}+b_{n}^{(a)}(T-300)\right]\left(n-n_{0}\right)+\left[a_{p}^{(a)}+b_{p}^{(a)}(T-300)\right]\left(p-p_{0}\right) \tag{8.61}
\end{equation*}
\]

\subsection*{8.5 Optical Gain with Many Body Coulomb Interaction}

Coulomb interaction between electrons and holes confined in an active region of laser diodes can significantly enhance it's optical gain value and influence the emission spectrum. In particular, it has been reported that, Coulomb enhancement is stronger in short wavelength blue-green ZnCdSe and InGaN quantum well lasers compare to the long wavelength III-V lasers, due to the lower value of dielectric constant in wide-bandgap materials[38]. We discover that another major reason for wurtzite material system to have higher many-body (MB) effect is that the due to imbalance of density of states between the conduction and the valence bands, the occupancy is much different in the two bands, which causes the enhancement factor to increase.

The role of Coulomb interaction between electrons and holes confined into an active region of laser diode can be explained within a simple physical picture; while Coulomb force attracts electrons and holes at a closer distance, e-h radiative recombination rate increases, which manifests in enhancement in intensity of spontaneous emission as well as in gain magnitude. In addition Coulomb interaction modifies spontaneous emission and gain spectra of laser diodes by shifting the gain peak towards lower energies.

One of the inherent characteristics of electron-hole plasma is screening of the Coulomb potential. The modified, screened Coulomb potential \(V_{s}(q, \omega)\), as described in the momentum and frequency domain, relates to an unscreened Coulomb potential, \(V_{q}\), as:
\[
\begin{equation*}
V_{s}(q, \omega)=\frac{V_{q}}{\varepsilon(q, \omega)} \tag{8.62}
\end{equation*}
\]

\footnotetext{
\({ }^{1}\) Starting with version \(2010, \bar{n}\) is used instead of \(\varepsilon\) in the denominator to fix a longstanding error in the model
}
where \(\varepsilon(q, \omega)\) is the longitudinal dielectric function. If one neglects the dynamic aspect of screening contained in a frequency dependence of the dielectric function, \(\varepsilon(q, \omega)\), one can obtain the following dielectric function using the plasmon-pole approximation[3941]:
\[
\begin{equation*}
1 / \varepsilon(q)=1-\omega_{p l}^{2} / \omega_{q}^{2} \tag{8.63}
\end{equation*}
\]
where \(\omega_{p l}\) is the plasma frequency, while \(\omega_{q}\) is an effective plasmon mode frequency. In particular, in case of electrons and holes confined in a quantum well, one should use a two-dimensional (2D) Coulomb interaction, given by:
\[
\begin{equation*}
V_{q}=e^{2} / 2 \varepsilon_{0} q \tag{8.64}
\end{equation*}
\]
and 2 D plasma frequency:
\[
\begin{equation*}
\omega_{p l}^{2}=\frac{e^{2} N_{2 D} q}{2 \varepsilon_{b} \varepsilon_{0} m_{r}} \tag{8.65}
\end{equation*}
\]
where \(N_{2 D}=n \times w_{q w}\) is the 2D carrier density in a quantum well width of \(w_{q w}\), \(\varepsilon_{b}\) is the static background dielectric constant in the area of quantum well; \(1 / m_{r}=\) \(1 / m_{e}+1 / m_{h}\), is the reduced effective mass of conduction band electrons and valence band holes in directions parallel to the quantum well plane. The effective plasmon frequency \(\omega_{q}\) is given in 2D case by:
\[
\begin{equation*}
\omega_{q}^{2}=\omega_{p l}^{2}\left(1+q / \kappa^{2}\right)+\frac{C_{p l}}{4}\left(\frac{\hbar q^{2}}{2 m r}\right)^{2} \tag{8.66}
\end{equation*}
\]
where \(C_{p l}\) is a unitless constant typically in a range \(1-4\), while \(\kappa^{2}\) is the square of inverse screening length for electrons and holes confined in the quantum well, which can be derived as[42]:
\[
\begin{equation*}
\kappa^{2}=e^{2} /\left(\pi \hbar^{2} \varepsilon_{b} \varepsilon_{0}\right) \sum_{i, j}\left[m_{c j} f_{e}\left(E_{c j}\right) / d_{c j}+m_{v i} f_{h}\left(E_{v i}\right) / d_{v i}\right] \tag{8.67}
\end{equation*}
\]

Here, summation \(\sum_{i, j}\) is over all sub-bands characterized by energies, parallel masses, and a wave-function average width, \(E_{c j}, m_{e j}, d_{c j}\), and \(E_{v i}, m_{v i}, d_{v i}\) for \(j\) th conduction band and ith valence band.
\[
\begin{equation*}
d_{n k}=\pi \hbar / \sqrt{2 m_{n} E_{n k}} \tag{8.68}
\end{equation*}
\]
where index \(\mathrm{n}=\mathrm{c}\) or v for conduction and valence bands, respective.
Consider, first, the effect of carrier Coulomb interaction on the spectrum of e-h inter-band recombination, often ascribed as bandgap-renormalization effect. It's physical meaning is "band-gap narrowing" effect, which can partially be explained by the screening of conduction band electron-electron Coulomb repulsion by positively charged valence band holes available near electrons at close proximity. This Coulomb Hole \((\mathrm{CH})\) contribution to the band-gap reduction is approximately given in 2 D by:
\[
\begin{equation*}
\Delta E_{C H}=-2 E_{0} a_{0} \kappa \times \ln \left[1+\sqrt{32 \pi N_{2 D} / C_{p l} \kappa^{3} a_{0}}\right] \tag{8.69}
\end{equation*}
\]
where \(a_{0}\) is the Bohr radius of quantum well electron-hole exciton, given by:
\[
\begin{equation*}
a_{0}=4 \pi \hbar^{2} \varepsilon_{b} \varepsilon_{0} / e^{2} m_{r j} \tag{8.70}
\end{equation*}
\]
and \(E_{0}\) is corresponding effective Rydberg energy:
\[
\begin{equation*}
E_{0}=\hbar^{2} /\left(2 m_{r j} a_{0}^{2}\right) \tag{8.71}
\end{equation*}
\]

Additional contribution to Coulomb hole band-gap renormalization is a self-energy correction to e-h plasma due to exchange interaction, which also results in reduction of band-gap energy as:
\[
\begin{equation*}
\Delta E_{g S X}=-\frac{2 E_{0} a_{0}}{\kappa} \int_{0}^{\infty} d k k \frac{1+C_{p l} \kappa a_{0} k^{2} / 32 \pi N_{2 D}}{1+q / \kappa+C_{p l} a_{0} k^{3} / 32 \pi N_{2 D}}\left[f_{e}\left(E_{c j \mathbf{k}}\right)+f_{h}\left(E_{v j \mathbf{k}}\right)\right] \tag{8.72}
\end{equation*}
\]

Therefore the net band-gap narrowing due to Coulomb-hole and exchange interaction is:
\[
\begin{equation*}
\Delta E_{g}=\Delta E_{g C H}+\Delta E_{g S X} \tag{8.73}
\end{equation*}
\]
and the renormalized band-gap:
\[
\begin{equation*}
E_{g r e n}=E_{g}+\Delta E_{g} \tag{8.74}
\end{equation*}
\]

This effective band-gap energy reduction can be observed in a red shift of all recombination energy values \(E_{c} v(\mathbf{k})\) specified at a given parallel momentum \(\mathbf{k}\) of jthconduction and ith-valence quantum well subbands, as:
\[
\begin{equation*}
E_{c v}(\mathbf{k})=E_{g}+\Delta E_{g}+E_{c j \mathbf{k}}+E_{v i \mathbf{k}} \tag{8.75}
\end{equation*}
\]
where \(E_{c j \mathbf{k}}\) and \(E_{v i \mathbf{k}}\) are energies of electrons and holes from jth-subband of conduction and ith-subband of valence band quantum well in the active region.
The spectral wave function, \(g\left(E_{c v}\right)\) consists of a sum of \(g_{j i}\left(E_{c v}\right)\) contributions from transitions between jth-subband electrons and ith-subband holes, given by [42]:
\[
\begin{align*}
g_{0}\left(E_{c v}\right)= & \sum_{j, i} g_{j i}\left(E_{c v}\right)=\pi e^{2} \hbar /\left(\varepsilon_{0} c^{3} m_{0}^{2} n_{a v}\right) \sum_{j, i}\left(1 / E_{c v}\right)\left|M_{j i}\left(E_{c v}\right)\right|^{2} \rho_{r, j i} \\
& \times\left[f_{e}\left(E_{c j \mathbf{k}}\right)+f_{h}\left(E_{v j \mathbf{k}}\right)-1\right], \tag{8.76}
\end{align*}
\]
where \(\left|M_{j i}\left(E_{c v}\right)\right|^{2}\) is the transition matrix element at transition energy \(E_{c v}, \rho_{r, j i}\) is the reduced density of states between jth-conduction subband, and ith-valence subband; \(n_{a v}\) is the background refractive index. In practice laser diode spectra are broadened, primarily due to the strong carrier-carrier scattering and other intraband scattering mechanisms, o as well as lattice disorder. Consequently, gain becomes a convolution of an un-broaden gain function of Eq. (8.76) with a broadening function \(\mathrm{L}(\mathrm{x})\), as:
\[
\begin{equation*}
g_{B}(\hbar \omega)=\int_{E_{g 0}}^{\infty} g_{0}\left(E_{c v}\right) L\left(\hbar \omega-E_{c v}\right) d E_{c v} \tag{8.77}
\end{equation*}
\]
where \(E_{g 0}\) is an energy of the lowest e-h recombination transition between ground levels of quantum well in conduction and valence band of active region. Typically, a Lorentzian broadening function shape is assumed in \(\mathrm{L}(\mathrm{x})\), given by:
\[
\begin{equation*}
L\left(\hbar \omega-E_{c v}\right)=(1 / \pi) \Gamma_{c v}\left(\hbar \omega, E_{c v}\right) /\left[\Gamma_{c v}^{2}\left(\hbar \omega, E_{c v}\right)+\left(\hbar \omega-E_{c v}\right)^{2}\right] \tag{8.78}
\end{equation*}
\]
and parameterized by Lorentzian width, \(\Gamma_{c v}\), which is related to scattering time by \(\Gamma_{c v}=\hbar / \tau_{c v}\) (note that some sources define \(\Gamma_{c v}\) as equal \(\hbar / 2 \tau_{c v}\) ). For simplicity, we choose \(\Gamma_{c v}\) to be a constant parameter in our calculations (i.e., we neglect its dependence upon \(\hbar \omega\) and \(E_{c v}\) energies).
Finally, if Coulomb interaction is included in gain spectral function derivation, \(g(\hbar \omega)\) of equation (8.77) becomes:
\[
\begin{equation*}
g(\hbar \omega)=\operatorname{Real}\left\{\int_{E_{g 0}}^{\infty} \frac{g_{0}\left(E_{c v}\right)}{1-q_{1}\left(E_{c v}, \hbar \omega\right)}\left[1-i \frac{\left(E_{c v}-\hbar \omega\right)}{\Gamma_{c v}}\right] L\left(\hbar \omega-E_{c v}\right) d E_{c v}\right\} \tag{8.79}
\end{equation*}
\]
where
\[
\begin{aligned}
q\left(E_{c} v, \hbar \omega\right)= & \frac{-i a_{0} E_{0} E_{c v}}{\pi \kappa\left|M_{j i}\left(E_{c v}\right)\right|} \\
& \int_{0}^{\infty} d k^{\prime} k^{\prime} \frac{\mid M_{j i}\left(E_{c v^{\prime}} \mid\right.}{E_{c v^{\prime}}} \times \frac{f_{e}\left(E_{c j \mathbf{k}^{\prime}}\right)+f_{h}\left(E_{v i \mathbf{k}^{\prime}}\right)-1}{\left(\Gamma_{c v}+i\left(E_{c v}-\hbar \omega\right)\right.} \times \Theta\left(\mathbf{k}, \mathbf{k}^{\prime}\right)(8.80)
\end{aligned}
\]
and
\[
\begin{equation*}
\Theta\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=\int_{0}^{2 \pi} d \theta \frac{1+C_{p l} \kappa a_{0} q^{2} / 32 \pi N_{2 D}}{1+q / \kappa+C_{p l} \kappa a_{0} q k^{3} / 32 \pi N_{2 D}} \tag{8.81}
\end{equation*}
\]
and
\[
\begin{equation*}
q^{2}=k^{2}+k^{\prime 2}-2 k k^{\prime} \cos \theta, \tag{8.82}
\end{equation*}
\]
and \(\theta\) is the angle between in-plane vectors \(\mathbf{k}\) and \(\mathbf{k}\).
The Eq. (8.79) gives the final integral formula for Coulomb enhanced gain spectral function, numerically calculated in Crosslight simulation software. User has an option to include, band-gap renormalization effect as defined in Eq. (8.73) and independently Coulomb contribution as formulated in Eq.(8.79), along with a custom definition of \(\varepsilon_{b}, C_{p l}, \Gamma_{c v}\), and \(n_{a v}\) values as input parameters.

\subsection*{8.6 Local Gain and Optical Confinement}

In previous sections, we assume a flat band situation with isolated quantum wells and we assume the carrier spreads uniformly throughout the well, except with slight tilting by the applied field. Similarly the local optical gain is assumed to be uniform with slight modification by the Fermi levels deviating from equilibrium.

The local optical gain is written in terms of the joint density of state
\[
\begin{equation*}
\rho_{r}=\frac{m_{r}}{\pi t \hbar} \tag{8.83}
\end{equation*}
\]
times a Fermi function term which is causing the small change in the uniform gain. Here \(m_{r}\) is the reduced mass and \(t\) is the well thickness.
Without loss of generality, we consider only the z-dimension here. We define the modal gain as an integral of the local gain as follows:
\[
\begin{equation*}
g_{m}=\frac{\int_{Q W} g(z) w(z)^{2} d z}{\int w(z)^{2} d z} \tag{8.84}
\end{equation*}
\]

Using a slow varying assumption, one can pull the \(g(z)\) out of the integrand and define an optical confinement factor:
\[
\begin{equation*}
\Gamma=\frac{\int_{Q W} w(z)^{2} d z}{\int w(z)^{2} d z} \tag{8.85}
\end{equation*}
\]

Please note that Crosslight simulator uses only the integral form in Eq. (8.84). The \(\Gamma\) factor is NOT being used. It is printed only for comparison with other theories.
In a self-consistent simulation of optical transition within an arbitrary MQW region, wells and barriers are not well defined and we can no longer decide a well thickness. For example, if one wishes to grade the composition near the well, it is no longer possible to draw a line between well and barrier and the use of QW thickness loses its meaning. The optical gain written in a flat band model would have to be re-derived using the overlap of wave functions.

According to the Fermi's golden rule (see for example, [43]), we decide that the modal optical gain is proportional to an integral involving the envelop functions, \(f_{c}(z)\) and \(f_{v}(z)\), and the optical wave (treated as scalar here) \(\mathrm{w}(\mathrm{z})\) :
\[
\begin{equation*}
g_{m} \propto M_{b}^{2}\left\{\int f_{c}(z) w(z) f_{v}(z) d z\right\}^{2} \tag{8.86}
\end{equation*}
\]

The above equation is the most accurate definition of modal gain integral as far as spatial overlap variation is concerned since it is derived from the first principle. Please note that atomic part of the wave function has been included in the bulk dipole moment \(M_{b}^{2}\). However, it is a common practice to use a separate the optical field intensity \(w^{2}(z)\) which can be measured in near field and far field. Also, it is convenient to be able to isolate a local gain from the above integral so that we can "see" how it varies with distance. We proceed as follows:
We assume that total electron or hole wave function (envelop times the atomic part) is somehow localized and will be uncorrelated over a distance greater than the atomic
size. For convenience of discussion, we replace the integral by a sum over a mesh grid with grid spacing larger than the correlation length:
\[
\begin{equation*}
g_{m} \propto\left\{M_{b}^{2}\left(z_{i}\right) \sum_{i} f_{c}\left(z_{i}\right) w\left(z_{i}\right) f_{v}\left(z_{i}\right) \Delta z_{i}\right\}^{2} \tag{8.87}
\end{equation*}
\]

We apply the square and let the cross terms cancel each other due to the random phase of the total electron/hole wave function. Then, we are able to write (with proper normalization):
\[
\begin{equation*}
g_{m} \propto \sum_{i} M_{b}\left(z_{i}\right)^{2} f_{c}\left(z_{i}\right)^{2} w\left(z_{i}\right)^{2} f_{v}\left(z_{i}\right)^{2} \Delta z_{i} \tag{8.88}
\end{equation*}
\]

At this point, the modal gain comes out as a well defined quantity given the envelop function and the optical wave function. However, in a drift-diffusion finite element analysis, it is desirable to introduce a local gain since we wish to see a distribution of the local gain over a complex MQW so that stimulated recombination and spontaneous radiative recombination can have a continuous distribution (instead of appearing as a block box model). Comparison of Eqs. (8.84) and (8.88) leads to the following local gain variation.
\[
\begin{equation*}
g(z) \propto f_{c}(z)^{2} f_{v}(z)^{2} \tag{8.89}
\end{equation*}
\]

This is a simple statement that the local optical gain is proportional to overlap of electron/hole carrier densities. Therefore, it makes sense to define a position dependent joint density of state (JDOS) as being proportional to such an overlap:
\[
\begin{equation*}
\rho_{r}(z)=\frac{<m_{r}>H(z)}{\hbar \pi} \tag{8.90}
\end{equation*}
\]
where \(<m_{r}>\) is the reduced mass averaged over the wave function overlaps:
\[
\begin{equation*}
<m_{r}>=\int m_{r}(z) H(z) d z \tag{8.91}
\end{equation*}
\]
and the weighting function is defined as
\[
\begin{equation*}
H(z)=f_{c}^{2}(z) f_{v}^{2}(z) / \int f_{c}^{2}(z) f_{v}^{2}(z) d z \tag{8.92}
\end{equation*}
\]

Compared with the conventional QW optical gain using 2D JDOS, the key difference is now we replace \(1 / \mathrm{t}\) ( \(\mathrm{t}=\) well thickness) by the weighting function \(\mathrm{H}(\mathrm{z})\). Please note that the weighting function has a unit of \(1 /\) length and may be regarded as a position dependent effective well thickness. At the center of the well, we have a tightly confined wave function and thus a thinner well thickness. Given the revised \(\rho_{r}(z)\) above, we can define a position dependent local gain for all of the gain formulas based on effective mass theory.

For gain formula with valence mixing such as that in Eq. (8.49), the modification is similar: we once again replace \(1 / \mathrm{t}\) ( \(\mathrm{t}=\) well thickness) by \(\mathrm{H}(\mathrm{z})\). We do not need to use any averaged effective mass here since the gain integral for valence mixing already includes the effect of spatial averaging by using a solution of the energy band obtained over the whole potential profile.

Finally, we outline the actual implementation of optical gain model in a self-consistent solution as follows. To make the modal optical gain to be as close to the rigorous definition in Eq. 8.86, we first solve the envelop wave functions for electrons and holes over the whole coupled MQW region. Then we compute the total modal gain dipole moment by evaluating the wave function overlap before applying the square as in Eq. 8.86. Finally, we use the weighting function \(\mathrm{H}(\mathrm{z})\) to define a position dependent JDOS in the local gain expression before performing the modal gain integral using \(w(z)^{2}\). To be more specific, the self-consistent modal gain is written as
\[
\begin{equation*}
g_{m}=\frac{\int g(z) w(z)^{2} d z}{\int w(z)^{2} d z} \tag{8.93}
\end{equation*}
\]

The local gain is defined as
\[
\begin{equation*}
g(z)=g_{0} H(z) A_{i j} M_{b}^{2} O_{i j}^{2} \tag{8.94}
\end{equation*}
\]
where \(g_{0}\) is a gain coefficient depending on modal index and wavelength, \(M_{b}\) is the bulk dipole moment, \(O_{i j}\) is the overlap integral between hole wave function of level i and electron wave function of level j , and \(A_{i j}\) is the corresponding QW dipole moment enhancement factor. Compared with the original formula from the Fermi-Golden rule, the only approximation we make is to use \(w(z)^{2}\) directly in the modal gain integral instead of using \(w(z)\) before applying the square. We expect the difference to be minor for slowly varying fields. Please note that using \(\mathrm{H}(\mathrm{z})\) of a different form has no consequence for the modal gain as long as it is normalized to unity. The advantage of this separation of \(w(z)^{2}\) makes it easy to reduce to the classical definition of modal gain and optical confinement factor in the limit of bulk active layers.

The same weighting function \(\mathrm{H}(\mathrm{z})\) has been used in the definition of local spontaneous recombination which directly affect the radiative source profile within a complex MQW system in a self-consistent solution.

\subsection*{8.7 Exciton Electro-absorption in Quantum Wells}

\subsection*{8.7.1 Introduction}

It is well known, from semiconductor physics, that an inter-band light absorption is not a simple derivative of a free electron-hole (e-h) pair generation. Both e-h
energy, as well as their motion are affected by mutual Coulomb attraction, and some of those effects were already considered in a context of many-body Coulomb correction to QW optical gain (Section 8.5 of this manual). In extreme case, strongly correlated, hydrogen atom-like, bound electron-hole state, called exciton, can be formed in semiconductors. It is characterized by a ground state binding energy, or effective Rydberg :
\[
\begin{equation*}
R_{y}^{*}=\frac{m_{r} e^{4}}{2\left(4 \pi \epsilon_{s} \hbar\right)^{2}} \tag{8.95}
\end{equation*}
\]
and a spacial average separation distance, or Bohr radius:
\[
\begin{equation*}
a_{0}^{*}=\frac{4 \pi \epsilon_{s}(\hbar)^{2}}{m_{r} e^{2}} \tag{8.96}
\end{equation*}
\]
where \(m_{r}=m_{e} m_{h} /\left(m_{e}+m_{h}\right)\) is the electron-hole reduced mass, \(\epsilon_{s}\) is a substrate static dielectric permittivity, \(\left(\epsilon_{s}=\kappa \epsilon_{0}\right.\), with \(\kappa\) dielectric constant). Excitons can be experimentally observed in a near band-gap absorption edge spectral region, and their spectrum can be effectively varied in a controlled fashion (modulated) by application of an external electrostatic field. This can be directly utilized in electro-absorption modulators for fiber-optics application. In particular, an effective modulator can be based on Quantum-Confined Stark Effect (QCSE)effect observed in thin QW and MQW heterostructures. Due to dimensional confinement realized in these structures, such an effect is quite pronounced, implying strong overlap of e-h wave function and enhancement of the oscillator strength of interband transitions, along with the rise in exciton binding energy. For example in case of GaAs/AlGaAs QW structures excitonic absorbtion becomes an important distinct component of a near band-edge absorption spectra at room temperature, while GaAs bulk excitons are typically observed only at low temperatures.
At higher densities (strong excitation limit) attractive Coulomb force between electronhole pairs becomes screened by free carriers, and excitons ultimately decompose into free electron-hole plasma and absorption saturates. Therefore, proper model of screening in quasi 2D electron-hole plasmas, confined into semiconductor QW, and MQW region, becomes important in electro-absorption modulator modeling especially at high excitation limit.

\subsection*{8.7.2 Screened Coulomb Potential in Quantum Wells}

Many-body physics and their theoretical treatment of Coulomb interaction in quasi 2D QW electrons and hole systems is quite complex, and is usually treated within reasonable approximations. A well known 3D screened Coulomb interaction potential, given by Yukawa potential with screening constant parameter, \(\kappa\) is as follow:
\[
\begin{equation*}
V_{s}^{3 d}(r)=\frac{q^{2}}{4 \pi \epsilon_{s}} \frac{\exp (-\kappa r)}{r} \tag{8.97}
\end{equation*}
\]
often becomes inadequate when applied to calculation of exciton binding energy in 2D electron-hole heterostructure systems. In particular, 3D-Coulomb potential overestimates long range screening effect, while a 2D-Screened Coulomb potential
\[
\begin{equation*}
V_{s}^{2 d}(r)=\frac{q^{2}}{4 \pi \epsilon_{s}}\left[\frac{1}{r}-\kappa \int_{0}^{\infty} \frac{d q J_{0}(q r)}{(q+\kappa)}\right] \tag{8.98}
\end{equation*}
\]
underestimates it. Here, zero-order Bessel function, \(J_{0}(q r)\), is used. It turns out that for thin electron and hole layers as implemented in semiconductor inversion layers, accumulation layers or MQW heterostructures, we need an intermediate potential \(V_{s}(r)\) between \(V_{s}^{2 d}(r)\) and \(V_{s}^{3 d}(r)\), which we shall refer to as a quasi-2D screened Coulomb potential. The electron and hole spatial density distribution across such layers (in z-direction) is defined by density probability function, given by envelope wave function square, as \(\mid \phi\left(\left.z_{e}\right|^{2}\right.\), and \(\mid \phi\left(\left.z_{h}\right|^{2}\right.\). First we shall use a single pole approximation at low frequency limit to derive a screened Coulomb potential in momentum space, which can be expressed as:
\[
\begin{equation*}
V_{s}(q)=\frac{V_{q}^{2 d}}{\varepsilon(q)} F(q) \tag{8.99}
\end{equation*}
\]
where \(V_{q}^{2 d}\) is an unscreened 2D Coulomb potential
\[
\begin{equation*}
V_{q}^{2 d}=\frac{e^{2}}{2 \varepsilon_{b} \varepsilon_{0} q}, \tag{8.100}
\end{equation*}
\]
\(F(q)\) is a form-factor, which represents the deviation of the Coulomb potential from a perfect 2D case (of zero thickness layer limit). The form factor is usually expressed in some forms of overlap integral of the quantum well wave functions. The mathematical details of its evaluation are out of the scope of this document.

The dielectric function:
\[
\begin{equation*}
\frac{1}{\epsilon(q)}=1-\frac{\omega_{p l}^{2}}{\omega_{q}^{2}}, \tag{8.101}
\end{equation*}
\]
and plasma frequency
\[
\begin{equation*}
\omega_{p l}^{2}=\frac{e^{2}}{2 \varepsilon_{b} \varepsilon_{0}} \times q F(q)\left[\sum_{i} \frac{n_{c, i}}{m_{c, i}}+\sum_{j} \frac{n_{v, j}}{m_{v, j}}\right] . \tag{8.102}
\end{equation*}
\]

Again, similarly to Eq. (8.66) of Section 8.5, the effective plasmon frequency is given by:
\[
\begin{equation*}
\omega_{q}^{2}=\omega_{p l}^{2}\left(1+\frac{1}{\kappa F(q)}\right)+\frac{C_{p l}}{4}\left(\frac{\hbar q^{2}}{2 m_{r}}\right)^{2} \tag{8.103}
\end{equation*}
\]

Subsequently, From \(V_{s}(q)\) of Eq. (8.99) we can find quasi-2D Coulomb potential in a real space, using Fourier-Bessel transform of \(V_{s}(q)\), which gives:
\[
\begin{equation*}
V_{s}(r)=\int_{0}^{\infty} q V_{s}(q) J_{0}(q r) d q \tag{8.104}
\end{equation*}
\]

The quasi-2D Coulomb potential, \(V_{s}(r)\) of Eq. (8.104), can be then employed to obtain binding energy of exciton in QW and MQW, and seems the most appropriate in use for this applications. Nevertheless we left to the user an option, to use in his simulation exciton models using 3D and 2D Coulomb potentials as defined in Eqs. (8.97), for comparative studies.

\subsection*{8.7.3 Exciton Binding Energy in Quantum Well}

In our treatment, the confining potential along z -direction, along with wave-functions and corresponding energy values QW sub-bands are based on self-consistent solution of a Schrödinger and Poisson Equations. The solution is later applied to calculate binding energy of exciton via the form-factor, and finally absorption spectrum of excitons in MQW or QW can be calculated. At this time we limited our derivation to the ground, 1 s , excitonic states, but this can be easily extended into excited exciton state as well as to excitons at higher QW levels, in the future.
Consider a wave function for a ground state exciton in a QW as:
\[
\begin{equation*}
\Phi\left(z_{e}, z_{h}, r\right)=\phi\left(z_{e}\right) \phi\left(z_{h}\right) \phi_{e x c}(r) \tag{8.105}
\end{equation*}
\]
where \(\phi_{\text {exc }}(r)\) is a chosen trial wave function for a 1 s exciton in QW to be:
\[
\begin{equation*}
\phi_{e x c}(r)=\left(\frac{2}{\pi}\right)^{1 / 2} \frac{1}{\lambda_{e x c}} \exp \left(-r / \lambda_{e x c}\right) \tag{8.106}
\end{equation*}
\]

Here \(\lambda_{\text {exc }}\) represents an in-plane exciton Bohr radius, while \(\phi\left(z_{e}\right), \phi\left(z_{h}\right)\) are ground state electron and heavy or light hole envelope wave functions. Coulomb attraction of e-h pairs is assumed to be week, compare to the effect of QW confinement in zdirection. As a result, electron and hole wave functions are assumed to be unaffected by long range Coulomb interaction, which only modifies their energy values(true in the limit of 2D exciton Bohr radius, larger than the size o the z -confinement).
We choose to use Ritz variational method for binding energy estimate. The method relies on minimization of the exciton energy upon the trial function parameter, \(\lambda_{\text {exc }}\) :
\[
\begin{equation*}
E_{\text {exc }}\left(\lambda_{e x c}\right)=E_{g}+E_{e 0}+E_{h o}-E_{b, e x c}, \tag{8.107}
\end{equation*}
\]
which is equivalent to finding a maximum in exciton binding energy, \(E_{\text {bexc }}\) :
\[
\begin{equation*}
E_{b, e x c}\left(\lambda_{e x c}\right)=\frac{<\Phi|\hat{\mathbf{H}}| \Phi>}{<\Phi \mid \Phi>} \tag{8.108}
\end{equation*}
\]
where
\[
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 m_{r}}\left(\nabla_{r}^{2}+\nabla_{z}^{2}\right)+V_{Q W}(z)+V_{s}(r) \tag{8.109}
\end{equation*}
\]
and after partial integration:
\[
\begin{equation*}
E_{b, e x c}\left(\lambda_{e x c}\right)=\frac{\hbar^{2}}{2 m_{r} \lambda_{e x c}^{2}}+<\phi_{e x c}(r)\left|V_{s}(r)\right| \phi_{e x c}(r)> \tag{8.110}
\end{equation*}
\]
with respect to the 2D Bohr radius \(\lambda_{\text {exc }}\) parameter of a trial function \(\phi_{\text {exc }}(r)\) given by Eq.(8.106).

\subsection*{8.7.4 Quantum Well Exciton Absorption}

A general absorption coefficient formula can be applied to the exciton transition as well, as given by:
\[
\begin{equation*}
\alpha(\hbar \omega)=A_{0} \sum_{n}\left|\varphi_{n}(0)\right|^{2} \delta\left(E_{n}+E_{g}-\hbar \omega\right) n, \tag{8.111}
\end{equation*}
\]
where
\[
\begin{equation*}
A_{0}=\frac{\pi e^{2}\left|\hat{\mathbf{e}} \cdot \mathbf{p}_{c v}\right|^{2}}{n_{r} c \epsilon_{0} \omega m_{0}^{2}} \tag{8.112}
\end{equation*}
\]
\(\mathbf{p}_{c v}\) is an interband transition matrix element in QW, \(n_{r}\) is a refractive index, \(c\) speed of light, \(\phi_{n}(r)\) is a normalized wave function of exciton. Here, summation over n extends to both bound and continuum state excitons. For QW bound exciton states we have the oscillator strength given by :
\[
\begin{equation*}
\phi_{n}(0)=\frac{1}{\pi a_{0}^{2}\left(n-\frac{1}{2}\right)^{3}}, \tag{8.113}
\end{equation*}
\]
and
\[
\begin{equation*}
E_{n}=\frac{R_{y}}{\left(n-\frac{1}{2}\right)^{2}} \tag{8.114}
\end{equation*}
\]

Initially, it is sufficient to include only ground state heavy and light hole excitons \((\mathrm{n}=1)\), although in general case the bound exciton absorption coefficient becomes:
\[
\begin{equation*}
\alpha_{B}(\hbar \omega)=A_{0} \sum_{n=1}^{\infty} \frac{2}{R_{y} a_{0}^{2} \pi\left(n-\frac{1}{2}\right)^{3}} \times \delta\left[\epsilon+\frac{1}{\left(n-\frac{1}{2}\right)^{2}}\right] \tag{8.115}
\end{equation*}
\]
where \(\epsilon=\left(E-E_{g}\right) / R_{y}\).
The continuum-state exciton contribution to absorption is:
\[
\begin{equation*}
\alpha_{C}(\hbar \omega)=A_{0} \int_{0}^{\infty} d E \frac{S_{2 D}(E)}{2 \pi R_{y} a_{0}^{2}} \delta\left(E+E_{G}-\hbar \omega\right) \tag{8.116}
\end{equation*}
\]
where
\[
\begin{equation*}
S_{2 D}(\epsilon)=\frac{2}{1+\exp (-2 \pi / \epsilon)} \tag{8.117}
\end{equation*}
\]
is known as Sommerfeld enhancement factor.
The total absorption is equal \(\alpha_{B}(\hbar \omega)+\alpha_{C}(\hbar \omega)\) :
\[
\begin{equation*}
\alpha_{e x c}(\hbar \omega)=\frac{A_{0}}{2 \pi R_{y} a_{0}^{2}}\left[4 \times \sum_{n=1}^{\infty}\left\{\frac{1}{\left(n-\frac{1}{2}\right)^{3}} \delta\left(\epsilon+\frac{1}{\left(n-\frac{1}{2}\right)^{2}}\right)\right]+S_{2 D}(\epsilon)\right\} \tag{8.118}
\end{equation*}
\]

Finally, we include the finite line-width effect by introducing the Lorentzian broadening function to obtain
\(\alpha_{e x c}(\hbar \omega)=\frac{A_{0}}{2 \pi R_{y} a_{0}^{2}}\left[4 \times \sum_{n=1}^{\infty} \frac{1}{\pi\left(n-\frac{1}{2}\right)^{3}} \frac{\gamma}{\left(\epsilon+\left(n-\frac{1}{2}\right)^{-2}\right)^{2}+\gamma^{2}}+\int_{0}^{\infty} \frac{d \epsilon^{\prime}}{\pi} \frac{\gamma S_{2 D}\left(\epsilon^{\prime}\right)}{\left(\epsilon^{\prime}-\epsilon\right)^{2}+\gamma^{2}}\right]\)

\subsection*{8.8 Franz - Keldysh Effect}

The Franz-Keldysh Effect (FKE) is a widely known phenomenon observed in the inter-band absorption spectrum of bulk semiconductors. It is also known as photoassisted Zener tunneling. It only occurs in the presence of an external DC electrostatic field \(\mathbf{F}\) and is related to the bulk DC-Stark Effect. It is similar to the Quantum-Confined Stark Effect (QCSE) observed in semiconductor Quantum Wells (QW).
FKE and QCSE both have their uses in modern electroabsorption modulators.

\subsection*{8.8.1 Solution of the Schrödinger Equation}

Consider the case of a single non-interacting particle charge, \(q\) in a uniform external dc-electrostatic field acting along z-direction, \(\mathbf{F}=[0,0, F]\). It can be described by the Schrödinger Equation:
\[
\begin{equation*}
\left(\frac{-\hbar^{2}}{2 m_{r}} \nabla^{2}+q \mathbf{F} \cdot \mathbf{r}\right) \Phi(\mathbf{r})=\mathrm{E} \Phi(\mathbf{r}) \tag{8.120}
\end{equation*}
\]
where \(m_{r}=m_{e} * m_{h} /\left(m_{e}+m_{h}\right)\). is the reduced effective mass. One can search the solution of Eq.(8.120) in the form of:
\[
\begin{equation*}
\Phi(\mathbf{r})=\frac{e^{i k_{x}+i k_{y}}}{\sqrt{A}} \Phi_{E_{z}}(z) \tag{8.121}
\end{equation*}
\]
where the z-dependent part of the wave function \(\Phi(z)\) obeys:
\[
\begin{equation*}
\left(\frac{-\hbar^{2}}{2 m_{r}} \frac{d^{2}}{d z^{2}}+q F z\right) \Phi(z)=\mathrm{E}_{z} \Phi(z) \tag{8.122}
\end{equation*}
\]
with a total energy relative to the bottom of the band given by:
\[
\begin{equation*}
E=\frac{-\hbar^{2}}{2 m_{r}}\left(k_{x}^{2}+k_{y}^{2}\right)+E_{z} . \tag{8.123}
\end{equation*}
\]

The solution to the Eq. (8.122) can be expressed in terms of Airy Functions \(A i(Z)\), satisfying the proper normalization and boundary condition of exponential decay in the limit \(z \rightarrow+\infty\), where variable:
\[
\begin{equation*}
Z=\sqrt[3]{\frac{2 m_{r} q F}{\hbar^{2}}} \times\left(z-\frac{E_{z}}{q F}\right) \tag{8.124}
\end{equation*}
\]

Electron and hole states in an external electrostatic field \(\mathbf{F}=\hat{z} F\) can be characterized by the the wave function for a given set of quantum numbers (kx, ky, Ez) satisfying Eq. (8.121).

\subsection*{8.8.2 Absorption Spectrum}

The inter-band absorption calculation can be obtained from a sum over all electronhole states:
\[
\begin{equation*}
\alpha(\hbar \omega)=A_{0} \sum_{n}\left|\varphi_{n}(0)\right|^{2} \delta\left(E_{n}+E_{g}-\hbar \omega\right) \tag{8.125}
\end{equation*}
\]
where
\[
\begin{equation*}
A_{0}=\frac{\pi q^{2}\left|\hat{\mathbf{e}} \cdot \mathbf{p}_{c v}\right|^{2}}{n_{r} c \epsilon_{0} \omega m_{0}^{2}} \tag{8.126}
\end{equation*}
\]

Substituting the sum over all quantum number states by the integration over \(E_{z}\) continuous spectrum in Eq. (8.121), one can obtain :
\[
\begin{equation*}
\alpha(\hbar \omega)=A_{0} \times 2 \sum_{k_{x}, k_{y}} \int_{0}^{\infty} d E_{z}|\varphi(0)|^{2} \delta\left[\frac{\hbar^{2}}{2 m_{r}}\left(k_{x}^{2}+k_{y}^{2}\right)+E_{z}+E_{g}-\hbar \omega\right] \tag{8.127}
\end{equation*}
\]

For typical III-V compound semiconductor zincblende structure we can substitute into Eq. (8.127) \(E_{t}=\frac{\hbar^{2}}{2 m_{r}}\left[k_{x}^{2}+k_{y}^{2}\right]\) and use quasi-continuous integration over \(d E_{t}\) instead of sum
\[
\begin{equation*}
\frac{2}{A} \sum_{k_{x}, k_{y}}=2 \int \frac{d^{2} \mathbf{k}_{t}}{(2 \pi)^{2}}=\frac{m_{r}}{\pi \hbar^{2}} \int d E_{t} \tag{8.128}
\end{equation*}
\]

One can obtain absorption coefficient from Eq. (8.127) as follows:
\[
\begin{equation*}
\alpha(\hbar \omega)=\frac{A_{0}}{2 \pi} \frac{m_{r}}{\pi \hbar^{2}} \sqrt{\hbar \theta_{F}} \int_{\eta}^{\infty} d \eta A i^{2}=\frac{A_{0}}{2 \pi} \frac{m_{r}}{\pi \hbar^{2}} \sqrt{\hbar \theta_{F}}\left[-\eta A i^{2}(\eta)+A i^{\prime 2}(\eta)\right] \tag{8.129}
\end{equation*}
\]


Figure 8.9: Concept of Franz-Keldysh effect of photo-assisted absorption in bulk semiconductors in external electrostatic field. The electron and hole wave-functions become Airy functions, which in external electrostatic field "tunnel" into the bandgap region allowing for overlap of electron and hole wave-functions and absorption of photons with energies below the band-gap energy.
where \(A i^{\prime}(\eta)\) is the derivative of \(A i(\eta)\) over \(\eta\), \(\hbar \theta_{F}=\sqrt[3]{\frac{\hbar^{2} q^{2} F^{2}}{2 m_{r}}}\), and \(\eta=\frac{E_{g}-\hbar \omega}{\hbar \theta_{F}}\)
Fig. 8.9 illustrates the net result of applying an electrostatic field on inter-band absorption spectra. The apparent oscillations above the band-gap energy and enhanced exponential decay in below-bandgap energy region are signature of the Franz-Keldysh effect. Fig. 8.10 compares the absorption spectrum with and without the external field as a result of the Franz-Keldysh effect.

\subsection*{8.9 Interband Optical Transition Model for Quantum Dots}

This section formulates the optical gain and spontaneous emission spectra for a quantum dot device. We consider an ensemble of quantum dots (QDOT) within a multiple quantum well system. For a self-assembled quantum dots device [44], the dots are closely stacked up on top of each other and there may be strong quantum mechanical coupling between the them. In the following formulation, we assume that the optical spectrum theory for quantum well has been well established [33] and we shall focus on quantum dots.
The formulas here are similar to those in [45]. In a quantum complex containing


Figure 8.10: The associated absorption spectrum for finite field \(F \neq 0\) (solid curve). The dashed line is the free electron and hole absorption spectrum without applied electrostatic field.
both wells and dots, the total 2D area; carrier concentrations can be expressed as
\[
\begin{equation*}
n_{2 d}=n_{q w}+n_{q d} \tag{8.130}
\end{equation*}
\]

The QDOT electron concentration can be written as
\[
\begin{equation*}
n_{q d}=\sum_{i, s} 2 N_{q d}(s) f_{c}\left(E_{i, s}\right) \tag{8.131}
\end{equation*}
\]
where the sum i is over all energy levels and \(s\) is over quantum dots of difference sizes. Please note the factor of two taking into account spin degeneracy. \(N_{q d}(s)\) is the areal density of quantum dots with size s. The Fermi function is given by
\[
\begin{equation*}
f_{c}\left(E_{i, s}\right)=\frac{1}{1+\exp \left[\left(E_{i, s}-E_{f n}\right) / k T\right]} \tag{8.132}
\end{equation*}
\]

In general, analytical expression for energy level \(E_{i, s}\) is not available and one has to solve a 3D numerical eigenvalue problem to find the confined energies and associated wave functions \(\psi_{i s}\) for a 3D dot embedded within a well [45]. The APSYS software includes numerical solutions of quantum states for a general 3D quantum dot structure.
Having solved the quantum states of the 3D dot/well complex, we proceed to formulate the optical gain spectrum as follows:
\[
\begin{equation*}
g_{q d}(E)=\sum_{s} \sum_{i, j} \frac{\pi q^{2} \hbar M_{b}^{2} N_{d q}}{E \varepsilon_{0} c_{0} m_{0}^{2} n_{r} t_{c m p l x}}\left|<\psi_{i s}\right| \psi_{j s}>\left.\right|^{2} g_{c p} G_{s}\left(E-E_{i j s}\right)\left(f_{c}-f_{v}\right) \tag{8.133}
\end{equation*}
\]
where \(g_{c p}\) is a multiple dot coupling factor which is used avoid double counting. It is inversely proportional to the number of coupling dots. For example, if we have two dots coupling to each other, the number of states will be doubled and we need to divide by two to avoid double counting. \(M_{b}\) is the bulk matrix element and \(t_{c m p l x}\) is the thickness of the well/dot complex. The sum is over all possible confined electron and hole states and over all dot sizes. The last factor is the population inversion factor determined by quasi-Fermi levels of electrons and holes. Other symbols have their usual meanings. The function \(G_{s}\) is a Gaussian broadening function representing intraband and inhomogeneous broadening defined as follows:
\[
\begin{align*}
\Delta & =\hbar / \tau \\
G_{s}(E) & =\frac{1}{\Delta \sqrt{2 \pi}} \exp \left[-\frac{\left(E-E_{i j s}\right)^{2}}{2 \Delta^{2}}\right] \tag{8.134}
\end{align*}
\]

The material gain of the active well/dot complex contains contribution from the quantum well, i.e., from states above the quantum dot. Depending on the detailed structure and film quality, the states of the quantum wells may not be perfectly extended through the while well. One may regard some of the states from the quantum wells or the wetting layers as being truncated by the quantum dots. Thus it is convenient to introduce a factor to control or describe the contribution from the wells as follows
\[
\begin{equation*}
g_{2 d}=r_{q w} g_{q w}+g_{q d} \tag{8.135}
\end{equation*}
\]
where \(g_{q w}\) and \(g_{q d}\) are optical gain contribution from quantum wells and dots, respectively. \(r_{q w}\) is a factor between zero and unity related to the areal ratio of the well area over that of the dots. The above optical gain formulas are important for application involving laser diodes (LD) and vertical cavity surface emitting lasers (VCSEL).
Having found the formula for the optical gain, we can express the spontaneous emission rate using the relation between optical gain and spontaneous emission [2]. The spontaneous emission is given as follows:
\[
\begin{equation*}
r_{q d}^{s p}(E)=\frac{q^{2} n_{r} E M_{b}^{2}}{\pi \varepsilon_{0} m_{0}^{2} \hbar^{2} c_{0}^{3}}\left|<\psi_{i s}\right| \psi_{j s}>\left.\right|^{2} g_{c p} G_{s}\left(E-E_{i j s}\right) N_{q d}(s) / t_{c m p l x} f_{c}\left(1-f_{v}\right) \tag{8.136}
\end{equation*}
\]

The total spontaneous emission rate should also include contribution from the quantum wells in analogy with the optical gain:
\[
\begin{equation*}
r_{2 d}^{s p}(E)=r_{q w} r_{q w}^{s p}(E)+r_{q d}^{s p}(E) \tag{8.137}
\end{equation*}
\]

Integration of the above over all photon energies results in the total carrier radiative recombination rate as a dominant recombination mechanism for many devices based on forward biased p-n junctions:
\[
\begin{equation*}
R_{s p}=\int r_{2 d}^{s p}(E) d E \tag{8.138}
\end{equation*}
\]

The spontaneous emission model is important for applications involving light emitting diode (LED), LD and VCSEL. For LED, the EL spectrum comes from the spontaneous emission rate in Eq. 8.137 directly while radiative recombination rate in Eq. 8.138 determines the internal quantum efficiency (IQE). For LD and VCSEL, the radiative recombination rate is often the dominant leakage mechanism upon which the threshold behavior depends.
The software also offers a model for a quantum well to include a quantum dot-like density of states (DOS). This may be used to account for high brightness LED from InGaN-based MQW where a pure quantum well model can not explain the high brightness which is thought to come from localized, dot-like states associated with indium segregation.

The QDOT model in the software usually requires a separate calculation of 3D quantum states with given shapes such as disk or sphere. The QDOT-like model skips such details and makes it easier to manage: the model uses a DOS reduction factor to represent 3D quantum confinements which result in lower DOS than pure quantum well.
The DOS reduction factor is defined as the ratio of total number of quantum states in a dot over that in the well. Such a factor many be estimated if shapes of the dots are known. For a simple case, one may use states in a quantum box against those in a quantum well.
To make analogy with reduced DOS in quantum well against those in the bulk, the actual reduction ratio can be estimated if the potential profile of the well is known. Polarization charge and self-consistent calculation may be enabled in such QDOT-like states.

\section*{CHAPTER 9}

\section*{IMPACT IONIZATION AND TUNNELING}

This chapter describes our model of impact ionization and quantum tunneling. We will show that there is similarity between interband tunneling and impact ionization. Both result in generation of electron and hole pairs from a reverse biased p-n junction. Intraband tunneling involves only one type of carrier and the main issue is how to reconcile the quantum nature of wave mechanics with the classical behavior of driftdiffusion.

\subsection*{9.1 Impact Ionization Model}

\subsection*{9.1.1 Introduction}

Impact ionization is defined through the following expression for generation rate (see Ref. [1]):
\[
\begin{equation*}
G=\alpha_{n} n v_{n}+\alpha_{p} p v_{p} . \tag{9.1}
\end{equation*}
\]
where \(\alpha_{n}\) is the electron ionization rate defined as the number of electron-hole pairs generated by an electron per unit distance traveled; \(\alpha_{p}\) is similarly defined for holes. Both \(\alpha_{n}\) and \(\alpha_{p}\) are strongly dependent on the electric field.

Equation (9.1) is somewhat difficult to implement in a drift-diffusion model because the model is not directly concerned with the velocity. Since impact ionization occurs only in high field region where the drift terms dominates, Selberherr [46] suggested the use of \(J / q\) in place of \(n v\) for ease of implementation:
\[
\begin{equation*}
G=\alpha_{n} J_{n} / q+\alpha_{p} J_{p} / q \tag{9.2}
\end{equation*}
\]

The issue remains how to choose values of \(\alpha_{n}\) and \(\alpha_{p}\). Crosslight proposes different models commonly found in the literature but it is expected that the user will choose
the most appropriate model for a given situation and provide calibrated parameters for that model. Some sample values for these parameters are provided below and may help in the calibration process. The default model settings for the commands which implement these models usually correspond to data for silicon.

\subsection*{9.1.2 Chynoweth model}

A commonly used expression for \(\alpha_{n}\) was first proposed by Chynoweth [47]:
\[
\begin{equation*}
\alpha=\alpha_{n}^{\infty} e^{-\frac{F_{c n}}{F}} \tag{9.3}
\end{equation*}
\]
where \(F_{c} n\) is the critical field and \(\alpha_{n}^{\infty}\) is the inverse of the mean free path between impacts when \(F=\infty\). A similar expression can be written for the holes.
This expression was later generalized by Selberherr [46]:
\[
\begin{equation*}
\alpha=\alpha_{n}^{\infty} e^{-\left(\frac{F_{c n}}{F}\right)^{\kappa_{n}}} \tag{9.4}
\end{equation*}
\]

Another improvement to the model was also added in the form of a temperature dependence for both \(\alpha_{n}^{\infty}\) and \(F_{c n}\). This is expressed in the form a scaling factor \(\gamma\) :
\[
\begin{equation*}
\gamma=\frac{\tanh \left(\frac{h \omega_{o p}}{2 k T_{0}}\right)}{\tanh \left(\frac{h \omega_{o p}}{2 k T}\right)} \tag{9.5}
\end{equation*}
\]
where \(h \omega_{o p}\) is the energy of the optical phonon.
The parameters above are often fitted for a specific range of field values: multiple ranges are often necessary to cover the entire region of interest in a simulation.

\subsection*{9.1.3 Baraff model}

Another theory of impact ionization is Baraff's three-parameter theory which takes into account the temperature dependence. A convenient formula for Baraff's theory was given by Crowell and Sze [48]:
\[
\begin{align*}
& \alpha \lambda=e^{g(r, x)}  \tag{9.6}\\
& g(r, x)=\left(11.5 r^{2}-1.17 r+3.9 \times 10^{-4}\right) x^{2} \\
&+\left(46 r^{2}-11.9 r+1.75 \times 10^{-2}\right) x \\
&+\left(-757 r^{2}+75.5 r-1.92\right) \tag{9.7}
\end{align*}
\]
where
\[
\begin{equation*}
r=<E_{p}>/ E_{I} \tag{9.9}
\end{equation*}
\]
and
\[
\begin{equation*}
x=E_{I} / q F \lambda \tag{9.10}
\end{equation*}
\]

In the above, \(<E_{p}>\) is the optical phonon energy and \(\lambda\) is the optical phonon scattering mean free path. \(E_{I}\) is the ionization energy for which the following formula was suggested [48]:
\[
\begin{equation*}
E_{I}=3 E_{g} / 2 \tag{9.11}
\end{equation*}
\]

The temperature dependence of \(\left.<E_{p}\right\rangle\) and \(\lambda\) is given by
\[
\begin{gather*}
<E_{p}>=E_{p} \tanh \left(\frac{E_{p}}{2 k T}\right)  \tag{9.12}\\
\lambda=\lambda_{0} \tanh \left(\frac{E_{p}}{2 k T}\right) \tag{9.13}
\end{gather*}
\]
which follows the same behavior as the temperature scaling in the Chynoweth model.

\subsection*{9.1.4 Lackner model}

The Lackner model[49] is a modification of the basic Chynoweth model defined above. It introduces a correction term \(1 / Z\) where
\[
\begin{equation*}
Z=1+\frac{F_{c n}}{F} e^{-\frac{F_{c n}}{F}}+\frac{F_{c p}}{F} e^{-\frac{F_{c p}}{F}} \tag{9.14}
\end{equation*}
\]

As in the Chynoweth model, the temperature dependance of these terms is included via the \(\gamma\) scaling factor.

\subsection*{9.1.5 Okuto-Crowell model}

This model[50] takes into account band bending effects and temperature dependence through the following empirical model:
\[
\begin{equation*}
\alpha=a(T) F^{x} e^{-\left(\frac{F_{c n}(T)}{F}\right)^{y}} \tag{9.15}
\end{equation*}
\]
where both \(a(T)\) and \(F_{c n}(T)\) have a linear dependence on temperature. The field exponential terms are usually set as \(x=1\) and \(y=2\).

\subsection*{9.1.6 Dopant-dependant model}

This model implements the basic Chynoweth model defined above for a single field range. It also implements some empirical relations for the dependence of the critical field on the doping concentration.

Baliga[51] describes this relationship as:
\[
\begin{equation*}
F_{c n}=F_{0}\left(N_{D}\right)^{x} \tag{9.16}
\end{equation*}
\]
where \(N_{D}\) is the donor concentration (in \(\mathrm{cm}^{-3}\) ) and \(x=\frac{1}{8}\) is typically used.
Sze[1] proposes a different relationship:
\[
\begin{equation*}
F_{c n}=\frac{F_{0}}{1-\frac{1}{3} \log _{10}\left(\frac{N_{D}}{10^{16}}\right)} \tag{9.17}
\end{equation*}
\]
where \(N_{D}\) is the donor concentration in \(\mathrm{cm}^{-3}\).
In both of these models, only the effects of donor concentration are considered at this time. The critical field for holes is set to a constant value.

\subsection*{9.1.7 Mean free path model}

This is an extremely simplified phenomenological version of the Chynoweth model. Instead of defining the critical field as a fitting parameter, we define the mean free path and calculate the critical field assuming the ionization energy is equal to the bandgap:
\[
\begin{equation*}
F_{c n}=\frac{E_{g}}{\lambda_{0}} \tag{9.18}
\end{equation*}
\]

\subsection*{9.1.8 Some Useful Parameters for Impact Ionization Models}

\section*{Semiconductors used for microelectronics}

For Baraff's model, the following parameters are taken from Sze [1]:
For the Chynoweth model, many possible fits are possible. Overstraeten and de Man[52] produced one set of data while Grant[53] proposed another. Their results are summarized in Tables 9.2 and 9.3.

It is clear that the results of the simulation will vary greatly depending on the parameters that are used. For the sake of comparison, all three of the above models for silicon are plotted in Fig. 9.1.
\begin{tabular}{|l|l|l|l|l|}
\hline \hline Material & \(E_{p}\) electrons \((\mathrm{eV})\) & \(\lambda_{0}\) electrons \((\AA)\) & \(E_{p}\) holes \((\mathrm{eV})\) & \(\lambda_{0}\) holes \((\AA)\) \\
\hline Si & 0.063 & 76 & 0.063 & 55 \\
Ge & 0.037 & 105 & 0.037 & 105 \\
GaAs & 0.035 & 58 & 0.035 & 58 \\
\hline \hline
\end{tabular}

Table 9.1: Commonly used impact ionization parameters for Baraff's model
\begin{tabular}{|l|l|l|}
\hline \hline \multicolumn{3}{|l|}{ Electrons } \\
\hline \hline\(\alpha_{n}^{\infty}\left(\times 10^{8} \mathrm{~m}^{-1}\right)\) & \(F_{c n}\left(\times 10^{8} \mathrm{~V} / \mathrm{m}\right)\) & Field range \(\left(\times 10^{8} \mathrm{~V} / \mathrm{m}\right)\) \\
\hline 0.703 & 1.231 & \(0.175<F<0.6\) \\
\hline Holes & \multicolumn{1}{|l|}{} \\
\hline \hline\(\alpha_{p}^{\infty}\left(\times 10^{8} \mathrm{~m}^{-1}\right)\) & \(F_{c p}\left(\times 10^{8} \mathrm{~V} / \mathrm{m}\right)\) & Field range \(\left(\times 10^{8} \mathrm{~V} / \mathrm{m}\right)\) \\
\hline 1.582 & 2.03 & \(0.175<F<0.4\) \\
\hline 0.671 & 1.69 & \(F>0.4\) \\
\hline \hline
\end{tabular}

Table 9.2: Overstraeten and de Man's fit to the Chynoweth model for silicon

\section*{Semiconductors used for optoelectronics}

The impact ionization coefficients for compound semiconductors used in optoelectronics are less well known than those of silicon. When fitting the experimental data published in Ref. [1] to the basic Chynoweth model, we obtain the results in Table 9.4.

For InGaAsP material lattice matched to \(\operatorname{InP}\), we can use linear interpolation of \(\operatorname{InP}\) and \(\operatorname{In}(0.53) \mathrm{Ga}(0.47) \mathrm{As}\).

\subsection*{9.2 Intraband Quantum Tunneling}

\subsection*{9.2.1 Introduction}

In highly doped heterojunction or Schottky contacts, an important current transport mechanism is the quantum tunneling effect. In highly doped Schottky contacts and heterojunctions, the quantum barriers are so thin that significant amount of tunneling current goes through the barriers. It is also the key transport mechanism in a realistic Ohmic contact which is essentially a highly doped Schottky contact.

We derived the formulas for tunneling current at the top of the barrier in subsection 9.2.2. The formulas are generalized to an arbitrary point in subsection 9.2.3. The tunneling transparencies for a few important cases are given in subsection 9.2.4.
\begin{tabular}{|l|l|l|}
\hline \hline \multicolumn{2}{|l|}{ Electrons } \\
\hline \hline\(\alpha_{n}^{\infty}\left(\times 10^{8} \mathrm{~m}^{-1}\right)\) & \(F_{c n}\left(\times 10^{8} \mathrm{~V} / \mathrm{m}\right)\) & Field range \(\left(\times 10^{8} \mathrm{~V} / \mathrm{m}\right)\) \\
\hline 2.6 & 1.43 & \(F<0.24\) \\
\hline 0.62 & 1.08 & \(0.24<F<0.53\) \\
\hline 0.5 & 0.99 & \(F>0.53\) \\
\hline Holes & \\
\hline \hline\(\alpha_{p}^{\infty}\left(\times 10^{8} \mathrm{~m}^{-1}\right)\) & \(F_{c p}\left(\times 10^{8} \mathrm{~V} / \mathrm{m}\right)\) & Field range \(\left(\times 10^{8} \mathrm{~V} / \mathrm{m}\right)\) \\
\hline 2.0 & 1.97 & \(0.2<F<0.53\) \\
\hline 0.56 & 1.32 & \(F>0.53\) \\
\hline \hline
\end{tabular}

Table 9.3: Grant's fit to the Chynoweth model for silicon
\begin{tabular}{|l|l|l|l|l|}
\hline \hline Material & \(\alpha_{n}^{\infty}\left(\times 10^{8} m^{-1}\right)\) & \(F_{c n}\left(\times 10^{8} V / m\right)\) & \(\alpha_{p}^{\infty}\left(\times 10^{8} m^{-1}\right)\) & \(F_{c p}\left(\times 10^{8} V / m\right)\) \\
\hline GaP & 7.38 & 2.02 & 7.38 & 2.02 \\
\hline InP & 8.36 & 1.55 & 1.57 & 0.994 \\
\hline \(\operatorname{In}(0.53) \mathrm{Ga}(0.47) \mathrm{As}\) & 34.4 & 0.833 & 125 & 1.02 \\
\hline \(\operatorname{GaAs}(0.88) \mathrm{Sb}(0.12)\) & 0.0997 & 0.25 & 0.092 & 0.316 \\
\hline \hline
\end{tabular}

Table 9.4: Impact ionization rates for some compound semiconductors

Finally, we discuss the numerical treatment of quantum tunneling in drift-diffusion model in subsection 9.2.5.

We use the standard WKB theory to give formulas for the transparency in subsection 9.2.3. Discussion of implementation of the tunneling current is given in subsection 9.2.4.

\subsection*{9.2.2 Tunneling current at top of barrier}

Analytical formulas incorporating tunneling effects at the top of the potential barrier were derived by Grinberg et. al. [54] whose approach we shall follow here. Similar to [54] we assume that Boltzmann statistics can be used because the quasi-Fermi level is usually much lower than the top of the barrier. We use the Schematic in Fig. 9.3 and consider the drift current on top of the barrier \(X_{m}\)
\[
\begin{equation*}
J=q v n_{m}+q v n_{m} \alpha_{T} \tag{9.19}
\end{equation*}
\]
where \(\alpha_{T}\) is the tunneling coefficient to be derived. The velocity \(v\) is dependent on mobility or the thermionic emission properties at the top of the barrier.

Here the basic understanding is that the quasi-Fermi level is relatively flat around the barrier such that the energy distribution of the carriers can be expressed by a


Figure 9.1: Electron and hole impact ionization coefficients of silicon for different models. Baraff is for Baraff's three-parameter theory; OM is for the parameters of Chynoweth's formula from the work of Overstraeten and de Man; Grant is for parameters of Chynoweth's formula from the work of Grant. n and p are used to denote parameters for electrons and holes, respectively.
simple Boltzmann function (or exponential function). We assume that the carriers with energy between \(U_{0}\) and \(U_{m}\) are capable of tunneling through the barrier and appears at the other side of the it, giving rise to the additional term in Eq. (9.19). For carriers with energy greater than \(U_{m}\), they are accounted for by the standard drift-diffusion model.

We define an energy dependent carrier distribution \(n_{E}\) such that
\[
\begin{equation*}
n=\int n_{E} d E \tag{9.20}
\end{equation*}
\]

Using Boltzmann distribution
\[
\begin{equation*}
n_{E}=g(E) \exp \left(\frac{U_{m}-E}{k T}\right) \tag{9.21}
\end{equation*}
\]
where \(g(E)\) is the density of states which is a much slower function of energy than the exponential function. For numerical convenience, we ignore the slower energy dependence and replace it by an average constant \(n_{E m}\) so that Eqn. 9.20 still holds. As we shall see later, our final results do not depend on the choice of constant \(n_{E m}\).
As we are able to express the energy distribution as follows
\[
\begin{equation*}
n_{E}=n_{E m} \exp \left(\frac{U_{m}-E}{k T}\right) \tag{9.22}
\end{equation*}
\]
the tunneling current can be expressed as
\[
\begin{align*}
J_{t u n} & =\int_{U_{0}}^{U_{m}} q v n_{E} D_{T}(E) d E  \tag{9.23}\\
& =q v n_{E m} \int_{U_{0}}^{U_{m}} \exp \left(\frac{U_{m}-E}{k T}\right) D_{T}(E) d E \tag{9.24}
\end{align*}
\]
where \(D_{T}(E)\) is the energy dependent tunneling transparency. We note that the carrier density at the top of the potential barrier can be expressed in term of \(n_{E m}\) :
\[
\begin{align*}
n_{m} & =\int_{U_{m}}^{\infty} n_{E m} \exp \left(\frac{U_{m}-E}{k T}\right) d E  \tag{9.25}\\
& =n_{E m} k T \tag{9.26}
\end{align*}
\]

Therefore the tunneling current can be written as
\[
\begin{equation*}
J_{t u n}=q v n_{m}(k T)^{-1} \int_{U_{0}}^{U_{m}} \exp \left(\frac{U_{m}-E}{k T}\right) D_{T}(E) d E \tag{9.27}
\end{equation*}
\]

The tunneling coefficient \(\alpha_{T m}\) at the top of the barrier is given by
\[
\begin{equation*}
\alpha_{T m}=(k T)^{-1} \int_{E_{0}}^{U_{m}} \exp \left(\frac{U_{m}-E}{k T}\right) D_{T}(E) d E \tag{9.28}
\end{equation*}
\]

\subsection*{9.2.3 Tunneling current at an arbitrary point}

In a 2 D simulation, all physical quantities vary in space. We have to assume that the tunneling current also varies in space to make the model compatible with the 2D drift-diffusion model. In another word we have to decide what the tunneling effect is on the current at an arbitrary point away from the top of the barrier. It would be wrong to assume that the same tunneling current appears everywhere in the whole device, although this is the simple case for many textbook tunneling examples.
We must point out that the treatment of tunneling mechanism we give here is of semi-classical nature. The reason is that quantum tunneling assumes the carrier is described by a wave function and can not be localized accurately, while the driftdiffusion model assumes that the carriers are localized and have a definite spatial distribution. Therefore, we should try to satisfy both requirements by choosing a proper area for the tunneling model. If the area of consideration is too small, it conflicts with the wave nature of the problem. If the area is too large, the model contradicts with particle nature of drift-diffusion model. It is clear that the transport mechanism at a point far from the quantum barrier is unrelated to the quantum tunneling.

Again we assume that only those carriers with energy between \(U_{0}\) and \(U_{m}\) contribute to tunneling. We wish to relate the tunneling current at an arbitrary point to the local current density.

We give the distribution function at an arbitrary point x ,
\[
\begin{equation*}
n_{E}(x)=n_{E x} \exp \left(\frac{U(x)-E}{k T}\right) \tag{9.29}
\end{equation*}
\]

The tunneling current can be expressed by
\[
\begin{align*}
J_{t u n} & =\int_{U_{0}}^{U_{m}} q v n_{E}(x) D_{T}(E) d E  \tag{9.30}\\
& =q v n_{E x} \int_{U_{0}}^{U_{m}} \exp \left(\frac{U(x)-E}{k T}\right) D_{T}(E) d E \tag{9.31}
\end{align*}
\]

Using the same derivation as in the previous subsection, we re-write the current as
\[
\begin{align*}
J_{t u n} & =q v n_{E x} \int_{U_{0}}^{U_{m}} \exp \left(\frac{U(x)-E}{k T}\right) D_{T}(E) d E  \tag{9.32}\\
& =q v n(x)(k T)^{-1} \int_{U_{0}}^{U_{m}} \exp \left(\frac{U(x)-E}{k T}\right) D_{T}(E) d E  \tag{9.33}\\
& =q v n(x)(k T)^{-1} \exp \left(\frac{U(x)-U_{m}}{k T}\right) \int_{U_{0}}^{U_{m}} \exp \left(\frac{U_{m}-E}{k T}\right) D_{T}(E) d E(9.34) \\
& =q v n(x) \exp \left(\frac{U(x)-U_{m}}{k T}\right) \alpha_{T m} \tag{9.35}
\end{align*}
\]

The above formula suggest that all we need to do is to multiply the tunneling coefficient at the top of the barrier by a Boltzmann exponential factor \(\exp \left(\frac{U_{m}-E}{k T}\right)\). This is consistent with our common sense that in regions farther away from the barrier, the tunneling effect is less pronounced.

\subsection*{9.2.4 Tunneling transparency}

In the current version of the our simulation program, we have included the following models for the tunneling transparency.
- 1. Transparency for a rectangular barrier. Following Ref. [55], for a rectangular barrier of barrier height \(U_{m}\) and thickness \(d_{0}\), we have the following exact solution for the tunneling transparency:
\[
\begin{equation*}
D(E)=\left(1+\frac{\sinh ^{2}\left(\sqrt{\frac{2 m^{*}\left(U_{m}-E\right)}{\hbar^{2}}} a\right)}{4\left(E / U_{m}\right)\left(1-E / U_{m}\right)}\right)^{-1} \tag{9.36}
\end{equation*}
\]
- 2. Abrupt heterojunction barrier. One side of the potential barrier has a vertical wall and the other side has a profile described by a quadratic formula [56]. The formula was worked out and is given as follows [54] [56] :
\[
\begin{align*}
D(E) & =\exp \left(-\frac{U_{m}}{E_{00}}\left[\sqrt{1-R_{x}}+\frac{1}{2} R_{x} \ln \left(R_{x}\right)-R_{x} \ln \left(1+\sqrt{1-R_{x}}\right)\right]\right) \\
E_{00} & =\frac{\hbar q}{2} \sqrt{\frac{\left|N_{d}-N_{a}\right|}{m^{*} \varepsilon}}  \tag{9.37}\\
R_{x} & =E / U_{m} \tag{9.39}
\end{align*}
\]
where \(N_{a}\) and \(N_{d}\) are the doping concentrations for acceptors and donors, respectively. \(U_{m}\) and \(E\) are measured from the lowest point of the potential profile on the side with a smooth profile.
- 3. Arbitrary barrier with smooth potential profile on both sides. The formula derived from WKB theory can be found in Ref. [57].
\[
\begin{equation*}
D(E)=\exp \left(-\frac{2}{\hbar} \int_{a}^{b} \sqrt{2 m^{*}[U(x)-E]} d x\right) \tag{9.40}
\end{equation*}
\]

Please note that the requirement for the above formula is that the potential profile must be smooth. Significant error may arise if this requirement is not satisfied. For example, we compare the exact solution with the WKB theory in Fig. 9.2 for a rectangular barrier with abrupt vertical wall on both sides. We find that substantial error can result for such a case.
- 4. Propagation matrix method may be used to treat arbitrary barrier. This method cuts up the potential barrier into piece-wise constant and find the analytical solution in the form of propagation matrices. This method is rather accurate but the computation time required is relatively long.

\subsection*{9.2.5 Numerical evaluation of tunneling current}

In a 2 D simulation of semiconductor, the evaluation of the tunneling current is not simple since the formulas we developed are all one-dimensional. We suggest the following steps for treating the tunneling current:
- 1)Identify a significant potential barrier. This usually occurs in Schottky contacts, heterojunctions and between quantum wells. The user should mark down a rectangular area with which the tunneling current distribution is to be calculated.


Figure 9.2: Comparison of the transparency from the WKB with the exact solution for a rectangular potential barrier. The barrier thickness is \(20 \AA\) And the barrier height is 0.2 eV . The relative effective mass of the carrier is assumed to be 0.2 .
- 2)Select a one dimensional segment for the calculation. Since the potential distribution is 2D, selection of the 1D segment reduces the amount of calculation involved.
- 3)A current enhancement factor \(1+\alpha_{T}\) is calculated along the selected 1D segment.
- 4)Multiply current flow component along the 1 D segment with \(1+\alpha_{T}\) distribution within the rectangular area. For a current flux between two nodes in an arbitrary direction with an angle \(\theta_{T}\) from the 1D segment, we multiply \(1+\alpha_{T} \cos \left(\theta_{T}\right)\).

\subsection*{9.2.6 Coupled MQW and intraband tunneling}

We wish to discuss the relation between coupled MQW and intraband tunneling. The two models are closely related to each other. They both come from the solution of the same quantum mechanical wave equation.
The quantum levels of a coupled MQW are solutions of confined states of the wave equation whereas intraband tunneling deals with solution of unconfined states. The carriers tunnel through the barriers of an MQW system via standing waves of confined states while traveling waves are used to describe the intraband tunneling effects in the above subsections.


Figure 9.3: Schematic for the potential barrier

In the tunneling model, the carrier states are assumed to be unconfined on both sides of the barrier. One must not use both models to describe the same quantum state. For example, if confined states are already used to described a coupled MQW system with standing waves distribution between the wells, one must not apply the above tunneling model to treat carrier transport between the wells within the same region.

Similarly in the case of quantum-MOS, the quantum states in the triangular well under the gate have already been treated as confined (or partly confined if quantum wave leakage to gate is considered) states. Since the penetration of the wave function from the confined states into the oxide/gate has already been considered, there is no need to apply tunneling model to these confined states. Alternatively, if direct tunneling method is used to treat the current flow through the barrier between confined states in the triangular well and the unconfined states at the gate of an MOS, the the carriers penetrating the oxide must be removed from the transport equations to avoid double counting the tunneling current.

\subsection*{9.2.7 High-resistance heterojunction and quantum tunneling}

We consider a situation of current injection in the classical drift-diffusion model when high doping is used around an abrupt heterojunction. The peak of the potential barrier depletes the mobile carriers while ionized dopants generates a high internal electric field layer. The high internal field creates a steep potential profile which


Figure 9.4: Band diagram of a highly doped GaAs/InGaAlP junction in equilibrium.
pushes the barrier higher. Since all mobile carriers are depleted within the barrier, the resistivity of this barrier layer is extremely high. A small current will create a large voltage drop. Worse still, if the carriers flow from the abrupt side of the barrier, the abrupt potential profile prevents any carriers to fill up depletion layer from the abrupt side while the applied bias adds to the internal field and further depletes the other side of the barrier and hence widens the depletion layer. As a result, it becomes extremely difficult to inject any amount of current into the device with even tens of volts.
To illustrate the above barrier-depletion/voltage-drop effect, we simulate (using driftdiffusion model only) a highly n-doped junction of GaAs/InGaAlP with electrons flowing from the side of GaAs (smaller bandgap). The ideal abrupt junction forms a sharp barrier as shown in Fig. 9.4 in equilibrium. Fig. 9.5 illustrates the narrow depletion layer in the plot of electron concentration. As voltage biased is used to inject barriers from the side of GaAs, the carriers are unable to flow into the depletion layer while the applied field adds to the internal field to create a wider depletion layer as indicated in Fig. 9.6. The corresponding band diagram shows a large voltage drop in the widened depletion layer (see Fig. 9.7).

In reality, a huge voltage drop is not observed in a highly doped heterojunction due to the following reasons. First, the heterojunction is never ideally abrupt and we can conclude that the high barrier in Fig. 9.4 is exaggerated. It can easily be shown in a simulation that the barrier height is extremely sensitive to the abruptness of the junction. Secondly, the quantum tunneling effect makes it easy for mobile carriers to go over the barrier.


Figure 9.5: Electron concentration distribution of the heterojunction in equilibrium.


Figure 9.6: Electron concentration distribution of the heterojunction at a bias of five volts.


Figure 9.7: Band diagram of the heterojunction at a bias of five volts.

The analysis above lead us to propose the following approaches of modeling highly doped abrupt junctions. If we really wish to have a realistic model of transport through a highly doped junction, we should specify abruptness of the junction accurately based on material interface quality analysis/experiment. Then we are ready to apply the quantum tunneling model described in this section. We find that using tunneling on ideally abrupt junction usually underestimates the amount of current and still results in a voltage drop larger than that observed in experiment. We thus conclude that ideally abrupt junction model is inherently flawed under high doping condition.

On the other hand, if we wish to avoid dealing with the issues of deciding on the abruptness and using tunneling altogether, we can artificially grade the junction over a distance large enough to avoid forming a barrier but small enough not to disturb other part of the device. For example, if the junction in the above example is far away from the active region of a laser diode, it is safe to grade the junction over a distance of 100 Åwithout upsetting the active region while avoiding the formation of the barrier totally.

\subsection*{9.3 Interband Tunneling in Semiconductors}

\subsection*{9.3.1 Theory}

Consider the case of a direct tunneling between valence and conduction bands of semiconductor in external applied electric field. A p-n junction designed for such


Figure 9.8: Schematic illustrating the Zener tunneling process.
a purpose is commonly referred to as a tunnel junction (TJ) or an Esaki junction. Such type of tunneling is also referred to as Zener tunneling as in a Zener tunneling diode under reverse bias. We assume a direct gap semiconductor with a parabolic band with a minimum or a maximum at a central \(\Gamma\)-point at \((\mathbf{k}=0)\).

When strong external electric field is applied to a semiconductor, tunneling of electrons between conduction and valence band can take place generating electron-hole pairs. Newly created carriers will drift in a strong electric field and can result in impact ionization. Thus both impact ionization and Zener tunneling electron-hole generation rate should be included in drift-diffusion current solver together.
Similar to impact ionization, generation rate originating from Zener tunneling can be treated in a local electric field approximation, which is a reasonable approximation considering the tunneling distance is typically less than 100 Angstrom for a semiconductor of 1 eV bandgap energy. Zener tunneling is usually observed for semiconductors at a field greater than \(F=10^{6} \mathrm{~V} / \mathrm{cm}\).

Consider the electron state of energy E, tunneling from the valence to the conduction band as presented in Fig 9.8. Within the forbidden bandgap where E obeys \(\mathrm{E}_{g}>\mathrm{E}\) \(>0\), we have decayed wave function with imaginary wave vector \(\mathrm{k}_{x}=\mathrm{i} \kappa\).

Neither the exact dependence of \(\mathrm{k}_{x}\), nor the potential barrier that the tunneling electron experiences, upon distance, x , is known through the forbidden gap. Similarly the effective mass remains an unknown and questionable parameter, while electron tunnels through the forbidden gap. Nevertheless, we can usually assume the tunneling mass takes a value somewhere between the conduction band mass and valence band mass. Following the derivation of band-to-band tunneling current in Refs. [58], [59]
and [60], we will calculate the probability of tunneling within WKB approximation as follows:
\[
\begin{equation*}
D=\exp \left[-2 J\left(E_{\|}\right)\right] \tag{9.41}
\end{equation*}
\]
where:
\[
\begin{equation*}
J\left(E_{\|}\right)=\int_{x_{1}}^{x_{2}} \kappa(x) d x . \tag{9.42}
\end{equation*}
\]
\(\kappa(x)\) is the decay constant of the tunneling electron wave function, given by:
\[
\begin{equation*}
\hbar^{2} \kappa^{2} / 2 m^{*}=\left|E_{\|}-U\right| \tag{9.43}
\end{equation*}
\]
where \(E_{\|}\), and \(E_{\perp}\) are electron kinetic energies in directions along and perpendicular to the tunneling direction, respectively.

After some derivation that are explained in Ref. [60], we can obtain the tunneling probability as follows:
\[
\begin{equation*}
D=\exp (-2 J)=P_{0} \exp \left(-E_{\perp} / \underline{E}\right) \tag{9.44}
\end{equation*}
\]
where:
\[
\begin{equation*}
J\left(E_{\|}\right)=\int_{x_{1}}^{x_{2}}\left|\left(2 m^{*} / \hbar^{2}\right)\left[\left(E_{g} / 2\right)^{2}-\left(\varepsilon_{c}\right)^{2}\right] / E_{g}+E_{\perp}\right|^{\frac{1}{2}} d x \tag{9.45}
\end{equation*}
\]
and
\[
\begin{gather*}
P_{0}=\exp \left[\frac{\pi m^{* \frac{1}{2}}\left(E_{g}\right)^{3 / 2}}{2(2)^{\frac{1}{2}} q F \hbar}\right]=\exp \left(-\frac{E_{g}}{4 \underline{E}}\right)  \tag{9.46}\\
\underline{E}=\frac{(2)^{\frac{1}{2}} q F \hbar}{2 \pi m^{* \frac{1}{2}}\left(E_{g}\right)^{\frac{1}{2}}} \tag{9.47}
\end{gather*}
\]
\(\mathrm{P}_{0}\) has a meaning of the tunneling probability with a zero perpendicular (to x direction) momentum. \(\underline{E}\) is a measure of significance of perpendicular momentum range in Eq. (9.45). In other words, if \(\underline{E}\) is small, the only electrons that can tunnel through the bandgap barrier are the electrons with perpendicular momentum near zero. Typically \(\underline{E}\) is in a range of \(5-100 \mathrm{meV}\). The effective tunneling mass is defined here, as in Ref. [60]:
\[
\begin{equation*}
m^{*}=2 m_{c} m_{v} /\left(m_{c}+m_{v}\right) \tag{9.48}
\end{equation*}
\]

\subsection*{9.3.2 Application to reverse biased p-n junction diode}

Next formula for band-to-band tunneling will be applied to calculations of a tunneling current density for a reverse biased \(\mathrm{n}^{+} \mathrm{p}^{+}\)junction. Following derivations in [60], consider the situation of a reverse biased \(\mathrm{p}-\mathrm{n}\) junction as in Fig. 9.9.


Figure 9.9: Schematic of a reverse biased Zener diode.

Let dE be an energy increment corresponding to incremental dx , then: \(d E=q F d x\). If electron tunnels across the junction at energy \(E\), the perpendicular motion kinetic energy must obey \(\mathrm{E}_{\perp}<\mathrm{E}\). The incident flux per unit volume with perpendicular momentum ranging from \(\mathrm{k}_{\perp}\) to \(\left(\mathrm{k}_{\perp}+\mathrm{dk}_{\perp}\right)\) is:
\[
\begin{equation*}
\Phi=\left(q^{2} F / \hbar\right) \cdot(1 / 4 \pi)^{3} \cdot\left(2 \pi k_{\perp} d k_{\perp}\right) \cdot f_{E}(E) \tag{9.49}
\end{equation*}
\]
where \(\mathrm{f}_{E}(\mathrm{E})\) is a Fermi function. Using the relation \(\mathrm{E}_{\perp}=\mathrm{h}^{2} \mathbf{k}_{\perp}{ }^{2} / 2 \mathrm{~m}^{*}\) we can obtain:
\[
\begin{equation*}
\Phi=q^{2} F m^{*} /\left(2 \pi^{2} \hbar^{3}\right) f_{E}(E) d E_{\perp} \tag{9.50}
\end{equation*}
\]

The tunneling flux must include also the necessity of final electron state being unoccupied, thus has to be multiplied by \(\left(1-\mathrm{f}^{\prime}{ }_{E}(\mathrm{E})\right)\) factor. As a result, the differential current density of a tunneling flow becomes:
\[
\begin{equation*}
d I / A=q^{2} F m^{*} /\left(2 \pi^{2} \hbar^{3}\right) P_{0} \exp \left(-E_{\perp} / \underline{E}\right)\left[f_{E}(E)-f_{E}^{\prime}(E)\right] d E_{\perp} d x \tag{9.51}
\end{equation*}
\]
where \(\mathrm{dI} / \mathrm{A}=(\) incident flux \() \times(\) probability of tunneling \() \times(\) volume \()\).
We can also modify the Eq. (9.51) using electrostatic force \(\mathrm{qF}=\mathrm{dE} / \mathrm{dx}\) thus :
\[
\begin{equation*}
d I / A=q m^{*} /\left(2 \pi^{2} \hbar^{3}\right) P_{0} \exp \left(-E_{\perp} / \underline{E}\right)\left[f_{E}(E)-f_{E}^{\prime}(E)\right] d E_{\perp} d E \tag{9.52}
\end{equation*}
\]

This current needs to be integrated with respect to \(\mathrm{E}_{\perp}\) in the limits of \(0<\mathrm{E}_{\perp}<\mathrm{E}_{\text {max }}\) :
\[
\begin{equation*}
E_{\max }=\min \left(E_{v p}-E\right),\left(E_{c n}-E\right) \tag{9.53}
\end{equation*}
\]

However, we simplify the integration of equation (9.52) by approximation of \(\mathrm{E}_{\max }\) to become an infinity, which is justified as long as E>> E.
As typically \(\underline{\mathrm{E}} \approx 5-50 \mathrm{meV}\), the contribution to the tunneling process of those electrons with energy \(\mathrm{E} \approx \underline{\mathrm{E}}\) can be neglected due to the small magnitude of an electric field near the edges of depletion layer of reverse biased p-n junction (See Fig. 9.9). Thus integration of equation (9.52) gives:
\[
\begin{equation*}
d I / A=q m^{*} /\left(2 \pi^{2} \hbar^{3}\right) P_{0} \underline{E}\left[f_{E}(E)-f_{E}^{\prime}(E)\right] d E \tag{9.54}
\end{equation*}
\]
or using \(\mathrm{dE}=\mathrm{qF} \mathrm{dx}\),
\[
\begin{equation*}
d I / A=q^{2} F m^{*} /\left(2 \pi^{2} \hbar^{3}\right) P_{0} \underline{E}\left[f_{E}(E)-f_{E}^{\prime}(E)\right] d x \tag{9.55}
\end{equation*}
\]
or approximately:
\[
\begin{equation*}
d I / A=q^{2} F m^{*} /\left(2 \pi^{2} \hbar^{3}\right) P_{0} \underline{E} d x \tag{9.56}
\end{equation*}
\]
where we used \(\left[\mathrm{f}_{E}(\mathrm{E})-\mathrm{f}^{\prime}{ }_{E}(\mathrm{E})\right]=1\) for the range of reverse p-n junction.
Equation (9.56) can be rewritten in terms of e-h pair generation rate (in units: \(\mathrm{m}^{-3} \mathrm{~s}^{-1}\) ):
\[
\begin{equation*}
G_{Z e n}(F)=d I / A /(q d x)=q F m^{*} /\left(2 \pi^{2} \hbar^{3}\right) P_{0} \underline{E} \tag{9.57}
\end{equation*}
\]
where
\[
\begin{equation*}
P_{0}=\exp \left[\frac{\pi m^{* \frac{1}{2}}\left(E_{g}\right)^{3 / 2}}{2(2)^{\frac{1}{2}} q F \hbar}\right]=\exp \left(-\frac{E_{g}}{4 \underline{E}}\right) \tag{9.58}
\end{equation*}
\]
and
\[
\begin{equation*}
\underline{E}=\frac{(2)^{\frac{1}{2}} q F \hbar}{2 \pi m^{* \frac{1}{2}}\left(E_{g}\right)^{\frac{1}{2}}} \tag{9.59}
\end{equation*}
\]

This expression for a local field dependent generation rate can be subsequently substituted into the drift diffusion equation solver as a carrier generation term which can be activated using the command zener.

\subsection*{9.3.3 Non-local model and forward biased tunnel junction}

The model we developed in previous subsections expressed was converted into a volume integral over the whole junction area for each mesh point, making it a local carrier generation term in the drift-diffusion equation. We find that such an implementation may suffer from numerical non-convergence near zero bias since the generation term does not have a zero-current offset mechanism. Basically, the high field within the junction causes a high generation rate even at zero bias. Without current flow to balance out the carrier generation, the program may run into convergence difficulties.

We have developed an alternative and more stable implementation of the TJ model based on a form of direct flow between two reference points on either side of the TJ. These reference points must be closely spaced ( \(\sim 10 \mathrm{~nm}\) ) so that the quantum effects are important but they must also be some distance away from the junction itself so that the band profile is almost flat. This minimizes the effect of the junction on the carrier densities used to compute the tunneling current. This model has been implemented in the command tunnel_junc and can be activated by setting the parameter use__physical__model.

The formulas for forward biased tunnel junction take the same form as those for the reverse one except that the approximation we made in Eq. (9.52) for infinite integration range for \(d E_{\perp}\) is no longer in use. Furthermore, the Fermi occupancy factor \(\left[f_{E}(E)-f_{E}^{\prime}(E)\right]\) is much smaller than unity and must be carefully evaluated. The tunneling model for forward-biased junctions is also implemented using tunnel_junc.

An application note on forward TJ is warranted here. We find that the forward current behavior is strongly affected by the potential and current injection conditions surrounding the TJ area. For many cases of non-linear injection condition, the negative resistance ( N -shape) expected for forward TJ does not appear. The reason is that non-linear injection (such as through an n-i junction or a Schottky barrier) may overshadow a narrow and weak N -shape peak. To produce the negative resistance behavior from the software, we should first start with a pure TJ without perturbation of external doping profile and contact effects. For example, we should start with a TJ where the n -side and p-side are reasonably uniform in doping and with ohmic contacts on both sides. Such ideal conditions almost always produce an N-shape in forward I-V curve given sufficient carrier population inversion across the junction and sufficiently small voltage bias steps. A more complete device can be built up from this TJ one step at time, maintaining the N -shape at each step.

\section*{Other tunneling models}

Other interband tunneling models (e.g. phonon-assisted tunneling) have been implemented in the software; see tunnel_junc for a list of supported models. Trapassisted tunneling can also be defined with trap__assisted__tunneling.

\section*{Chapter 10}

\section*{FINER POINTS ABOUT QUANTUM WELLS}

\subsection*{10.1 Band Offset In Strained Quantum Well}

\subsection*{10.1.1 Bulk band alignment}

Before discussing QW band offset, it is helpful to review how bulk band alignment works in Crosslight device simulation. Simply put, for bulk layers the affinity statement controls everything.


Figure 10.1: Schematic illustrating the alignment of bulk bands in Crosslight. The VMR line represents the energy reference value used in Ref. [61].

In Fig. 10.1 we show a schematic of the band alignment for 3 materials: materials \(\# 1\) and \#2 are unstrained while material \#3 is a strained version of material \#2. In the Crosslight system, the vacuum level is taken as an absolute energy reference and
the position of any bulk conduction band is fixed once the affinity \(\chi\) is defined. If a bulk layer is strained, then it is the responsibility of the user to include the straininduced shift in the affinity declaration for that layer (i.e. \(\chi_{3}\) ). It is important to note that this rule applies to both passive and optically active bulk materials, even if the latter uses an additional macro to define parameters needed for stand-alone gain calculations.

Readers experienced in device modeling may have noticed that many references that list semiconductor material parameters do not provide the affinity. This is the case for the excellent review article by Vurgaftman, Meyer and Ram-Mohan [61] which instead, defines the valence band offsets (VBO) for various unstrained materials. As Fig. 10.1 makes clear, since both the vacuum level and this reference energy are absolutes then conversion between the two conventions for any given group of materials is straightforward once a single affinity value (e.g. that of the substrate) has been fixed.

After the conduction band is set, Crosslight tools define the valence band position(s) by adding the bandgap to the affinity value. For passive layers, a single hole band with a reduced effective mass is used for the carriers. For bulk active layers, multiple band valleys may be used if they are needed to compute the gain and spontaneous emission spectra.

Note that if a bulk passive layer is strained, the strained bandgap may be required to correctly position the valence band; this is not supported in all material systems. See wurtzite__offset__model and zincblende__offset__model for more details.

\subsection*{10.1.2 Band offset in QW}

\section*{How are band offsets used ?}

Band offsets in quantum well regions are used in two ways. The first is for the Schrödinger solver: under flat band conditions, the barrier heights (confining potentials) for the electrons and holes are needed to solve the problem and the absolute band positions do not matter. However, as part of the finite difference discretization, a zero potential reference is defined at the first mesh point of the first quantum well inside the quantum-confined region and the offset is applied to the leftmost barrier.

The second way in which band offset is used is when the QW region is added to the full device simulation: in this case, the absolute position of the QW band edges is needed in order to do the alignment with the other layers. For this step, Crosslight tools use the relative barrier heights from this first stage and position the QW band edges using the bulk band edges of the outer barrier. This "cut \& paste" operation preserves the barrier height from the Schrödinger solver in the full device simulation.

It is therefore convenient if the outer barrier of a MQW region is unstrained in
order to correctly define the absolute band position of the MQW. Otherwise, a strained bulk affinity should be used to correctly define both the barrier height and the absolute position of the band edges. This situation is known to occur in strain-balanced MQW regions (tensile barrier/compresive well) based on \(\operatorname{In}(1-\) \(\mathrm{x}-\mathrm{y}) \mathrm{Ga}(\mathrm{x}) \mathrm{Al}(\mathrm{y}) \mathrm{As}\).

\section*{How is the band offset defined?}


Figure 10.2: Schematics illustrating the definition of band offset.
In a quantum well without strain in the well or the barrier, the band offset is easily defined as the fraction of bandgap discontinuity in the conduction band:
\[
\begin{equation*}
O_{f f}=\Delta E_{c} /\left(\Delta E_{c}+\Delta E_{v}\right) \tag{10.1}
\end{equation*}
\]

However when there is strain in the quantum well and barrier, there are many ways of defining the band offset. Three popular methods are explained below:
- 1) Use of unstrained bandgap discontinuity:
\[
\begin{equation*}
O_{f f}=\frac{\Delta E_{c}^{u}}{\Delta E_{c}^{u}+\Delta E_{v}^{u}} \tag{10.2}
\end{equation*}
\]
where superscript \({ }^{u}\) is used to denote unstrained quantities (see Fig. 10.2). This convention is used by [15] and is most convenient for theoretical derivations, since the valence band potential can be written as one minus band offset times unstrained bandgap difference and then adding the additional strain terms.
This band offset definition is also the one which most closely relates to the electron affinity of the material.
- 2) Use of HH valence band and the strained conduction band edge:
\[
\begin{equation*}
O_{f f}=\frac{\Delta E_{c}^{\min }}{\Delta E_{c}^{\min }+\Delta E_{v}^{H H}} \tag{10.3}
\end{equation*}
\]
where \(\Delta E_{c}^{\text {min }}\) is defined as (for zincblende):
\[
\begin{equation*}
\Delta E_{c}^{\min }=\operatorname{Min}\left(E_{c b}^{\Gamma}, E_{c b}^{L, X}\right)-\operatorname{Min}\left(E_{c}^{\Gamma}, E_{c}^{L, X}\right) \tag{10.4}
\end{equation*}
\]
and the subscript \({ }_{b}\) has been used to denote quantities in the barrier.
For zincblende, this secondary band valley ( \(L\) or \(X\) ) may be important at high injection levels (inter-valley transfer). For wurtzite though, no additional conduction band is considered.
- 3) Use of the highest valence band and the strained conduction band edge:
\[
\begin{equation*}
O_{f f}=\frac{\Delta E_{c}^{\min }}{\Delta E_{c}^{\min }+\Delta E_{v}^{\max }} \tag{10.5}
\end{equation*}
\]
where for zincblende materials:
\[
\begin{equation*}
\Delta E_{v}^{\max }=\operatorname{Max}\left(E_{v}^{H H}, E_{v}^{L H}\right)-\operatorname{Max}\left(E_{v b}^{H H}, E_{v b}^{L H}\right) \tag{10.6}
\end{equation*}
\]
and for wurtzite materials:
\[
\begin{equation*}
\Delta E_{v}^{\max }=\operatorname{Max}\left(E_{v}^{H H}, E_{v}^{L H}, E_{v}^{C H}\right)-\operatorname{Max}\left(E_{v b}^{H H}, E_{v b}^{L H}, E_{v b}^{C H}\right) \tag{10.7}
\end{equation*}
\]

Here again, the subscript \({ }_{b}\) has been used to denote quantities in the barrier.

By default, Crosslight tools always use method \#3. The advantage of using this method is that the bands in question are the ones which contain most of the carriers; it is therefore believed that this value will best reflect experimental estimates of band offset. This default behavior can be changed with the wurtzite__offset__model and zincblende__offset__model commands. However, the above commands only change the bandgap value used to calculate the band offset: the strained conduction band edge is still used. Put in other words, the band__offset value provided to the simulation should already include any strain-induced shifts in the conduction band.

Users who prefer to use method \#1 to define the band offset should explicitly define the strained conduction band position \(\left(\chi_{3}\right)\) in the affinity statement as described above. Thus, the affinity statement should define both the unstrained band offset and the explicit shift in the conduction band. This strained conduction band position can then be enforced in the MQW region by invoking use__bulk_affinity which will override the band__offset statement.

\section*{How does band offset work in a complex well region?}

As shown in Fig. 8.1, the basic QW model consists of symmetric and isolated quantum wells. In such a case, the band offset used on the left side is also applied on the right.

For a single complex well region (using material parameter macros labeled with a "cx-" prefix) barrier symmetry is not guaranteed but we still use a single band offset fraction for that well. The resulting band discontinuity may therefore be asymmetric if the barrier bandgaps are different; this behavior can further be controlled by using the band__discont and band__discont_right statements to directly specify the band discontinuity on either side of the well.
If multiple wells are considered as part of the same quantum-confined region, the default behavior of Crosslight tools is to assume that the MQW profile consists of a barrier/well/barrier/well/..../barrier layout; that is, even-numbered layers are considered to be wells. The band offset rules for a single complex well are then applied on each well in the complex, going from left to right; for each well, the band discontinuity is calculated using the offset fraction for that well and the bandgap difference between well and barrier. This is true even if the inner__bar_gain statement is used: this statement only affects the gain profile and the partition of the carriers, not the band alignment.
So in this complex MQW case, we start by defining the position of the first well (layer \(\# 2\) ) relative to position the first barrier (layer \#1) and then the band discontinuity on the right defines the position of the second barrier (layer \(\# 3\) ). The second well (layer \(\# 4\) ) is then positioned relative to the previous barrier (layer \(\# 3\) ) using the left band discontinuity for that well; we then fix the next barrier's position (layer \#5) using the right band discontinuity. This process continues until we reach the end of the complex MQW.
The band offset/band discontinuity must therefore be defined in the macros for all well layers; these same parameters are ignored in barrier layers. Odd/unexpected profiles may therefore be created when mixing different materials or wells having different offset/discontinuity values; this system also creates complications when defining graded well profiles where "wells" are not in even-numbered positions.

\section*{How does band offset work in the SCXLIB system?}

As introduced in Sec. 3.5.1, the new simplified complex library system (SCXLIB) provides an alternate method of defining complex MQW regions. In this system, all of the layers tagged with model=quantum_well are considered to be wells and the un-tagged layers on either side serve as the barrier materials.

Starting with v.2016, a new band alignment system has been designed for this system: the position of the conduction band in each well is calculated using the band offset coefficient for that well and the bandgap difference between that well and the first barrier. Since all the inner layers of the MQW are considered wells in this system, this positions all of the wells using a common reference.
The only layer which has an ambiguity is the right barrier. By default, this is left un-
touched in the SCXLIB system and this layer is exempted from the "cut \& paste" operation we previously mentioned. However, this behavior can be changed by issuing either the barrier__correction__by__qw__model or force__last__barrier__offset statements. In that case, the right barrier is either offset by a set amount or simply follows the same rules as for the other QW regions. Since the older macro syntax for both complex wells and basic QWs previously overrode the right barrier position, using one of these statements is recommended in most cases.

As always, users may also rely on the use__bulk__affinity statement to correctly position all of the layers inside a MQW region; this statement applies to both the old complex MQW macro syntax and the new library syntax.

\subsection*{10.1.3 Definition of strain terms}

A full description of the strain-induced terms is beyond the scope of this section; it can easily be found in the literature and the exact form depends on the crystal structure (zincblende or wurtzite). Users who wish to read more on this topic are invited to read the many papers by S.L. Chuang [15, 33, 62-66].
For now, it suffices to say in zincblende materials the strain is described by both a hydrostatic term \(\left(\delta E_{h y}\right)\) and a shear term \(\left(\delta E_{s h}\right)\). The hydrostatic term is split between the conduction and valence bands while the shear term splits the HH and LH bands. This results in different bandgaps for the HH and LH valleys in strained layers[33]:
\[
\begin{align*}
E_{g}^{H H} & =E_{g}^{u}-\delta E_{h y}+\frac{1}{2} \delta E_{s h},  \tag{10.8}\\
E_{g}^{L H} & =E_{g}^{u}-\delta E_{h y}-\frac{1}{2} \delta E_{s h} \tag{10.9}
\end{align*}
\]

For band alignment purposes, the exact split of the hydrostatic term is needed. In the software, this is set by a fraction which describes how much of the hydrostatic shift should be applied in the valence band. By default, this value is set as \(\frac{a_{v}}{a}=\frac{1}{3}\) but in reality, this ratio depends on the material system; it should adjusted in either active__reg or set__active__reg for optimal simulation results.

In wurtzite materials the conduction and valence band deformation potentials are explicitly defined in the material macro (e.g. ac__well, d1__well, etc...). This topic shall be addressed in more detail in Chap. 13.

\subsection*{10.2 Intraband Relaxation Times and Gain Broadening}

\subsection*{10.2.1 Introduction}

The influence of line shape broadening on optical gain can be described by
\[
\begin{equation*}
G(\hbar \omega)=\int_{E_{g}^{\prime}}^{\infty} g\left(E_{c v}\right) L\left(\hbar \omega-E_{c v}\right) d E_{c v} \tag{10.10}
\end{equation*}
\]
here \(G(\hbar \omega)\) is the gain coefficient as a function of photon energy \(\hbar \omega\). \(L\left(\hbar \omega-E_{c v}\right)\) is the lineshape broadening function characterized by the intraband relaxation. This lineshape function is often represented as
\[
\begin{equation*}
L\left(\hbar \omega-E_{c v}\right)=\frac{1}{\pi} \frac{\hbar / \tau_{i n}}{\left(\hbar \omega-E_{c v}\right)^{2}+\left(\hbar / \tau_{i n}\right)^{2}} \tag{10.11}
\end{equation*}
\]
where \(\tau_{i n}\) is called the intraband relaxation time, which is regarded as the reciprocal intraband scattering probability, and \(\hbar / \tau_{i n}\) is the broadening factor we will study in this section. Previously, we just assume \(\tau_{i n}\) to be a constant of the order of \(10^{-13}\) seconds. The lack of accurate model for this parameter causes significant uncertainty in the optical gain.

Our theory here is limited to the case of intraband relaxation due to carrier-carrier and carrier-LO-phonon scattering in quantum wells. For details, please consult references [67] and [68].

We consider optical transition between subband energy \(E_{v i k_{\|}}\)in the valence band and \(E_{c j k_{\|}}\)in conduction band. The energy is expressed as
\[
\begin{align*}
E_{c i k_{\|}} & =E_{c i}+\hbar^{2} k_{\|}^{2} / 2 m_{c}  \tag{10.12}\\
E_{v j k_{\|}} & =E_{v j}+\hbar^{2} k_{\|}^{2} / 2 m_{v} \tag{10.13}
\end{align*}
\]
where the ( \(E_{c i}\) and \(E_{v j}\) ) are the quantized energy levels, \(m_{c}\) and \(m_{v}\) are the effective masses. \(k_{\|}\)is the wave vector parallel to the well interface.
When discussing scattering mechanisms occurring in conduction band and valence band, it is convenient to introduce broadening factors \(\Gamma_{c}\) and \(\Gamma_{v}\), respectively. According to theory of Green's function [67],[68], these are related to the decay rate of amplitude of the wave function. For example, the expectation value of the amplitude of the electron wave is approximated as \(\psi_{c} \propto \exp \left(-\Gamma_{c} t / \hbar\right)\) in the conduction band, including thermal and quantum- mechanical statics. Thus, the number of electrons at this energy level decays as \(\exp \left(-2 \Gamma_{c} t / \hbar\right)\). The decay rate in the valence band is obtained similarly. Therefore, the broadening factors are related to the intraband
relaxation times (a measure of particle decay probability) in the conduction and valence bands \(\left(\tau_{c}\right.\) and \(\left.\tau_{v}\right)\) by
\[
\begin{align*}
& \hbar / \tau_{c}=2 \Gamma_{c}\left(E_{c i k_{\|}}\right)  \tag{10.14}\\
& \hbar / \tau_{v}=2 \Gamma_{v}\left(E_{v j k_{\|}}\right) \tag{10.15}
\end{align*}
\]

In optical transition, the dipole moment between electron and hole is proportional to \(\psi_{c} \psi_{v}^{*} \propto \exp \left[-\left(\Gamma_{c}+\Gamma_{v}\right) t / \hbar\right]\). Thus, the intraband relaxation time determining the spectral broadening, which is the relaxation time of the dipole moment is obtained as
\[
\begin{align*}
\hbar / \tau_{i n} & =\Gamma_{v}+\Gamma_{c} \\
& =\left(\hbar / \tau_{c}+\hbar / \tau_{v}\right) / 2 \tag{10.16}
\end{align*}
\]

In the following subsections, broadening factors \(\hbar / \tau_{c}\) and \(\hbar / \tau_{v}\) determined by carriercarrier and carrier-LO phonon scattering are calculated, which are dominant in lightly-doped compound semiconductors.

\subsection*{10.2.2 Carrier-Carrier Scattering}

The intraband relaxation time in the conduction band \(\left(\tau_{c}\right)\) due to carrier-carrier scattering is calculated from the imaginary part of self energy using the Green's function method[67]. In the present analysis, the calculation is based on secondorder self energy. Only the product between two matrix elements with the same the momentum change is taken into account in various terms of the self energy.

In this treatment, \(\hbar / \tau_{c}\) is calculated by Fermi's Golden Rule and the spectral broadening factor for scattering in conduction band is written as
\[
\begin{equation*}
\hbar / \tau_{c}=(2 \pi) \sum_{k_{\|}^{\prime} p_{\|}^{\prime}} \sum_{i j}\left|V_{c n}\left(k_{\|} k_{\|}^{\prime}, i i^{\prime} j j^{\prime}\right)\right|^{2} \cdot A_{c}\left(B_{c}+C_{c}\right) \tag{10.17}
\end{equation*}
\]
with
\[
\begin{align*}
A_{c} & =\delta\left(E_{c i k_{\|}}+E_{n j p_{\|}}-E_{c i^{\prime} k_{\|}^{\prime}}-E_{n j^{\prime} p_{\|}^{\prime}}\right)  \tag{10.18}\\
B_{c} & =f_{c}\left(E_{c i^{\prime} k_{\|}^{\prime}}\right) f_{n}\left(E_{n j^{\prime} p_{\|}^{\prime}}\right)\left[1-f_{n}\left(E_{n j p_{\|}}\right]\right.  \tag{10.19}\\
C_{c} & =\left[1-f_{c}\left(E_{c i^{\prime} k_{\|}^{\prime}}\right)\right]\left[1-f_{n}\left(E_{n j^{\prime} p_{\|}^{\prime}}\right)\right] f_{n}\left(E_{n j p_{\|}}\right) \tag{10.20}
\end{align*}
\]
where the suffix \(n\) refers to the conduction \((n=c)\) or valence ( \(n=v\) ) band, \(i, i^{\prime}, j\), and \(j^{\prime}\) are subband numbers, the \(\delta\)-function represents the energy conservation, and \(V_{c n}\) is the matrix element of the interaction given below.


Figure 10.3: Schematic illustration of electron-electron scattering in the conduction band. (a) Formation of a hole at energy \(E_{c j k_{\|}}\)under the optical transition is intercepted due to collision of two electrons at \(E_{c j^{\prime} k_{\|}^{\prime}}\) and \(E_{c i^{\prime} p_{\|}^{\prime}}\), resulting in spectral broadening. (b) Formation of an electron at energy \(E_{c j k_{\|}}\)under the optical transition is scattered due to collision of two holes.

A simple illustration is possible for the above formula. The scattering processes are schematically shown in Figs. 10.3(a) and 10.3(b), for \(n=c\).
In Fig. 10.3(a), two electrons at \(E_{c i^{\prime} p_{\|}^{\prime}}\) and \(E_{c j^{\prime} k_{\|}^{\prime}}\) collide with each other, and are scattered into two holes at \(E_{c i p_{\|}}\)and \(E_{c j k_{\|}}\). Formation of a hole at \(E_{c j k_{\|}}\)during optical transition is intercepted by this process, resulting in spectral broadening.

In Fig. 10.3(b), optical transition of an electron at \(E_{c j k_{\|}}\)is intercepted by the collision of two holes at \(E_{c j^{\prime} k_{\|}^{\prime}}\) and \(E_{c i^{\prime} p_{\|}^{\prime}}\).
A process for \(n=v\) in Eq. (10.17) is similarly given. Electron-electron scattering and electron-hole scattering correspond to \(n=c\) and \(n=v\), respectively. However, the formula for the spectral broadening factor caused by another scattering electron-LO phonon \((n=L O)\) is radically different, which we will discuss in the next subsection.

For the interaction matrix element \(V_{c n}\) in (2.16), we use the screened Coulomb potential, which is the result of static and long wavelength limit of the many-body interaction. Deviation from the exact calculation is discussed below
\[
\begin{align*}
V_{c n}\left(k_{\|} k_{\|}^{\prime}, i i^{\prime} j j^{\prime}\right)= & \iint \psi_{c i^{\prime} k_{\|}^{\prime}}^{*}\left(r_{1}\right) \psi_{n j^{\prime} p_{\|}^{\prime}}^{*}\left(r_{2}\right) \frac{e^{2} \exp \left(-\lambda_{s} r\right)}{4 \pi \epsilon r} \\
& \cdot \psi_{c i k_{\|}}\left(r_{1}\right) \psi_{n j p_{\|}}\left(r_{2}\right) d r_{1} d r_{2} \tag{10.21}
\end{align*}
\]
where \(e\) is the electron charge, \(\epsilon\) is the static dielectric constant, \(r=\left|r_{1}-r_{2}\right|\), and \(\lambda_{s}\) is the inverse screening length given below; \(\psi\) 's are the electron wave functions, which are approximated as follows in the well potential:
\[
\begin{equation*}
\psi_{n j k_{\|}}(r) \simeq u_{n k}(r) \Phi_{n j}(z) \exp \left(i k_{\|} \cdot r_{\|}\right) / \sqrt{S} \tag{10.22}
\end{equation*}
\]
with
\[
\begin{equation*}
\Phi_{n j}(z)=\sqrt{2 / L_{n j}} \sin \left(j \pi z / L_{n j}\right) \tag{10.23}
\end{equation*}
\]
where the \(z\) axis is perpendicular to the well interface, \(S\) is the interface area of the sample, \(u\) is the periodic part of the bulk Bloch function, \(k_{\|}\)and \(r_{\|}\)are the components of the wave vector and position vector parallel to the interface, respectively, and \(L_{n j}\) is the effective well width given by
\[
\begin{align*}
L_{n j} & =\pi / k_{n j \perp} \\
& =\pi \hbar / \sqrt{2 m_{n} E_{n j}} \tag{10.24}
\end{align*}
\]
where \(k_{n j \perp}\) is the \(z\) component of the wave vector.

The inverse screening length \(\lambda_{s}\) is given as follows for the carrier injection case, where electrons and holes simultaneously exist:
\[
\begin{align*}
\lambda_{s}^{2} & =-\frac{e^{2}}{\epsilon}\left\{\int_{E_{c 1}}^{\infty} \frac{\partial f_{c}}{\partial E_{c}} g_{c} d E_{c}+\int_{E_{v 1}}^{\infty} \frac{\partial f_{v}}{\partial E_{v}} g_{v} d E_{v}\right\} \\
& =\frac{e^{2}}{\pi \hbar^{2} \epsilon} \sum_{j}\left\{m_{c} f_{c}\left(E_{c j}\right) / L_{c j}+m_{v} f_{v}\left(E_{v j}\right) / L_{v j}\right\} \tag{10.25}
\end{align*}
\]
where \(g_{c}\) and \(g_{v}\) are the step-like density-of-states of the conduction and valence bands, respectively. We sum over all the subbands and both heavy hole and light hole.

Substituting Eq. (10.22) into Eq. (10.21) the matrix element is calculated as
\[
\begin{align*}
V_{c n}\left(k_{\|} k_{\|}^{\prime}, i i^{\prime} j j^{\prime}\right)= & \frac{e^{2}}{2 \epsilon S} \frac{\delta\left(k_{\|}-k_{\|}^{\prime}, p_{\|}^{\prime}-p_{\|}\right)}{\sqrt{g_{\|}^{2}+\lambda_{s}^{2}}} \\
& \cdot \iint \Phi_{c i^{\prime}}^{*}\left(z_{1}\right) \Phi_{c i}\left(z_{1}\right) \Phi_{n j^{\prime}}^{*}\left(z_{2}\right) \Phi_{n j}\left(z_{2}\right) \\
& \cdot \exp \left(-\left|z_{1}-z_{2}\right| \sqrt{g_{\|}^{2}+\lambda_{s}^{2}}\right) d z_{1} d z_{2} \tag{10.26}
\end{align*}
\]
where the \(\delta\)-notation represents the momentum conservation within the plane parallel to the interface, and \(g_{\|}=k_{\|}-k_{\|}^{\prime}\).
Generally, the possibility of scattering in the same subband is much higher than in the different subbands, so we only consider one subband in either the conduction or valence bands ( \(i^{\prime}=i, j=j^{\prime}\) ). The absolute square of the matrix element is calculated as
\[
\begin{align*}
\left|V_{c n}\left(k_{\|} k_{\|}^{\prime}, i i j^{\prime} j^{\prime}\right)\right|^{2}= & \left(e^{2} / 2 \epsilon S L_{e}\right)^{2} \\
& \cdot \delta\left(k_{\|}-k_{\|}^{\prime}, p_{\|}^{\prime}-p_{\|}\right) T\left(g_{\|}, k_{c i \perp}, k_{n j^{\prime} \perp}\right) \tag{10.27}
\end{align*}
\]
where \(L_{e}\) is the minimum of the effective well widths of the four wave functions in (10.26), and
\[
\begin{equation*}
T\left(g_{\|}, k_{c i \perp}, k_{n j^{\prime} \perp}\right)=\left[\frac{2}{\alpha}+\frac{\delta\left(k_{c i \perp}, k_{n j^{\prime} \perp}\right)}{\alpha+4 k_{c i \perp}^{2}}-\frac{2}{L_{e} \sqrt{\alpha}} A_{t}\left(B_{t}+C_{t}\right)\right]^{2} \tag{10.28}
\end{equation*}
\]
with
\[
\begin{align*}
A_{t} & =1-\exp \left(-L_{e} \sqrt{\alpha}\right)  \tag{10.29}\\
B_{t} & \left.=\frac{1}{\alpha}+\frac{\alpha+4 k_{c i \perp}+4 k_{n j^{\prime} \perp}^{2}}{\left(\alpha+4 k_{c i \perp}^{2}\right)\left(\alpha+4 k_{n j^{\prime} \perp}^{2}\right.}\right)  \tag{10.30}\\
C_{t} & =\frac{L_{e} k_{c i \perp}\left(L_{e} k_{c i \perp}-\pi\right)\left(\alpha-4 k_{n j^{\prime} \perp}^{2}\right)}{4\left(\alpha+4 k_{c i \perp}^{2}\right)\left(\alpha+4 k_{n j^{\prime} \perp}^{2}\right)\left[\exp \left(L_{e} \sqrt{\alpha}\right)-1\right]}  \tag{10.31}\\
\alpha & =g_{\|}^{2}+\lambda_{s}^{2} \tag{10.32}
\end{align*}
\]

The first and second terms within the square bracket of Eq. (10.28) are essentially the same as those in bulk semiconductors. These terms arise from the forward and backward waves in the standing wave along the \(z\) axis given by Eq. (10.23), the third term expressed by Eqs. (10.29)- (10.31), which approaches zero at the limit \(L \rightarrow \infty\), is peculiar to the quantum-well structures, and results from the localization of the wave function. Equation (10.28) coincides with that for the perfect two-dimensional case at the limit \(L \rightarrow 0\) due to the existence of the third term.
Replacing the summation for \(k_{\|}^{\prime}\) and \(p_{\|}^{\prime}\) in with the integral for the wave vector parallel to the well interface, the broadening factor \(\hbar / \tau_{c n}\) is given as follows:
\[
\begin{equation*}
\hbar / \tau_{c n}=\frac{m_{c} e^{4}}{8 \pi^{5} \hbar^{2} \epsilon^{2}}\left(\frac{m_{n}}{m_{c}}\right)^{2} \int_{0}^{2 \pi} d \phi \int_{0}^{\infty} d k_{\|}^{\prime} \int_{0}^{\infty} d u A_{\tau}\left(B_{\tau}+C_{\tau}\right) \tag{10.33}
\end{equation*}
\]
with
\[
\begin{align*}
A_{\tau} & =T\left(g_{\|}, k_{c i \perp}, k_{n j^{\prime} \perp}\right)\left(k_{c i \perp}^{2} k_{\|}^{\prime}|\beta| / g_{\|}^{2}\right)  \tag{10.34}\\
B_{\tau} & =f_{c}\left(E_{c i k_{\|}^{\prime}}\right) f_{n}\left(E_{n j^{\prime} p_{\|}^{\prime}}\right)\left[1-f_{n}\left(E_{n j^{\prime} p_{\|}}\right)\right]  \tag{10.35}\\
C_{\tau} & =\left[1-f_{c}\left(E_{c i k_{\|}^{\prime}}\right)\right]\left[\left(1-f_{n}\left(E_{n j^{\prime} p_{\|}^{\prime}}\right)\right] f_{n}\left(E_{n j^{\prime} p_{\|}}\right)\right. \tag{10.36}
\end{align*}
\]
and
\[
\begin{align*}
g_{\|}^{2}= & k_{\|}^{2}+k_{\|}^{\prime 2}-2 k_{\|} k_{\|}^{\prime} \cos \phi  \tag{10.37}\\
\beta= & k_{\|}^{\prime 2}-k_{\|}^{\prime} k_{\|} \cos \phi+\left(m_{c} / m_{n}-1\right) g_{\|}^{2} / 2  \tag{10.38}\\
E_{c i k_{\|}^{\prime}}= & \left(\hbar^{2} / 2 m_{c}\right)\left(k_{\|}^{\prime 2}+k_{c i \perp}^{2}\right)  \tag{10.39}\\
E_{n j^{\prime} p_{\|}^{\prime}}= & \left(\hbar^{2} / 2 m_{n}\right)\left[\left(m_{n} / m_{c}^{2}\left(u^{2}+1\right)\right.\right. \\
& \left.+g_{\|}^{2}-2\left(m_{n} / m_{c}\right) \beta+k_{c i \perp}^{2}\right]  \tag{10.40}\\
E_{n j^{\prime} p_{\|}}= & E_{c i k_{\|}^{\prime}}+E_{n j^{\prime} p_{\|}^{\prime}}-E_{c i k_{\|}} \tag{10.41}
\end{align*}
\]
where the parabolic band structure is assumed, and the summation with respect to \(n\) corresponds to electron-electron scattering and electron-hole scattering for \(n=c\) and \(n=v\), respectively.

In the same manner, carrier-carrier scattering also occurs for holes in the valence band, corresponding to the processes in the conduction band shown in Figure 10.3. The spectral broadening factor for the valence band \(\hbar / \tau_{v}\) is calculated by the same procedure as above, and obtained by replacing the suffix \(c\) with \(v\).

\subsection*{10.2.3 Carrier-Phonon Scattering}

The spectral broadening factor in the conduction band due to carrier-LO phonon scattering \(\hbar / \tau_{c L O}\) is calculated in a manner similar to carrier-carrier scattering as
\[
\begin{align*}
\hbar / \tau_{c L O} & =(2 \pi) \sum_{k_{\|}^{\prime}} \sum_{j^{\prime}}\left|V_{c L O}\left(k_{\|} k_{\|}^{\prime}, j j^{\prime}\right)\right|^{2}\left(A_{q}+B_{q}\right)  \tag{10.42}\\
A_{q} & =\delta\left(E_{c j k_{\|}}-E_{c j^{\prime} k_{\|}^{\prime}} \pm \hbar \omega_{L O}\right) f_{c}\left(E_{c j^{\prime} k_{\|}^{\prime}}\right)  \tag{10.43}\\
B_{q} & =\delta\left(E_{c j^{\prime} k_{\|}^{\prime}}-E_{c j k_{\|}} \pm \hbar \omega_{L O}\right)\left[1-f_{c}\left(E_{c j^{\prime} k_{\|}^{\prime}}\right)\right] \tag{10.44}
\end{align*}
\]
where \(\hbar \omega_{L O}\) is the phonon energy, \(+\hbar \omega_{L O}\) and \(-\hbar \omega_{L O}\) correspond to emission and absorption of phonons, respectively, and \(V_{c L O}\) is the matrix element of the carrier-LO phonon scattering, and is given below.
The scattering processes given by (10.43) and (10.44) are schematically shown in Figures 10.4(a) and 10.4(b), respectively.

Assuming the electron wave function of (10.22), the square of the matrix element \(\left|V_{c L O}\left(k_{\|} k_{\|}^{\prime}, j j^{\prime}\right)\right|^{2}\) is given as follows, taking into account the screening effect:
\[
\begin{equation*}
\left|V_{c L O}\left(k_{\|} k_{\|}^{\prime}, j j^{\prime}\right)\right|^{2}=\sum_{q}\left(e^{2} \hbar \omega_{L O} / 2 V\right)\left(1 / \epsilon_{\infty}-1 / \epsilon\right) C_{q} \cdot D_{q} \tag{10.45}
\end{equation*}
\]
with
\[
\begin{align*}
C_{q} & =\left[q /\left(q^{2}+\lambda_{s}^{2}\right)\right]^{2}\left\{\begin{array}{l}
n_{q}+1 \\
n_{q}
\end{array}\right\} \delta\left(k_{\|}-k_{\|}^{\prime}, q_{\|}\right)  \tag{10.46}\\
D_{q} & =\left|\int \Phi_{c j}^{*}(z) \Phi_{c j^{\prime}}(z) e^{-i q_{\perp} z} d z\right|^{2} \tag{10.47}
\end{align*}
\]
where \(q, q_{\|}\), and \(q_{\perp}\) are the phonon wave vector and its components parallel and perpendicular to the well interface, respectively. \(\epsilon\) and \(\epsilon_{\infty}\) are the static and optical dielectric constants, respectively, \(V\) is the volume of the system, and the factors \(n_{q}+1\) and \(n_{q}\) correspond to the emission and absorption of phonons, respectively, where \(n_{q}\) is the phonon number per mode \(q\) given by
\[
\begin{equation*}
n_{q}=1 /\left(\exp \left(\hbar \omega_{L O} / k T\right)-1\right. \tag{10.48}
\end{equation*}
\]


Figure 10.4: Schematic illustration of electron-LO phonon scattering in the conduction band. (a) Formation of a hole at energy \(E_{c j k_{\|}}\)under the optical transition is intercepted by an electron at \(E_{c j^{\prime} k_{\|}^{\prime}}\) which emits or absorbs a phonon. (b) Formation of an electron at energy \(E_{c j k_{\|}}\)under the optical transition is scattered by a hole \(E_{c j^{\prime} k_{\|}^{\prime}}\) which emits or absorbs a phonon.

The intensity of the phonon mode confined in the well is assumed to be much smaller than that of the bulk mode, and is neglected in (10.45)-(10.47).
Replacing the summation for \(k_{\|}^{\prime}\) and \(q\) in (10.42)-(10.47) with the integral for the wave vector, \(\hbar / \tau_{c L O}\) is calculated for one subband case \(\left(j=j^{\prime}=i\right)\) as
\[
\begin{equation*}
\hbar / \tau_{c L O}=\left(m_{c} e^{2} / 2 \pi^{2} \hbar^{2}\right)\left(1 / \epsilon_{\infty}-1 / \epsilon\right) \hbar \omega_{L O}\left(A_{o}+B_{o}\right) \tag{10.49}
\end{equation*}
\]
with
\[
\begin{align*}
A_{o}= & {\left[n_{q}+1-f_{c}\left(E_{c i k_{\|}}-\hbar \omega_{L O}\right)\right] } \\
& \cdot \int_{0}^{\phi_{\max }} \frac{\left(I\left(a_{1}\right)+I\left(a_{2}\right)\right) d \phi}{\sqrt{k_{\|}^{2} \cos ^{2} \phi-2 m_{c} \omega_{L O} / \hbar}}  \tag{10.50}\\
B_{o}= & {\left[n_{q}+f_{c}\left(E_{c i k_{\|}}+\hbar \omega_{L O}\right)\right] } \\
& \cdot \int_{0}^{\pi} \frac{I\left(a_{3}\right) d \phi}{\sqrt{k_{\|}^{2} \cos ^{2} \phi+2 m_{c} \omega_{L O} / \hbar}} \tag{10.51}
\end{align*}
\]
and
\[
\begin{align*}
\phi_{\max } & =\cos ^{-1}\left(\sqrt{2 m c \omega_{L O} / \hbar k_{\|}^{2}}\right)  \tag{10.52}\\
I(a) & =\int_{0}^{\infty} \frac{a b\left(b^{2} x^{2}+a^{2}\right) \sin ^{2} x d x}{\left(b^{2} x^{2}+a^{2}+1\right)^{2} x^{2}\left(x^{2} / \pi^{2}-1\right)^{2}}  \tag{10.53}\\
a_{1} & =\gamma-\sqrt{\gamma^{2}-\delta^{2}}  \tag{10.54}\\
a_{2} & =\gamma+\sqrt{\gamma^{2}-\delta^{2}}  \tag{10.55}\\
a_{3} & =\gamma+\sqrt{\gamma^{2}+\delta^{2}}  \tag{10.56}\\
b & =\left(k_{\|} / \lambda_{s}\right) \cos \phi  \tag{10.57}\\
\delta & =\sqrt{2 m_{c} \omega_{L O} / \hbar \lambda_{s}^{2}} \tag{10.58}
\end{align*}
\]

The process of numerical calculation is similar to that for carrier-carrier scattering. In the same manner, carrier-phonon scattering also occur for holes in the valence band corresponding to the process in the conduction band shown in Figure 10.4. The spectral broadening factor in the valence band caused by the hole-LO phonon scattering is obtained by replacing the suffix \(c\) with \(v\) in the above equations. At the same time, the subband suffix together with the suffix \(v\) should be \(j\), other than \(i\).

Equations (10.33) and (10.49) are two basic formulas for calculating the broadening factors with respect to the carrier-carrier and carrier-phonon scattering, respectively.

Please note that two new parameters comes into the carrier-phonon scattering. One is the optical dielectric constant \(\epsilon_{\infty}\) and the other is the longitudinal optical phonon energy \(\hbar \omega-L O\). As an indication, we use \(\hbar \omega_{L O}=34 . E-3 \mathrm{eV}\) and \(\epsilon_{\infty}=11.4\) for InGaAsP/InP system, and \(\hbar \omega_{L O}=46 . E-3 \mathrm{eV}\) and \(\epsilon_{\infty}=10.4\) for GaAs/AlGaAs system. For accurate setting of these two parameters, please use the tau__model statement.

\subsection*{10.2.4 Nomenclature}

We list the symbol definitions separately here due to the large number of new symbols in this section.
\(D_{c}(E), D_{v}(E) \quad\) Energy spectra of electron and hole, which have energy \(E\).
\(E_{c j}, E_{v j} \quad\) Quantized energy levels in conduction and valence bands.
\(E_{c j k_{\|}}, E_{v j k_{\|}} \quad\) Energies of electron and hole under the optical transition at the subband \(j\).
\(E, E_{c v} \quad\) Photon energy and energy difference between conduction and valence bands under the optical transition.
\(E_{f c}, E_{f v} \quad\) Quasi-Fermi levels of conduction and valence bands.
\(E_{g} \quad\) Bulk bandgap energy of semiconductor.
\(e \quad\) Electronic charge.
\(\epsilon, \epsilon_{\infty}, \epsilon_{o} \quad\) Static dielectric constant and optical dielectric constant and dielectric constant of conductor in vacuum.
\(f_{c}(), f_{v}() \quad\) Fermi distribution functions in conduction and valence bands.
\(g_{c}, g_{v}, g_{c v} \quad\) Step-like-densities-of-states of electron (c) and hole (v) and the step-like-density-of-states electron-hole pair.
\(\Gamma_{c}, \Gamma_{v}, \Gamma_{i n} \quad H a l f\) broadening factors in conduction (c) and valence (v) bands, and average broadening factor, their relationship is \(\Gamma_{i n}=\Gamma_{c}+\Gamma_{v}\).
\(\hbar \quad\) Plank constant.
\(k \quad\) Boltzmann constant.
\(k_{\|}, k_{\perp} \quad\) Wave vectors parallel and perpendicular to the well interface.
\(k_{f_{\|}} \quad\) Component of the Fermi wave vector parallel to the well interface.
\(L() \quad\) Lorentzian line shape function for optical gain broadening.
\(L_{w} \quad\) Well width.
\begin{tabular}{|c|c|}
\hline \(L_{c j}, L_{v j}, L_{e}\) & Effective well widths at the jth levels in conduction (c) and valence (v) bands, and the minimum of the four effective well widths. \\
\hline \(\lambda_{s}\) & Inverse screening length. \\
\hline \(m_{0}\) & Free electron mass. \\
\hline \(m_{c}, m_{v}, m_{c v}\) & Effective masses of electron (c) and hole (v) and reduced effective mass between electron and hole, and their relationship is \(1 / m_{c v}=1 / m_{c}+1 / m_{v}\). \\
\hline \(\mu_{o}\) & Permeability of semiconductor of the vacuum. \\
\hline \(n_{r}\) & Refractive index of semiconductor. \\
\hline \(N\) & Injected electron density. \\
\hline \(P\) & Injected hole density. \\
\hline \(\omega, \omega_{L O}\) & Angular frequencies of light wave and longitudinal optical (LO) phonon wave. \\
\hline \(\psi^{\prime} s\) & Electron wave functions. \\
\hline \(\Phi^{\prime} s\) & Complex amplitudes of the electron wave functions. \\
\hline \(r, r_{\|}\) & Position vector and the element of position vector parallel to well interface. \\
\hline \[
\underset{C}{<} R_{c v}^{2}\left(E_{c v}\right)>
\] & Averaged square of electric dipole moment. Interface area of sample. \\
\hline T & Absolute temperature. \\
\hline \(\tau_{c}, \tau_{v}, \tau_{i n}\) & Intraband relaxation times in the conduction (c) and valence (v) bands and the total intraband relaxation time (in), and their relationship is \(2 / \tau_{i n}=1 / \tau_{c}+1 / \tau_{v}\). \\
\hline \(\hbar / \tau_{c}, \hbar / \tau_{v}, \hbar / \tau_{i n}\) & Broadening factors caused by carrier-carrier and carrier-LO phonon scattering in conduction (c) and valence (v) bands, and the total broadening factor including summation over the conduction and the valence bands. \\
\hline \(u\) & Periodic part of the bulk Bloch function. \\
\hline \(V_{c n}\) & Matrix elements of the interaction in conduction \\
\hline & ( \(\mathrm{n}=\mathrm{c}\) ) and valence ( \(\mathrm{n}=\mathrm{v}\) ) bands. \\
\hline \(V_{i n}\) & Injection potential. Obviously \(e V_{i n}\) is injected carrier energy. \\
\hline
\end{tabular}


Figure 10.5: Schematics of capture and escape currents in real coordinate space.

\subsection*{10.3 Quantum Well Capture and Escape Processes}

\subsection*{10.3.1 Carrier Capture and Escape in Real Space}

As described in previous sections, the carrier transport across a heterojunction is via thermionic emission. For a quantum well, the carriers have to go across two heterojunctions (or two interfaces) via the same thermionic emission mechanism.

Some researches prefer to describe carrier transport across a quantum well in terms of "carrier capture" and "carrier escape" [69]. We shall also describe the carrier transport across a quantum well in the same technical terms.
In schematic in Fig. 10.5, we describe the events in real space (or in spatial coordinates). We denote the current components in term of capture and escape processes. In thermionic theory, the capture components \(I_{\text {cap } 1}\) and \(I_{c a p 2}\) do not experience any scattering by the quantum well interfaces (in semi-classical approximation) and can be written as
\[
\begin{align*}
& J_{\text {cap } 1}=\gamma_{12 n} \bar{v}_{1 n}^{\text {therm }} n_{1},  \tag{10.59}\\
& J_{\text {cap } 2}=\gamma_{23 n} \bar{v}_{3 n}^{\text {therm }} n_{3}, \tag{10.60}
\end{align*}
\]
where \(\bar{v}_{1 n}^{\text {therm }}\) is the thermal velocity for carriers in region 1 (left barrier) and \(n_{1}\) is the carrier density there. \(\gamma_{12 n}\) is a correction factor due to the semi-classical approximation (for neglecting quantum well potential scattering). Similar definition applies to the right barrier.

The computation of escape components are less straight forward because the carriers with energies less than the barrier are strongly reflected by the barrier. However,


Figure 10.6: Schematics of capture and escape currents in energy-wave vector coordinate space assuming elastic scattering.
we make the observation that the escape component must balance out the capture component if Fermi levels on both sides are equal (such is the case in equilibrium). Thus, the escape components can be written as:
\[
\begin{align*}
& J_{e s c 1}=\gamma_{12 n} \bar{v}_{1 n}^{\text {therm }} n_{10},  \tag{10.61}\\
& J_{e s c 2}=\gamma_{23 n} \bar{v}_{3 n}^{\text {therm }} n_{30}, \tag{10.62}
\end{align*}
\]
where \(n_{10}\) is the carrier density on the left barrier with Fermi level set to equal to that in the well (region 2). Similar arguments apply to \(J_{\text {esc } 2}\).

\subsection*{10.3.2 Carrier Capture and Escape in k-Space}

The capture/escape event in the thermionic emission model above can also be described in energy space. The explanation of thermionic emission capture/escape model within the frame work of quasi-equilibrium (i.e., use of quasi-Fermi levels) is as follows. A carrier transfers with the same kinetic energy (elastic process) between confined and unconfined states with thermal velocity. After the transfer, it is instantly thermalized with local temperature and becomes part of the local carrier distribution described by the a quasi-Fermi level.

Similar to Ref. [69] we assume that transition of carriers between unconfined states and confined states have the same initial and final energies (see Fig. 10.6). The capture current can be written as follows in the notation of Ref [69].
\[
\begin{equation*}
J_{c a p} \propto \int_{E_{c}^{b}}^{\infty} \rho_{u}(E) f\left(E, E_{f n}^{u}\right) \rho_{c}(E)\left[1-f\left(E, E_{f n}^{c}\right)\right] d E \tag{10.63}
\end{equation*}
\]
where \(u\) and \(c\) are for unconfined and confined states. \(E_{c}^{b}\) and \(E_{f n}\) are the energy at the barrier and Fermi level, respectively. \(\rho(E)\) is the density of states.
Usually, the Fermi level is below barrier and we can safely set
\[
\begin{equation*}
\left[1-f\left(E, E_{f n}^{c}\right)\right] \approx 1 \tag{10.64}
\end{equation*}
\]

We also know that 2D density of states \(\rho_{c}(E)\) is a constant in \(E\). Thus the capture current can be written as
\[
\begin{equation*}
J_{c a p} \propto \int_{E_{c}^{b}}^{\infty} \rho_{u}(E) f\left(E, E_{f n}^{u}\right) d E=n_{u} \tag{10.65}
\end{equation*}
\]
which is just the unconfined carrier density at the barrier. This is consistent with Equations 10.59 and 10.60 .
Once we have the expressions for the capture components, the escape components can be obtained using the argument that the total current flow must be zero if Fermi levels are flat.
In conclusion, the carrier capture/escape model in our simulator is that of elastic carrier scattering process followed by instant local thermalization which has been reported to agree with experiment (see Ref. [69]).

\subsection*{10.4 Dynamic Behavior of Quantum Capture and Escape}

It is generally believed that the dynamic behavior (i.e., high speed modulation characteristics) of a laser diode depends on how fast carriers can be captured from unconfined states into confined states of the quantum well [70]. In a microscopic theory of quantum capture, energy distributions in both energy and space can be solved to give a complete description of the capturing process due to carrier-phonon interactions. The capturing process can be described by the following characteristic capture time \(\tau_{\text {cap }}\) [70]:
\[
\begin{equation*}
\frac{1}{\tau_{\text {cap }}}=\int_{E_{\text {final }}} S_{3 D, 2 D} \frac{g_{2 D}}{L_{\text {norm }}} d E_{2 D} \tag{10.66}
\end{equation*}
\]
where \(E_{2 D}\) is the 2D energy, \(E_{\text {final }}\) the energy of the final states, \(S_{3 D, 2 D}\) the scattering probability between 3D and 2D states, \(g_{2 D}\) the density of state in the well, and \(L_{\text {norm }}\) the normalization distance of the confined wave function. Detailed carrierphoton interaction must be taken into account to evaluate \(S_{3 D, 2 D}\) above. Solving
the microscopic energy-space equations also produce the spectral hole burning effect which were thought to further limit the modulation band width.

We consider the dynamic effect associated with the quantum capture within the thermionic capture/escape model. We show that it is possible to compare the phenomenological carrier capturing theory in our simulation software with the more complex microscopic energy-space equation model. We shall derive the characteristic capturing time as follows.
Consider a simplified version of our carrier transport model for electrons in a quantum well. The simplified continuity equation with thermionic emission can be written as
\[
\begin{equation*}
\frac{d N_{w}}{d t}=\gamma \frac{v_{t h}^{(b)}}{d_{w}} N_{b}-\gamma \frac{v_{t h}^{(w)}}{d_{w}} N_{w}-\frac{N_{w}}{\tau_{a}} \tag{10.67}
\end{equation*}
\]
where \(N_{w}\) and \(N_{b}\) are electron concentrations in the well and at the barrier, respectively. \(d_{w}\) is the quantum well width. \(v_{t h}^{(w)}\) and \(v_{t h}^{(b)}\) are the mass-dependent thermionic velocities in the well and at the barrier, respectively. \(\tau_{a}\) is the interband recombination life time due to radiative, stimulated, SRH, and Auger recombination effects. \(\gamma\) is the heterojunction capture coefficient used to modify the thermal velocity.

Suppose we apply a pulse to the injection current which causes the barrier concentration \(N_{b}\) to behave like a step function. We wish to see how the quantum well carriers respond. Solving Eqn. (10.67) shows that the carriers in the well undergo the following transient behavior:
\[
\begin{equation*}
\exp \left\{-\left[\gamma v_{t h}^{(w)} / d_{w}+1 / \tau_{a}\right] t\right\} \tag{10.68}
\end{equation*}
\]

Since the \(1 / \tau_{a}\) term is about five orders smaller and can be ignored, we find that the characteristic capturing time in our simulator can be expressed simply as
\[
\begin{equation*}
\frac{1}{\tau_{c a p}}=\frac{\gamma v_{t h}^{(w)}}{d_{w}} \tag{10.69}
\end{equation*}
\]

Comparison of Equations (10.69) and (10.66) leads us to conclude that the the heterojunction capture coefficient \(\gamma\) is proportional to the microscopic scattering probability between 3D and 2D states, and thus can be used as a convenient parameter to measure the deviation of our thermionic model from the more complex microscopic energy-space model. The theoretical analysis of hole capturing is completely similar and shall be omitted here.

We consider a numerical example of idea thermionic emission with \(\gamma=1\). For a GaAs quantum well of \(100 \AA\), we find that the electron and hole capturing times are 0.1 and 0.3 ps , respectively. These values seem to be reasonable compared to other estimates (see for example, [70]). As we pointed out in the last subsection that thermionic emission model involves the assumption of instant local thermalization,


Figure 10.7: Numerical simulation of the modulation response of a 76 Åsingle QW GaAs/AlGaAs laser diode. The capturing speed is reduced by a factor of 0.01 and the non-linear gain constant is set to \(5 \times 10^{-23} \mathrm{~m}^{3}\).
it is no surprise that these values are on the fast side. The actual capturing process should be smaller (with \(\gamma<1\) ).

Having resolved the carrier-capturing dynamics, we consider the spectral hole burning effect. In our simulator, this is expressed as a factor multiplied to the material optical gain:
\[
\begin{equation*}
g(\omega, S)=\frac{g_{0}(\omega)}{1+\epsilon_{n l} S} \tag{10.70}
\end{equation*}
\]
where \(S\) is the bulk photon density and \(\epsilon_{n l}\) is an empirical constant also called nonlinear gain saturation constant.

To show that both the capturing and spectral hole burning effects are important for the modulation band width, we use the Fourier transform of a small-step transient simulation to produce the modulation response in Figure 10.7. We find that spectral hole burning has similar effect as a slower capturing time.

\subsection*{10.4.1 Direct Flying-over Transport Model}

When quantum wells (QW) or quantum dots (QDOT) are much smaller than the mean free path of the carriers (typically several nm), there is large chance the carriers directly fly over the QW or QDOT before being thermalized with carriers inside them. Given the mean free path \(\lambda_{n}\) for electron estimated from the conductivity (Drude model) near the QW/QD, we can write the probability of flying-over the QW/QD


Figure 10.8: Schematic of Quasi- and Non-equilibrium transport model
as \(\exp \left(-D_{q w} / \lambda_{n}\right)\). This model may be enabled using the q_transport command. Similar models can be enabled for holes.

\subsection*{10.4.2 Fractional Density Quantum Well/Dot Escape Theory}

Crosslight also implements a new non-equilibrium carrier escape scheme to describe the phenomenon that the injected carriers escape from the quantum dots (QDOTs) or the quantum wells (QWs) before being thermalized with the local IMREF. A fraction of total carrier density in QWs or QDOTs is used to represent the density of hot carriers escaping from QWs or QDOTs. The theory is based on Ref.[71].

Assuming that the carrier capture/escape processes in QWs or QDOTs can be described by the following two-level quantum capture/escape model in the traditional quasi-equilibrium transport theory as shown in Fig.10.8(a), where \(n_{1}, n_{2}\) are the density of carriers on the two levels. \(J_{\text {in }}, J_{\text {out }}\) are the injection and outflow density of carriers. \(\tau_{c a p}, \tau_{e s c}, \tau_{\text {interb }}\) are the carrier lifetime of capture by the confined level, escape and interband recombination from the confined level, respectively. Then, the rate equation of carriers in QWs or QDOTs in the quasi-equilibrium transport model is
\[
\begin{equation*}
\frac{d n_{t}}{d t}=-\frac{n_{t}}{\tau_{\text {interb }}}+J_{\text {in }}+J_{o u t} \tag{10.71}
\end{equation*}
\]
where \(n_{t}=n_{1}+n_{2}\). In our non-equilibrium carrier escape scheme, a fraction of the confined carriers are free to go directly via average conductivity with average local velocity: \(V_{\text {fesc. }}\). Then the carrier transport process can be shown as in Fig.10.8(b), the rate equation of carriers in QWs or QDOTs is
\[
\begin{equation*}
\frac{d n_{t}}{d t}=-\frac{n_{t}}{\tau_{\text {interb }}}+J_{\text {in }}+J_{\text {out }}-J_{\text {fesc }} \tag{10.72}
\end{equation*}
\]
where \(J_{\text {fesc }}\) is the carrier density escaping from wells or dots before being thermalized, given by
\[
\begin{equation*}
J_{f e s c}=\frac{F_{e s c} n_{t} V_{\text {fesc }}}{d} \tag{10.73}
\end{equation*}
\]
where \(F_{\text {esc }}\) is the fraction of total carrier density escaping from the wells or dots. \(d\) is the thickness of the wells or dots.
According to Ref.[72], the lifetime of carriers escaping before being thermalized can be determined by a similar form:
\[
\begin{equation*}
\tau_{f e s c}=\frac{d}{V_{f e s c} F_{e s c}} \tag{10.74}
\end{equation*}
\]
where \(V_{\text {fesc }}=2 \pi \hbar / d m^{*}, m^{*}\) is the effective mass. If \(F_{\text {esc }}=0.1, d=3 n m, m^{*}=0.1\), then \(\tau_{\text {fesc }}=12 \mathrm{fs}\), which is close to the quantum well tunneling escape time as shown in Ref.[72]. This means that our fractional density escape scheme is equivalent to the traditional time constant escape scheme.

\section*{Chapter 11}

\section*{THERMAL EFFECTS IN SEMICONDUCTORS}

This chapter deals with thermal effects in semiconductors. As we will show, there are a variety of heating sources in semiconductors: it is critical that these sources be accurately formulated when modeling devices where self-heating is important. Examples of such devices are high power transistors and laser diodes.

\subsection*{11.1 Temperature dependent parameters}

A successful thermal simulation requires accurate temperature-dependent parameters. Typically, the most important parameters that need to vary with the temperature are bandgap, mobility, recombination coefficients and refractive index.
However, the software makes no assumption as to which parameter should be affected by the temperature. Instead, it allows all material parameters to be a function of the temperature. To do so, the parameter definition in the material macro should be a function of the reserved "temper" variable. This will tell the software to use the local temperature at any given mesh point to evaluate the function and get the parameter value.
Note that not all the macros in the database have thermal effects included. The user is advised to review the material parameters he plans to use and modify them as required. In particular, the refractive index is seldom defined as function of temperature in the default macros and this effect may be important for thermal lensing in lasers.

\subsection*{11.2 Isothermal temperature variation}

Crosslight software allows the user to vary the isothermal temperature of a simulation. This is the temperature that is used during the initial equilibrium calculations and during the rest of the simulation if self-heating is neglected. Note that even with self-heating neglected, the material parameters will still be evaluated at the local mesh temperature (which is the same as the isothermal temperature).

\subsection*{11.3 Heat flow and temperature distribution}

\subsection*{11.3.1 Expression of heat flux}

It is well known that the heating effect is very important for semiconductor lasers in almost all applications. The heat generation often limits what a designer can do with a passively cooled device and the maximum power that can be reached.

From the point of view of simulation and modeling, the concern is two-fold. First, we must find out the temperature distribution from all possible heat sources. This involves a much larger simulation area than the small region near the p-n junction. We must consider how the heating power flows though the whole substrate as well as from any wire bonds. Second, we must consider how the heating affects the laser performance. This means we must accurately evaluate the degradation of power, efficiency and other parameters due to the the non-uniform temperature distribution. This is not a trivial task because virtually all variables and material parameters are temperature dependent. Our goal is to provide a thermal modeling environment so that all possible sources of temperature dependence can be taken into account.

We are concerned with the generation and flow of lattice heating power in a semiconductor. We first consider the heat flux and then the heat source. We introduce the thermal conductivity such that the heating power flux (in Watt/ \(/ \mathrm{m}^{2}\) ) is given by:
\[
\begin{equation*}
J_{h}=-\kappa \nabla T \tag{11.1}
\end{equation*}
\]

Conservation of energy requires that the temperature distribution satisfy the following basic thermal equation:
\[
\begin{equation*}
C_{p} \rho \frac{\partial T}{\partial t}=-\nabla \cdot J_{h}+H \tag{11.2}
\end{equation*}
\]
or
\[
\begin{equation*}
C_{p} \rho \frac{\partial T}{\partial t}=\nabla \cdot \kappa \nabla T+H \tag{11.3}
\end{equation*}
\]
where \(C_{p}\) is the specific heat and \(\rho\) is the density of the material. \(H\) is the heat source.

\subsection*{11.3.2 Thermoelectric power and thermal current}

The temperature gradient induces a current of the form [73] [74] [75]:
\[
\begin{equation*}
-q \mu_{n} n P_{n} \nabla T \tag{11.4}
\end{equation*}
\]
to the electron current and
\[
\begin{equation*}
-q \mu_{p} p P_{p} \nabla T \tag{11.5}
\end{equation*}
\]
to the hole current.
The thermoelectric powers, \(P_{n}\) and \(P_{p}\) are given by:
\[
\begin{equation*}
P_{n}=\frac{k_{B}}{q}\left[-\frac{5}{2}-\nu+\ln \left(\frac{n}{N_{c}}\right)\right] \tag{11.6}
\end{equation*}
\]
and
\[
\begin{equation*}
P_{p}=\frac{k_{B}}{q}\left[-\frac{5}{2}-\nu+\ln \left(\frac{p}{N_{v}}\right)\right] \tag{11.7}
\end{equation*}
\]
where \(\nu\) is the exponent used in the field-dependent relaxation time. For phonon scattering [76], \(\nu=-1 / 2\)

\subsection*{11.4 Heat sources}

The heat source can be separated into contributions from Joule heat, generation/recombination heat and Thomson/Peltier heat. Following the suggestion of Ref. [73] we discuss these terms in more detail in the following subsections.

\subsection*{11.4.1 Joule/optical heat}

There are two sources of Joule heating. One is from the steady state or low frequency part of the electrical field:
\[
\begin{equation*}
H_{\text {Joule }-d c}=\frac{J_{n}^{2}}{q \mu_{n} n}+\frac{J_{p}^{2}}{q \mu_{p} p} \tag{11.8}
\end{equation*}
\]

The other part comes from the optical frequency (optical heat). When the optical wave passes a lossy semiconductor, the wave is absorbed by the lossy material. The absorbed energy can either generate electron hole pairs or be dissipated and become Joule heat. We also refer to this type of heat source as the optical part of the Joule heating.

The internal loss of a semiconductor laser is the cause of the optical part of the Joule heating while the band to band absorption is the source for electron-hole pair
generation in photo-detectors. A simple derivation of this term follows. The optical power dissipated per unit volume can be expressed as:
\[
\begin{equation*}
\text { power loss }=\sigma_{o p} F_{o p}^{2}=\epsilon_{2} \epsilon_{0} \omega F_{o p}^{2} . \tag{11.9}
\end{equation*}
\]
where the optical field \(F_{o p}\) is the root mean square of the oscillating field.
For convenience a constant \(\gamma\) is introduced such that the complex wave amplitude is related to the electric field by:
\[
\begin{equation*}
|F|^{2}=\gamma|W|^{2} . \tag{11.10}
\end{equation*}
\]

To determine \(\gamma\) we use the following basic relation:
\[
\begin{equation*}
S \hbar \omega=\int \epsilon_{0} \epsilon_{1}|F|^{2} d v=\epsilon_{0} \gamma \int \epsilon_{1}|W|^{2} d v=\epsilon_{0} \gamma<\epsilon_{1}>. \tag{11.11}
\end{equation*}
\]

The power loss becomes:
\[
\begin{equation*}
\text { power loss }=S \hbar \omega^{2} \epsilon_{2}|W|^{2} /<\epsilon_{1}>. \tag{11.12}
\end{equation*}
\]
or in terms of material internal loss and local index:
\[
\begin{gather*}
\epsilon_{2}=\bar{n}_{1} \alpha_{i} / k_{0}  \tag{11.13}\\
H_{\text {Joule-op }}=S \hbar \omega^{2} \overline{n_{1}} \alpha_{i}|W|^{2} /\left(k_{0}<\epsilon_{1}>\right) . \tag{11.14}
\end{gather*}
\]

\subsection*{11.4.2 Recombination heat}

When an electron-hole pair recombines, the energy either converts to a photon (radiative) or turns into heat (non-radiative). For the purposes of determining the locally generated heat, radiative recombinations are considered as a heat term but are partially canceled out by other terms (see below).

For each electron-hole pair recombined, the heat released is the difference between the quasi-Fermi levels:
\[
\begin{equation*}
H_{\text {rec }}=\left(R_{\text {trap }}+R_{\text {Aug }}+R_{\text {spon }}+R_{\text {stim }}\right)\left(E_{f n}-E_{f p}\right) \tag{11.15}
\end{equation*}
\]

An additional term is also needed to account for recombination events above the Fermi level. This contribution is related to the thermoelectric power by:
\[
\begin{equation*}
H_{r e c 2}=q R_{\text {total }} T\left(P_{p}-P_{n}\right) \tag{11.16}
\end{equation*}
\]
where \(P_{p}\) and \(P_{n}\) are thermoelectric power for hole and electrons, respectively.

\subsection*{11.4.3 Radiative heat}

Photons which escape the cavity remove heat from the device (radiative cooling); this defines a negative radiative heat term:
\[
\begin{equation*}
H_{\text {rad }}=-\left(R_{\text {stim }}+R_{\text {spon }}\right) \hbar \omega \tag{11.17}
\end{equation*}
\]

In the above, it is assumed that all photons which are emitted at a specific mesh point remove heat locally. This contribution is very close in magnitude to the radiative recombination terms in the recombination heat above since \(E_{f n}-E_{f p} \approx \hbar \omega\).
Photons which are trapped in the cavity leave their energy elsewhere in the device; this is the optical heat term defined in previous sections. Therefore, the total amount of radiative cooling is not equal to the optical output power of the device.
In most real devices, some photons emitted by spontaneous emission do not couple into a mode but still manage to escape the cavity. This may be accounted for in future versions of the software by a scaling factor to \(R_{\text {spon }}\).

\subsection*{11.4.4 Thomson/Peltier heat}

The Thomson and Peltier heat terms are related to the spatial variation in the thermoelectric power:
\[
\begin{equation*}
H_{P t-T h}=-T\left(J_{n} \nabla P_{n}+J_{p} \nabla P_{p}\right) \tag{11.18}
\end{equation*}
\]

This heat source can be divided into its individual components by isolating the different contributions to the spatial gradient:
\[
\begin{equation*}
\nabla P_{n}=\frac{\partial P_{n}}{\partial T} \nabla T+\frac{\partial P_{n}}{\partial n} \nabla n \tag{11.19}
\end{equation*}
\]
with a similar equation for the hole thermoelectric power.
The Thomson effect is thus due to the change in local temperature while the Peltier effect comes from the change in the local carrier concentration. \({ }^{1}\)

\subsection*{11.5 Thermal boundary}

We need to establish some realistic boundary conditions for the heat transport equation. In our simulator they are separately defined for electrical contacts and other parts of device.

\footnotetext{
\({ }^{1}\) Prior to v.2016, the Thomson heat source was not correctly calculated and reported values that actually referred to \(H_{\text {rec } 2}\). Also prior to that version, the Peltier heat source referred to the combined Peltier-Thomson term.
}

For electrical contacts, they are defined in the contact statement:
- 1) Thermal contact type 1 . The contact is a heat sink assumed to have a lattice temperature given by the parameter lattice_temp.
- 2) Thermal contact type 2 . The contact is assumed to have an out-going heat power flow given by the parameter heat_flow. The lattice temperature of the contact is unknown and is to be determined by the thermal equation solver.
- 3) Thermal contact type 3. The contact is assumed to be connected to a thermal conductor with its conductance given by parameter thermal__cond. This thermal conductor is connected to a heat sink with a fixed temperature given by parameter extern_temp. Again the lattice temperature of the contact is unknown and is to be determined by the thermal equation solver.

Please note that due to recent improvements in the external circuit model (minipsice, self-heating due to contact resistance is no longer handled automatically by the software. Instead, the heat flow due to the external resistor should defined using the contact__heating command.

If the user used a .layer file to facilitate the input, then contact statements may have been generated in the .mater file. As these default contacts will use a default boundary condition of Type 1 and a 300 K lattice temperature, it is strongly recommended that all thermal simulations re-issue the contact declarations in the .sol to define the correct thermal boundaries.

For other parts of a simulated device, the heat flow follows the same rules as the current flow and no heat can flow across the mesh boundary. To override this and define non-contact thermal boundaries, use the thermal_interf statement: the same boundary types (1-3) apply.

\section*{Chapter 12}

\section*{WAVEGUIDE OPTICAL MODES}

\subsection*{12.1 Introduction}

Many optoelectronic devices simulated by Crosslight software contain a waveguide. It is thus necessary to solve the lateral optical modes of a waveguide. Since the optical modes couple to the drift-diffusion model through carrier-dependent refractive index, an efficient solution of the wave equations is critical.

\subsection*{12.2 Scalar Wave Equation For Lateral Modes}

Our basic assumption in dealing with 2D simulation of optical wave is that it propagates along the \(z\) dimension with a factor \(\exp (j \beta z)=\exp \left(j k_{0}^{2} n_{e f f} z\right)\) where \(n_{\text {eff }}\) is the complex effective index. The wave equation can then be reduced in dimension by variable separation.

When the waveguide dimension of an edge type of semiconductor laser is comparable to or larger than the wavelength, the lateral optical modes can be described by the scalar wave equation as follows:
\[
\begin{equation*}
\nabla^{2} W(x, y)+k_{0}^{2}\left(\varepsilon(x, y)-n_{e f f}^{2}\right) W(x, y)=0 \tag{12.1}
\end{equation*}
\]
where \(\varepsilon(x, y)\) is the optical dielectric constant (not to be confused with the static dielectric constant).
Our basic task is then to find the effective index and the related optical mode \(W(x, y)\). There are several numerical methods we use to solve the optical modes:
- SOR iterative method. Convenient for simple single confined mode; useable but somewhat outdated.
- Effective index method (EIM): quasi-2D model which is effective for devices with index varying slowly in one direction.

The EIM method solves a single mode 1D wave equation in the y -direction for a serious of \(y\)-cuts. It then uses the eigenvalues from these \(y\)-cuts as the index distribution along the x -direction and solves a multimode wave equations in the x -direction.
- Enhanced effective index method (EEIM) which is an extension of EIM. It can be used to model radiative boundary.
- Analytical approximation by Gaussian function.
- User defined data file.
- Arnoldi restarted method which is a highly sophisticated direction eigenvalue solution method useful for multiple lateral modes.

\subsection*{12.2.1 Multi-lateral mode model}

A semiconductor laser can be driven into multi-lateral mode operation at high current injection levels if higher order lateral modes are supported by the waveguide structure. The 2D module solves the wave equation for the lateral modes at every current bias and solves, self-consistently, the photon densities of the modes. An additional photon rate equation for each additional lateral mode is included. Note that the lateral modes are coupled directly though the drift-diffusion equation via the stimulated recombination term and through the nonlinear gain effect as described later in this chapter.

\subsection*{12.3 Vectorial Helmholtz wave equation}

\subsection*{12.3.1 Basic Vectorial Wave Equations}

In this section, we derive the vectorial wave equation following Ref. [77]. For a harmonic guided wave propagating in the positive z direction, we consider the vector fields in the follow notation:
\[
\begin{align*}
& \bar{E}(x, y, z, t)=\left(E_{x}, E_{y}, E_{z}\right) \exp [j(\omega t-\beta z)]  \tag{12.2}\\
& \bar{H}(x, y, z, t)=\left(E_{x}, E_{y}, E_{z}\right) \exp [j(\omega t-\beta z)]  \tag{12.3}\\
& \bar{D}=\varepsilon \bar{E} \quad \bar{B}=\mu \bar{H} \tag{12.4}
\end{align*}
\]

From Maxwell's equations for source-free regions:
\[
\begin{array}{cl}
\nabla \cdot \bar{D}=0, & \nabla \cdot \bar{B}=0 \\
\nabla \times \bar{E}=\quad-\frac{\partial \bar{B}}{\partial t}= & -j \omega \mu \bar{H} \\
\nabla \times \bar{H}=\quad \frac{\partial \bar{D}}{\partial t}= & j \omega \varepsilon \bar{E} \tag{12.7}
\end{array}
\]
we obtain:
\[
\begin{equation*}
\nabla \times \nabla \times \bar{E}=\nabla(\nabla \cdot \bar{E})-\nabla^{2} \bar{E}=\omega^{2} \mu \varepsilon \bar{E}=k^{2} \bar{E} \tag{12.8}
\end{equation*}
\]
where \(k=2 \pi n / \lambda\) is the wave number.
Thus,
\[
\begin{gather*}
\nabla \cdot \bar{D}=0 \text { or } \nabla \cdot\left(k^{2} \bar{E}\right)=0  \tag{12.9}\\
\bar{E} \cdot \nabla k^{2}+k^{2} \nabla \cdot \bar{E}=0  \tag{12.10}\\
\nabla \cdot \bar{E}=-\left(1 / k^{2}\right) \bar{E} \cdot \nabla k^{2} \tag{12.11}
\end{gather*}
\]

Using the Maxwell's equations above, we obtain the vectorial Helmholtz wave equation:
\[
\begin{equation*}
\nabla^{2} \bar{E}+k^{2} \bar{E}+\nabla\left(\frac{\bar{E} \cdot \nabla k^{2}}{k^{2}}\right)=0 \tag{12.12}
\end{equation*}
\]

Let us consider the transverse component of the above equation with the notation:
\[
\begin{equation*}
\bar{E}_{T}=\left(E_{x}, E_{y}, 0\right), \quad \nabla_{T}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, 0\right) \tag{12.13}
\end{equation*}
\]

We note that in most cases, it is reasonable to assume that \(\frac{\partial}{\partial z}\left(k^{2}\right)=0\). We then obtain:
\[
\begin{equation*}
\nabla_{T}^{2} \bar{E}_{T}+\left(k^{2}-\beta^{2}\right) \bar{E}_{T}+\nabla_{T}\left(\frac{\bar{E}_{T} \cdot \nabla_{T} k^{2}}{k^{2}}\right)=0 \tag{12.14}
\end{equation*}
\]
which is the vectorial wave equation.
The x component of the above is as follows:
\[
\begin{gather*}
\frac{\partial^{2} E_{x}}{\partial x^{2}}+\frac{\partial^{2} E_{x}}{\partial y^{2}}+\left(k^{2}-\beta^{2}\right) E_{x}+\frac{\partial}{\partial x}\left(\frac{E_{x}}{k^{2}} \frac{\partial k^{2}}{\partial x}+\frac{E_{y}}{k^{2}} \frac{\partial k^{2}}{\partial y}\right)=0  \tag{12.15}\\
\frac{\partial}{\partial x}\left(\frac{\partial E_{x}}{\partial x}+\frac{E_{x}}{k^{2}} \frac{\partial k^{2}}{\partial x}\right)+\frac{\partial^{2} E_{x}}{\partial y^{2}}+\left(k^{2}-\beta^{2}\right) E_{x}+\frac{\partial}{\partial x}\left(\frac{E_{y}}{k^{2}} \frac{\partial k^{2}}{\partial y}\right)=0 \tag{12.16}
\end{gather*}
\]

Our final expression for the x component of the wave equation is as follows:
\[
\begin{equation*}
\frac{\partial}{\partial x}\left(\frac{1}{k^{2}} \frac{\partial}{\partial x}\left(k^{2} E_{x}\right)\right)+\frac{\partial^{2} E_{x}}{\partial y^{2}}+\left(k^{2}-\beta^{2}\right) E_{x}+\frac{\partial}{\partial x}\left(\frac{E_{y}}{k^{2}} \frac{\partial k^{2}}{\partial y}\right)=0 \tag{12.17}
\end{equation*}
\]

Similarly, the y component can be written as follows:
\[
\begin{equation*}
\frac{\partial^{2} E_{y}}{\partial x^{2}}+\frac{\partial}{\partial y}\left(\frac{1}{k^{2}} \frac{\partial}{\partial y}\left(k^{2} E_{y}\right)\right)+\left(k^{2}-\beta^{2}\right) E_{y}+\frac{\partial}{\partial y}\left(\frac{E_{x}}{k^{2}} \frac{\partial k^{2}}{\partial x}\right)=0 \tag{12.18}
\end{equation*}
\]

Once the transverse components are solved, we can obtain the z component from the zero-divergence as follows:
\[
\begin{equation*}
E_{z}=\left(\frac{1}{j \beta k^{2}}\right) \nabla_{T} \cdot\left(k^{2} \bar{E}_{T}\right) \tag{12.19}
\end{equation*}
\]

\subsection*{12.3.2 Interpretation of TE Vectorial Solutions}

In this subsection, we attempt to provide a simple prediction or interpretation of the vectorial wave solution in comparison with the scalar solution. We concentrate on the TE mode \(\left(\left(E_{x}, 0, E_{z}\right)\right)\) which is used in most device designs.
We start by rewriting the vectorial wave equation equation (12.16) using \(E_{y}=0\) as follows:
\[
\begin{equation*}
\frac{\partial^{2} E_{x}}{\partial x^{2}}+\frac{\partial^{2} E_{x}}{\partial y^{2}}+\left(k^{2}-\beta^{2}\right) E_{x}+\frac{\partial}{\partial x}\left[\frac{E_{x}}{k^{2}} \frac{\partial\left(k^{2}\right)}{\partial x}\right]=0 \tag{12.20}
\end{equation*}
\]

We find that the vectorial wave equation can be written in the same form as the scalar one if we introduce a "vectorial effective index" \(k_{v e}=2 \pi n_{v e} / \lambda\).
\[
\begin{gather*}
\frac{\partial^{2} E_{x}}{\partial x^{2}}+\frac{\partial^{2} E_{x}}{\partial y^{2}}+\left(k_{v e}^{2}-\beta^{2}\right) E_{x}=0  \tag{12.21}\\
k_{v e}^{2}=k^{2}+\frac{1}{E_{x}} \frac{\partial}{\partial x}\left[\frac{E_{x}}{k^{2}} \frac{\partial\left(k^{2}\right)}{\partial x}\right] \tag{12.22}
\end{gather*}
\]

Therefore, interpretation of the vectorial wave equation can be made using the scalar equation and the "vectorial effective index". Let us consider qualitatively the effect of vectorial wave using the schematic in Fig. 12.1. We consider only the case of continuous index profile because the physical conclusion is the same for abrupt index profile.
Based on Fig. 12.1, we decide that \(\frac{\partial\left(k^{2}\right)}{\partial x}\) is negative in positions with index change. Since \(E_{x}(x)\) decays in the positive x-direction, we conclude that Eq. (12.22) yields increased effective index in locations of index change. The increased effective index in positions of index change can be used to interpret or predict the effect of vectorial wave equations as compared with the scalar equation.

To demonstrate the effect of the increased index, we set up a series of scalar wave simulations as shown in Fig. 12.2. We artificially put an increased index in three


Figure 12.1: Schematics of the right half of the optical mode along the lateral direction. The solid lines are the refractive index and the scalar mode. The dashed lines are the "vectorial effective index" and the corresponding wave distribution.
different positions in the simulations. In a device with index change far from the center of the mode, the increased index of the vectorial term causes the wave to spread out more than scalar wave. If the index change is close to the mode center, more optical confinement is provided by the use of the vectorial wave.

In most laser diode structures, the index change in the \(x\)-direction is usually located far from the mode center. For example, a typical buried heterostructure laser may uses a two micron wide active region width to provide the lateral electrical/optical confinement so the index change is about one micron away from the mode center. This means that the vectorial TE mode produces a mode which spreads out more in the x direction than the scalar mode.

We may therefore use the scalar mode solver in most situations: common laser designs operate in the TE mode and have a lateral index variation that is weak and/or far away from the mode center.

\subsection*{12.3.3 Interpretation of TM Vectorial Solutions}

A similar derivation may be done for the \(\mathrm{TM}\left(\left(0, E_{y}, E_{z}\right)\right)\) vectorial mode by exchanging the x and y -axis. However, we must now consider the effect of index discontinuities in the y direction relative to the peak of \(E_{y}\).
In most device designs, the optical mode is centered on a quantum well region which provides the optical gain: this means that the index discontinuity between the well

(c)

Figure 12.2: A simple laser structure used to understand the increased index caused by the vectorial term. The active layer is \(0.05 \mu \mathrm{~m}\) GaAs. The wave guiding layer is \(0.03 \mu \mathrm{~m} \mathrm{Al}(0.2) \mathrm{Ga}(0.8)\) As and the cladding layer is \(\mathrm{Al}(0.8) \mathrm{Ga}(0.1) \mathrm{As}\). The increased index step is placed at various distances from the active layer to simulate the effect of the vectorial term:a) \(0.2 \mu \mathrm{~m}\), b) \(0.1 \mu \mathrm{~m}\), c) \(0.03 \mu \mathrm{~m}\)


Figure 12.3: A simple laser structure used to demonstrate the effect of the index discontinuity on the vectorial TM mode profile. The structure consists of a 7.6 nm GaAs QW with graded ( \(71 \%\) to \(33 \%\) ) AlGaAs barriers.
and barrier is only a few nanometers away from the mode peak. This further means that the mode profile in \(E_{y}\) is discontinuous near the wave peak which produces a significantly lower mode confinement factor compared to a scalar wave solution, as can be seen in Fig. 12.3.
It is therefore recommended that all optical mode calculations for TM be done using the vectorial mode solver rather than the default scalar wave model.

We note in passing that many authors calculate the TM mode by using equations based on the magnetic field \(H\). While this formulation produces a smooth wave profile due to the continuity of \(H_{x}\) at the QW boundary, it produces a different confinement factor and introduces additional terms in the calculations of the modal gain. In our model, we thus make the choice of using the simpler formulation based on \(E\) even though it produces discontinuous wave profiles for TM modes.


Figure 12.4: Schematic representation of the far-field emission of a semiconductor laser.

\subsection*{12.4 Far-field computation}

After solving for the waveguide modes, it is straightforward to compute the farfield emission pattern. The problem is basically that of diffraction: i.e., given the distribution of a propagating beam at a 2D cross section, calculate the distribution at a distance from this cross section. The formulation for this problem has been well established in classical electrodynamics and the user is referred to standard textbooks on the subject.
A semiconductor laser emits light in the form of a narrow spot of elliptical cross section. The spatial intensity distribution of the emitted light near the laser facet is known as the near-field. During its propagation, the spot grows in size due to beam divergence.

The dimensions of the elliptical spot and its divergence angles are important beam parameters associated with the laser mode. The far-field pattern is the angular distribution of beam intensity far from the laser facet. It is an important factor in the design of laser geometries since it directly affects the coupling of power from the laser source to the object being illuminated (e.g. an optical fiber).

Fig. 12.4 gives a schematic representation of the far-field emission of a semiconductor laser. The full angles at half power are \(\theta_{\perp}\) and \(\theta_{\|}\)in the directions perpendicular to and along the laser junction plane, respectively. Typically, \(\theta_{\|}\)is of the order of \(10^{\circ}\), whereas \(\theta_{\perp}\) is considerably larger ( 35 to \(65^{\circ}\) ), depending on the detailed near-field distribution.


Figure 12.5: An example of the far-field emission pattern from a non-planar ridge waveguide GaAs/AlGaAs laser emitting at \(0.78 \mu \mathrm{~m}\).

The program solves the wave equation and the semiconductor equations self-consistently and yields accurate near-field distribution as part of the output data. The far-field model is given by an additional post-processing step by the software.

Refs. [1] and [34] give mathematical formulas for the far-field distribution based on the solution to the wave equation in free space. Since these mathematical expressions were derived for broad-area lasers only (i.e., assuming the x-dimension is infinite), the program has extended their formulas to an arbitrary two-dimensional situation using the same solution approach as suggested in [1] and [34].

As an example, we consider a ridge waveguide GaAs/AlGaAs laser emitting at about \(0.78 \mu \mathrm{~m}\). The far-field pattern is computed based on the near-field solution and is presented in Fig. 12.5 as a contour plot of the far-field power. The contour lines are evenly spaced in power level (at \(10 \%\) power intervals). The angles \(\theta_{\perp}\) and \(\theta_{\|}\)can be directly extracted from the contour plot.

\subsection*{12.5 Enhanced Effective Index Method}

\subsection*{12.5.1 Introduction}

In the standard effective index method (EIM), all boundaries are assumed to be zero or decay exponentially. As a result, radiative modes are excluded. In this section, we will describe an extension of the EIM which allows us to treat radiative modes

Top boundary \(\mathrm{H}=0\)


Bottom boundary \(\mathrm{H}=0\)
Figure 12.6: Boundary conditions and division of columns and rows in the enhanced effective index method (EEIM)
as well as confined modes.
The standard set up is as illustrated in Fig. 12.6. We follow the solution approach of Ref. [78] and assume the wave is TE-polarized. It is convenient to solve the H field in this case. The mode is assumed to be confined in \(y\)-direction, i.e., the top and bottom boundaries have zero field intensities. The left boundary is assumed to be either even (with derivative zero) or odd (with field zero). This is most suitable for device with symmetry axis place on the left of the simulation area.

The radiative boundary is assumed to be on the right side. This will be most convenient for cases such as ARROW waveguide type of lasers and other antiguiding lasers.

\subsection*{12.5.2 Rectangular model}

For an arbitrary device structure, it is always possible to divide into columns and rows. The more divisions, the higher the accuracy that can be achieved (at the cost of computation time). The program is designed such that the user specifies the columns and the program determines the rows automatically. Usually, it is efficient to divide the structure into 2 or 3 columns according to the geometry of the device. For example, a ridge waveguide laser is best divided into two columns with boundary at the ridge wall.

According to Ref. [78], the basic wave equation for the TE mode can be represented
by the following magnetic field equation:
\[
\begin{equation*}
\nabla^{2} H(x, y)=k_{0}^{2}(\bar{\varepsilon}-\varepsilon) H(x, y) \tag{12.23}
\end{equation*}
\]

The horizontal boundary between row 1 and row 2 is:
\[
\begin{equation*}
H_{1}=H_{2} ;\left.\frac{\partial H}{\partial y}\right|_{1}=\left.\frac{\partial H}{\partial y}\right|_{2} \tag{12.24}
\end{equation*}
\]

The vertical boundary between column 1 and column 2 is:
\[
\begin{equation*}
H_{1}=H_{2} ;\left.\frac{1}{\varepsilon_{1}} \frac{\partial H}{\partial y}\right|_{1}=\left.\frac{1}{\varepsilon_{2}} \frac{\partial H}{\partial y}\right|_{2} \tag{12.25}
\end{equation*}
\]

In each vertical segment, only horizontal boundaries between dielectrics occur, and \(\varepsilon\) is now a step function of \(y\). We separate the variable so that \(H(x, y)=\alpha(x) \beta(y)\). The function \(\beta\) is a vertical eigenfunction for this vertical segment with eigenvalue \(\delta\) satisfying the equation:
\[
\begin{equation*}
\frac{d^{2} \beta}{d y^{2}}=k_{0}^{2}(\delta-\varepsilon(y)) \beta \tag{12.26}
\end{equation*}
\]
\(\alpha\) satisfies a similar equation:
\[
\begin{equation*}
\frac{d^{2} \alpha}{d x^{2}}=k_{0}^{2}(\bar{\varepsilon}-\delta) \alpha \tag{12.27}
\end{equation*}
\]

Although there are, in general, an infinite number of eigenfunctions \(\beta\) for each vertical segment, we include only some finite number N of these to construct a general solution. The general solution in segment j can be written as:
\[
\begin{equation*}
H_{j}(x, y)=\sum_{i=1}^{N}\left[a_{i} \exp \left(k_{0} \sqrt{\bar{\varepsilon}-\delta_{i}} x\right)+b_{i} \exp \left(-k_{0} \sqrt{\bar{\varepsilon}-\delta_{i}} x\right)\right] \beta_{i}(y) \tag{12.28}
\end{equation*}
\]

Our task is to determine the eigenvalue \(\delta\) and function \(\beta\) in the first step, and \(\bar{\varepsilon}\) and the coefficients of \(a_{i}\) and \(b_{i}\) in the second step.

\subsection*{12.5.3 Numerical approach}

Our first step is to solve Eq. 12.26 within each column. The analytical expression for \(\beta\) is expressed in term of unknown \(\delta\). Assuming there are \(M\) layers, we have \(2 M\) number of unknown coefficients in this expression. The horizontal boundary condition gives a set of \(2 M\) equations that can be solved by setting the determinant to be zero. The zeros of the determinant is used to find the roots of \(\delta\). A singular
value decomposition (SVD) method is then used to determine the \(2 M\) coefficients. We shall call this procedure "searching for roots in y-direction" (y-root).

Zero boundary on top and bottom will produce a complete set of eigenvectors that can be used to construct any wave function. Thus, more \(\beta\) base functions result in a higher accuracy of the constructed wave function. However, the use of more base function in \(y\)-direction slows down the solution substantially. Here we will choose a limited number of based functions \(\left(\beta_{i}\right)\) where \(i=1,2, \ldots, N\).

Once we have the \(\beta\) base functions, we can construct the final H-field as in Eq. 12.28. For each column \(j\), the H -field consists of \(2 N\) coefficients of \(a_{i}\) and \(b_{i}\). The vertical boundary conditions can be used to write down two equations for H -fields connecting H -field in \(j\) column with that in the \(j+1\) column. The boundary condition on the right boundary requires that traveling wave to the left be zero. This boundary condition can be used to model both radiating wave to the right or for confined wave with decaying wave.
If we multiply the two equations by \(\beta_{k}(y)\) and integrate over \(y\), we will get \(2 N\) equations relating columns \(j\) and \(j+1\). Using this technique for all columns will produce a sufficient number of equations to determine all the \(a_{i}\) and \(b_{i}\) coefficients and the modal eigensolution for \(\bar{\varepsilon}\). We shall call this procedure "searching for modes in x -direction (x-root)" . This step generates the final results for the optical modes.

The modal optical dielectric constant can be used to determine the modal optical gain as follows:
\[
\begin{equation*}
g_{e e i m}=-\operatorname{Im}(\bar{\varepsilon}) k 0 / n_{e f f} \tag{12.29}
\end{equation*}
\]
where \(n_{\text {eff }}=\operatorname{Re}(\sqrt{\bar{\varepsilon}})\) is the real part of modal effective index. We shall call this EEIM modal gain to differentiate it with the usual modal gain (approximated by averaging the local material gain with the weight of wave intensity). We shall refer to the latter as averaging modal gain.

The use of averaging modal gain has great numerical advantage of being stable against the Newton's method used by the drift-diffusion equations. But the averaging gain is inaccurate when there is radiative loss in the case of leaky modes. However, direct use of the EEIM gain will cause numerical problems near lasing condition.

As a compromise, we estimate the radiation loss at transparent condition by setting all imaginary parts of the dielectric constants to zeros and use the EEIM gain obtained this way as the radiation loss. We will use this estimated radiation loss to correct the averaging gain throughout the whole simulation.
In summary, we have been able to used the EEIM to estimate the radiation loss and use it to correct the averaging modal gain.

\subsection*{12.5.4 Estimate of radiative loss}

Using the EEIM module, we are able to find the radiative modes and the effective index (or eigenvalue of the wave equation) associated with it. The modal loss/gain is represented by the imaginary part of the eigenvalue.
In many cases, we need to discuss device performance in terms of radiative loss and material loss separately. The issue here is how we can separate the radiative loss from the material loss since the imaginary part of the eigenvalue of the wave equation comes from both material and radiative losses.

We recall how we calculate the modal gain/loss in the absence of radiative loss. To a good approximation, we calculate the modal gain/loss by averaging the local material gain/loss using the wave intensity as the weight function. This approach simplifies and stabilizes the numerical procedures. Such method of wave intensity averaging cannot be extended to the case when there is radiative loss. The reason is that the wave extends to infinity where there is radiative loss.

In our simulator, we separate the radiative loss as the different between the total gain/loss and the material gain/loss from averaged local material gain/loss.

We use two methods to estimate the radiative loss. The first method of estimate is to set all material to be lossless (by setting imaginary part of indices to be zero). We then apply the EEIM method to compute the total loss with is just the imaginary part of the eigenvalue of wave solution. Since the material loss is artificially set to zero, the total loss from the EEIM is the radiative loss we needed. We refer to such a method of estimate as the "pure index estimate" since purely real indexes are used in the calculation.

An alternative method of radiative loss estimate is to compute at every bias both the total gain/loss from the EEIM and also the averaged local gain/loss. The difference between the two is the bias dependent radiative loss. Since the local complex index varies as a function of bias, the radiative loss also changes with bias. We shall refer to this method of estimate as the "bias-dependent estimate".
The "pure index estimate" is most convenient since we only get one value for each device. In most cases, it gives a good representation of the radiative losses in the same device when there are material losses.

The "bias-dependent estimate" is more realistic since the radiative loss depends also on local material gain/loss. Since the numerical fluctuation of EEIM as a function of bias can be quit large, the relative error from this method may also be substantial as compared with the pure index estimate.

To maintain numerical stability, we still use the method of averaging the local gain to obtain the modal material gain/loss. Then the radiative loss from either of the above estimate methods is subtracted from the material modal gain/loss to obtain the total modal gain/loss which is needed to compute the lasing characteristics.

We use the pure index method as our default setting the simulator. It is the most stable since we only have one number to subtract from the material gain. The numerical fluctuation of the bias-dependent method may be a problem when calculating the light vs. current characteristics so we freeze the value of the radiative loss when the total gain near threshold. In both methods, we freeze the optical wave function from the EEIM when the device is biased near the threshold to ensure a smooth light intensity as a function of bias.

\subsection*{12.5.5 Substrate radiative loss}

A common simulation issue is to study the radiative loss caused by high refractive index substrate. So the direction of radiative wave is downwards in -y direction. Since our EEIM model assumes confined y-modes and radiative x-modes, we must first rotate our device counter-clockwise by 90 degrees. This may be achieved by use of GeoEditor GUI program or in the layer file.

\subsection*{12.5.6 Choice of optical window in y-direction}

If the material high index in y-direction is always well centered, it does not matter what size of solution region you choose in y-direction (optical boundary in init_wave statement). However, there are cases where some columns have no optical confinements in y -direction at all.

For example, a ridge waveguide laser rotated by -90 degrees will have the substrate region with no optical confinement. In such as case, the base modes in y-direction depends very much on the choice of optical window. If the window size in y is too small, it obviously will affect the y-modes. If the size is too large, many y-modes will be needed to match the base modes from other columns with optical confinements in y. With a proper choice of optical window in y-direction, it is possible get reasonable modal solutions using only 3 - 5 y-base modes.

\subsection*{12.5.7 Run-time messages}

The EEIM model is invoked at every bias step to ensure the variation of modes as a function of bias is taken into account. When using the EEIM model, the simulator prints out messages stating the status of the execution of the EEIM model procedures. Here we list the Run-time messages when EEIM is invoked for the first time as lines with \(>\) sign. Our comments are also given in the listing:
```

> -------Start EEIM Model--------
> With initial root search (this may take a while).

```

Without any previous knowledge of the roots (or modes), we have to search the complex delta (for \(y\)-modes) and epsilon (for \(x\)-modes) using a point by point approach. This may take a while.
> ---Estimate of radiation loss (pure index)---

As a first time use of EEIM in the program, we estimate the radiation loss. This is done by setting all imaginary parts of the local index to zero. The imaginary part of epsilon (eigenvalue) is used to estimate the radiation modal loss.
> Save base in "tmpb101.dat"
> Save base in "tmpb102.dat"
> Save base in "tmpb103.dat"
> Save base in "tmpb201.dat"
> Save base in "tmpb202.dat"
> Save base in "tmpb203.dat"
> Save base in "tmpb701.dat"
> Save base in "tmpb702.dat"
> Save base in "tmpb703.dat"
The y-base modes are computed and stored in "tmpbijk.dat", where \(i, j, k\) are integers for ith column and \(y\)-base mode number jk. You may use the following gnuplot command to view the \(y\)-mode:
```

plot "tmpbijk.dat" w l.

```

Start to search for roots for the final optical field.
> Initial x -search found roots= 5

Found 5 possible roots for \(x\)-direction.
> Solve wave in x direction.
\(>\) Find the following possible roots.
\(>\) No./Iter/Error= \(180 \quad 0.7779 \mathrm{E}-02\)
\(>\) root \(=(10.2363356873790,1.027566003195660 \mathrm{E}-003)\)
\(>\quad\) EEIM gain \([1 / \mathrm{m}]=-2374.09673169544\)
> Save wave in "tmploss01.dat"
>No./Iter/Error= 280 0.6136E-03
\(>\) root= (10.2118941158888,1.060170706117816E-003)
```

> EEIM gain[1/m]= -2452.35642688367
> Save wave in "tmploss02.dat"
>No./Iter/Error= 3 80 0.1955E-04
> root= (10.1705711295711,1.119772469334270E-003)
> EEIM gain[1/m]= -2595.48221708482
> Save wave in "tmploss03.dat"
We have found the above 3 modes which are saved in "tmplossij.dat".
You may use the following gnuplot commands to plot modes
to see if these are physical:
set parametric
splot "tmplossij.dat" w l.
> Radiation loss for pure index model:
> Mode Loss(1/m)
> 1 2374.09673169544
We estimate the radiation loss for the requested first mode as above.
This loss will be used to correct the material gain
to get the actual total modal gain.

```
```

> ---End of estimate of radiation loss---
Once we finished the "pure index estimate", we proceed to
use EEIM model for optical modes are each bias with run-time
message similar to the above.

```
> Save base in "tmpb101.dat"
> Save base in "tmpb102.dat"
> Save base in "tmpb103.dat"
```

> -------End of EEIM Model--------

```

When the EEIM model is invoked in the next bias step, the roots found in the previous bias are used as initial guess. If the initial guess does not produce stable solution, the program will re-invoke the EEIM model again with initial root search. The initial root search usually takes up most of the time.

Please note that our simulator always gives the pure index estimate the first time EEIM is invoked. Then, the modes are solved at every bias steps. If pure index estimate is not used, radiative loss at each bias step is calculated and printed at
different bias steps.

\subsection*{12.6 Perfectly Matched Layer Boundary}

The finite element (FEM) discretization of the wave equation results in an eigenvalue matrix problem of the order of the number of mesh points (for scalar equations). The matrix problem can easily be set up if the modes are well confined within a finite region and their intensities decay as a function of distance from the mode centers. We can obtain a well defined eigenmatrix by deleting the nodes of the boundary assuming zero wave intensities there. The situation for leaky modes is more complicated for finite element analysis: there is no simple way to truncate the mesh to establish a well defined eigenmatrix.
The idea of perfectly match layer (PML) is to create an artificial layer to absorb the radiating wave without reflecting it back. Since the wave decays to zero intensity within the PML, we have converted the problem into one of confined modes if our mesh extends to the outer boundary of the PML.
We have implemented a model of anisotropic PML due to Sacks and others [79]. In this model, the artificial PML region has a complex anisotropic dielectric constant. If this constant is chosen properly, the PML method should enable us to apply FEM to radiative mode solutions which are more accurate and powerful than EEIM.
We define an artificial layer with an anisotropic medium tensor as follows:
\[
\frac{[\varepsilon]}{\varepsilon}=\frac{[\mu]}{\mu}=[\Lambda]=\left(\begin{array}{lll}
a & 0 & 0  \tag{12.30}\\
0 & b & 0 \\
0 & 0 & c
\end{array}\right)
\]
where \(\varepsilon\) and \(\mu\) are permittivities of the isotropic medium to be matched.
Without loss of generality, we consider the situation as indicated in Fig. 12.7. As proved by Sacks et. al., the reflection from the PML may be eliminated if the permittivity tensor components follow the relationship \(c=b=1 / a\).
As we show in Appendix A, the wave equation in the PML can be written as follows:
\[
\begin{equation*}
\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \vec{E}+k^{2} \vec{E}=0 \tag{12.31}
\end{equation*}
\]

Consider a scalar field being having the components:
\[
\begin{gather*}
E(x, y, z)=W(x, y) \exp (j \beta z)  \tag{12.32}\\
\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) W(x, y)+\left(k^{2}-\beta^{2}\right) W(x, y)=0 \tag{12.33}
\end{gather*}
\]


Figure 12.7: Schematics of the perfectly matched layer the decay of the wave within it.

Let us study the asymptotic behavior of the wave in the PML. Usually, the radiative wave occurs when the index near the PML is higher than the effective index, or \(: \operatorname{Re}\left(k^{2}-\beta^{2}\right)>0\). The wave behaves as:
\[
\begin{equation*}
W \sim \exp \left(j c \sqrt{k^{2}-\beta^{2}}\right) \tag{12.34}
\end{equation*}
\]

Thus, the imaginary part of \(c\) will cause the wave to decay within the PML so that we can truncate our eigenmatrix on the outer boundary of the PML.

The criteria for setting the permittivity parameter c is to attenuate the wave without causing reflection. Theoretically, any value of c can be used without causing reflection. However in a numerical simulation, realization of a theory can only be approximate because of discretization using finite number of mesh points. Thus, to minimize reflection, we recommend using unity as the real value of \(c\) (i.e. the same real reflective index in the PML as in the isotropic medium).

When choosing the imaginary part of \(c\), please note the two extremes. If \(\operatorname{Im}(c)\) is too large, the substantial difference between the index of the isotropic medium and the PML may cause significant reflection and you may observe standing wave ripples in the isotropic medium near the PML. On the other hand, if \(\operatorname{Im}(c)\) is too small, the attenuation of the wave within the PML is so weak that it requires a thick PML layer and many mesh points within the PML. If the thickness of the PML is not large enough, the truncation of the eigenmatrix within the PML will cause reflection within the PML which may propagate all the way back to the isotropic medium. Again, we may observe standing wave ripples in the isotropic medium. Therefore the PML should be adjusted in such a way that standing wave ripples do not appear
in the isotropic medium.
Based on some of our initial tests, a value of 0.02 for the imaginary part of \(c\) goes well with a PML layer thickness of 5 microns. 50 mesh points may be allocated for such a PML layer.

\subsection*{12.7 Optical Pumping and Incident Light}

The program allows the use of an external light input to the device. It will be treated as a bias component in the same way as electrode bias. For APSYS, this is a crucial part of modeling photodetectors and solar cells while PICS3D uses the same idea to model SOAs and modulators.

When the device being modeled has an active region, there will be two different wavelengths involved in the simulation: a shorter wavelength controlling the optical generation (i.e. the optical pump) and a longer wavelength resulting from the radiative/stimulated emission. In LASTIP and PICS3D, this is used for optically pumped lasers; similarly, APSYS can model optically pumped LEDs.

Fig. 12.8 shows that for a typical active region under a specific carrier injection condition, it is possible for the material to exhibit interband absorption (or negative gain, thus e-h pair generation) at shorter wavelength while yielding optical gain at the peak gain wavelength. Our accurate optical gain spectrum model is evaluated at every mesh point using an active macro (not just the active region) and will thus respond to different wavelengths by providing either gain or absorption. The transmission of the light through a multi-layer device is modeled using a plane wave transfer matrix approach. The local absorption of the pump generates carriers which, in turn, may generate light at a different wavelength.
The optical pump may be defined as a single wavelength (i.e. pumping by an external laser source) or by using an input spectrum (i.e. a flash lamp or solar spectrum illumination). If a spectrum is provided, then the transfer matrix is calculated for each individual wavelength and the optical generation term is integrated over the whole spectrum.
As in the key emission wavelength, the incident wave can be also be treated as a guided wave and thus all previous discussion of lateral optical mode may be applied without modification.

For more information about how to define an incident light source, refer to the reference section and the light__power statement.
To control the input light in the simulation, the user should remember that the equilibrium calculations define an initial state without any external bias. As the input light is one kind of bias, it needs to be "turned on" with the scan statement. The scan variable "light" starts off with a value of zero and is used as a multiplier


Figure 12.8: Optical gain spectrum and indication of pumping and lasing wavelengths.
to the input light defined in light__power. Setting the value to 1 in a scan fully turns on the input light but larger values can be used; for example, one may wish to multiply an input light spectrum for a multi-sun solar cell simulation.

\section*{Chapter 13}

\section*{WURTZITE STRAINED MQW}

\subsection*{13.1 Introduction}

Recently, wurtzite strained quantum wells have been studied intensively because of applications in GaN blue green lasers and LEDs. However, the previous band structure models are only applicable for zincblende compounds. In this section, we will describe the MQW band structure and optical transition models for wurtzite crystals. We follow the work of S.L. Chuang [62] closely here.

We must point out a couple of major differences between zincblende and wurtzite crystals. The first issue is the base lattice. For zincblende material system, the basic lattice constant is usually well-known (e.g. GaAs or \(\operatorname{InP}\) ) and the strain is well defined in each layer once we know the substrate lattice. In the wurtzite system, a bulk GaN-based material layer is sometimes grown on a thick buffer layer. Through dislocations and defects, the buffer layer may relax and it is not clear what the base lattice constant of the MQW should be.
Although the default lattice base constant in our software is that of GaN, it may not be true for many systems. For example, if a thick bulk layer of AlGaN is grown on a sapphire substrate before the MQW is placed on top, the base lattice constant should be that of bulk AlGaN instead of GaN. For this reason, our active layer macros for wurtzite MQW provide a statement to describe the base lattice so that the users can adjust it according to individual material systems.

Another important issue is material parameters. As we will see below, there are many times more band structure and strain parameters for wurtzite than for the zincblende material system. Since wurtzite semiconductor band structures and optical properties are less understood and many bandnstructure parameters are not available, our expectation of the accuracy of the simulation should be lower than that for zincblende material system.
On a final note, other wurtzite compounds such as ZnO have become a popular field
of study in recent years. Most of the discussions from this chapter will apply but care must be taken to use the correct material parameters and base lattices since strain terms will differ.

\subsection*{13.2 Bulk Band Structure}

Consider a strained wurtzite crystal pseudomorphically grown along the c-axis (z axis) on another thick wurtzite layer. The base lattice constant is \(a_{0}\) and the original lattice constant of the layer under consideration is \(a\). The strain tensor in the well region has the following elements:
\[
\begin{align*}
& \varepsilon_{x x}=\varepsilon_{y y}=\frac{a_{0}-a}{a} \\
& \varepsilon_{z z}=-2 \frac{C_{13}}{C_{33}} \varepsilon_{x x} \\
& \varepsilon_{x y}=\varepsilon_{y z}=\varepsilon_{z x} \tag{13.1}
\end{align*}
\]

The conduction bands can be characterized by a parabolicyband model with different electron effective masses \(m_{e}^{t}\) and \(m_{e}^{z}\) perpendicular and parallel to the c-growth direction, respectively. The hydrostatic energy shift in the conduction band can be written as:
\[
\begin{equation*}
P_{c e}=a_{c z} \varepsilon_{z z}+a_{c t} \varepsilon_{x x}+\varepsilon_{y y} \tag{13.2}
\end{equation*}
\]

The band structure for the valence band is more complicated. Using the k.p method Chuang and Chang [63] have derived a 6 by 6 Hamiltonian which has been blockndiagonalized into the following upper and lower Hamiltonians:
\[
H_{6 \times 6}^{v}(k)=\left[\begin{array}{cc}
H_{3 \times 3}^{U}(k) & 0  \tag{13.3}\\
0 & H_{3 \times 3}^{L}(k)
\end{array}\right]
\]
where:
\[
\begin{align*}
H^{U} & =\left[\begin{array}{ccc}
F & K_{t} & -i H_{t} \\
K_{t} & G & \Delta-i H_{t} \\
i H_{t} & \Delta+i H_{t} & \lambda
\end{array}\right]  \tag{13.4}\\
H^{L} & =\left[\begin{array}{ccc}
F & K_{t} & i H_{t} \\
K_{t} & G & \Delta+i H_{t} \\
-i H_{t} & \Delta-i H_{t} & \lambda
\end{array}\right]
\end{align*}
\]

When there is strain, the energy bands of shift in a complicated manner. We need to use a common reference energy level when writing down the Hamiltonian. However, we wish to stress that this reference is only for the purposes of solving the Hamiltonian and obtain the bandgap, energy dispersion curves, etc...: in a full device simulation, band alignment follows the rules set out in Sec. 10.1.

Following the above convention for the wurtzite structure, if \(E_{c}^{0}\) is the unstrained conduction band edge, the reference valence band level is as follows:
\[
\begin{equation*}
E_{v}^{0}=E_{c}^{0}-\left(E_{g}+\Delta_{1}+\Delta_{2}\right) \tag{13.5}
\end{equation*}
\]

When there is strain, the conduction band is shifted by an amount \(P_{c e}\) and the new reference level is:
\[
\begin{equation*}
E_{v}^{0}=E_{c}-\left(E_{g}+\Delta_{1}+\Delta_{2}+P_{c e}\right) \tag{13.6}
\end{equation*}
\]

Using the above reference energy, the matrix elements are defined as follows:
\[
\begin{align*}
F & =\Delta_{1}+\Delta_{2}+\lambda+\theta \\
G & =\Delta_{1}-\Delta_{2}+\lambda+\theta \\
\lambda & =\lambda_{k}+\lambda_{\varepsilon} \\
\lambda_{k} & =\frac{\hbar^{2}}{2 m_{0}}\left(A_{1} k_{z}^{2}+A_{2} k_{t}^{2}\right) \\
\lambda_{\varepsilon} & =D_{1} \varepsilon_{z z}+D_{2}\left(\varepsilon_{x x}+\varepsilon_{y y}\right) \\
\theta & =\theta_{k}+\theta_{\varepsilon} \\
\theta_{k} & =\frac{\hbar^{2}}{2 m_{0}}\left(A_{3} k_{z}^{2}+A_{4} k_{t}^{2}\right) \\
\theta_{\varepsilon} & =D_{3} \varepsilon_{z z}+D_{4}\left(\varepsilon_{x x}+\varepsilon_{y y}\right) \\
K_{t} & =\frac{\hbar^{2}}{2 m_{0}} A_{5} k_{t}^{2} \\
H_{t} & =\frac{\hbar^{2}}{2 m_{0}} A_{6} k_{t} k_{z} \\
\Delta & =\sqrt{2} \Delta_{3} \tag{13.7}
\end{align*}
\]

Please note that the base vectors \(\mid 1>\) to \(\mid 6>\) of the above can be expressed by spherical harmonics \(Y_{l m}(l=1)\) [62]. For the upper Hamiltonian, \(|1>,|2>| 3>\), corresponds to heavy hole (HH), light hole (LH) and crystal field split hole (CH), respectively. At the zone center ( \(\mathrm{k}=0\) ), the HH subbands are decoupled from the LH and CH subbands while there is always a coupling between the LH and CH bands.
In our simulation software, the above Hamiltonian is solved to generate the bulk band structure from which the density of states are evaluated for bulk macros. To achieve maximum efficiency, the bulk valence band structure is fitted to a parabolic band for each of HH, LH and CH bands under any strain condition. Such fitted parabolic bands are used for modeling the non-active bulk regions. For MQW active region, a more rigorous approach is used which we shall describe below.

\subsection*{13.2.1 MQW Model - Effective Mass Approximation}

In general, the dispersion of bulk valence bands is non-parabolic and anisotropic with strong mixing or anti-crossing behavior in the direction perpendicular (or transverse) to the c-axis. We need an effective mass model for the computation of density of states and for a simplified MQW model.

An efficient approximation is to take the effective masses fitted from the bulk band structure. This approach takes into account the anti-crossing behavior but the quality of the fit can be poor near some range for the transverse direction (see Fig. 13.1 and Fig. 13.2).
Based on Ref. [63], we have also implemented the following analytical effective mass model for the valence band:
- 1) Within a range of small k (a situation when the valence band is lightly populated by holes), the following effective masses hold:
\[
\begin{align*}
& m 0 / m_{h h}^{z}=-\left(A_{1}+A_{3}\right) \\
& m 0 / m_{l h}^{z}=-\left[A_{1}+\left(\frac{E_{2}^{0}-\lambda_{e}}{E_{2}^{0}-E_{3}^{0}}\right) A_{3}\right] \\
& m 0 / m_{c h}^{z}=-\left[A_{1}+\left(\frac{E_{3}^{0}-\lambda_{e}}{E_{3}^{0}-E_{2}^{0}}\right) A_{3}\right]  \tag{13.8}\\
& m 0 / m_{h h}^{t}=-\left(A_{2}+A_{4}\right) \\
& m 0 / m_{l h}^{t}=-\left[A_{2}+\left(\frac{E_{2}^{0}-\lambda_{e}}{E_{2}^{0}-E_{3}^{0}}\right) A_{4}\right] \\
& m 0 / m_{c h}^{t}=-\left[A_{2}+\left(\frac{E_{3}^{0}-\lambda_{e}}{E_{3}^{0}-E_{2}^{0}}\right) A_{4}\right] \tag{13.9}
\end{align*}
\]
where \(E_{i}^{0}(i=1,2,3)\) are the valence band edges at \(\mathrm{k}=0\). The parabolic bands of this model are shown in Figs. 13.3 and 13.4.
- 2) For a large range of \(k\) (a situation when the valence band is heavily populated by holes), the following effective masses formulas are valid:
\[
\begin{align*}
m 0 / m_{h h}^{z} & =-\left(A_{1}+A_{3}\right) \\
m 0 / m_{l h}^{z} & =-\left(A_{1}+A_{3}\right) \\
m 0 / m_{c h}^{z} & =-A_{1}  \tag{13.10}\\
m 0 / m_{h h}^{t} & =-\left(A_{2}+A_{4}-A_{5}\right) \\
m 0 / m_{l h}^{t} & =-\left(A_{2}+A_{4}+A_{5}\right) \\
m 0 / m_{c h}^{t} & =-A_{2} \tag{13.11}
\end{align*}
\]


Figure 13.1: Transverse valence bands (points) fitted to effective mass model.

The parabolic bands of this model are shown in Figs. 13.5 and 13.6.
- 3) A compromise of the above two models is to average them. The parabolic bands with average masses are shown in Figs. 13.7 and 13.8.

The default setting in Crosslight software is 3) above. The user may adjust the setting of the effective mass model through the statement modify__wurtzite. The choice of model is based on how heavily the valence bands are populated by holes (i.e. hole carrier density).

\subsection*{13.3 Wurtzite dipole moments}

Since the crystal symmetry of wurtzite is different from that of zincblende, the dipole moment in effective mass approximation for zincblende can not be used here and we need to use more accurate models (e.g. k.p theory) to compute the dipole moment for optical transitions. However, study of results in k-dependent dipole moment from k.p theory for a large number of structures leads us to propose the following simplified dipole moment enhancement factors:
\[
\begin{align*}
A_{h h} & =3 / 2 \\
A_{l h} & =\frac{3 \cos ^{2}\left(\theta_{e}\right)}{2} \\
A_{c h} & =0 \tag{13.12}
\end{align*}
\]


Figure 13.2: Valence bands along c-axis (points) fitted to effective mass model.


Figure 13.3: Transverse valence bands (points) as compared with analytical effective mass model of small k-range.


Figure 13.4: c-axis valence bands (points) as compared with analytical effective mass model of small k-range.


Figure 13.5: Transverse valence bands (points) as compared with analytical effective mass model of large k-range.


Figure 13.6: c-axis valence bands (points) as compared with analytical effective mass model of large k-range.


Figure 13.7: Transverse valence bands (points) as compared with analytical effective mass model of averaged masses.


Figure 13.8: c-axis valence bands (points) as compared with analytical effective mass model of averaged masses.
for TE and
\[
\begin{align*}
A_{h h} & =0 \\
A_{l h} & =3-3 \cos ^{2}\left(\theta_{e}\right) \\
A_{c h} & =3 \tag{13.13}
\end{align*}
\]
for TM.
The \(\cos ^{2}\left(\theta_{e}\right)\) term above is defined in the same way as in zincblende. Please note that we formulate the above factors in such a way that the following conservation rule is obeyed:
\[
\begin{equation*}
2 \times A_{h}^{T E}+A_{h}^{T M}=3,(h=h h, l h, \text { or } c h) \tag{13.14}
\end{equation*}
\]

The dipole moment is expressed as:
\[
\begin{align*}
M_{h h} & =A_{h h} O_{i j} M_{b} \\
M_{l h} & =A_{l h} O_{i j} M_{b} \\
M_{c h} & =A_{c h} O_{i j} M_{b} \tag{13.15}
\end{align*}
\]
where \(O_{i j}\) is wave function overlap integral and \(M_{b}\) is bulk dipole moment given by [62] as follows:
\[
\begin{align*}
M_{b}^{T M} & =\frac{m_{0}}{6} E_{p z} \\
E_{p z} & =\left(\frac{1}{m_{e}^{z}}-1\right) \frac{\left(E_{g}+\Delta_{1}+\Delta_{2}\right)\left(E_{g}+2 \Delta_{2}\right)-2 \Delta_{3}^{2}}{E_{g}+2 \Delta_{2}} \tag{13.16}
\end{align*}
\]
\[
\begin{align*}
M_{b}^{T E} & =\frac{m_{0}}{6} E_{p x} \\
E_{p x} & =\left(\frac{1}{m_{e}^{t}}-1\right) \frac{E_{g}\left[\left(E_{g}+\Delta_{1}+\Delta_{2}\right)\left(E_{g}+2 \Delta_{2}\right)-2 \Delta_{3}^{2}\right]}{\left(E_{g}+\Delta_{1}+\Delta_{2}\right)\left(E_{g}+\Delta_{2}\right)-\Delta_{3}^{2}} \tag{13.17}
\end{align*}
\]

\subsection*{13.4 MQW Model - Valence Mixing}

As in zincblende, off-diagonal elements in the Hamiltonian imply mixing of the valence band states. Within the envelope function approximation, we write the wave function as follows:
\[
\begin{align*}
& \Psi_{m}^{U}\left(z ; k_{t}\right)=\frac{e^{i \mathbf{k}_{\mathbf{t}} \cdot \mathbf{r}_{\mathbf{t}}}}{\sqrt{A}}\left(g_{m}^{(1)}\left(z ; k_{t}\right)\left|1>+g_{m}^{(2)}\left(z ; k_{t}\right)\right| 2>+g_{m}^{(3)}\left(z ; k_{t}\right) \mid 3>\right)  \tag{13.18}\\
&\left.\left.\Psi_{m}^{L}\left(z ; k_{t}\right)=\frac{e^{i \mathbf{k}_{\mathbf{t}} \cdot \mathbf{r}_{\mathbf{t}}}}{\sqrt{A}}\left(g_{m}^{( } 4\right)\left(z ; k_{t}\right)\left|4>+g_{m}^{(5)}\left(z ; k_{t}\right)\right| 5>+g_{m}^{(6)}\left(z ; k_{t}\right) \right\rvert\, 6>\right) \tag{13.19}
\end{align*}
\]

The valence subbands are determined by the following coupled differential equations:
\[
\begin{equation*}
\sum_{j=1}^{3}\left(H_{i j}^{U}\left(k_{z}=-i \frac{\partial}{\partial z}\right)+\delta_{i j} E_{v}^{0}(z)\right) g_{m}^{(j)}\left(z ; k_{t}\right)=E_{m}^{U}\left(k_{t}\right) g_{m}^{(i)}\left(z ; k_{t}\right) \tag{13.20}
\end{equation*}
\]

The valence band discontinuity is represented by discontinuity in \(E_{v}^{0}(z)\) (the reference energy). Similar equations can be written down for the lower Hamiltonian. It can be shown that MQW with reflection symmetry \(E_{v}^{0}(z)=E_{v}^{0}(-z)\), the upper and lower Hamiltonians have the same band structures. In the software, we use finite difference method to solve the coupled differential equations. This gives us the valence mixing subbands.
The dipole moments, taking into account the upper and lower Hamiltonian degeneracy, are given as follows:
\[
\begin{gather*}
M_{n m}^{T E}=M_{b} \frac{3}{4}\left[<\phi_{n}\left|g_{m}^{(1)}>^{2}+<\phi_{n}\right| g_{m}^{(2)}>^{2}\right]  \tag{13.21}\\
\left.M_{n m}^{T M}=M_{b} \frac{3}{2}<\phi_{n} \right\rvert\, g_{m}^{(3)}>^{2} \tag{13.22}
\end{gather*}
\]

\subsection*{13.5 Polarization and interface charges}

One of the most troublesome properties of the wurtzite material system is that its most common compounds have spontaneous and strain-induced polarization terms.

This manifests itself as a fixed interface charges at heterojunction interfaces. In quantum wells, these charges create a local field which separates carriers (i.e. QuantumConfined Stark Effect). This affects the wave functions and the resulting gain calculations.
To model this effect properly, the user must use the self_consistent statement: this will force the solver to iterate between the Poisson/drift-diffusion equations and the Schrōdinger solver so a self-consistent solution can be found. Without this, the Schrōdinger solver will assume a flat band profile.
Since the local field can be different from well to well in a MQW region, it is recommended that the calculations for each well be done independently. To do this, a different material number must be assigned to each well: the independent_mqw statement in the layer file can automate this. If the same material number is used for multiple wells, the Schrōdinger and gain calculations will only be done once.
Interface charges can be defined manually with the interface statement. For the InGaN and AlGaN material system, this process has been automated in the layer file with the set__polarization statement.

\subsection*{13.6 Non-Polar and Semi-Polar materials}

The polarization effects discussed in the previous section occur along the most natural growth orientation of wurtzite crystals: c-plane. However, it is possible to grow the material in other orientations where these effects can be reduced or even eliminated [65].

In this case, a full \(6 \times 6\) k.p method must be used to find the correct masses for this orientation. This is done with the modify __wurtzite and modify_qu statements.
The gain and spontaneous emission integrals must also be done differently in this situation and an explicit averaging of the results over the direction of the in-plane wave vector must be used. This can be time consuming so it is recommended to run the gain calculations separately and use tabulated values in the main device simulation.
Crystal plane orientations are given using the Bravais-Miller indices (hkil) where \(i=-h-k\) : the redundant index is useful in highlighting equivalent symmetric directions. The plane normal vector is specified using the rotation \(\left(x \rightarrow x^{\prime}\right)\) angles \(\phi\) and \(\theta\). To take into account the anisotropic refractive index in mode calculations, the direction of TE mode ( \(x^{\prime \prime}\) ) or the waveguide propagation direction ( \(y^{\prime \prime}\) ) must also be specified with the in-plane angle \(\psi\). These angles are illustrated in Fig. 13.9.
Some common plane orientations are shown in Table 13.1. Note that because of rotational symmetry, multiple \(\phi\) values can be used for the same plane orientation. However, the in-plane waveguide direction may need to be adjusted.


Figure 13.9: Rotation angles for non-polar and semi-polar wurtzite plane orientations.
\begin{tabular}{|c|l|c|c|l|}
\hline Orientation & \begin{tabular}{l} 
Bravais-Miller \\
Indices
\end{tabular} & Classification & \(\phi\) & \(\theta\) \\
\hline c-plane & \((0001)\) & polar & 0 & 0 \\
\hline m-plane & \((1 \overline{1} 00)\) & non-polar & 0 & 90 \\
\hline a-plane & \((11 \overline{2} 0)\) & non-polar & 30 & 90 \\
\hline r-plane & \((1 \overline{1} 02)\) & semi-polar & 0 & \(\operatorname{atan}\left(\frac{c}{2 a}\right)\) \\
\hline\(?\) & \((10 \overline{1} 1)\) & semi-polar & 0 & \(\operatorname{atan}\left(\frac{c}{a}\right)\) \\
\hline\(?\) & \((11 \overline{2} 2)\) & semi-polar & 30 & \(\operatorname{atan}\left(\frac{c}{2 a}\right)\) \\
\hline
\end{tabular}

Table 13.1: Common plane orientations in wurtzite crystals .

\subsection*{13.7 Nomenclature}

We list some critical symbol definitions here because these are specific to wurtzite band structure.
\begin{tabular}{ll}
\(a, c\) & Lattice constants of Hexagonal structure. \\
\(E_{g}\) & Bandgap. \\
\(E_{g}\) & Bandgap. \\
\(\Delta_{1}, \Delta_{2}, \Delta_{3}\) & Energy parameters. \\
\(\Delta_{s o}\) & Spin-orbit coupling energy. \\
\(m_{e}^{z}, m_{e}^{t}\) & Conduction band effective masses along c-axis (z) \\
\(A_{i},(i=1, \ldots, 6)\) & and transverse (x-y) direction, respective. \\
\(a_{h}, a_{c}, a_{v}\) & Valence band effective mass parameters. \\
\(D_{i},(i=1, \ldots, 4)\) & tydrostatic deformation potentials of \\
\(C_{13}, C_{33}\) & Valence band shear deformation potentials. \\
Elastic stiffness constants.
\end{tabular}

\section*{Part III}

\section*{PRODUCT SPECIFIC MODELS}


\section*{Chapter 14}

\section*{APSYS SPECIFIC MODELS}

\subsection*{14.1 Time-Dependent Traveling Wave Equations}

As of the 2012 version of APSYS, this model is considered obsolete: please use PICS3D to model optical amplifiers (SOA), modulators (EAM) and superluminescent diodes (SLED). The new model is superior in a number of ways, including a full 3D model that couples longitudinal (wave propagation) and lateral effects in the same sparse solver.

\subsection*{14.2 Theories of Light Emitting Diodes}

\subsection*{14.2.1 Introduction}

A light emitting diode (LED) is different from a laser diode (LD) and deserves special treatment for the following reasons:
- 1) LED operates well below lasing threshold while theories of lasers almost always assumes lasing condition
- 2) Absence of simulated recombination in LED
- 3) Continuous emission spectrum must be considered for LED while longitudinal modes of laser only requires a limited number of lasing wavelengths
- 4) The randomness of spontaneous recombination in LED in contrast to the coherence of laser modes which affects the near and far-field models.

In this section, we attempt to establish the basic theories for LED emission in one direction: perpendicular to the semiconductor surface). This allows us to use a
simple 1D model to formulate our theory; once the basic formulas are established, we will extend it to emission in other directions.

Many of the theories here were initially formulated by Henry for laser diodes and semiconductor optical amplifiers. We find that the same theories are also applicable for LEDs. Interested readers are encouraged to consult Ref. [80].

The model described here is implemented in the led__control statement. A simplified version of the model is available through the led__simple statement: this is useful when used in conjunction with the ray tracing model of Section 14.5.

\subsection*{14.2.2 Fabry-Perot Cavity and LED}

A LED may be regarded as a special case of a Fabry-Perot laser. Without loss of generality, we consider the following device configuration: the z-direction has a waveguiding structure which supports confined lateral/traverse modes. We later relax this condition to include the case with no optical confinement. Please note that in LED, we must treat as many modes as possible since they all contribute to the emission power because of the non-coherent nature of spontaneous emission. In the case of a LD, only a limited number of highly coherent and highly powered modes are considered. For simplicity, we assume throughout this section that the LED does not have any optical coatings so that light emits directly from the semiconductor to the air.

The theoretical bases regarding the wave function, the Wronskian and the "Diffusion" coefficient and its relation to semiconductor spontaneous recombination are covered in Appendix D. We shall only use the results here.

We will consider a waveguide with well confined lateral/transverse modes (xy-mode model). Later, we will relax this constrain and consider a case only confined transverse modes in y direction exist (we call it y-mode model). Finally, we consider a case where there are no confined modes (we call it uniform model).
For a Fabry-Perot cavity from 0 to L , the two basic wave functions \(Z_{1}\) and \(Z_{2}\) are as follows:
\[
\begin{equation*}
Z_{1}(z)=r_{1} \exp (j k z)+\exp (-j k z) \tag{14.1}
\end{equation*}
\]
\[
\begin{equation*}
\left.Z_{2}(z)=\exp (j k z)+r_{2} \exp (2 j k L-j k z)\right] \tag{14.2}
\end{equation*}
\]

We construct the following Wronskian:
\[
\begin{align*}
W= & Z_{1}(z) Z_{2}^{\prime}(z)-Z_{2}(z) Z_{1}^{\prime}(z) \\
= & {\left[r_{1} \exp (j k z)+\exp (-j k z)\right] } \\
& \times\left[j k \exp (j k z)-j k r_{2} \exp (2 j k L-j k z)\right] \\
& -\left[\exp (j k z)+r_{2} \exp (2 j k L-j k z)\right] \\
& \times\left[j k r_{1} \exp (j k z)-j k \exp (-j k z)\right]  \tag{14.3}\\
= & -r_{1} \exp (j k z) j k r_{2} \exp (2 j k L-j k z) \\
& +\exp (-j k z)] j k r_{1} \exp (j k z) \\
& +r_{1} \exp (j k z) j k \exp (-j k z) \\
& -r_{2} \exp (2 j k L-j k z) j k r_{1} \exp (j k z) \\
= & 2 j k\left[1-r_{1} r_{2} \exp (2 j k L)\right]
\end{align*}
\]

Consider the solution of the field in terms of the Green's function:
\[
\begin{gather*}
g\left(z, z_{s}\right) W_{n}=Z_{1}(z) Z_{2}\left(z_{s}\right) \theta\left(z_{s}-z\right)+Z_{2}(z) Z_{1}\left(z_{s}\right) \theta\left(z-z_{s}\right)  \tag{14.4}\\
E(z) W_{n}=\int d z_{s} f\left(z_{s}\right)\left[Z_{1}(z) Z_{2}\left(z_{s}\right) \theta\left(z_{s}-z\right)+Z_{2}(z) Z_{1}\left(z_{s}\right) \theta\left(z-z_{s}\right)\right] \\
=Z_{1}(z) \int_{z}^{L} Z_{2}\left(z_{s}\right) d z_{s} f\left(z_{s}\right)+Z_{2}(z) \int_{0}^{z} Z_{1}\left(z_{s}\right) d z_{s} f\left(z_{s}\right) \tag{14.5}
\end{gather*}
\]
where \(f\left(z_{s}\right)\) is the noise term due to spontaneous emission the details of which can be found in Appendix D.
Consider the squared ensemble average
\[
\begin{align*}
<\left|E(z) W_{n}\right|^{2}>= & <\left[Z_{1}(z) \int_{z}^{L} Z_{2}\left(z_{s}\right) d z_{s} f\left(z_{s}\right)\right. \\
+ & \left.Z_{2}(z) \int_{0}^{z} Z_{1}\left(z_{s}\right) d z_{s} f\left(z_{s}\right)\right] \\
& {\left[Z_{1}^{*}(z) \int_{z}^{L} Z_{2}^{*}\left(z_{t}\right) d z_{t} f^{*}\left(z_{t}\right)\right.} \\
+ & \left.Z_{2}^{*}(z) \int_{0}^{z} Z_{1}^{*}\left(z_{t}\right) d z_{t} f^{*}\left(z_{t}\right)\right]> \tag{14.6}
\end{align*}
\]

We note that the cross terms of the above four terms are zero since noise sources are uncorrelated:
\[
\begin{align*}
<\left|E(z) W_{n}\right|^{2}> & =\left|Z_{1}(z)\right|^{2} \int_{z}^{L}\left|Z_{2}\left(z_{s}\right)\right|^{2} d z_{s} f_{0}\left(z_{s}\right) \\
& +\left|Z_{2}(z)\right|^{2} \int_{0}^{z}\left|Z_{1}\left(z_{s}\right)\right|^{2} d z_{s} f_{0}\left(z_{s}\right) \\
& =\left|Z_{1}(z)\right|^{2} \int_{z}^{L}\left|Z_{2}\left(z_{s}\right)\right|^{2} d z_{s} 2 D_{F F}\left(z_{s}\right) \\
& +\left|Z_{2}(z)\right|^{2} \int_{0}^{z}\left|Z_{1}\left(z_{s}\right)\right|^{2} d z_{s} 2 D_{F F}\left(z_{s}\right) \tag{14.7}
\end{align*}
\]

As usual, we ignore the interference terms when we consider energy flow so that
\[
\begin{gather*}
\left|Z_{1}(z)\right|^{2} \approx r_{1}^{2} \exp \left(-2 k^{\prime \prime} z\right)+\exp \left(2 k^{\prime \prime} z\right)  \tag{14.8}\\
\left|Z_{2}(z)\right|^{2} \approx \exp \left(-2 k^{\prime \prime} z\right)+r_{2}^{2} \exp \left(-2 k^{\prime \prime}(2 L-z)\right] \tag{14.9}
\end{gather*}
\]

We note that \(\left|W_{n}\right|^{2}\) varies between \(4 k^{2}\left(1-r_{1} r_{2}\right)^{2}\) and \(4 k^{2}\left(1+r_{1} r_{2}\right)^{2}\) rapidly. To a good approximation, we take \(\left|W_{n}\right|^{2}=4 k^{2}\) to simplify matters.

The linear photon density (in units of \(1 / \mathrm{m}\) ) is given by
\[
\begin{equation*}
S(z) \hbar \omega \Delta \omega=\sum_{n} 2 \varepsilon_{0} n n_{g}<|E(z)|^{2}> \tag{14.10}
\end{equation*}
\]
where the summation n is over different lateral modes.
The power emission spectrum may be calculated from left and right facets as follows:
\[
\begin{equation*}
\left.P_{L}(\omega) \text { Delta } \omega=\frac{1-r_{1}^{2}}{1+r_{1}^{2}} \sum_{n} v_{g} 2 \varepsilon_{0} n n_{g}<|E(0)|^{2}\right\rangle \tag{14.11}
\end{equation*}
\]
where \(v_{g}\) and \(n_{g}\) are the group velocity and group index, respectively.
At the left facet:
\[
\begin{align*}
&<|E(0)|^{2}>=\left|Z_{1}(0)\right|^{2} /\left|W_{n}\right|^{2} \int_{0}^{L}\left|Z_{2}\left(z_{s}\right)\right|^{2} d z_{s} 2 D_{F F}\left(z_{s}\right)  \tag{14.12}\\
& P_{L}(\omega)=\frac{1-r_{1}^{2}}{1+r_{1}^{2}} v_{g} 2 \varepsilon_{0} n n_{g} \frac{\left(1+r_{1}^{2}\right)}{4 k^{2}} \int_{0}^{L}\left|Z_{2}\left(z_{s}\right)\right|^{2} d z_{s} 2 D_{F F}\left(z_{s}\right) \tag{14.13}
\end{align*}
\]

As we derived in Appendix D that the diffusion coefficient
\[
\begin{equation*}
2 D_{F F}=\frac{\pi \hbar}{\varepsilon_{0} v_{g} n^{2}} \hbar \omega<n\left|r_{s p}(\omega)\right| n> \tag{14.14}
\end{equation*}
\]
where \(r_{s p}\) is the spontaneous emission rate at a photon frequency. \(\mid n>\) is used to denote the wave function integral for the nth lateral mode.
\[
\begin{equation*}
P_{L}(\omega)=\sum_{n} \frac{1-r_{1}^{2}}{1+r_{1}^{2}} v_{g} 2 \varepsilon_{0} n n_{g} \frac{\left(1+r_{1}^{2}\right)}{4 k^{2}} \frac{\pi \hbar}{\varepsilon_{0} v_{g} n^{2}} \int_{0}^{L}\left|Z_{2}\left(z_{s}\right)\right|^{2} d z_{s} \hbar \omega<n\left|r_{s p}(\omega)\right| n>. \tag{14.15}
\end{equation*}
\]

Our key result for spontaneous emission power for an \(\omega\) interval is as follows:
\[
\begin{equation*}
P_{L}(\omega) \Delta \omega=\sum_{n}\left(1-r_{1}^{2}\right) \frac{2 n_{g} \pi}{n} \frac{1}{4 k^{2}} \int_{0}^{L}\left|Z_{2}\left(z_{s}\right)\right|^{2} d z_{s}(\hbar \omega)<n\left|r_{s p}(E)\right| n>\Delta E . \tag{14.16}
\end{equation*}
\]

The above formula is applicable for a waveguide with a limited number of lateral / transverse modes (the xy-mode model). It can be adapted for different circumstances as follows.
We consider a device cross section with active region large enough to accommodate many different lateral modes in both x and y direction (the plane wave model or uniform model). Let us now count the number of allowable lateral modes at frequency \(\omega\).

If we assume a large rectangular device active cross section:
\[
\begin{equation*}
(\omega / c)^{2}=k_{z}^{2}+k_{x}^{2}+k_{y}^{2} \tag{14.17}
\end{equation*}
\]

At a fixed emission frequency, if we consider all emissions in \(\pm z\) direction, the allowable lateral states are confined within a circle of
\[
\begin{equation*}
k_{x}^{2}+k_{y}^{2}<(\omega n / c)^{2} \tag{14.18}
\end{equation*}
\]

Thus,
\[
\begin{equation*}
\sum_{n}=A \pi k^{2} /\left(4 \pi^{2}\right)=A k^{2} /(4 \pi) \tag{14.19}
\end{equation*}
\]
where \(A\) is the active region cross section. We assume all the modes overlaps with a uniform active region perfectly (uniform model) so that \(<n \mid n>=1\).
So far, all of our models based on the Green's function are one-dimensional. Thus the wave number \(k\) should be understood as \(k_{z}\) if the actual propagation direction is not in z-direction. We make a further approximation to replace \(k_{z}\) by a certain average \(\left.<k_{z}\right\rangle\) and remove the summation altogether:
\[
\begin{equation*}
P_{L}(\omega) \Delta \omega=\left(1-r_{1}^{2}\right) \frac{n_{g}}{2 n} \frac{k^{2}}{4<k_{z}>^{2}} A \int_{0}^{L}\left|Z_{2}\left(z_{s}\right)\right|^{2} d z_{s}(\hbar \omega) r_{s p}(E) \Delta E \tag{14.20}
\end{equation*}
\]

The internal emission power from spontaneous emission is
\[
\begin{equation*}
P_{\text {spon }}(\omega) \Delta \omega=A \int_{0}^{L} d z_{s}\left(\hbar \omega r_{s p}(E)\right) \Delta E \tag{14.21}
\end{equation*}
\]

The ratio of \(\zeta_{\text {ext }}=P_{L} / P_{\text {spon }}\) gives us the LED external efficiency at a frequency in the left direction for such a highly multimode device.
If we assume that \(r_{s p}\) is reasonably uniform in z-direction, the external efficiency in one direction can be written as:
\[
\begin{equation*}
\zeta_{e x t}=\left(1-r_{1}^{2}\right) \frac{n_{g}}{2 n} \frac{k^{2}}{4<k_{z}>^{2}} \int_{0}^{L}\left|Z_{2}\left(z_{s}\right)\right|^{2} d z_{s} / L \tag{14.22}
\end{equation*}
\]

We choose \(k^{2} /<k_{z}>^{2}=4 / 3\) so that in the limit of zero facet reflectivity and transparent material, the external efficiency for one facet is \(1 / 6\), as it should be if the device is in a cubic shape.


Figure 14.1: External efficiency versus relative gain (gL) of an LED with large active region cross section supporting many lateral modes.

Thus:
\[
\begin{equation*}
P_{L}(\omega) \Delta \omega=\left(1-r_{1}^{2}\right) \frac{n_{g}}{6 n} A \int_{0}^{L}\left|Z_{2}\left(z_{s}\right)\right|^{2} d z_{s}(\hbar \omega) r_{s p}(E) \Delta E . \tag{14.23}
\end{equation*}
\]
and the external efficiency for a case of uniform spontaneous emission medium is:
\[
\begin{equation*}
\zeta_{e x t}=\left(1-r_{1}^{2}\right) \frac{n_{g}}{6 n} \int_{0}^{L}\left|Z_{2}\left(z_{s}\right)\right|^{2} d z_{s} / L \tag{14.24}
\end{equation*}
\]

The integral is evaluated as follows:
\[
\begin{align*}
\int_{0}^{L}\left|Z_{2}(z)\right|^{2} d z / L & =\int_{0}^{L} d z / L\left[\exp \left(-2 k^{\prime \prime} z\right)+r_{2}^{2} \exp \left(-2 k^{\prime \prime}(2 L-z)\right]\right. \\
& =\frac{1}{2 k^{\prime \prime} L}\left[1-\exp \left(-2 k^{\prime \prime} L\right)\right] \\
& -\frac{1}{2 k^{\prime \prime} L} r_{2}^{2} \exp \left(-4 k^{\prime \prime} L\right)\left[1-\exp \left(2 k^{\prime \prime} L\right)\right] \tag{14.25}
\end{align*}
\]

To gain some insight into how the external efficiency of a LED depends on the gain/loss of the material, we plot the single facet external efficiency of an LED with large active region cross section supporting many lateral modes (uniform model). Parameters are chosen as follows: \(r 1^{2}=r_{2}^{2}=0.3, n=n_{g}=3.4\). The result is shown in Fig. 14.1. As expected, the efficiency goes up as gain is increased. At transparency, the external efficiency amounts to \(1 / 6\) for a single facet which accounts for 100 percent of light emission in one direction.

Similar expression can be written for traveling waves in other directions. For example:
\[
\begin{equation*}
P_{R}(\omega) \Delta \omega=\sum_{n}\left(1-r_{1}^{2}\right) /\left(1+r_{2}^{2}\right) \frac{2 n_{g} \pi}{n} \frac{1}{4 k^{2}} Z_{2}(L) \int_{0}^{L}\left|Z_{1}\left(z_{s}\right)\right|^{2} d z_{s}(\hbar \omega)<n\left|r_{s p}(E)\right| n>\Delta E . \tag{14.26}
\end{equation*}
\]

The integral is evaluated as follows:
\[
\begin{align*}
& \int_{0}^{L}\left|Z_{1}(z)\right|^{2} d z / L=\int_{0}^{L} d z / L\left[r_{1}^{2} \exp \left(-2 k^{\prime \prime} z\right)+\exp \left(2 k^{\prime \prime} z\right)\right] \\
&=\frac{1}{2 k^{\prime \prime} L} r_{1}^{2}\left[1-\exp \left(-2 k^{\prime \prime} L\right)\right] \\
&-\frac{1}{2 k^{\prime \prime} L}\left[1-\exp \left(2 k^{\prime \prime} L\right)\right]  \tag{14.27}\\
& P_{R}(\omega) \Delta \omega=\sum_{n}\left(1-r_{2}^{2}\right) \frac{2 n_{g} \pi}{n} \frac{1}{4 k^{2}} \exp \left(-2 k^{\prime \prime} L\right) \int_{0}^{L}\left|Z_{1}\left(z_{s}\right)\right|^{2} d z_{s}(\hbar \omega)<n\left|r_{s p}(E)\right| n>\Delta E .  \tag{14.28}\\
& \exp \left(-2 k^{\prime \prime} L\right) \int_{0}^{L}\left|Z_{1}(z)\right|^{2} d z / L=\frac{1}{2 k^{\prime \prime} L} r_{1}^{2} \exp \left(-2 k^{\prime \prime} L\right)\left[1-\exp \left(-2 k^{\prime \prime} L\right)\right] \\
&+\frac{1}{2 k^{\prime \prime} L}\left[1-\exp \left(-2 k^{\prime \prime} L\right)\right] \\
&=\frac{1}{2 k^{\prime \prime} L}\left[1-\exp \left(-2 k^{\prime \prime} L\right)\right] \\
&-\frac{1}{2 k^{\prime \prime} L} r_{1}^{2} \exp \left(-4 k^{\prime \prime} L\right)\left[1-\exp \left(2 k^{\prime \prime} L\right)\right] \tag{14.29}
\end{align*}
\]
which is completely consistent with our result for the left facet. Thus we will only consider emission in one direction without loss of generality.

\subsection*{14.2.3 Internal reflection and LED emission power}

The result in Eq. 14.23 is obtained under rather ideal condition and assumes that all emission in \(\pm z\) can escape from the LED. The result is useful for qualitative analysis regarding the dependence of gain/loss. However, the efficiency from this result is overestimated because in reality, only a small fraction of the light in \(\pm z\) can escape from the LED simply because of the internal total reflection angle is much smaller than 90 degrees. For a more accurate theory, we will re-evaluate Eq. 14.16 taking into account the internal reflection angle.


Air
Figure 14.2: Schematics showing the angle of refraction for an LED.

If the effective refractive index of the material is \(n_{e 1}\), the maximum internal reflection angle \(\theta_{\max }\) (see also Fig. 14.2) is:
\[
\begin{equation*}
\sin \theta_{\max }=1 / n_{e 1} \tag{14.30}
\end{equation*}
\]

For the uniform model, we should only consider the wave vectors within this angle:
\[
\begin{equation*}
\sum_{n}=\int_{0}^{k / n_{e 1}} A d k_{r}^{2} /(4 \pi) \tag{14.31}
\end{equation*}
\]
where
\[
\begin{equation*}
k_{r}^{2}=k_{x}^{2}+k_{y}^{2} \tag{14.32}
\end{equation*}
\]

Please note that the wave number in Eq. 14.16 is to be understood as \(k_{z}\). We need to evaluate the numerical factor as follows:
\[
\begin{align*}
f_{\text {cone }} & = \\
& =\frac{1}{8} \int_{0}^{k / n_{e 1}} d k_{r}^{2} /\left(k^{2}-k_{z}^{2}\right) \\
& =\frac{1}{8} \ln \left(\frac{n_{e 1}^{2}}{n_{e 1}^{2}-1}\right) \tag{14.33}
\end{align*}
\]

The power emission from facet 1 (left) is
\[
\begin{equation*}
P_{L}(\omega) \Delta \omega=\left(1-r_{1}^{2}\right) \frac{A n_{g}}{8 n} l n\left(\frac{n_{e 1}^{2}}{n_{e 1}^{2}-1}\right) \int_{0}^{L}\left|Z_{2}\left(z_{s}\right)\right|^{2} d z_{s}(\hbar \omega) r_{s p}(E) \Delta E . \tag{14.34}
\end{equation*}
\]

Please note that the above emission power is much smaller than the ideal case in Eq. 14.23 because the new numerical factor is much smaller:
\[
\begin{equation*}
\frac{1}{8} \ln \left(\frac{n_{e 1}^{2}}{n_{e 1}^{2}-1}\right)<1 / 6 \tag{14.35}
\end{equation*}
\]

It is clear that for an LED with simple configuration, the main power limitation is set by the internal reflection angle. Most of the emission power is lost due to internal facet reflection and absorption. Only a small fraction (around 10 percent) escapes through a small cone vertical to the LED surface.
The reduction factor in Eq. (14.33) has a problem of consistency with the factor of \(1 / 6\) because the former does not reduce to the latter if the index of refraction tends to unity. Therefore, we should use the same approximation of \(<k_{z}^{2}>/ k^{2}=3 / 4\) and obtain:
\[
\begin{align*}
f_{\text {cone }} & = \\
& =\frac{1}{8<k_{z}^{2}>} \int_{0}^{k / n_{e 1}} d k_{r}^{2} \\
& =\frac{1}{6 n_{e 1}^{2}} \tag{14.36}
\end{align*}
\]

The above formula of cone reduction factor is preferred because it reduces to the ideal case of no internal reflection if the index tends to unity. For most applications in LED emission to the top surface, the size of the active region facing the top is large enough to use the uniform model and thus Eq. 14.36 is our model of choice. The simulation program has a switch to allow the user to include or exclude the effect of total internal reflection.

By default, the idea case of no internal reflection is used so that the power emission is calculated by setting index to unity in Eq. 14.36. This represents an overestimate of emission in one direction. On the other hand, use of total reflection to assume that all lights being totally reflected are lost is an under-estimate because modern LED's often have special geometric design to enable the lights being totally reflected to change directions and to escape the device.

In some cases, such as emitting from the sides of a thin device with single mode confining waveguide, it is useful to consider a case where only one direction (say y -direction) has confined modes (y-mode model) while the x -direction is unconfined with a large device dimension \(L_{x}\). We can simplify mode summation in the xdirection as follows.
Recall our basic result:
\[
\begin{equation*}
P_{L}(\omega) \Delta \omega=\sum_{n x} \sum_{n y}\left(1-r_{1}^{2}\right) \frac{2 n_{g} \pi}{n} \frac{1}{4 k^{2}} \int_{0}^{L}\left|Z_{2}\left(z_{s}\right)\right|^{2} d z_{s}(\hbar \omega)<n\left|r_{s p}(E)\right| n>\Delta E . \tag{14.37}
\end{equation*}
\]

The number of available modes in the x-direction is simply:
\[
\begin{equation*}
\sum_{n x}=\int_{0}^{k / n_{e 1}} L_{x} d k_{r} /(2 \pi) \tag{14.38}
\end{equation*}
\]

Thus, we need to evaluate the integral:
\[
\begin{align*}
g_{l}= & \frac{1}{4} \int_{0}^{k / n_{e 1}} d k_{r} /\left(k^{2}-k_{r}^{2}\right)  \tag{14.39}\\
= & \frac{1}{8} \ln \left(\frac{n_{e 1}+1}{n_{e 1}-1}\right)
\end{align*}
\]

We then obtain our result for \(y\)-mode model:
\[
\begin{equation*}
P_{L}(\omega) \Delta \omega=\sum_{n y}\left(1-r_{1}^{2}\right) \frac{n_{g}}{n} \frac{L_{x} g_{l}}{k} \int_{0}^{L}\left|Z_{2}\left(z_{s}\right)\right|^{2} d z_{s}(\hbar \omega)<n\left|r_{s p}(E)\right| n>\Delta E \tag{14.40}
\end{equation*}
\]

\subsection*{14.2.4 Far field distribution}

We use a rather simple model to evaluate the far field distribution. We consider three effects:
- 1.) The optical path is different (longer) when the emission angle is not vertical. The longer the optical path, the more power absorption occurs.
- 2.) The power reflection \(r_{1}^{2}\) is a function of the emission angle.
- 3.) Light direction change due to refraction causes a solid angle within the semiconductor to be magnified upon refraction. More details are discussed as follows.

It is reasonable to assume that the spontaneous emission is random and has uniform intensity in all directions within the semiconductor. Consider emission within a solid angle \(\Delta \theta \Delta \phi\). The \(\theta\) angle is determined by the following equation (see also Fig. 14.2):
\[
\begin{equation*}
n_{e 1} \cos \theta \Delta \theta=\cos \theta_{2} \Delta \theta_{2} \tag{14.41}
\end{equation*}
\]

Thus the solid angle is amplified and the light intensity is reduced by a factor
\[
\begin{equation*}
\left(\frac{\cos \theta_{2}}{n_{e 1} \cos \theta}\right)\left(\frac{\sin \theta}{\sin \theta_{2}}\right) \tag{14.42}
\end{equation*}
\]
where the 2 nd factor is due to angular integration in \(\Delta \phi\).

\subsection*{14.3 Resonant Cavity Light Emitting Diode Model}

The models in Section 14.2 were based on the Green's function approach and much effort was put into deriving a total power extraction formula that sums over all possible modes and over all wavelengths. In this section, we briefly outline the theory we use for the resonant cavity light emitting diode (RCLED). Instead of ignoring the interference or resonance effects of the optical waves, we explicitly consider them. This model is turned on with the rcled__model statement.
The task is to start from a continuous dipole source as a function of wavelength and find the emission power spectrum at different angles. If we ignore the micro cavity interference effects, the results should reduce to those in Section 14.2. Since the basic theories have been detailed in Appendix D, we will only highlight a few key points.

RCLED power emission strongly depends on the overlap of the optical field with the dipole source. Existence of the dipole source does not necessarily mean radiative recombination will occur. For example, the simple term \(B n^{2}\) only means that if carriers exist in the active layer of a device, a dipole source is available there. It does not guarantee the generation of electron-hole pairs. For that to happen, the optical field should exist so that the dipole moment (displacement times the field) can be formed to complete the energy conversion from current to photon. Therefore, in RCLED model, the simple term \(B n^{2}\) (and other form of QW recombination source) must be scaled by an interference enhancement factor (or the g-factor as referred in the simulator print out). In locations of constructive interference, the radiative recombination is enhanced. The opposite holds for locations of destructive interference.
It is interesting to note that the Green's function theory itself is fully consistent with the above view of power emission dependence on location of the dipole source. The Green's function theory states that a point dipole source can cause a field profile (definition of Green's function). However, one can show that the intensity of the field (and thus the emission power) strongly depends on whether the point source is placed at location of constructive or destructive interference. When using APSYS to simulate RCLED, such dipole source and power relation should be kept in mind.

To check whether the active region will be subject to constructive or destructive interference, the simulator will print out a .stw file during the equilibrium calculations. This a text file containing the index profile and standing wave pattern: they can easily be plotted with Gnuplot or other tools.

Another important point to note is that photon recycling effect is automatically taken into account. In the RCLED model, the active layers are responsive to light generated by the dipole source within the same device as well as to external incident light. Due to the photon recycling effect, the total spontaneous emission rate can greatly exceed the electrical pumping rate. The reason is that photons emitted get reflected back to the cavity and cause self optical pumping. Therefore, the correct
way to compute the IQE is to subtract the photon absorption rate from the total spontaneous emission rate before dividing the injection current. This has been done when we plot the IQE for the RCLED model.

\subsection*{14.4 2D Photonic Crystal Power Extraction Model}

Our purpose here is to derive the total emission power from a photonic crystal LED. For simplicity, we assume the following general purpose configurations: a 2D photonic crystal (PhC) consisting of holes of low index (such as air) are on top of an LED which we consider as a waveguide with a cross section on the xy-plane.

The basic idea is to regard a 2D photonic crystal (PhC) as a 2nd order DFB grating for which the first order radiative loss has been well understood and formulated [81]. There are major differences between a 2 D PhC and a DFB grating which we will identify and handle accordingly.

Without loss of generality, we assume the 2D PhC orientation is arranged such that the shortest period appears in the z-direction. Later on, we shall sum up power emission in other directions. In other words, we only consider power coupling due to the shortest periods in such a structure.

As a reference model, we use the Green's function method to compute the optical power from such a structure. We first cut up the structure into vertical divisions so that emission power can be calculated as a function of such divisions, or a function of position x . Within each division, the problem is simplified into a 1D Green's function in \(y\).
\[
\begin{equation*}
P_{G}(y)=\int G\left(y, y_{1}\right) r_{s p}\left(y_{1}\right) d y_{1} \tag{14.43}
\end{equation*}
\]
where \(G()\) is a Green's function which is constructed from the products of the optical wave functions (to get the power from wave amplitude). For more details on Green's function approach, please see Appendix D.
It is clear from the form of the Green's function that the amount of power carried by an optical mode is proportional to the overlap between the mode intensity and the spontaneous dipole source profile. A dipole source will not emit power unless the optical mode already existed there (recall dipole moment is product of field and charge displacement). Therefore, we obtain the power distribution fraction for each mode (normalized):
\[
\begin{equation*}
P_{r}(j)=\Gamma_{q w}(j) / \operatorname{sum}_{j}\left[\Gamma_{q w}(j)\right] \tag{14.44}
\end{equation*}
\]

In the following discussion, we give the formulas for the power coupling, or power emission coefficient for each confined waveguide mode. Detailed derivations may be found in the section on second order grating for PICS3D and also in Ref. [81].

In the major PhC periodic direction, we expand the refractive index in the following form:
\[
\begin{equation*}
n(z)=a_{0}+a_{1} \cos \left(k_{b} z\right)+b_{1} \sin \left(k_{b} z\right)+a_{2} \cos \left(2 k_{b} z\right)+b_{2} \sin \left(2 k_{b} z\right) \tag{14.45}
\end{equation*}
\]
where \(k_{b}=2 \pi / L_{b}\) and \(L_{b}\) is the period of the major lattice constant of the PhC.
The fraction of surface power emission is given by
\[
\begin{equation*}
F_{\text {surf }}=\frac{\pi^{2} \Delta \varepsilon \zeta^{2} Q_{f}}{n_{\text {mode }}^{2} \lambda_{0}} \tag{14.46}
\end{equation*}
\]
where \(n_{\text {mode }}\) is the modal effective index within the semiconductor wave guide.
Other terms are defined as follows:
\[
\begin{gather*}
\zeta=\frac{\sqrt{a_{1}^{2}+b_{1}^{2}}}{2}  \tag{14.47}\\
Q_{f}=\frac{\left|\int_{P h C} w(y) \exp \left[-j k_{y}\left(y-y_{c}\right)\right] d y\right|^{2}}{\int w(y)^{2} d y} \tag{14.48}
\end{gather*}
\]
where \(\int_{P h C}\) means integration over the PhC air hole layer. \(y_{c}\) is the center point of the air hole layer.
\[
\begin{gather*}
k_{y}=k_{0} n_{y}  \tag{14.49}\\
n_{y}=n_{\text {insul }} f_{\text {insul }}+n_{\text {mode }}\left(1-f_{\text {insul }}\right) \tag{14.50}
\end{gather*}
\]
where \(n_{\text {insul }}\) is the index of the insulator (air hole) and \(f_{\text {insul }}\) is the area fraction of the air hole.
\[
\begin{equation*}
\Delta \varepsilon=4\left(\Delta n_{r}^{2}+\Delta n_{i}^{2}\right) n_{\text {mode }}^{2} \tag{14.51}
\end{equation*}
\]
\(\Delta n_{r}\) and \(\Delta n_{i}\) are the real and imaginary index differences between the semiconductor and the insulating air hole.
Finally, the difference between a 2 nd order DFB grating and a 2 D PhC is that the latter has than one major scattering direction. Also, the air hole has a limited width. For these two factors we introduce an optical confinement factor:
\[
\begin{equation*}
\Gamma_{\phi}=M_{\text {dir }} W_{\text {insul }} / W_{\text {cell }} \tag{14.52}
\end{equation*}
\]
where \(M_{d i r}\) is the number of major scattering directions. For square lattice it takes 2 , and for triangle lattice a value of 3 is used. \(W_{\text {insul }}\) is the width of the insulating air hole (diameter) and \(W_{\text {cell }}\) is the cell size which we take as the wavelength of interests in the semiconductor medium.
The final emission power for a particular lateral mode j of the LED waveguide is obtained from the power emission from the Green's function method in Equation (14.43) times the modal power fraction in Equation (14.44) times the surface power coupling fraction in Equation (14.46) and times the angular optical confinement factor in Equation (14.52) as follows:
\[
\begin{equation*}
P_{P h C, j}=P_{G} \times P_{r}(j) \times F_{\text {surf }} \times \Gamma_{\phi} \tag{14.53}
\end{equation*}
\]

\subsection*{14.5 Ray Tracing Simulation}

\subsection*{14.5.1 Introduction}

Ray tracing (RT) is a modeling technique based on treating light waves as an ensemble of geometrical rays reflected and refracted off material boundaries. This technique is most suitable for optical systems where geometrical nature of the optics is more important than the wave nature. A good example is light emitting diode where the light source is spontaneous emission with randomized phase information while the coherent effect is not significant since the dimension of the cavity is much larger than the wavelength. In this section, we shall describe the theoretical backgrounds of the RT technique in the APSYS software.

A unique feature of our ray tracing technique is the geometrical treatment combined with a wave optics approach, taking into account refraction, reflection, absorption and interference effects. Our model is able to simulate in \(2 / 3\) dimensions the angular distribution of the transmitted power of an LED.

\subsection*{14.5.2 Basic ideas}

The basic assumption in RT is that a ray of light travels in a straight line within a uniform medium. For simplicity, consider a simple cubic crystal. Let us put in the center a point source of light which emits rays of light in the form of many straight lines. The following can happen to a ray:
- It returns back into crystal completely due to total internal reflection and no fraction of light power goes outside.
- It splits into reflected and transmitted rays.
- It transmits to the outside completely.

Depending on which of these outcomes occurs, there may be a reflected ray and/or a refracted ray which needs to be dealt with (Fig. 14.3). The RT method is based on following the reflected ray until it decays down to a certain numerical precision or escapes from the device completely. Every time a secondary refracted ray is generated, it is put inside a queue for later processing and the program continues until the queue is empty or a maximum number of secondary rays has been generated.

The generation (or not) of a secondary ray is based on the incident angle of the ray, the refractive index on both sides of the interface as well as the particular nature of the material interface. Also, due to the wave nature of light there is a dependence on polarization of the electric and magnetic field vectors with respect to the plane


Figure 14.3: Ray tracing in simple cubic crystal
of incidence. If the electric field vector is normal to the plane of incidence, the ray is said to have transverse electric (TE) polarization. On the other hand, if the magnetic field vector is normal to the plane of incidence, the ray is said to have transverse magnetic (TM) polarization.
For example, if our crystal has a refractive index of 3.5 (typical for GaAs), the reflection coefficient (amplitude ratio) of the TE- and TM- polarized light as a function of the angle of incidence can be plotted as Figure 14.4. As you can see if light impinges a surface at an angle greater then around 16.5 degrees in our case, it is totally reflected back. Such an angle is called critical or total internal reflection angle and often limits the amount of light that can be extracted from LEDs.

For a light source from spontaneous emission (as is the case in an LED), the light wave does not have a definite polarization: a ray emitted from such a source should be regarded as having random polarization. To simulate such a source, two approaches can the used: the first is to treat a ray as having random polarization, the second is to treat it as having a \(50 \%\) TE-portion and a \(50 \%\) TM-portion. The latter approach was implemented because both of them produce the same results.

\subsection*{14.5.3 Ray tracing geometry}

Recall that we started with the idea of a single cubic crystal. Real optoelectronic devices are far more complex and usually consist of many layers and columns. The ray tracing code handles this by defining of the concept of a "box": the single crystal is the simplest cubic box we can make.


Figure 14.4: The reflection coefficient (amplitude ratio) TE- and TM- polarized light as a function of angle of incidence

APSYS will build boxes for the RT program based on the polygons defined in the .layer and .geo files. If this is a 3D simulation, then these polygons will already have depth information to form 3D boxes. If not, then the 2D polygons can be extruded to a fictitious depth of \(1 \mu \mathrm{~m}\) to form 3D objects: some care will have to be taken to respect the original 2D nature of the problem even though we operate inside a 3D volume. Within each box, material properties are averaged to form a uniform propagation medium.
It is difficult to even imagine how a single ray of light undergoes multiple reflection and refraction in a multi-box structure. The situation is more complicated if multiple rays from multiple source points (see Figure 14.5) must be considered. The RT model tracks down all those rays within the multi-box structure until they are either absorbed by the material (down to numerical precision) or emitted outside of the device.

\subsection*{14.5.4 Coherent and incoherent light}

As explained in the last section, the ray tracing approach is based on geometric optics and usually ignores coherence and interference effects. However in some situations, this approximation is not valid: we need to identify these situations in order to correct the model and know when it is safe to use it.
We shall start with some discussion about the coherence of light. Based on Fourier transform theories in the analysis related to the WienerŰKhinchin theorem[82], we


Figure 14.5: The rays undergo multiple reflections/refractions within a device until some of them will are absorbed and others emitted outside.
can express the coherence length of the wave as follows:
\[
\begin{equation*}
L=\frac{c}{\Delta f}=-\frac{\lambda^{2}}{\Delta \lambda} \tag{14.54}
\end{equation*}
\]
where \(\Delta f\) (and thus \(\Delta \lambda\) ) is the spectral line-width of the quasi-monochromatic radiation. The coherence length may be used to judge the suitability of geometric or wave approaches of the simulation.
Take the example of a GaAs LED emitting at \(0.85 \mu \mathrm{~m}\). A typical line-width of the spontaneous emission of the LED is \(0.05 \mu \mathrm{~m}\). The coherence length using the above formula works out to be about \(14 \mu \mathrm{~m}\), which is smaller than the dimension of a typical LED. We thus conclude that geometrical optics approach treating rays as independent and non-interfering waves is valid.

For smaller device features, we need to take into account the polarization of the input field (TE/TM) and the phase effects due to propagation in thin layers. In order to combine this with the geometric approach, such features are implemented as special boundary conditions to boxes. The resultant amplitudes of transmitted waves are converted back into units of power [83] and used for new geometric rays.
For uniform thin film layers, we use a transfer matrix approach for monochromatic plane waves (Ref. [82]) to get an effective reflection and transmission coefficient: this is used to define optical coatings (which are often \(\frac{\approx \lambda}{4}\) ) as well as semi-transparent contacts.
For textured interfaces with large features, we can adjust the geometry of the boxes


Figure 14.6: Propagation of a light ray from a dense to a rarer medium \((n 1>n 2)\)
to have the correct shape and work within the geometric optics approximation. However, when the texture is much smaller, we need to rely on other approaches such as FDTD or on experimental scattering results. The effective reflection and transmission coefficient of the interface can then be imported to the ray tracing simulations.

\subsection*{14.5.5 Optical absorption}

The optical power carried by a ray traveling in a semiconductor decays due to the absorption by the material. In a thick box, its intensity can be written as a function of distance \(Z\) as follows:
\[
\begin{equation*}
I=I_{0} \exp (-4 \pi k Z / \lambda) \tag{14.55}
\end{equation*}
\]
where \(I_{0}\) is the wave intensity of the light source, \(k\) is the extinction coefficient (imaginary part of the complex refractive index) and \(\lambda\) is the wavelength of the light in free space.

\subsection*{14.5.6 Reflection and refraction}

Let us consider simple dielectric boundary (Figure 14.6):
The following is Fresnel amplitude reflection and transmission coefficient at oblique incidence for TE-polarized wave [83]:
\[
\begin{align*}
r_{e} & =\frac{N_{1} \cos \alpha-N_{2} \cos \beta}{N_{1} \cos \alpha+N_{2} \cos \beta}  \tag{14.56}\\
t_{e} & =\frac{2 N_{1} \cos \alpha}{N_{1} \cos \alpha+N_{2} \cos \beta} \tag{14.57}
\end{align*}
\]
for TM-polarized wave:
\[
\begin{align*}
r_{m} & =\frac{N_{1} \cos \beta-N_{2} \cos \alpha}{N_{1} \cos \beta+N_{2} \cos \alpha}  \tag{14.58}\\
t_{m} & =\frac{2 N_{1} \cos \beta}{N_{1} \cos \beta+N_{2} \cos \alpha} \tag{14.59}
\end{align*}
\]

The resultant amplitude transmission and reflection coefficient \(t\) and \(r\) are converted into transmittance and reflectance using the expressions:
\[
\begin{array}{r}
R_{e}=R_{m}=r r^{*} \\
T_{e}=\frac{t t^{*} R e\left(N_{2}\right) \cos \beta}{N_{1}^{*} \cos \alpha} \\
T_{m}=\frac{t t^{*} R e\left(N_{2}\right) \cos \alpha}{N_{1}^{*} \cos \beta} \tag{14.62}
\end{array}
\]
where * denotes complex conjugate, \(R e\) - real part of complex numbers. The above power transmittance and reflectance here are used in both approaches mentioned above.

\subsection*{14.5.7 Emission models}

A key point to modeling the emission in a LED is that the spontaneous emission is assumed to be isotropic: this means that every emission point must use many rays at various different angles in order to approximate this effect. Every ray is assumed set up to carry a portion of the emission power from the emission point and the rays are divided into equal solid angle regions.
However, the emission is also spread out all over the active region. The most accurate model would be for every point in the active region to emit light in all directions. However, having too many emission points with too many emission rays would pose a great computational burden for the RT program.
As a compromise, the user can either limit the number or rays per emission point or use an emission model that concentrates the emission power into fewer points. These models are detailed in the reference section for do__raytrace_ 3 d .

\subsection*{14.5.8 Application to detectors}

In previous subsections, we have assumed that the RT method is used to model a LED. However, the model works just the same for solar cells and detectors: the only difference is that original source ray is outside the device rather than inside. This means that in addition to power being lost and transmitted through the device, some it is also reflected from the top surface.

\subsection*{14.5.9 Limitations of the ray tracing method}

As mentioned before, using the geometric/ray optics is only adequate where the wave or quantum nature of light can be neglected. Smaller features require some simplifying assumptions or input from other modeling methods.

In the RT method, we also assume that the optical properties are mostly controlled by a single wavelength: the default is to use the peak wavelength of the spontaneous emission spectrum in a LED. Multiple-wavelength simulation can be done by looping over all wavelengths of the spectrum but is very time-consuming.

A second problem occurs when the absorption is too small. Since we follow the reflected ray until it decays to a certain level, this can generate a huge number of secondary rays: unless the reflection coefficient cuts down on the power sufficiently, the reflected ray can keep bouncing around in its box almost indefinitely. To solve this, we do two things:
- A small minimum absorption coefficient is introduced to force rays to decay more quickly in transparent boxes.
- We put a limit on the number of secondary rays that can be generated.

Any power that is lost either to the minimum absorption or by giving up on a ray before it decays is assumed to be "numerically" lost. This kind of artificial loss can also occur due to numerical precision at the interfaces. To correct for this numerical loss, we re-scale all transmitted and absorbed power in the device so that they sum up to \(100 \%\) of the original source power. If the numerical loss is small, then we can consider the other loss terms to be representative of the physical mechanisms in the device. Please keep this in mind since the re-scaling may be inappropriate if the numerical loss term is large.

Because of this re-scaling process, the RT method cannot be used in devices where there is optical gain: it would violate a key assumption that the transmitted and absorbed power sums up to \(100 \%\) of the original source term. Attempting to do so would result in various oddities such as a negative \(\%\) of light absorption in the semiconductor.

The RT code also includes the ability to model encapsulation in a plastic dome (i.e. a cylinder with a hemispherical cap). This is often done to maximize the amount of light that can be extracted by using a material with a refractive index that minimizes the reflection coefficient at the air-dome and semiconductor-dome interfaces. The geometry can also be useful to direct the light emission in a certain direction.

However, this model also suffers from a simple limitation: rays that exit the LED and enter the dome are assumed to stay within the dome and never enter the LED region again. Since the dome is usually much bigger than the LED, this is simply an approximation to save time: it can be time-consuming to see if a ray intercepts any of the LED facets every time there is a reflected ray within the dome.

\subsection*{14.5.10 Conclusions}

The ray tracing method is the best way to estimate the extraction efficiency of a LED and its emission pattern, especially for complicated structures that do not behave like a waveguide (as in previous sections). It is best used to:
- Design the LED structures with a certain angular distribution of the emitting power
- Optimize structures to get the most efficient output of the emitting power for LEDs
- Get the most sensitive photodetectors
- Obtain accurate results for structures with complicated geometry
- Discover important physical properties of the optoelectronic devices
- Investigate new optoelectronic devices

\subsection*{14.6 Strained Si or Si/SiGe Quantum Well Model}

\subsection*{14.6.1 Introduction}

MOSFET designs based on strained Si or \(\mathrm{Si} / \mathrm{SiGe}\) quantum well in the conduction channel have been demonstrated to provide enhanced mobility and thus extend the performance of existing MOS technology[84]. The silicon channel may be strained using a relaxed SiGe material or through stress induced by thin films deposited on the MOS device. The mobility of the strained MOS has been found to depend on the orientation of the strain tensor[85][86]. It is thus necessary to establish a detailed anisotropic band structure model and associate it to the mobility enhancement effect.

This section is dedicated to the discussion of how Crosslight's simulator takes into account the strain dependence in the band structure and mobility of a quantum MOS device.

\subsection*{14.6.2 Band structure and strain orientation}

Let us consider the symmetry of silicon crystal when under stress. A common configuration of strained silicon is to use lattice constant difference between SiGe and Si to apply biaxial tensile stress in the plane of \(<001>\) ( \(x-y\) plane in real space). This will cause the lower and upper conduction band valleys to split from the other four valleys. We shall label these two valleys as \(\Delta_{2}\) and other four as \(\Delta_{4}\) with the subscript denoting the degeneracy. Such a situation is represented by Fig. 14.7.

It is also common to apply uniaxial stress in the plane of MOS interface grown in (001) direction. Then, the two valleys along the direction of the strain will have different energy than the others and we shall label these two valleys as \(\Delta_{2}\). The other four valleys lying on a plane perpendicular to the direction of uniaxial stress are labeled \(\Delta_{4}\) (see Fig. 14.8).

In the linear approximation, a biaxial strain induces an uniaxial strain of opposite sign and vice versa[87][88]. For uniaxial in the (001) direction, the relationship is:
\[
\begin{equation*}
e_{b}=-D_{001} e_{u} ; D_{001}=0.771 \tag{14.63}
\end{equation*}
\]

Therefore, if data are available for biaxial strain, it can be converted to those for uniaxial strain.

If the silicon crystal is not gown in (001) direction or if the uniaxial strain is not applied to directions of high symmetry, the six valleys may split into more than two energies. Crosslight's simulator allows a maximum of three different valleys for the conduction band.

The strained band structure parameters and mobilities are less well known for the valence band. In general, the valence band under strain is highly non-parabolic and this prevents a simple definition of curvature mass[87]. Based on a recent theory, the valence band is also anisotropic[89]. It was found that the higher valence band in (001) direction is light hole while the effective mass appeared to be larger in other directions. There was confusion in the literature whether the higher valence band under tensile biaxial strain should be light hole (LH) or heavy hole (HH). For example Richard [89] and Fischetti and Laux [87] labeled the upper valence band as LH while other papers did it otherwise (see for example, [90] and [91]).

At this time, we prefer to treat the strain dependence of the valence band mass as a fitting parameter so that the hole mobility behavior can be understand within the frame work of our mobility model as detailed in later subsections.


Figure 14.7: Schematics of conduction band valleys of silicon under biaxial in-plane stress.


Figure 14.8: Schematics of conduction band valleys of silicon under uniaxial in-plane stress.


Figure 14.9: Lower bandgap parameterized over a full range of composition for \(\mathrm{Si}(1-\) x) \(\mathrm{Ge}(\mathrm{x}) /\) relaxed-Si(1-y) Ge(y).

\subsection*{14.6.3 Band structure parameterization}

As compared with its strained counterparts in zincblende and wurtzite crystals, the band structure of strained silicon is more difficult to model within the k.p theory[89]. Therefore, we rely on band theories described in the literature and parameterize the band structure as a function of strain or composition over a large range.

A special type of material macro, called the general complex strain macro, or general_cx_strain macro has been created to provide a tool to describe the strained silicon bands within the effective mass theory. The strained silicon macro allows the specification of up to three conduction band and valence band valleys with anisotropic effective masses.

For strained silicon grown on unstrained SiGe, we mostly depend on the work of Rieger and Vogl [92] for band edges and electron effective masses. Ref. [92] had already parameterize its results using second order polynomial which can easily be incorporated into our macros. The lower and higher bandgaps based on parameterization by Rieger and \(\operatorname{Vogl}[92]\) are plotted in Figs. 14.10 and 14.10 over a full range of composition of \(\mathrm{SiGe} /\) relaxed- SiGe . Thus the current model for \(\mathrm{Si} /\) relaxed-SiGe is just a special case and can easily be extended to research on strained SiGe/relaxedSiGe. For silicon under uniaxial strain, we mostly rely on theoretical calculation of Fischetti and Laux [87].


Figure 14.10: Lower bandgap parameterized over a full range of composition for \(\mathrm{Si}(1-\mathrm{x}) \mathrm{Ge}(\mathrm{x}) /\) relaxed- \(\mathrm{Si}(1-\mathrm{y}) \mathrm{Ge}(\mathrm{y})\).

\subsection*{14.6.4 Mobility enhancement}

Interest in mobility enhancement by strain has been the driving force behind research in strained silicon. However, the mobility model is also the most complex especially when quantum confinement effect is taken into account. It has been found that for electron mobility in a quantum well (as formed by the potential of the inversion layer in MOS), the mobility can be separated into two parts, one due to intravalley acoustic phonon scattering and the other due to inter-valley optical phonon scattering[93]. Both parts are complicated functions of subband levels and energy split of the valleys. The complexity of a rigorous theoretical model makes it difficult for experimental data analysis and for CAD purposes.
To reduce the complexity but still maintain the physical intuition needed for understanding mobility enhancement, we propose the following phenomenological model. We start with bulk silicon mobility due to acoustic intra-valley acoustic phonon scattering:
\[
\begin{equation*}
\mu_{a c}=\frac{2^{3 / 2} \sqrt{\pi} \hbar^{4} \rho \omega_{s}^{2}}{3 m^{* 5 / 2} D_{a c}^{2}\left(k_{B} T\right)^{3 / 2}} \tag{14.64}
\end{equation*}
\]
and that due to inter-valley optical phonon scattering:
\[
\begin{equation*}
\mu_{o p}=\frac{4 \sqrt{2 \pi} e \hbar^{2} \rho s q r t \hbar \omega_{0}}{3 m_{d}^{* 3 / 2} m^{*} D_{o p}^{2}} F\left(x_{0}\right) \tag{14.65}
\end{equation*}
\]
where \(D_{a c}\) and \(D_{o p}\) are acoustic and optical phonon deformation potentials, respectively. \(\rho\) is crystal density and \(\omega_{s}\) and \(\omega_{0}\) are phonon frequencies. F() represents a numerical integral. \(m_{d}\) is the density of state mass and \(m^{*}\) is the conduction mass. For background materials related to the above formulas, please refer to Refs. [94] to [95].

The scattering time constant can be expressed as two terms due to acoustic and optical phonons:
\[
\begin{equation*}
1 / \tau=1 / \tau_{a c}+1 / \tau_{o p} \tag{14.66}
\end{equation*}
\]
and the mobility can be written using the Drude model[96]:
\[
\begin{equation*}
\mu=q \tau / m^{*} \tag{14.67}
\end{equation*}
\]

It is important to notice that the acoustic term and optical term have different dependence on conduction mass. It is commonly believed that mobility enhancement comes from change of conduction mass and suppression of inter-valley optical phonon scattering due to split of valley energies. From energy conservation point of view, carrier transition from one valley to the other via optical phonon scattering will be more difficult as energy difference between valleys are increased. Therefore, we propose the following valley dependent mobility model:
\[
\begin{equation*}
1 / \mu_{k}=A_{a c} m_{k}^{* 2.5}+B_{o p} m_{k}^{*} \exp \left(-\gamma E_{s p t}\right) \tag{14.68}
\end{equation*}
\]
where \(k\) is the valley index (denoting one of the six valleys or the HH or LH valleys). \(A_{a c}, B_{o p}\) and \(\gamma\) are valley independent fitting parameters assume to be independent of the strain. \(E_{s p t}\) is the valley split between the first and second valleys.
The above formula states that mobility enhancement due to strain comes from two terms: an acoustic term depending on conduction effective mass only and another term depending on effective mass and valley splitting. We shall refer to the above phenomenological model as Crosslight's 3-parameter mobility model.
The 3-parameter model in Eq. (14.68) can be conveniently written as:
\[
\begin{equation*}
1 / \mu_{k}=A_{a c}\left[m_{k}^{* 2.5}+r_{b a} m_{k}^{*} \exp \left(-\gamma E_{s p t}\right)\right] \tag{14.69}
\end{equation*}
\]
where \(r_{b a}=B_{o p} / A_{a c}\) is a ratio representing the relative importance of acoustic and optical terms in the silicon system.

Using our quantum-MOS model, we solve for the distribution of carriers in each valley k as \(n_{k}\) (or \(p_{k}\) for holes) and the total mobility can be expressed as the following:
\[
\begin{equation*}
\mu=\frac{\sum_{k} n_{k} \mu_{k}}{\sum_{k} n_{k}} \tag{14.70}
\end{equation*}
\]

To set up the 3-parameter model in a simulation, we need to calibrate the fitting parameters using the following procedure:
- 1) Start with a guess of \(r_{b a}\) and \(\gamma\) (both of the order 1 ).
- 2) Set up an unstrained quantum well subband structure preview (quick simulation requiring no mesh) simulation assuming a typical quantum well carrier concentration (say \(1 \times 10^{18} \mathrm{~cm}^{-3}\) ).
- 3) Compute the valley occupancy and use formula Eq. (14.69) to determine \(A_{a c}\)
- 4) Compare with experimental strain dependence of mobility.
- 5) Repeat 1) to 4) until good agreement with experiment.

For hole mobility, until a reliable anisotropic effective mass parameterization is achieved, we need to calibrate the mass-strain dependence in addition to the above procedure.
Such a procedure has been demonstrated and documented in the example chapter related to strained silicon. The calculated mobility enhancement as a function strain shows good agreement with experiment without much fitting effort (see Figs. 14.11 and 14.12). Experimental data here are based on Refs. [97] and [84].

Once a reasonable set of parameters are established for strained silicon, the 3parameter model can easily be extended to include temperature dependence effect since acoustic and optical phonon terms have different temperature behaviors. Also, as more sophisticated mobility models are available, the simple model can be extended to include subband dependence, say between the first two subbands which are more populated than higher subbands.

\subsection*{14.7 Conduction and Recombination in OLED}

A detailed description of conduction carriers in organic semiconductor requires the knowledge of molecular orbitals which can be difficult due to the complexity of the atomic configurations of large organic molecules. However, it is possible to use a simplified energy picture to consider only the highest occupied molecular orbitals (HOMO) describing the electron carriers and the lowest unoccupied molecular orbitals (LUMO) describing the hole carriers.

Similarly, we can introduce the concept of density of states for the HOMO and LUMO so that quasi-Fermi levels and Fermi statistics can be used. Having introduced quasiFermi levels, the drift-diffusion equation can be established in a similar way as for conventional semiconductors.

The mechanism of carrier conduction is different than in conventional semiconductor in that conduction is based on a hopping model. In spite of this difference, we can


Figure 14.11: Comparison with experiment for Crosslight's 3-parameter mobility model averaged over valley densities in a typical n-MOSFET quantum well.


Figure 14.12: Comparison with experiment for Crosslight's 3-parameter mobility model averaged over valley densities in a typical p-MOSFET quantum well.
still approximate the transport using the drift-diffusion equation if we choose a low value for the mobility. In many cases, the carriers may have to go over a high potential barrier and quantum tunneling must be used.

Since the transport is activated by electrical field in a hopping-like model, we use a Poole-Frenkel-like field dependent mobility based on Ref.[98]:
\[
\begin{equation*}
\mu=\mu_{0} \exp \left(\sqrt{F / F_{p f}}\right) \tag{14.71}
\end{equation*}
\]
where \(F_{p f}\) is an activation field.
The main mechanism of recombination is that electron and holes are attracted to each other via Coulombic forces while the carrier mobility determines the rate at each the recombination occurs. The model is based on the model of Langevin Recombination of carriers (Ref. [99]).

Carriers are statistically independent so the e-h recombination is a random process and kinetically bimolecular. The model considers total current attracted by a charge into a certain volume by Coulombic forces. The bimolecular recombination coefficient depends on the mobility as follows:
\[
\begin{equation*}
B=\frac{q}{\varepsilon}\left(\mu_{n}+\mu_{p}\right) \tag{14.72}
\end{equation*}
\]

For more details, we refer to Ref. [98].

\subsection*{14.8 Organic Semiconductor Emission Spectrum Model}

\subsection*{14.8.1 Introduction}

Organic semiconductor emits light via Frenkel exciton recombination and the mechanism for absorbing and emitting light is different than conventional semiconductor theories based on free-carrier/many-body interband transition. Optical spectrum theory for organic material is generally rather complicated due to the complexity in molecular structure and the advance physical models involved. However from the view point of engineering design, one does not have to understand all the details related to Frenkel exciton to be able to alter and optimize the spectrum. Simplified exciton models with few adjustable parameters correlating to molecular-crystal structure will enable design engineers to achieve such objectives.

We find that the simplified exciton model based on the Holstein model (see Refs. [100-105]) is suitable for such purposes. The Holstein model assumes a one-dimensional molecular chain with electronic and vibronic interactions between a limited number
of nearest neighbors. The advantage of this model is that one may easily alter the optical spectrum by tuning the few physical parameters. For example if we find increasing the interaction parameter between neighbors alters the optical spectrum in a desirable manner, we may be motivated to alter the real organic material to increase the number of neighboring molecules.

\subsection*{14.8.2 The Model}

Following Refs. [100-105], we have established optical spectrum model based on exciton-phonon interaction within an organic crystal. A Holstein Hamiltonian is established to include intra-molecular and inter-molecular electronic and vibronic interactions. A phonon cloud of several unit cells is used to represent exciton-phonon interaction. All excited states of the molecular crystal are solved and optical transition dipole moments computed between all states. Please refer to the above references for details.

Although mechanisms involved in the Hamiltonian are complex, input parameters are few and fitting to experimental spectrum is easy. Typical input/adjustable parameters: exciton bandgap, molecular vibronic quanta, intra-molecular exciton-phonon interaction constant, and inter-molecular hopping parameter. Doped organic semiconductor may easily be modeled as combination of emission from the host and the dopant separately.

\subsection*{14.8.3 Tuning the spectrum}

The implementation of the spectrum model is numerically efficient: several minutes per spectrum. We have integrated the spectrum model into APSYS-OLED option so that optical extraction may be calculated based on the spectrum. Bias and current injection dependent spectrum may be simulated to fine tune the color of the OLED.
We use a simple example to provide some insight and a guideline on how to alter the shape of the spectrum. Consider the absorption and EL spectra of Alq3 in Figures 14.13 and 14.14 which were obtained by fitting the EL spectrum to experiments. The smooth and broadened shape corresponds is the results of broadening of tens of spectrum lines as a solution of the Hamiltonian equation. Since the EL spectrum is related to the absorption spectrum, we limit our discussion here to the absorption spectrum which is more simple and it directly correlates to the basic solutions of the Hamiltonian.

To view the actual spectrum lines before broadening, we reduce the Gaussian broadening width (using parameter ox_gaussian_sd1) and obtain the spectrum in Figure 14.15. We see several major lines due to the intra-molecular vibrational excitations. These lines correspond to the major absorption spectrum lines when the unit cell


Figure 14.13: Absorption spectrum of Alq3, obtained by fitting exciton parameters with EL spectrum.


Figure 14.14: EL spectrum of Alq3, obtained by fitting exciton parameters with experimental EL spectrum. Different curves correspond to different carrier injection levels, ranging from 5.E23 to \(5 . \mathrm{E} 241 / \mathrm{m}^{3}\).


Figure 14.15: Absorption spectrum with reduced Gaussian broadening.
is isolated. We see many lower intensity lines (there are tens of those) arising from electron-electron and electron-phonon interactions within the same unit cell and between the cells.

One way to alter the spectrum is the change the electron-phonon interaction constant (parameter ox_xp_coupling). If we increase the electron-phonon interaction, the spectrum tends to peak in longer wave lengths (see Figure 14.16). The interpretation of such a change in shape is that the vibrational energy is much smaller than the electronic energy and a stronger coupling with phonons pulls down the overall energy of the excitations. To achieve such type of tuning, we may be motivated to alter the Franck-Condon energy of the organic material.

Another way to alter the spectrum is to change the inter-molecule interaction. This can be done by either changing electronic hopping energy (parameter ox_hopping_energy) or by varying the number of interacting nearest neighbors (parameter ox_phonon_cloud). We increase the hopping energy to find that the spectrum tends to peak at higher energies (Figure 14.17).
This can be understood as follows: in the limit of zero inter-molecule interaction, the systems prefers to stay at its lowest vibrational state. Higher inter-molecule interaction simply causes a mixture of all the vibrational states and thus tend to equalize the density of states. For such type of tuning, we may be motivated to alter the real organic material to increase the number of neighboring molecules.

\subsection*{14.8 Organic Semiconductor Emission Spectrum} Model


Figure 14.16: Absorption spectrum with increased electron-phonon interaction, showing shift of absorption peak to longer wavelengths.


Figure 14.17: Absorption spectrum with increased inter-molecule interaction, showing shift of absorption peak to shorter wavelengths.

\subsection*{14.9 Diffusion of Excitons in Organic Semiconductor}

Electron-hole pairs in organic semiconductor form singlet (25\%) and triplet excitons ( \(75 \%\) ). Both exciton types may diffuse over a certain distance before being converted into photons or being quenched via non-radiative means.

We solve the following exciton diffusion equation:
\[
\begin{equation*}
\frac{d S}{d t}=R_{r a d}+D_{s} \nabla^{2} S-S / \tau_{e m}-S / \tau_{q} \tag{14.73}
\end{equation*}
\]
where \(S\) is the singlet or triplet exciton density, \(R_{\text {rad }}\) is the radiative recombination term from the carrier drift-diffusion equation. \(S / \tau_{e m}\) is photon emission term related to exciton lifetime and \(S / \tau_{q}\) is the exciton quenching term. \(\tau_{q}\) itself may be a function of \(S\) (bi-exciton quenching) and/or the free carrier densities.

The significance of this exciton diffusion model is that OLED do not emit directly from \(R_{\text {rad }}\) term but through the \(S / \tau_{x}\) term above. This means deviation in both magnitude and profile from the bi-molecular recombination term of \(R_{r a d}\) in the driftdiffusion equation.

Using the RCLED model, the \(S(x, y, z) / \tau_{x}\) term acts as a continuous dipole source within the Green's function theory. The dipole source may be enhanced by optical interference effects to optimize the power emission characteristics of the OLED.

\subsection*{14.9.1 Optical Generation of Excitons}

Since light emission in organic semiconductors comes from the excitons rather than the free carriers it stands to reason that optical pumping should not directly produce free carriers either. Instead, the optical generation rate should be added to Eq. (14.73). This can be specified with the ox_pump_only parameter in the light_power statement.

\subsection*{14.10 Nomenclature}
\begin{tabular}{ll} 
Symbol & Definition \\
\(A_{x}\) & Coefficient for band-gap narrowing effects. \\
\(a_{0}, a\) & Lattice constants of GaAs \(\left(a_{0}\right)\) and InGaAs \((a)\). \\
\(B\) & \begin{tabular}{l} 
Radiative recombination coefficient. \\
\(B_{1}, B_{2}, B_{z}\)
\end{tabular} \\
\begin{tabular}{l} 
Complex wave amplitudes of the optical wave propagating from \\
right to left in a laser.
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(B_{k}\) & Constant used in mathematical fittings. \\
\hline \(b\) & Shear deformation potential. \\
\hline \(C_{n}, C_{p}\) & Auger recombination coefficients, for electrons (n) and holes (p). \\
\hline \(c_{n j}, c_{p j}\) & Electron (n), hole (p) capture coefficients of the \(j\) th deep trap. \\
\hline c & Velocity of light in vacuum. \\
\hline \(c_{11}, c_{12}\) & Elastic constants. \\
\hline \(D_{c}, D_{v}\) & Density of states of the conduction and valence band. \\
\hline \(E_{D}, E_{A}\) & Shallow donor (D) and acceptor (A) levels. \\
\hline \(E_{i}^{0}, E_{j}^{0}, E_{i j}^{0}\) & Energy minimums of the \(i\) th and the \(j\) th levels, and the difference between them, . The \(i\) refers to the valence band sub-band levels and \(j\) refers to the conduction band sub-band levels. \\
\hline \(E, E_{i j}\) & Photon energy and energy difference between the \(i\) th and \(j\) th levels. \\
\hline \(E_{f n}, E_{f p}\) & Quasi-Fermi energies of electrons (n) and holes (p). \\
\hline \(E_{g}\) & Bandgap. \\
\hline \(E_{g 0}\) & Unstrained bandgap. \\
\hline \(\Delta E_{P F}\) & Shift in ionization energy of a dopant due to Poole-Frenkel effect. \\
\hline \(\delta E_{h y}\) & Hydrostatic strain energy. \\
\hline \(\delta E_{s h}\) & Energy associated with shear strain. \\
\hline \(F\) & Electric field intensity. \\
\hline \(F_{l}\) & Lorentzian shape function. \\
\hline \(F_{0 n}, F_{0 p}\) & Threshold electric field used in the electron (n) and hole (p) mobility models. \\
\hline \(F_{1 / 2}\) & Fermi integral of order one-half. \\
\hline \(f_{D}, f_{A}\) & Occupancy of the donor (D) and acceptor (A) levels. \\
\hline \(f_{t j}\) & Occupancy of the \(j\) th deep trap level. \\
\hline \(f_{i}, f_{j}\) & Fermi functions for the \(i\) th and the \(j\) th level. \\
\hline \(f_{i}^{\prime}, f_{j}^{\prime}\) & Integrated Fermi functions for the \(i\) th and the \(j\) th levels. \\
\hline \(g\) & Interband local gain. \\
\hline \(g_{i j}, g\) & Local gain due to transition between the \(i\) th and the \(j\) th levels, and the local gain of the material. \\
\hline \(g_{d}, g_{a}\) & Degeneracies of the shallow donor (d) and acceptor (a). \\
\hline \(H_{i j}\) & Hamiltonian matrix element between the \(i\) th and the \(j\) th states. \\
\hline \(h(x)\) & step function of variable x . \\
\hline \(h, \hbar\) & Plank's constants. \\
\hline \(I_{1}, I_{2}\) & The integrals needed to evaluate the quantum well gain and spontaneous emission rate. \\
\hline \(J_{n}, J_{p}\) & Electron (n) and hole (p) current flux densities. \\
\hline \(J_{s n}, J_{s p}\) & Electron (n) and hole (p) current flux densities on the surface. \\
\hline \(J_{h n}, J_{h p}\) & Electron (n) and hole (p) current flux densities across the heterojunction. \\
\hline \(J_{\text {source }}\) & Current flux source. \\
\hline \(k\) & Boltzmann constant. \\
\hline \(L\) & Laser cavity length. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(L()\) & \begin{tabular}{l} 
Lines shape function for gain broadening. \\
\(m_{0}\)
\end{tabular} \\
\(m_{i}, m_{j}, m_{i j}\) & \begin{tabular}{l} 
Electron mass \\
Relative effective masses of the \(i\) th and the \(j\) th level and the reduced \\
effective mass between the \(i\) th and the \(j\) th level. Their relation
\end{tabular} \\
is defined by \(1 / m_{i j}=1 / m_{i}+1 / m_{j}\). Indices i and j refer here to
\end{tabular}
\begin{tabular}{ll}
\(Q_{c a v}^{j}\) & \begin{tabular}{l} 
Energy density of the \(j\) th longitudinal mode within the laser cavity. \\
\(q\)
\end{tabular} \\
\(R_{n}^{t j}, R_{p}^{t j}\) & \begin{tabular}{l} 
Electronic charge. \\
Electron (n) and hole (p) recombination rates per unit volume
\end{tabular} \\
\(R_{s p}, R_{s p}^{b}, R_{s p}^{q w}\) & \begin{tabular}{l} 
through the \(j\) th deep trap. \\
Spontaneous recombination rate per unit volume, also called the \\
radiative recombination rate, and the same quantity in bulk (b)
\end{tabular} \\
and in the quantum well (qu).
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\alpha\) & Absorption coefficient for regions outside the quantum well. \\
\hline \(\beta, \beta_{1}, \beta_{2}\) & Complex eigenvalues of the wave equation and its real (1) and imaginary (2) parts. They are also considered effective indices. \\
\hline \(\alpha_{\text {em }}\) & Optical loss coefficient due to emission of light in the lasing mode. \\
\hline \(\alpha_{\text {emj }}\) & Optical loss coefficient due to emission of light in the jth longitudinal mode. \\
\hline \(\beta_{p}\) & Constant used in the hole mobility equation. \\
\hline \(\Delta\) & Spin-orbit splitting of the valence band energy. \\
\hline \(\Delta_{i j}^{a}\) & Transition energy shift term in the Asada broadening model. \\
\hline \(\delta\) & Constant. Value is 1 for deep donors and 0 for deep acceptors when used to represent electrical charge. Also used as a \(\delta\)-function. \\
\hline \(\epsilon_{0}\) & Dielectric constant of vacuum. \\
\hline \(\epsilon_{d c}\) & Relative DC or low frequency dielectric constant. \\
\hline \(\epsilon, \epsilon_{1}, \epsilon_{2}\) & Complex optical dielectric constant and its real (1) and imaginary (2) parts. \(\epsilon\) is also used, under a completely context, for non-linear gain coefficient. \\
\hline \(\epsilon_{2}^{g}, \epsilon_{2}^{\alpha}\) & Imaginary parts of the dielectric constant corresponding to gain due to interband transition and loss due to other mechanisms, respectively. \\
\hline \(\varepsilon\) & Strain. \\
\hline \(\Gamma\) & Energy level broadening parameter, or the half width of the Lorentzian broadening function. \\
\hline \(\Gamma_{0}\) & The maximum energy level broadening parameter, or the half width of the Lorentzian broadening function. \\
\hline \(\Gamma_{a}\) & The energy level broadening parameter, or the half width of the Lorentzian broadening function, as used in the Asada's broadening model. \\
\hline \(\gamma_{1}, \gamma_{2}, \gamma_{3}\) & Luttinger numbers. \\
\hline \(\gamma\) & Constant relating the optical wave amplitude to electric field. \\
\hline \(\gamma_{n}, \gamma_{p}\) & Adjustable constants for the electron (n) and hole (p) thermionic emission model, used to account for tunneling and other effects. \\
\hline \(\gamma_{h n}, \gamma_{h p}\) & Adjustable constants for the electron (n) and hole (p) thermionic emission model for heterojunctions, used to account for tunneling and other effects. \\
\hline \(\chi\) & Affinity. \\
\hline \(\chi\) & Affinity of a reference material. \\
\hline \(\lambda\) & Optical wavelength. \\
\hline \(\lambda_{j}\) & Optical wavelength of the jth longitudinal mode. \\
\hline \(\mu_{n}, \mu_{p}\) & Mobility of electrons ( n ) and holes (p). \\
\hline \(\mu_{0 n}, \mu_{0 p}\) & Low field electron (n) and hole (p) mobilities. \\
\hline \(\mu_{1 n}, \mu_{1 p}\) & Minimum electron (n) and hole (p) mobilities. \\
\hline \(\mu_{2 n}, \mu_{2 p}\) & Maximum electron (n) and hole (p) mobilities. \\
\hline \(\nu\) & Function used in the Fermi-Direct statistics. \\
\hline
\end{tabular}


\section*{Chapter 15}

\section*{LASTIP SPECIFIC MODELS}

\subsection*{15.1 Stimulated Emission and Rate Equation}

The stimulated emission rate, \(R_{s t}\) is defined as the rate of photon emission per unit volume as a result of material gain experienced by the traveling light wave. By energy conservation, the emitted photon must cause an increase in the power \((P)\) of the traveling wave by the same amount:
\[
\begin{equation*}
d P=d z(\hbar \omega) \int R_{s t} d x d y \tag{15.1}
\end{equation*}
\]

Since modal gain \(g_{m}\) relates to the power increase by the following relation:
\[
\begin{equation*}
g_{m}=\frac{1}{P} \frac{d P}{d z} \tag{15.2}
\end{equation*}
\]
we obtain the following expression:
\[
\begin{equation*}
g_{m} P=(\hbar \omega) \int R_{s t} d x d y \tag{15.3}
\end{equation*}
\]

Using group velocity \(\left(v_{g}=\left(\frac{\partial k}{\partial \omega}\right)^{-1}\right)\) as the traveling speed of the optical power, we obtain:
\[
\begin{equation*}
P=\hbar \omega v_{g} S \tag{15.4}
\end{equation*}
\]
where \(S\) is the linear photon density (i.e. number of photons in the 2D plane) such that \(\int S(z) d z\) is the total number of photons in the laser cavity.
We introduce the normalized 2D optical wave function \(W\) so that:
\[
\begin{equation*}
\int|W|^{2} d x d y=1 \tag{15.5}
\end{equation*}
\]
and
\[
\begin{equation*}
g_{m}=\int g(x, y)|W|^{2} d x d y \tag{15.6}
\end{equation*}
\]

Note that the wave function \(W\) has been normalized such that the above integral yields the confinement factor \(\Gamma\) if the local gain is uniform in the active region.

From Eqs (15.3) to (15.6), we obtain:
\[
\begin{equation*}
\int R_{s t} d x d y=\int v_{g} g(x, y) S|W|^{2} d x d y \tag{15.7}
\end{equation*}
\]
which implies our result:
\[
\begin{equation*}
R_{s t}=v_{g} g(x, y) S|W|^{2} \tag{15.8}
\end{equation*}
\]
or, using the local photon density \(s(x, y)\) :
\[
\begin{equation*}
R_{s t}=v_{g} g(x, y) s(x, y) \tag{15.9}
\end{equation*}
\]

In most textbooks, the common formulation is that of Equation (15.8). However, Equation (15.9) is also useful to model multimode behavior : in that case, the local photon density is calculated by summing up the contribution from each mode.

The rate equation for the linear photon density \(S\) in the laser cavity may be viewed as a statement of conservation of energy:
\[
\begin{array}{r}
\text { stimulated emission }- \text { internal loss }- \text { emitted power } \\
+ \text { spontaneous emission }=\text { power increase } \tag{15.10}
\end{array}
\]

The "power increase" in the above equation is the rate of linear photon density \((\partial S / \partial t)\). Equation (15.10) can be detailed as
\[
\begin{equation*}
\text { stimulated emission }=\int R_{s t} d x d y=v_{g} g_{m} S \tag{15.11}
\end{equation*}
\]

Internal loss is defined as the modal loss experienced by the mode of the traveling wave. This loss term is usually denoted by \(\alpha_{i}\) and it can often be determined experimentally. Similar to modal gain, the internal loss can be written as:
\[
\begin{equation*}
\alpha_{i n t} \approx \int|W|^{2} \alpha d x d y \tag{15.12}
\end{equation*}
\]

Defining an effective loss coefficient \(\alpha_{e m}\) due to emitted power loss from the device, the emitted power in Equation (15.10) can be written in the same form as Equation (15.11):
\[
\begin{equation*}
\text { emitted power }=v_{g} \alpha_{e m} S \tag{15.13}
\end{equation*}
\]

In the special case of a Fabry-Perot cavity, the emitted power loss equals the facet mirror loss and we obtain the following familiar formula:
\[
\begin{equation*}
\text { emitted power }=v_{g} S \frac{1}{2 L} \ln \left(\frac{1}{r_{m 1} r_{m 2}}\right) . \tag{15.14}
\end{equation*}
\]
where \(r_{m 1}\) and \(r_{m 2}\) are the power reflectivities of the two facets.
The power due to spontaneous emission is simply the integration of the spontaneous emission rate over the cavity:
\[
\begin{equation*}
\text { spontaneous emission }=c_{m} \int R_{s p} d x d y \tag{15.15}
\end{equation*}
\]
where \(c_{m}\) is the fraction of spontaneous emission coupled into the lasing mode.
Summation of the above terms yields the familiar rate equation:
\[
\begin{equation*}
v_{g}\left(g_{m}-\alpha_{i n t}-\alpha_{e m}\right) S+c_{m} \int R_{s p} d x d y=\partial S / \partial t \tag{15.16}
\end{equation*}
\]

The derivation given above makes it clear that LASTIP is only concerned with the total number of photons in the cavity so that it can compute the stimulated recombination rate used in the basic equations. The rate equation averages out most details of longitudinal distribution of the optical fields. Therefore the rate equation is expected to be accurate if the z-dimension is uniform.

In cases where strong variation of physical variable along the z-direction, such as DFB and DBR lasers, the rate equation will be inaccurate for a complete description of the laser cavity. However, the 2 D rate equation may still be used as a phenomenological model if proper values of effective mirror reflectivity can be chosen. For example, if the mirror reflectivity of the DBR mirror is known, the rate equation in this section, thus the LASTIP software, can still be used.

\section*{Chapter 16}

\section*{PICS3D-SPECIFIC MODELS I: Longitudinal Modeling}

\subsection*{16.1 Introduction}

In PICS3D, we consider a 3D model for light-emitting devices. We already discussed 3D electrical modeling in Sec. 6.3 so this chapter will touch on the optical modeling only.

\subsection*{16.2 Basic Equations}

Let us start with an edge-emitting wave-guiding structure and define the z axis as the direction of propagation. The basic equation of concern is, of course, the Maxwell equation. However, we would like to go further and obtain a set of equations directly usable in solving the system.
Under the scalar wave assumption, the wave equation can be solved with the technique of variable separation: we assume that the solution to the wave equation can be written as the product:
\[
\begin{equation*}
E_{\omega}(x, y, z)=E_{\omega}(z) \phi_{0}(x, y) \tag{16.1}
\end{equation*}
\]
where \(\omega\) is the optical frequency and \(z\) is the direction of the waveguide.
For the moment, let us assume that the laser is operating in a single transverse mode. The modal distribution \(\phi_{0}(x, y)\) can be left out of the formulation and calculated by other means such as the effective index method or the beam propagation method.
The \(z\)-dependent part of the electric field \(E_{\omega}(z)\) satisfies the equation:
\[
\begin{equation*}
\left[\frac{\partial^{2}}{\partial z^{2}}+k^{2}(z)\right] E_{\omega}(z)=f_{\omega}(z) \tag{16.2}
\end{equation*}
\]
where \(f_{\omega}(z)\) is the Langevin noise function due to spontaneous emission. Eq. 16.2 is the basic equation which will be used for the optical wave in the PICS3D package.

We note that the noise function is extremely important for a laser device since it is a driving force for the solution. For an isolated semiconductor laser, the physical solution for Eq. 16.2 would be zero if the spontaneous noise term was absent. A simple physical explanation is that the spontaneous emission noise generates or excites the photons, which are then amplified by the presence of the optical gain. Therefore, the optical power at any bias condition is determined both by the spontaneous emission and the optical gain.

The complex propagation constant \(k(z)\) contains information about the solution of the transverse and lateral dimensions. In other words, it is calculated from the effective index by using \(x\) - \(y\) cross sections at given \(z\) positions. The effective index and \(k(z)\) both depend on:
- the optical wavelength/frequency
- material properties and device geometry
- bias value and photon density (due to non-linear gain suppression)

In PICS3D, Eq. 16.2 is solved to find the longitudinal modes of the device. The basic solution method will be outlined in this chapter but the numerical implementation in PICS3D uses an alternate derivation shown in Sec. 18.4.

\subsection*{16.3 The Green's Function Method}

Using Green's function in the analysis of DFB lasers was first proposed by C.H. Henry [80] and later extensively used by Tromborg et.al. [106] in deriving analytical formulas for DFB lasers. PICS3D has used the Green's function method because of its accuracy in treating spontaneous emission, its conceptual simplicity and suitability for numerical implementation.
The Green's function method starts with the wave equation, (16.2). The objective is to obtain a compact expression for the solution to the noise-driven wave equation. In the Green's functions method, the solution to Eq. 16.2 can be written as:
\[
\begin{equation*}
E_{\omega}(z)=\frac{\int_{0}^{l} g\left(z, z^{\prime}\right) f_{\omega}\left(z^{\prime}\right) d z^{\prime}}{W} \tag{16.3}
\end{equation*}
\]
where \(f_{\omega}(z)\) is the local Langevin force, \(g\left(z, z^{\prime}\right)\) the Green's function, and \(W\) the Wronskian of the wave equation. The integration is over the diode cavity length \(l\).

The Wronskian \(W\) is a functional of the distribution of the wavenumber \([k(\omega, z)]\) in general.

The interpretation of Eq. 16.3 is very simple. According to the basic principle of the Green's function method, any linear differential equation with a driving source term, has a solution that can be found by decomposing the source into many smaller pieces in space. The final solution is the sum (or integration) of the solutions due to the smaller source terms. In our case, the driving source is the spontaneous noise term and the electric field solution at location \(z\) is a sum (or integration) of solutions due to the spontaneous emission of a single photon at location \(z^{\prime}\). A more detailed discussion of the Green's function method the the treatment of spontaneous emission is outlined in App. D.

The expressions for both the Green's functions and the Wronskian can be written in terms of the solution for the homogeneous wave equation, i.e., the solution to Eq. 16.2 without the spontaneous noise terms. The Green's function can be written as [80][106]:
\[
\begin{equation*}
g\left(z, z^{\prime}\right)=Z_{R}(z) Z_{L}\left(z^{\prime}\right) \Theta\left(z-z^{\prime}\right)+Z_{R}\left(z^{\prime}\right) Z_{L}(z) \Theta\left(z^{\prime}-z\right) \tag{16.4}
\end{equation*}
\]

Here \(\Theta(z)\) is the Heaviside step function.. \(Z_{L}(z)\) is the solution to the homogeneous wave equation which satisfies the boundary condition at the left laser facet and internal interfaces (for multi-section lasers) but may not satisfy the boundary condition at the right laser facet. \(Z_{R}(z)\) is the corresponding solution which satisfies the boundary condition at the right facet and the internal interfaces.
The Wronskian can be written as [80][106]:
\[
\begin{equation*}
W=Z_{L}(z) \frac{d}{d z} Z_{R}(z)-Z_{R}(z) \frac{d}{d z} Z_{L}(z) \tag{16.5}
\end{equation*}
\]

Since \(Z_{L}\) and \(Z_{R}\) are solutions to the homogeneous wave equation, it follows from simple algebra that \(d W / d z=0\) in each waveguide section. This means that \(W\) is position independent. Therefore, under a particular bias condition, the Wronskian is only a function of the frequency or wavelength. This conclusion is very important and it is the basis for the remaining discussion of modeling techniques.

\subsection*{16.4 Longitudinal Modes and Complex Frequencies}

The Green's function method gives a clear definition of a longitudinal mode: a longitudinal mode corresponds to a maximum of the emission spectrum which corresponds to a minimum value of \(|W|\). Since the solution must be finite we note that for the
homogeneous wave equation, the Wronskian is exactly zero on a mode peak. In the more general case where the diving force is present, modes are instead found at local minima of the Wronskian. Since we have determined that the Wronskian is only a function of the frequency, the search for longitudinal modes is simplified to a search of the local minima of \(W(\omega)\)

To evaluate this, we make use of an observation by Tromborg et.al. [106] that, with the proper choice of normalization:
\[
\begin{equation*}
W(\omega)=1-R_{g} \tag{16.6}
\end{equation*}
\]
where \(R_{g}\) is the complex round trip gain (i.e. phase and amplitude).
In a real cavity, the spontaneous emission driving force is always present. This means that the Wronskian can never be exactly zero and the round-trip gain is always less than one. This can be understood by realizing that spontaneous emission always contributes an additive term to the optical propagation of a wave and that the optical gain is not the only contribution to the laser output. Despite this, the contribution of the spontaneous emission is quite small above threshold and \(W=0\) is usually a good approximation for single-mode lasing behavior. However, multi-mode analysis requires inclusion of the spontaneous emission since in general, side modes are below threshold. We will come back to this point in Sec. 18.2.

Luckily, we can reformulate the problem by treating the additive contribution of the spontaneous emission as an equivalent gain source. Our interpretation here is based on the argument of Henry and Kazarinov [107]. Let us use the convention of \(\exp (j \omega t)\) and express the contribution of the spontaneous emission as a complex frequency terms. We define this contribution such that when this term is included, the round-trip gain is exactly one. That is, we assert by definition that \(W=0\) on the complex frequency plane for longitudinal mode solutions.

If we consider a simple Fabry-Perot laser of cavity length \(L\), we get:
\[
\begin{equation*}
R_{1} R_{2} \exp \left[\left(g-\alpha_{i}\right) L-2 j \omega n_{e f f} L / c_{0}\right]=1 \tag{16.7}
\end{equation*}
\]

Since the frequency is now complex, the imaginary part of the frequency is equivalent to an additional gain term of:
\[
\begin{equation*}
\Delta g=2 \omega_{i m} n_{e f f} / c_{0} \tag{16.8}
\end{equation*}
\]

The same argument can be applied to a DFB or any other type of laser structure because we can always divide an arbitrary structure into small sections ( \(\Delta L_{k}\) ) with uniform material variation. We then use transfer matrix techniques to express the round trip gain in terms of the factor \(\exp \left[\left(g-\alpha_{i}\right) \Delta L / 2+j \omega n_{e f f} \Delta L / c_{0}\right]\). By arguing that the round trip gain must remain unity at all times, we reach the same result as in Eq. (16.8).

We quickly note that the addition of this complex frequency also has numerical benefits since it is much easier to search for the zeros of a function than to search for its local minima.

\subsection*{16.5 Coupled Wave Equations}

As previously discussed, the wave number \(k=k(\omega, z)\) may depend directly on \(z\) due to the grating structure or variation in the material composition and indirectly through the carrier density and photon density variations along the waveguide (longitudinal spatial hole burning).
In DFB and DBR lasers, corrugations are made along the waveguides which introduce coupling between the forward and backward waves (also referred to as right going and left going waves). The purpose of this is to perturb the propagation constant \(k(z)\) to achieve desirable scattering effects of the propagating waves.
In a laser with a grating of period \(L_{g}\), the effective refractive index can be written as:
\[
\begin{equation*}
n=\tilde{n}+2(\Delta n) \cos \left(\frac{2 \pi}{L_{g}(z)} z+\Omega\right) \tag{16.9}
\end{equation*}
\]
where we consider the general case that the grating period may vary as a function of position. \(\tilde{n}\) denotes the slowly varying part of the complex index and \(2(\Delta n)\) is the magnitude of the index variation (also a complex quantity).
We define a reference wave number \(\beta_{0}\) such that
\[
\begin{equation*}
\beta_{0}=\frac{\pi}{<L_{g}>} \tag{16.10}
\end{equation*}
\]
where \(<>\) is used to denote the average grating period. \(\beta_{0}\) is a constant independent of the frequency and injection condition and is usually set to the Bragg wave number in simple grating structures at threshold condition.
In general, we can assume that the change in the grating period is smooth and write the following expansion:
\[
\begin{equation*}
\frac{\pi}{L_{g}}=\beta_{0}+\Delta \beta_{c h}(z) \tag{16.11}
\end{equation*}
\]
where \(\Delta \beta_{c h}(z)\) is caused by some form of chirp grating (variation of grating period). Based on Eq. (16.9), we re-write the wave number as
\[
\begin{align*}
k & =\beta_{0}+\Delta \tilde{k}+2 \kappa \cos \left[2\left(\beta_{0}+\Delta \beta_{c h}\right) z+j \Omega\right]  \tag{16.12}\\
& =\beta_{0}+\Delta \tilde{k}+\kappa e^{2 j\left(\beta_{0}+\Delta \beta_{c h}\right) z+j \Omega}+\kappa e^{-2 j\left(\beta_{0}+\Delta \beta_{c h}\right) z-j \Omega} \tag{16.13}
\end{align*}
\]
where
\[
\begin{equation*}
\Delta \tilde{k}=\tilde{n} \frac{\omega}{c_{0}}-\beta_{0} \tag{16.14}
\end{equation*}
\]
and
\[
\begin{equation*}
\kappa=\Delta n \frac{\omega}{c_{0}} \tag{16.15}
\end{equation*}
\]

Since only the optical frequencies close to the Bragg condition are considered, the second term in Eq. (16.13) is small compared with \(\beta_{0}\). Similarly, we assume that the coupling coefficient \(\kappa\) is much smaller than \(\beta_{0}\). In the following derivation, we will neglect higher order terms of \(\Delta \tilde{k}\) and \(\kappa\).
We propose a trial solution of the form:
\[
\begin{equation*}
E_{z}=R(z) e^{-j \beta_{0} z}+L(z) e^{j \beta_{0} z} \tag{16.16}
\end{equation*}
\]
where \(L(z)\) and \(R(z)\) are used to denote the slow varying amplitudes of waves going left and right.
We substitute it into the wave equation to get the following algebra:
\[
\begin{align*}
& -\beta_{0}^{2}\left[R(z) e^{-j \beta_{0} z}+L(z) e^{j \beta_{0} z}\right] \\
& -2 j \beta_{0}\left[\left(\frac{\partial R(z)}{\partial z}\right) e^{-j \beta_{0} z}-\left(\frac{\partial L(z)}{\partial z}\right) e^{j \beta_{0} z}\right] \\
& +\left(\frac{\partial^{2} R(z)}{\partial z^{2}}\right) e^{-j \beta_{0} z}+\left(\frac{\partial^{2} L(z)}{\partial z^{2}}\right) e^{j \beta_{0} z} \\
& +k^{2}\left(R(z) e^{-j \beta_{0} z}+L(z) e^{j \beta_{0} z}\right)=0 \tag{16.17}
\end{align*}
\]

Treating \(\Delta \tilde{k}\) and \(\kappa\) as small quantities, we expand the wave number \(k^{2}\) as follows.
\[
\begin{align*}
k^{2}= & \beta_{0}^{2}+2 \beta_{0}\left(\Delta \tilde{k}+\kappa e^{2 j\left(\beta_{0}+\Delta \beta_{c h}\right) z+j \Omega}+\kappa e^{-2 j\left(\beta_{0}+\Delta \beta_{c h}\right) z-j \Omega}\right) \\
& + \text { higher order terms } . \tag{16.18}
\end{align*}
\]
which is then substituted into Eq. (16.17).
To simplify the notation, we introduce a slow varying function:
\[
\begin{equation*}
\Omega_{g}(z)=2 \Delta \beta_{c h}(z) z+\Omega \tag{16.19}
\end{equation*}
\]

We further assume that the wave amplitude is a slow varying function of z and neglect the second derivatives involving: \(\left(\frac{\partial^{2} R(z)}{\partial^{2} z}\right)\) and \(\left(\frac{\partial^{2} L(z)}{\partial^{2} z}\right)\).
After the terms involving \(\beta_{0}^{2}\) are canceled, we are left with the following equation:
\[
\begin{align*}
& -2 j \beta_{0}\left[\left(\frac{\partial R(z)}{\partial z}\right) e^{-j \beta_{0} z}-\left(\frac{\partial^{2} R(z)}{\partial^{2} z}\right) e^{j \beta_{0} z}\right] \\
& +2 \beta_{0}\left(\Delta \tilde{k}+\kappa e^{2 j \beta_{0} z+j \Omega_{g}}+\kappa e^{-2 j \beta_{0} z-j \Omega_{g}}\right)\left(R(z) e^{-j \beta_{0} z}+L(z) e^{j \beta_{0} z}\right) \\
= & 0 . \tag{16.20}
\end{align*}
\]

Since \(R(z)\) and \(L(z)\) are independent functions, this equation makes sense only when terms with the same propagation factor sum up to zero. In other words, the terms with \(e^{-j \beta_{0} z}\) and \(e^{j \beta_{0} z}\) must sum up zero, respectively. Collecting these terms, we find:
\[
\begin{align*}
-2 j \beta_{0}\left(\frac{\partial R(z)}{\partial z}\right)+2 \beta_{0} \Delta \tilde{k} R(z)+2 \beta_{0} \kappa e^{-j \Omega_{g}} L(z) & =0  \tag{16.21}\\
2 j \beta_{0}\left(\frac{\partial L(z)}{\partial z}\right)+2 \beta_{0} \Delta \tilde{k} L(z)+2 \beta_{0} \kappa e^{j \Omega_{g}} R(z) & =0 \tag{16.22}
\end{align*}
\]
which can be re-written in the familiar form:
\[
\begin{align*}
\frac{\partial}{\partial z} R(z)+j(\Delta \tilde{k}) R(z) & =-j \kappa e^{-j \Omega_{g}} L(z)  \tag{16.23}\\
\frac{\partial}{\partial z} L(z)-j(\Delta \tilde{k}) L(z) & =j \kappa e^{j \Omega_{g}} R(z) \tag{16.24}
\end{align*}
\]
or in matrix notation:
\[
\frac{\partial}{\partial z}\binom{R(z)}{L(z)}=\left(\begin{array}{cc}
-j(\Delta \tilde{k}) & -j \kappa e^{-j \Omega_{g}}  \tag{16.25}\\
j \kappa e^{j \Omega_{g}} & j(\Delta \tilde{k})
\end{array}\right)\binom{R(z)}{L(z)}
\]

\subsection*{16.6 Transfer Matrix Formulas}

In this section, the technique developed by McCall and Platzman [108] is used to solve the coupled wave equations.
The complex phase factor \(e^{j \Omega_{g}}\) is separated into real and imaginary parts and the wave equation rewritten as:
\[
\begin{align*}
\frac{\partial}{\partial z} R(z) & =-j(\Delta \tilde{k}) R(z)+\left[-j \kappa \cos \left(\Omega_{g}\right)-\kappa \sin \left(\Omega_{g}\right)\right] L(z)  \tag{16.26}\\
\frac{\partial}{\partial z} L(z) & =\left[j \kappa \cos \left(\Omega_{g}\right)-\kappa \sin \left(\Omega_{g}\right)\right] R(z)+j(\Delta \tilde{k}) L(z) \tag{16.27}
\end{align*}
\]

We introduce the Pauli matrices :
\[
\begin{align*}
\sigma_{1} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)  \tag{16.28}\\
\sigma_{2} & =\left(\begin{array}{cc}
0 & -j \\
j & 0
\end{array}\right)  \tag{16.29}\\
\sigma_{3} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \tag{16.30}
\end{align*}
\]
and express the equation in terms of a spinor:
\[
\begin{equation*}
\psi=\binom{R(z)}{L(z)} \tag{16.31}
\end{equation*}
\]

We obtain:
\[
\begin{align*}
\frac{\partial}{\partial z} \psi & =\left[-\kappa \sin \left(\Omega_{g}\right) \sigma_{1}+\kappa \cos \left(\Omega_{g}\right) \sigma_{2}-j(\Delta \tilde{k}) \sigma_{3}\right] \psi  \tag{16.32}\\
& =H \psi  \tag{16.33}\\
& =\boldsymbol{\mu} \cdot \boldsymbol{\sigma} \psi \tag{16.34}
\end{align*}
\]
where boldface is used to denote a three component vector.
More specifically, in three component notation:
\[
\boldsymbol{\mu}=\left[\begin{array}{lll}
-\kappa \sin \left(\Omega_{g}\right) & \kappa \cos \left(\Omega_{g}\right) & -j(\Delta \tilde{k}) \tag{16.35}
\end{array}\right]
\]
and
\[
\boldsymbol{\sigma}=\left(\begin{array}{l}
\sigma_{1}  \tag{16.36}\\
\sigma_{2} \\
\sigma_{3}
\end{array}\right)
\]

An arbitrary function \(f\) of the scalar \(a+\boldsymbol{b} \cdot \boldsymbol{\sigma}\), linear in the Pauli matrices, can be reduced to another linear function[109]:
\[
\begin{equation*}
f(a+\boldsymbol{b} \cdot \boldsymbol{\sigma})=A+\boldsymbol{B} \cdot \boldsymbol{\sigma} \tag{16.37}
\end{equation*}
\]
where
\[
\begin{align*}
A & =\frac{1}{2}[f(a+b)+f(a-b)]  \tag{16.38}\\
\boldsymbol{B} & =\frac{\boldsymbol{b}}{2 b}[f(a+b)-f(a-b)] \tag{16.39}
\end{align*}
\]

This allows us to expand the solution to Eq. (16.34) which can be written as:
\[
\begin{equation*}
\psi(z)=\cosh \left[\mu\left(z-z_{0}\right)\right]+\frac{\boldsymbol{\mu} \cdot \boldsymbol{\sigma}}{\mu} \sinh \left[\mu\left(z-z_{0}\right)\right] \tag{16.40}
\end{equation*}
\]
where \(\mu\) is the complex square root of \(\boldsymbol{\mu} \cdot \boldsymbol{\mu}\).
\[
\begin{equation*}
\mu^{2}=\kappa^{2}-(\Delta \tilde{k})^{2} \tag{16.41}
\end{equation*}
\]

We note that it makes no difference which sign the complex \(\mu\) takes.
The transfer matrix that maps \(\psi\) from one location to another is given by:
\[
\psi(z)=\left(\begin{array}{ll}
T_{11} & T_{12}  \tag{16.42}\\
T_{21} & T_{22}
\end{array}\right) \psi\left(z_{0}\right)
\]
where
\[
\begin{align*}
& T_{11}=\cosh \left[\mu\left(z-z_{0}\right)\right]-j(\Delta \tilde{k}) \sinh \left[\mu\left(z-z_{0}\right)\right] / \mu  \tag{16.43}\\
& T_{12}=-j \kappa e^{-j \Omega_{g}} \sinh \left[\mu\left(z-z_{0}\right)\right] / \mu  \tag{16.44}\\
& T_{21}=j \kappa e^{j \Omega_{g}} \sinh \left[\mu\left(z-z_{0}\right)\right] / \mu  \tag{16.45}\\
& T_{22}=\cosh \left[\mu\left(z-z_{0}\right)\right]+j(\Delta \tilde{k}) \sinh \left[\mu\left(z-z_{0}\right)\right] / \mu \tag{16.46}
\end{align*}
\]
and
\[
\begin{equation*}
\Omega_{g}(z)=2 \Delta \beta_{c h}(z) z+\Omega \tag{16.47}
\end{equation*}
\]

\subsection*{16.7 Bragg wavelength and related reference parameters}

\section*{Grating and reference wavelength}

In this section, we discuss several important parameters used in simulation of waveguiding structures involving DFB/DBR gratings. In a realistic device involving corrugation gratings, the Bragg wavelength in vacuum is generally not well defined: the spacing or the pitch of the grating is fixed by the fabrication procedure but the modal index of the structure varies with bias and is not known before the simulation

We have chosen to fix the parameter of expansion \(\beta_{0}\) as a constant at all times for a particular device in the simulator. This parameter is given by the average grating period \(L_{g}\) as:
\[
\begin{equation*}
\beta_{0}=\frac{\pi}{\left\langle L_{g}\right\rangle} \tag{16.48}
\end{equation*}
\]

Thus in theory, \(\beta_{0}\) is well defined once the grating structure is known.
However, we often need to calculate parameters in the wavelength or frequency domain so we introduce a reference wavelength:
\[
\begin{equation*}
\lambda_{r e f}=\frac{2 \pi n_{r e f}}{\beta_{0}}=2 n_{r e f}<L_{g}> \tag{16.49}
\end{equation*}
\]
where \(n_{\text {ref }}\) is a fixed reference index which is normally chosen to be close to the modal index at threshold. In current versions of PICS3D, \(n_{\text {ref }}\) is the effective index at equilibrium so that \(\lambda_{r e f}\) is always independent of the applied bias.

This reference wavelength is different from the Bragg wavelength:
\[
\begin{equation*}
\lambda_{B r}=2 n_{e f f}<L_{g}> \tag{16.50}
\end{equation*}
\]
where \(n_{\text {eff }}\) is the effective index at the current bias value.

\section*{Propagation constant}

The fundamental assumption in the software for index change is that the real_index value in the macro library corresponds to the index at thermal equilibrium. When the device is biased, the index changes due to various effects such as interband transitions. This can be controlled by the index_model statement although the most common effects are included by default.
As a result, the propagation constant in the coupled-mode theory is evaluated by:
\[
\begin{equation*}
\beta-\beta_{0}=\left(\omega-\omega_{r e f}\right) n_{e f f} / c+\omega_{r e f}\left(n_{e f f}-n_{r e f}\right) / c \tag{16.51}
\end{equation*}
\]
where \(\omega_{\text {ref }}\) is the frequency at \(\lambda_{r e f}\). This is only used in edge-emitting devices since propagation in VCSELs is not based on coupled-mode theory.
Note that during the preview of the round-trip gain provided by rtgain_phase, tabulated index change values are used to evaluate the propagation constant. This may differ from results in the main simulation.

\section*{Setting the reference wavelength}

When setting up a device simulation, there are two ways of defining the reference wavelength in the longitudinal statement:
1. Set ref_cwavel to the value of \(\lambda_{\text {ref }}\)
2. Set ref_index to the value of \(n_{r e f}\) and ref_pitch to the value of \(L_{g}\).

The first method is the easiest and ignores the details of the fabrication process. The second method is more accurate but requires knowledge of the reference pitch of the grating. However, \(n_{\text {ref }}\) must be as close as possible to \(n_{\text {eff }}\) at threshold in order for the longitudinal modes to be in the right place.
From a device design point of view, the question is often reversed: given a Bragg wavelength, what value of \(L_{g}\) should be used? To answer this question, an accurate estimate of \(n_{\text {eff }}\) is needed: it can be obtained from the simulation itself through the 2D mode solver results at various bias points. This will be an iterative process as changing the reference wavelength can alter the threshold value as well as the gain and index profiles.

\subsection*{16.8 Coupled Wave Equations For Second Order Grating}

\subsection*{16.8.1 Introduction}

When the grating period of the structure is \(1 / 2\) of the wavelength, we have a first order grating structure which is commonly used for DFB and DBR lasers. In a first order grating structure, the forward wave will only couple with the backward wave: there are 180 degrees between the two.
A grating structure with a period that equals the wavelength is a second order grating. The forward wave will experience a first order diffraction in 90 degrees which causes radiation loss and a second order diffraction in 180 degrees (or the backward wave). Therefore, we must modify the coupled wave equation to have a term to account for the radiation loss. In subsection 16.8.2, we derive the coupled wave equations here based on Ref. [81]. Subsection 16.8.3 is used to formulate the radiating waves. Subsection 16.8.4 derives the formulas for a commonly used grating structure and compare the results with those in Ref. [81].

\subsection*{16.8.2 Coupling coefficients}

To be consistent with our convention for propagating waves, we assume a time dependence of \(\exp (j \omega t)\) so that the forward wave has a factor \(\exp \left(-j k_{z} z\right)\).
We choose a reference wave number \(\beta_{0}\) such that the grating property can be expanded in term of it. The dielectric function at the optical frequency can be written as:
\[
\begin{equation*}
\varepsilon(y, z)=\varepsilon_{0}(y)+\Delta \varepsilon(y, z) \tag{16.52}
\end{equation*}
\]
where \(\Delta \varepsilon(y, z)\) is non zero only in the grating layers:
\[
\begin{align*}
\Delta \varepsilon(y, z) & =\Delta \varepsilon\left[\zeta_{+1}(y) \exp \left(-j \beta_{0} z\right)+\zeta_{-1}(y) \exp \left(+j \beta_{0} z\right)\right. \\
& \left.+\zeta_{+2}(y) \exp \left(-j 2 \beta_{0} z\right)+\zeta_{-2}(y) \exp \left(+j 2 \beta_{0} z\right)\right] \tag{16.53}
\end{align*}
\]

Our starting point is the following wave equation in three dimensions:
\[
\begin{equation*}
\left[\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}+\frac{\omega^{2}}{c_{0}^{2}} \varepsilon(y, z)\right] E(y, z)=0 \tag{16.54}
\end{equation*}
\]
where \(c_{0}\) is the speed of light.
We consider a propagating field of the following form:
\[
\begin{equation*}
E(y, z)=\left[R(z) \exp \left(-j \beta_{0} z\right)+L(z) \exp \left(j \beta_{0} z\right)\right] \phi(y)+\Delta E(y, z) \tag{16.55}
\end{equation*}
\]
where \(\Delta E(y, z)\) is the radiating wave.
The wave equation becomes:
\[
\begin{align*}
& {\left[\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}+\frac{\omega^{2}}{c_{0}^{2}} \varepsilon_{0}(y)\right.} \\
& +\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \zeta_{+1}(y) \exp \left(-j \beta_{0} z\right)+\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \zeta_{-1}(y) \exp \left(+j \beta_{0} z\right) \\
& \left.+\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \zeta_{+2}(y) \exp \left(-j 2 \beta_{0} z\right)+\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \zeta_{-2}(y) \exp \left(+j 2 \beta_{0} z\right)\right] E(y, z)=0 \tag{16.56}
\end{align*}
\]

Let us substitute the expression for \(\mathrm{E}(\mathrm{y}, \mathrm{z})\) and work out all the terms as follows:
\[
\begin{align*}
& {\left[\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}+\frac{\omega^{2}}{c_{0}^{2}} \varepsilon_{0}(y)\right.} \\
& +\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \zeta_{+1}(y) \exp \left(-j \beta_{0} z\right)+\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \zeta_{-1}(y) \exp \left(+j \beta_{0} z\right) \\
& \left.+\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \zeta_{+2}(y) \exp \left(-j 2 \beta_{0} z\right)+\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \zeta_{-2}(y) \exp \left(+j 2 \beta_{0} z\right)\right] \\
& {\left[R(z) \exp \left(-j \beta_{0} z\right) \phi(y)+L(z) \exp \left(j \beta_{0} z\right) \phi(y)+\Delta E(y, z)\right]=0} \tag{16.57}
\end{align*}
\]

If we collect terms of different exponential factors, we obtain the following equations for terms with no exponential wave factor:
\[
\begin{equation*}
\left[\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}+\frac{\omega^{2}}{c_{0}^{2}} \varepsilon_{0}(y)\right] \Delta E(y, z)=-\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\left[\zeta_{+1}(y) L(z)+\zeta_{-1}(y) R(z)\right] \phi(y) \tag{16.58}
\end{equation*}
\]
and for terms with \(\exp \left(-j \beta_{0} z\right)\) :
\[
\begin{align*}
& {\left[\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}+\frac{\omega^{2}}{c_{0}^{2}} \varepsilon_{0}(y)\right] R(z) \exp \left(-j \beta_{0} z\right) \phi(y) } \\
= & -\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\left[\zeta_{+1}(y) \Delta E(y, z)+\zeta_{+2}(y) L(z) \phi(y)\right] \exp \left(-j \beta_{0} z\right) \tag{16.59}
\end{align*}
\]

We drop the terms with \(\frac{\partial^{2} R}{\partial z^{2}}\) and \(\frac{\partial^{2} L}{\partial z^{2}}\) :
\[
\begin{align*}
& {\left[\frac{\partial^{2}}{\partial y^{2}}-2 j \beta_{0} \frac{\partial}{\partial z}-\beta_{0}^{2}+\frac{\omega^{2}}{c_{0}^{2}} \varepsilon_{0}(y)\right] R(z) \phi(y) } \\
= & -\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\left[\zeta_{+1}(y) \Delta E(y, z)+\zeta_{+2}(y) L(z) \phi(y)\right] \tag{16.60}
\end{align*}
\]

Similarly for terms with \(\exp \left(j \beta_{0} z\right)\) :
\[
\begin{align*}
& {\left[\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}+\frac{\omega^{2}}{c_{0}^{2}} \varepsilon_{0}(y)\right] L(z) \exp \left(j \beta_{0} z\right) \phi(y) } \\
= & -\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\left[\zeta_{-1}(y) \Delta E(y, z)+\zeta_{-2}(y) R(z) \phi(y)\right] \exp \left(j \beta_{0} z\right) \tag{16.61}
\end{align*}
\]
or
\[
\begin{align*}
& {\left[\frac{\partial^{2}}{\partial y^{2}}+2 j \beta_{0} \frac{\partial}{\partial z}-\beta_{0}^{2}+\frac{\omega^{2}}{c_{0}^{2}} \varepsilon_{0}(y)\right] L(z) \phi(y) } \\
= & -\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\left[\zeta_{-1}(y) \Delta E(y, z)+\zeta_{-2}(y) R(z) \phi(y)\right] \tag{16.62}
\end{align*}
\]

The left hand side of equation Eq. (16.58) is very familiar to us. Assuming a fast varying factor \(\exp \left( \pm j \beta_{0} z\right)\) for \(\Delta E(y, z)\), we solve the following Green's function for it y-dependence:
\[
\begin{gather*}
{\left[\frac{\partial^{2}}{\partial y^{2}}-\beta_{0}^{2}+\frac{\omega^{2}}{c_{0}^{2}} \varepsilon_{0}(y)\right] G\left(y, y_{1}\right)=\delta\left(y-y_{1}\right)}  \tag{16.63}\\
\Delta E(y, z)=-\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \int G\left(y, y_{1}\right)\left[\zeta_{+1}\left(y_{1}\right) L(z)+\zeta_{-1}\left(y_{1}\right) R(z)\right] \phi\left(y_{1}\right) d y_{1} \tag{16.64}
\end{gather*}
\]
\[
\begin{align*}
\Delta E(y, z) & \left.=-\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \int G\left(y, y_{1}\right) \zeta_{+1}\left(y_{1}\right) \phi\left(y_{1}\right)\right] d y_{1} L(z) \\
& -\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \int G\left(y, y_{1}\right) \zeta_{-1}\left(y_{1}\right) \phi\left(y_{1}\right) d y_{1} R(z) \tag{16.65}
\end{align*}
\]

We note that \(\phi(y)\) satisfies the following equation for a single transverse mode:
\[
\begin{equation*}
\left[\frac{\partial^{2}}{\partial y^{2}}-\beta_{0}^{2}+\frac{\omega_{0}^{2}}{c_{0}^{2}} R e\left[\varepsilon_{0}(y)\right]\right] \phi(y)=0 \tag{16.66}
\end{equation*}
\]

This allows us to re-write Eq. (16.60) as follows:
\[
\begin{align*}
& {\left[\frac{\omega^{2}}{c_{0}^{2}} \varepsilon_{0}(y)-\frac{\omega_{0}^{2}}{c_{0}^{2}} \varepsilon_{0}(y)+\frac{\omega^{2}}{c_{0}^{2}} \operatorname{Im}\left[\varepsilon_{0}(y)\right]-2 j \beta_{0} \frac{\partial}{\partial z}\right] R(z) \phi(y) } \\
= & -\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \zeta_{+1}(y)\left[\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \int G\left(y, y_{1}\right) \zeta_{+1}(y) \phi\left(y_{1}\right)\right] d y_{1} L(z) \\
- & \left.\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \int G\left(y, y_{1}\right) \zeta_{-1}(y) \phi\left(y_{1}\right) d y_{1} R(z)\right] \\
- & \frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \zeta_{+2}(y) L(z) \phi(y) \tag{16.67}
\end{align*}
\]

We multiply the above with \(\phi(y)\) and integrate over y :
\[
\begin{align*}
& \left\{\beta^{2}-\beta_{0}^{2}+j \frac{\omega_{0}^{2}}{c_{0}^{2}} \int \phi(y) \operatorname{Im}\left[\varepsilon_{0}(y)\right] \phi(y) d y-2 j \beta_{0} \frac{\partial}{\partial z}\right\} R(z) \\
= & -\left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{2} \iint \phi(y) \zeta_{+1}(y) G\left(y, y_{1}\right) \zeta_{+1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1} L(z) \\
- & \left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{2} \iint \phi(y) \zeta_{+1}(y) G\left(y, y_{1}\right) \zeta_{-1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1} R(z) \\
- & \frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \int \zeta_{+2}(y) \phi(y)^{2} d y L(z) \tag{16.68}
\end{align*}
\]
where
\[
\begin{align*}
\beta^{2}-\beta_{0}^{2} & =2 \beta_{0} \frac{\partial \beta}{\partial \omega} \Delta \omega \\
& =2 \beta_{0} \frac{\Delta \omega}{v_{g}} \tag{16.69}
\end{align*}
\]

We also note that we can use modal gain and internal loss to express the following integral:
\[
\begin{equation*}
\int \phi(y) \operatorname{Im}\left[\varepsilon_{0}(y)\right] \phi(y) d y=\frac{n^{\prime} c_{0}}{\omega_{0}}\left(g-\alpha_{i}\right) \tag{16.70}
\end{equation*}
\]

Then:
\[
\begin{align*}
& \left\{2 \beta_{0} \frac{\Delta \omega}{v_{g}}+j \beta_{0}\left(g-\alpha_{i}\right)-2 j \beta_{0} \frac{\partial}{\partial z}\right. \\
+ & \left.\left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{2} \iint \phi(y) \zeta_{+1}(y) G\left(y, y_{1}\right) \zeta_{-1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1}\right\} R(z) \\
= & -\left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{2} \iint \phi(y) \zeta_{+1}(y) G\left(y, y_{1}\right) \zeta_{+1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1} L(z) \\
- & \frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \int \zeta_{+2}(y) \phi(y)^{2} d y L(z) \tag{16.71}
\end{align*}
\]

A similar derivation can be made for Eq. (16.62):
\[
\begin{align*}
& {\left[\frac{\omega^{2}}{c_{0}^{2}} \varepsilon_{0}(y)-\frac{\omega_{0}^{2}}{c_{0}^{2}} \varepsilon_{0}(y)+2 j \beta_{0} \frac{\partial}{\partial z}+j \frac{\omega^{2}}{c_{0}^{2}} \operatorname{Im}\left[\varepsilon_{0}(y)\right]\right] L(z) \phi(y) } \\
= & -\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \zeta_{-1}(y) \Delta E(y, z) \\
- & \frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \zeta_{-2}(y) R(z) \phi(y) \tag{16.72}
\end{align*}
\]
\[
\begin{align*}
& {\left[\frac{\omega^{2}}{c_{0}^{2}} \varepsilon_{0}(y)-\frac{\omega_{0}^{2}}{c_{0}^{2}} \varepsilon_{0}(y)+2 j \beta_{0} \frac{\partial}{\partial z}+j \frac{\omega^{2}}{c_{0}^{2}} \operatorname{Im}\left[\varepsilon_{0}(y)\right]\right] L(z) \phi(y) } \\
= & -\left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{2} \int \zeta_{-1}(y) G\left(y, y_{1}\right) \zeta_{+1}\left(y_{1}\right) \phi\left(y_{1}\right) d y_{1} L(z) \\
- & \left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{2} \int \zeta_{-1}(y) G\left(y, y_{1}\right) \zeta_{-1}\left(y_{1}\right) \phi\left(y_{1}\right) d y_{1} R(z) \\
- & \frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \zeta_{-2} R(z) \phi(y) \tag{16.73}
\end{align*}
\]

We multiply \(\phi(y)\) and integrate over y :
\[
\begin{align*}
& {\left[\beta^{2}-\beta_{0}^{2}+2 j \beta_{0} \frac{\partial}{\partial z}+j \frac{\omega^{2}}{c_{0}^{2}} \int \phi(y) \operatorname{Im}\left[\varepsilon_{0}(y)\right] \phi(y) d y\right] L(z) } \\
= & -\left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{2} \iint \phi(y) \zeta_{-1}(y) G\left(y, y_{1}\right) \zeta_{+1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1} L(z) \\
- & \left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{2} \iint \phi(y) \zeta_{-1}(y) G\left(y, y_{1}\right) \zeta_{-1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1} R(z) \\
- & \frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \int \zeta_{-2}(y) \phi(y)^{2} d y R(z) \tag{16.74}
\end{align*}
\]
\[
\begin{align*}
& \left\{2 \beta_{0} \frac{\Delta \omega}{v_{g}}+2 j \beta_{0} \frac{\partial}{\partial z}+j \frac{\omega}{c_{0}} n^{\prime}\left(g-\alpha_{i}\right)\right. \\
+ & {\left.\left[\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right]^{2} \iint \phi(y) \zeta_{-1}(y) G\left(y, y_{1}\right) \zeta_{+1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1}\right\} L(z) } \\
= & -\left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{2} \iint \phi(y) \zeta_{-1}(y) G\left(y, y_{1}\right) \zeta_{-1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1} R(z) \\
- & \frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \int \zeta_{-2}(y) \phi(y)^{2} d y R(z) \tag{16.75}
\end{align*}
\]

Our key results are of the following form:
\[
\begin{align*}
& \left\{\frac{\Delta \omega}{v_{g}}+j \frac{g-\alpha_{i}}{2}-j \frac{\partial}{\partial z}\right. \\
+ & \left.\left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{2} \frac{1}{2 \beta_{0}} \iint \phi(y) \zeta_{+1}(y) G\left(y, y_{1}\right) \zeta_{-1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1}\right\} R(z) \\
+ & \left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{2} \frac{1}{2 \beta_{0}} \iint \phi(y) \zeta_{+1}(y) G\left(y, y_{1}\right) \zeta_{+1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1} L(z) \\
+ & \frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \frac{1}{2 \beta_{0}} \int \zeta_{+2} \phi(y)^{2} d y L(z) \\
= & 0  \tag{16.76}\\
+ & \left(\frac{\Delta \omega}{v_{g}}+j \frac{\partial}{\partial z}+j \frac{g-\alpha_{i}}{2}\right. \\
c_{0}^{2} & \left.\Delta)^{2} \frac{1}{2 \beta_{0}} \iint \phi(y) \zeta_{-1}(y) G\left(y, y_{1}\right) \zeta_{+1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1}\right\} L(z) \\
+ & \left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{2} \frac{1}{2 \beta_{0}} \iint \phi(y) \zeta_{-1}(y) G\left(y, y_{1}\right) \zeta_{-1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1} R(z) \\
+ & \frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \frac{1}{2 \beta_{0}} \int \zeta_{-2}(y) \phi(y)^{2} d y R(z) \\
= & 0 \tag{16.77}
\end{align*}
\]

These are rewritten as
\[
\begin{gather*}
\left\{\frac{\partial}{\partial z}+j \frac{\Delta \omega}{v_{g}}-\frac{g-\alpha_{i}}{2}+h_{1 a}\right\} R(z)+h_{1 b} L(z)+j h_{2 b} L(z)=0  \tag{16.78}\\
\left\{\frac{\partial}{\partial z}-j \frac{\Delta \omega}{v_{g}}+\frac{g-\alpha_{i}}{2}-h_{1 a}\right\} L(z)-h_{1 c} R(z)-j h_{2 a} R(z)=0  \tag{16.79}\\
h_{1 a}=-j\left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{2} \frac{1}{2 \beta_{0}} \iint \phi(y) \zeta_{+1}(y) G\left(y, y_{1}\right) \zeta_{-1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1}  \tag{16.80}\\
h_{1 b}=-j\left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{2} \frac{1}{2 \beta_{0}} \iint \phi(y) \zeta_{+1}(y) G\left(y, y_{1}\right) \zeta_{+1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1}  \tag{16.81}\\
h_{1 c}=-j\left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{2} \frac{1}{2 \beta_{0}} \iint \phi(y) \zeta_{-1}(y) G\left(y, y_{1}\right) \zeta_{-1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1} \tag{16.82}
\end{gather*}
\]
\[
\begin{align*}
h_{2 a} & =\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \frac{1}{2 \beta_{0}} \int \zeta_{-2}(y) \phi(y)^{2} d y  \tag{16.83}\\
h_{2 b} & =\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \frac{1}{2 \beta_{0}} \int \zeta_{+2}(y) \phi(y)^{2} d y \tag{16.84}
\end{align*}
\]

The Green's function can be written in terms of the solutions of the defining equation with the right hand side equal to zero. These solutions are written as \(\phi(y)_{+}\)and \(\phi(y)_{-}\), which are the radiating waves to the positive and negative direction of y , respectively:
\[
G\left(y, y_{1}\right)=\frac{1}{W} \begin{cases}\phi(y)_{+} \phi\left(y_{1}\right)_{-} & y>y_{1}  \tag{16.85}\\ \phi(y)_{-} \phi\left(y_{1}\right)_{+} & y<y_{1}\end{cases}
\]
where the Wronskian is given by:
\[
\begin{equation*}
W=\frac{d \phi(y)_{+}}{d y} \phi(y)_{-}-\frac{d \phi(y)_{-}}{d y} \phi(y)_{+} \tag{16.86}
\end{equation*}
\]

For simplicity, we assume the radiating waves are plane waves in y direction with dependence \(\exp \left( \pm j k_{y} y\right)\). Then,
\[
\begin{gather*}
W=-2 j k_{y}  \tag{16.87}\\
G\left(y, y_{1}\right)=\frac{1}{W} \begin{cases}\exp \left[-j k_{y}\left(y-y_{1}\right)\right] & y>y_{1} \\
\exp \left[-j k_{y}\left(y_{1}-y\right)\right] & y<y_{1}\end{cases} \tag{16.88}
\end{gather*}
\]
or
\[
G\left(y, y_{1}\right)=-\frac{1}{2 j k_{y}} \begin{cases}\cos \left[-k_{y}\left(y-y_{1}\right)\right]+j \sin \left[-k_{y}\left(y-y_{1}\right)\right] & y>y_{1}  \tag{16.89}\\ \cos \left[-k_{y}\left(y_{1}-y\right)\right]+j \sin \left[-k_{y}\left(y_{1}-y\right)\right] & y<y_{1}\end{cases}
\]

For simplicity, we only consider the case of symmetric grating with \(\zeta_{+m}=\zeta_{-m}\). Then \(h_{1 a}=h_{1 b}=h_{1 c}=h_{1}\) and \(h_{2 a}=h_{2 b}=h_{2}\).

We consider the following integral:
\[
\begin{align*}
& h_{1} 4 \beta_{0} k_{y}\left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{-2} \\
= & \int_{y>y_{1}} \int \phi(y) \zeta_{1}(y)\left\{\cos \left[-k_{y}\left(y-y_{1}\right)\right]+j \sin \left[-k_{y}\left(y-y_{1}\right)\right]\right\} \zeta_{1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1} \\
+ & \int_{y<y_{1}} \int \phi(y) \zeta_{1}(y)\left\{\cos \left[-k_{y}\left(y_{1}-y\right)\right]+j \sin \left[-k_{y}\left(y_{1}-y\right)\right]\right\} \zeta_{1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1} \\
= & \int_{y>y_{1}} \int \phi(y) \zeta_{1}(y)\left\{\cos \left[-k_{y}\left(y-y_{1}\right)\right]+j \sin \left[-k_{y}\left(y-y_{1}\right)\right]\right\} \zeta_{1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1} \\
+ & \int_{y<y_{1}} \int \phi(y) \zeta_{1}(y)\left\{\cos \left[-k_{y}\left(y_{1}-y\right)\right]+j \sin \left[-k_{y}\left(y-y_{1}\right)\right]\right\} \zeta_{1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1} \\
+ & \int_{y<y_{1}} \int \phi(y) \zeta_{1}(y)\left\{-j \sin \left[-k_{y}\left(y-y_{1}\right)\right]+j \sin \left[-k_{y}\left(y_{1}-y\right)\right]\right\} \zeta_{1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1} \\
= & \iint \phi(y) \zeta_{1}(y) \exp \left[-j k_{y}\left(y-y_{1}\right)\right] \zeta_{1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1} \\
- & 2 j \int_{y_{1}>y} \int \phi(y) \zeta_{1}(y) \sin \left[k_{y}\left(y_{1}-y\right)\right] \zeta_{1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1} \\
= & \left|\int \phi(y) \zeta_{1}(y) \exp \left[-j k_{y} y\right]\right|^{2} d y \\
- & 2 j \int_{y_{1}>y} \int \phi(y) \zeta_{1}(y) \sin \left[k_{y}\left(y_{1}-y\right)\right] \zeta_{1}\left(y_{1}\right) \phi\left(y_{1}\right) d y d y_{1} \tag{16.90}
\end{align*}
\]

In many cases, the grating layer thickness is much smaller than the wavelength. As a result, the \(\zeta(y)\) function is much like a delta-function in y . Therefore, the 2nd term in the above equation is negligible and we obtain the following:
\[
\begin{gather*}
h_{1}=\left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{2} \frac{1}{4 \beta_{0} k_{y}}\left|\int \phi(y) \zeta_{1}(y) \exp \left(-j k_{y} y\right) d y\right|^{2}  \tag{16.91}\\
h_{2}=\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \frac{1}{2 \beta_{0}} \int \zeta_{2}(y) \phi(y)^{2} d y \tag{16.92}
\end{gather*}
\]

The above equations can be further simplified assuming \(\beta_{0}=k_{y}=\frac{n \omega}{c}=\frac{2 \pi n}{\lambda} \Delta \varepsilon=\) \(2 n \Delta n\).

The factor for \(h_{1}\) becomes:
\[
\begin{equation*}
\left(\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon\right)^{2} \frac{1}{4 \beta_{0} k_{y}}=\frac{\omega^{2}}{c_{0}^{2}}(\Delta \varepsilon)^{2} \frac{1}{4 n^{2}}=\left(\frac{2 \pi}{\lambda}\right)^{2}(\Delta n)^{2} \tag{16.93}
\end{equation*}
\]

The factor for \(h_{2}\) becomes
\[
\begin{equation*}
\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \frac{1}{2 \beta_{0}}=\frac{\omega}{c_{0}} 2 n \Delta n \frac{1}{2 n}=\frac{2 \pi}{\lambda} \Delta n \tag{16.94}
\end{equation*}
\]

Our final results are as follows:
\[
\begin{gather*}
h_{1}=\left(\frac{2 \pi}{\lambda}\right)^{2}(\Delta n)^{2}\left|\int \phi(y) \zeta_{1}(y) \exp \left(-j k_{y} y\right) d y\right|^{2}  \tag{16.95}\\
h_{2}=\frac{2 \pi}{\lambda} \Delta n \int \zeta_{2}(y) \phi(y)^{2} d y \tag{16.96}
\end{gather*}
\]

For a symmetric grating structure, the coupled wave equations are as follows:
\[
\begin{align*}
& \left\{\frac{\partial}{\partial z}+j \frac{\Delta \omega}{v_{g}}-\frac{g-\alpha_{i}}{2}+h_{1}\right\} R(z)+h_{1} L(z)+j h_{2} L(z)=0  \tag{16.97}\\
& \left\{\frac{\partial}{\partial z}-j \frac{\Delta \omega}{v_{g}}+\frac{g-\alpha_{i}}{2}-h_{1}\right\} L(z)-h_{1} R(z)-j h_{2} R(z)=0 \tag{16.98}
\end{align*}
\]

For a real index 2 nd order grating, \(h_{1}\) is real and positive. The effect of the first order diffraction (at 90 degrees) is to introduce an additional loss term of \(2 h_{1}\) to the internal loss and an imaginary coupling term of \(-h_{1}\) to the conventional coupling coefficient \(h_{2}\) or \((\kappa)\). Therefore the effect is not only to make the laser lossy but also to introduce a lossy coupling term which may affect the longitudinal modes significantly.

For a complex index 2 nd order grating, the imaginary part of \(h_{1}\) adds a term \(\operatorname{Im}\left(h_{1}\right)\) to the frequency deviation \(\frac{\Delta \omega}{v_{g}}\). It also adds a term \(\operatorname{Im}\left(h_{1}\right)\) to the real part of \(\kappa\). Therefore a loss or gain coupled 2nd order grating can also enhance the real kappa and shift the emission frequency.

\subsection*{16.8.3 Radiating Waves}

In many applications, it is desirable to calculate the radiating wave. We recall from previous subsection that the radiating field can be written as follows,:
\[
\begin{equation*}
\Delta E(y, z)=-\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \int G\left(y, y_{1}\right)\left[\zeta_{+1}\left(y_{1}\right) L(z)+\zeta_{-1}\left(y_{1}\right) R(z)\right] \phi\left(y_{1}\right) d y_{1} \tag{16.99}
\end{equation*}
\]
where
\[
G\left(y, y_{1}\right)=-\frac{1}{2 j k_{y}} \begin{cases}\exp \left[-j k_{y}\left(y-y_{1}\right)\right] & y>y_{1}  \tag{16.100}\\ \exp \left[-j k_{y}\left(y_{1}-y\right)\right] & y<y_{1}\end{cases}
\]

We obtain:
\[
\begin{align*}
\Delta E(y, z) & =-\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \int G\left(y, y_{1}\right) \zeta_{+1}\left(y_{1}\right)[L(z)+R(z)] \phi\left(y_{1}\right) d y_{1} \\
& =-\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \int_{y>y_{1}} G\left(y, y_{1}\right) \zeta_{+1}\left(y_{1}\right)[L(z)+R(z)] \phi\left(y_{1}\right) d y_{1} \\
& -\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \int_{y<y_{1}} G\left(y, y_{1}\right) \zeta_{+1}\left(y_{1}\right)[L(z)+R(z)] \phi\left(y_{1}\right) d y_{1} \\
& =\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \frac{1}{2 j k_{y}} \int_{y>y_{1}} \exp \left[-j k_{y}\left(y-y_{1}\right)\right] \zeta_{+1}\left(y_{1}\right)[L(z)+R(z)] \phi\left(y_{1}\right) d y_{1} \\
& +\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \frac{1}{2 j k_{y}} \int_{y<y_{1}} \exp \left[-j k_{y}\left(y_{1}-y\right)\right] \zeta_{+1}\left(y_{1}\right)[L(z)+R(z)] \phi\left(y_{1}\right) d y_{1} \tag{16.101}
\end{align*}
\]

We assume that the 90 degree diffraction downwards gets absorbed and we only consider the upward waves:
\[
\begin{equation*}
\Delta E(y, z)=\frac{\omega^{2}}{c_{0}^{2}} \Delta \varepsilon \frac{1}{2 j k_{y}} \exp \left[-j k_{y}\left(y-y_{0}\right)\right] \zeta_{+1}\left(y_{0}\right)[L(z)+R(z)] \phi\left(y_{0}\right) d_{g} \tag{16.102}
\end{equation*}
\]
where we assume a thin grating layer of \(d_{g}\) thickness located at \(y_{0}\).
If the grating is on the surface (case A) of the device, \(k_{y}=\frac{\omega}{c_{0}}\) and we have:
\[
\begin{equation*}
\Delta E(y, z)=\frac{\pi d_{g}}{j \lambda} \Delta \varepsilon \zeta_{+1}\left(y_{0}\right) \phi\left(y_{0}\right)[L(z)+R(z)] \exp \left[-j k_{y}\left(y-y_{0}\right)\right] \tag{16.103}
\end{equation*}
\]
where \(\Gamma_{g}\) is the confinement factor for the grating layer. If the grating is buried within the device (case B), \(k_{y}=\frac{n \omega}{c_{0}}\) and we have:
\[
\begin{equation*}
\Delta E(y, z)=\frac{\pi d_{g}}{j n \lambda} \Delta \varepsilon \zeta_{+1}\left(y_{0}\right) \phi\left(y_{0}\right)[L(z)+R(z)] \exp \left[-j k_{y}\left(y-y_{0}\right)\right] \tag{16.104}
\end{equation*}
\]

To evaluate the emitted power of the radiating field, we consider the expression for the edge emitting power first:
\[
\begin{equation*}
E(y, z)=\left[R(z) \exp \left(-j \beta_{0} z\right)+L(z) \exp \left(j \beta_{0} z\right)\right] \phi(y) \tag{16.105}
\end{equation*}
\]

The bulk photon density is written as
\[
\begin{equation*}
\left.s(y, z)=\epsilon_{0} n^{2}|E|^{2}=\epsilon_{0} n^{2}|R(z)|^{2}+|L(z)|^{2}\right]|\phi(y)|^{2} \tag{16.106}
\end{equation*}
\]
where we have neglected the interference term. The linear photon density is as follows:
\[
\begin{equation*}
\left.s_{l}(z)=\epsilon_{0} n^{2} \int|E|^{2} d x d y=\epsilon_{0} n^{2}|R(z)|^{2}+|L(z)|^{2}\right] \mid \tag{16.107}
\end{equation*}
\]

We assume that
\[
\begin{equation*}
\int \phi(y) d y d x=1 \tag{16.108}
\end{equation*}
\]

In our simulator, many of power quantities are expressed in terms of the total photon number of the mode, S , which can be directly calculated from the Green's function.
\[
\begin{equation*}
\left.S=\int s_{l}(z) d z=\epsilon_{0} n^{2} \int|R(z)|^{2}+|L(z)|^{2}\right] \mid d z \tag{16.109}
\end{equation*}
\]
from which we can calculate the amplitude of \(R\) and \(L\) given the photon number in the cavity.
The emitted power from the surface for the case A is as follows:
\[
\begin{align*}
P_{\text {top }} & =\hbar \omega c_{0} \epsilon_{0} \int|\Delta E(y, z)|^{2} d x d z \\
& =\hbar \omega c_{0} \epsilon_{0} \frac{\pi^{2} d_{g}^{2}}{\lambda^{2}}(\Delta \varepsilon)^{2} \zeta_{1}^{2} \phi\left(y_{0}\right)^{2} d_{w i d} \int[L(z)+R(z)]^{2} d z \\
& =\hbar \omega c_{0} \epsilon_{0} \frac{\pi^{2} d_{g}}{\lambda^{2}}(\Delta \varepsilon)^{2} \zeta_{1}^{2} \Gamma_{g} \int|L(z)+R(z)|^{2} d z \\
& =\hbar \omega c_{0} \epsilon_{0} \frac{\pi^{2} d_{g}}{\lambda^{2}}(\Delta \varepsilon)^{2} \zeta_{1}^{2} \Gamma_{g} S\left\{\frac{\int|L(z)+R(z)|^{2} d z}{\left.\epsilon_{0} n^{2} \int|R(z)|^{2}+|L(z)|^{2}\right] \mid d z}\right\} \tag{16.110}
\end{align*}
\]
or
\[
\begin{equation*}
P_{\text {top }}=\hbar \omega c_{0} \frac{\pi^{2} d_{g}}{n^{2} \lambda^{2}}\left(\Delta \varepsilon \zeta_{1}\right)^{2} \Gamma_{g} S\left\{\frac{\int|L(z)+R(z)|^{2} d z}{\left.\int|R(z)|^{2}+|L(z)|^{2}\right] \mid d z}\right\} \tag{16.111}
\end{equation*}
\]

The upwards power within the device for the case B is as follows:
\[
\begin{align*}
P_{u p} & =\hbar \omega v_{g} \epsilon_{0} n^{2} \int|\Delta E(y, z)|^{2} d x d z \\
& =\hbar \omega v_{g} \epsilon_{0} n^{2} \frac{\pi^{2} d_{g}^{2}}{n^{2} \lambda^{2}}(\Delta \varepsilon)^{2} \zeta_{1}^{2} \phi\left(y_{0}\right)^{2} d_{w i d} \int[L(z)+R(z)]^{2} d z \\
& =\hbar \omega v_{g} \epsilon_{0} \frac{\pi^{2} d_{g}}{\lambda^{2}}(\Delta \varepsilon)^{2} \zeta_{1}^{2} \Gamma_{g} \int|L(z)+R(z)|^{2} d z \\
& =\hbar \omega v_{g} \epsilon_{0} \frac{\pi^{2} d_{g}}{\lambda^{2}}(\Delta \varepsilon)^{2} \zeta_{1}^{2} \Gamma_{g} S\left\{\frac{\int|L(z)+R(z)|^{2} d z}{\left.\epsilon_{0} n^{2} \int|R(z)|^{2}+|L(z)|^{2}\right] \mid d z}\right\} \\
& =\hbar \omega v_{g} \frac{\pi^{2} d_{g}}{n^{2} \lambda^{2}}\left(\Delta \varepsilon \zeta_{1}\right)^{2} \Gamma_{g} S\left\{\frac{\int|L(z)+R(z)|^{2} d z}{\left.\int|R(z)|^{2}+|L(z)|^{2}\right] \mid d z}\right\} \tag{16.112}
\end{align*}
\]

The surface emitting power (case B) is as follows:
\[
\begin{equation*}
P_{\text {top }}=\left(1-r_{\text {top }}\right) \hbar \omega v_{g} \frac{\pi^{2} d_{g}}{n^{2} \lambda^{2}}\left(\Delta \varepsilon \zeta_{1}\right)^{2} \Gamma_{g} S\left\{\frac{\int|L(z)+R(z)|^{2} d z}{\left.\int|R(z)|^{2}+|L(z)|^{2}\right] \mid d z}\right\} \tag{16.113}
\end{equation*}
\]
where \(r_{t o p}\) is the power reflectivity of the top facet.


Figure 16.1: Schematics of a common grating structure.

We define a unitless coefficient (surface power emisison coefficient) to measure the surface emission intensity:
\[
\begin{equation*}
C_{\text {surf }}=\frac{\pi^{2} d_{g}}{n^{2} \lambda}\left(\Delta \varepsilon \zeta_{1}\right)^{2} \Gamma_{g} \tag{16.114}
\end{equation*}
\]
so that the emisison power for case A is given by
\[
\begin{equation*}
P_{\text {top }}=\frac{\hbar \omega c_{0}}{\lambda} C_{\text {surf }} S\left\{\frac{\int|L(z)+R(z)|^{2} d z}{\left.\int|R(z)|^{2}+|L(z)|^{2}\right] \mid d z}\right\} \tag{16.115}
\end{equation*}
\]
and for case B:
\[
\begin{equation*}
P_{\text {top }}=\left(1-r_{\text {top }}\right) \frac{\hbar \omega v_{g}}{\lambda} C_{\text {surf }} S\left\{\frac{\int|L(z)+R(z)|^{2} d z}{\int|R(z)|^{2}+|L(z)|^{2}| | d z}\right\} \tag{16.116}
\end{equation*}
\]

\subsection*{16.8.4 A common grating structure}

We are going to solve for a commonly used grating structure with the following index distribution (see Fig. 16.1).
\[
\begin{align*}
\Delta n(z) & =\Delta n / 2 ; \quad 0<z<a / 2 \\
\Delta n(z) & =\Delta n / 2-\frac{2 \Delta n}{c}(z-a / 2) ; \quad a / 2<z<a / 2+c / 2 \\
\Delta n(z) & =-\Delta n / 2 ; \quad a / 2+c / 2<z<a / 2+c / 2+b / 2 \tag{16.117}
\end{align*}
\]
\[
\begin{equation*}
\Delta n(z)=\Delta n\left[2 \zeta_{1} \cos \left(\beta_{0} z\right)+2 \zeta_{2} \cos \left(2 \beta_{0} z\right)\right] \tag{16.118}
\end{equation*}
\]
where \(\beta_{0}=\frac{2 \pi}{a+c+b}\)
Integrate the above equation by \(\int_{0}^{a / 2+c / 2+b / 2} \cos \left(\beta_{0} z\right) d z\) to obtain:
\[
\begin{align*}
& \int_{0}^{a / 2+c / 2+b / 2} \Delta n(z) \cos \left(\beta_{0} z\right) d z \\
= & \int_{0}^{a / 2} \Delta n / 2 \cos \left(\beta_{0} z\right) d z \\
+ & \int_{a / 2}^{a / 2+c / 2}\left[\Delta n / 2-\frac{2 \Delta n}{c}(z-a / 2)\right] \cos \left(\beta_{0} z\right) d z \\
+ & \int_{a / 2+c / 2}^{a / 2+c / 2+b / 2}(-\Delta n / 2) \cos \left(\beta_{0} z\right) d z \\
= & \Delta n /\left.2 \frac{1}{\beta_{0}} \sin \left(\beta_{0} z\right)\right|_{0} ^{a / 2} \\
+ & {\left.\left[\Delta n / 2+\frac{\Delta n}{c} a\right] \frac{1}{\beta_{0}} \sin \left(\beta_{0} z\right)\right|_{a / 2} ^{a / 2+c / 2} } \\
- & \left.\frac{2 \Delta n}{c} \frac{1}{\beta_{0}^{2}}\left[\left(\beta_{0} z\right) \sin \left(\beta_{0} z\right)+\cos \left(\beta_{0} z\right)\right]\right|_{a / 2} ^{a / 2+c / 2} \\
- & \Delta n /\left.2 \frac{1}{\beta_{0}} \sin \left(\beta_{0} z\right)\right|_{a / 2+c / 2} ^{a / 2+c / 2+b / 2} \tag{16.119}
\end{align*}
\]

Our result is as follows:
\[
\begin{align*}
& \int_{0}^{a / 2+c / 2+b / 2} \Delta n(z) \cos \left(\beta_{0} z\right) d z \\
= & \Delta n / 2 \frac{1}{\beta_{0}} \sin \left(\beta_{0} a / 2\right) \\
+ & {\left[\Delta n / 2+\frac{\Delta n}{c} a\right] \frac{1}{\beta_{0}}\left[\sin \left(\beta_{0}(a / 2+c / 2)\right)-\sin \left(\beta_{0} a / 2\right)\right] } \\
- & \frac{2 \Delta n}{c} \frac{1}{\beta_{0}^{2}}\left[\beta_{0}(a / 2+c / 2) \sin \left(\beta_{0}(a / 2+c / 2)\right)-\left(\beta_{0} a / 2\right) \sin \left(\beta_{0} a / 2\right)\right. \\
+ & \left.\cos \left(\beta_{0}(a / 2+c / 2)\right)-\cos \left(\beta_{0} a / 2\right)\right] \\
- & \Delta n / 2 \frac{1}{\beta_{0}}\left[\sin \left(\beta_{0}(a / 2+c / 2+b / 2)\right)-\sin \left(\beta_{0}(a / 2+c / 2)\right)\right] \tag{16.120}
\end{align*}
\]

We derive the expression for \(\zeta_{1}\) here.
\[
\begin{align*}
& \int \Delta n(z) \cos \left(\beta_{0} z\right) d z=\Delta n 2 \zeta_{1} \int \cos ^{2}\left(\beta_{0} z\right) d z  \tag{16.121}\\
& \int_{0}^{a / 2+c / 2+b / 2} \cos ^{2}\left(\beta_{0} z\right) d z=(a / 2+c / 2+b / 2) / 2  \tag{16.122}\\
& \int \Delta n(z) \cos \left(\beta_{0} z\right) d z=\Delta n \zeta_{1}(a / 2+c / 2+b / 2)  \tag{16.123}\\
& \zeta_{1}=\frac{1}{\Delta n(a / 2+c / 2+b / 2)} \int \Delta n(z) \cos \left(\beta_{0} z\right) d z \tag{16.124}
\end{align*}
\]

Similarly,
\[
\begin{align*}
& \int_{0}^{a / 2+c / 2+b / 2} \Delta n(z) \cos \left(2 \beta_{0} z\right) d z \\
&= \Delta n / 2 \frac{1}{2 \beta_{0}} \sin \left(2 \beta_{0} a / 2\right) \\
&+ {\left[\Delta n / 2+\frac{\Delta n}{c} a\right] \frac{1}{2 \beta_{0}}\left[\sin \left(2 \beta_{0}(a / 2+c / 2)\right)-\sin \left(2 \beta_{0} a / 2\right)\right] } \\
&- \frac{2 \Delta n}{c} \frac{1}{2 \beta_{0}^{2}}\left[2 \beta_{0}(a / 2+c / 2) \sin \left(2 \beta_{0}(a / 2+c / 2)\right)-\left(2 \beta_{0} a / 2\right) \sin \left(2 \beta_{0} a / 2\right)\right. \\
&+\left.\cos \left(2 \beta_{0}(a / 2+c / 2)\right)-\cos \left(2 \beta_{0} a / 2\right)\right] \\
&- \Delta n / 2 \frac{1}{2 \beta_{0}}\left[\sin \left(2 \beta_{0}(a / 2+c / 2+b / 2)\right)-\sin \left(2 \beta_{0}(a / 2+c / 2)\right)\right]  \tag{16.125}\\
& \quad \zeta_{2}=\frac{1}{\Delta n(a / 2+c / 2+b / 2)} \int \Delta n(z) \cos \left(2 \beta_{0} z\right) d z \tag{16.126}
\end{align*}
\]

In the special case of \(c=0\) :
\[
\begin{gather*}
\int_{0}^{a / 2+b / 2} \Delta n(z) \cos \left(\beta_{0} z\right) d z \\
=\frac{\Delta n}{\beta_{0}} \sin (\pi a /(a+b))  \tag{16.127}\\
\zeta_{1}=\frac{1}{(a / 2+c / 2+b / 2)} \frac{a+b+c}{2 \pi} \sin (\pi a /(a+b))  \tag{16.128}\\
\zeta_{1}=\frac{1}{\pi} \sin (\pi a /(a+b)) \tag{16.129}
\end{gather*}
\]
\[
\begin{gather*}
\zeta_{2}=\frac{1}{\Delta n(a / 2+c / 2+b / 2)} \int \Delta n(z) \cos \left(2 \beta_{0} z\right) d z  \tag{16.130}\\
\int_{0}^{a / 2+c / 2+b / 2} \Delta n(z) \cos \left(2 \beta_{0} z\right) d z \\
=\Delta n \frac{1}{2 \beta_{0}} \sin \left(2 \beta_{0} a / 2\right)  \tag{16.131}\\
\zeta_{2}=\frac{1}{2 \pi} \sin (2 \pi a /(a+b)) \tag{16.132}
\end{gather*}
\]

In the case of thin grating layer of \(d_{g}\) with a confining factor for the grating layer of \(\Gamma_{g}, \exp \left(j k_{y} y\right)=1\) and we have the following results:
\[
\begin{gather*}
h_{1}=\left(\frac{2 \pi}{\lambda}\right)^{2}(\Delta n)^{2} \zeta_{1}^{2} \Gamma_{g} d_{g} \\
=\left(\frac{2 \pi}{\lambda}\right)^{2}(\Delta n)^{2} \frac{1}{\pi^{2}} \sin ^{2}(\pi a /(a+b)) \Gamma_{g} d_{g} \\
=\left(\frac{2}{\lambda}\right)^{2}(\Delta n)^{2} \sin ^{2}(\pi a /(a+b)) \Gamma_{g} d_{g}  \tag{16.133}\\
h_{2}=\frac{2 \pi}{\lambda} \Delta n \int \zeta_{2}(y) \phi(y)^{2} d y=\frac{1}{\lambda} \Delta n \sin (2 \pi a /(a+b)) \Gamma_{g}  \tag{16.134}\\
h_{1} / h_{2}=\lambda\left(\frac{2}{\lambda}\right)^{2} \Delta n \sin ^{2}(\pi a /(a+b)) d_{g} / \sin (2 \pi a /(a+b))  \tag{16.135}\\
h_{1} / h_{2}==\frac{2}{\lambda} \Delta n \sin ^{2}(\pi a /(a+b)) d_{g} /[\sin (\pi a /(a+b)) \cos (\pi a /(a+b))] \\
=\frac{2 \Delta n d_{g}}{\lambda} \tan ^{2}(\pi a /(a+b)) \tag{16.136}
\end{gather*}
\]

The ratio above is identical to that derived in Ref. [81].

\subsection*{16.8.5 Case of thicker grating layer}

In case of thicker grating layer (comparable or greater than wavelength) we need to evaluate the coupling coefficient and surfurce emitting power more accurately. We
need to modify Eqs. 16.114 and 16.133. In both of these equations, the factor \(\Gamma_{g} d_{g}\) should be replaced by the following integral:
\[
\begin{equation*}
\Gamma_{g} d_{g}=\left|\int \phi(x, y) \exp \left[-j k_{y}\left(y-y_{c}\right)\right] d x d y\right|^{2} / d_{w i d} \tag{16.137}
\end{equation*}
\]
where \(d_{\text {wid }}\) is the width of the grating layer. The integral is performed over the x-y plane on the grating region. The \(y_{c}\) is the \(y\)-position within the grating chosen such that the 2 nd term in Eq. 16.90 is zero. It is usually reasonable to choose \(y_{c}\) as the center of the grating. The above integral can be performed numerically.

\subsection*{16.9 3D Optical Amplifier Model}

PICS3D is ideal for the study of semiconductor optical amplifiers. The simulation approach is similar to that for lasers. The lack of optical feedback results in a simplification of our numerical models. We can skip the longitudinal model search and only deal with the spatial hole burning effects.

To use PICS3D for optical amplifier, we assume that the input light is from the right facet with a single wavelength. We ramp up the bias current as in a laser simulation. As the optical gain increases we expect the output power from the left facet to increase. The statement to activate the amplifier model is 3 d __amplifier__model.

\subsection*{16.10 Beam Propagation Method}

All the models described so far in this chapter are based on the separation of variables performed in Sec. 16.2. That is, the lateral mode profile \(\phi_{0}(x, y)\) changes very little in the z direction.

In cases where this is assumption is not respected (e.g. tapered lasers), the beam propagation method (BPM) may be used to obtain the forward and backward field profiles and evaluate the Wronskian and round-trip gain.
As of version 2009, PICS3D uses a new FEM-BPM method: it will be detailed in subsequent revisions of the manual.

\subsection*{16.11 Device structures}

It is now appropriate to discuss some of the laser structures modeled by PICS3D and how they correspond to the above equations:
- Fabry-Perot lasers are the limiting case where \(\kappa=0\).
- Conventional DFB lasers are assumed to have AR coating on both facets and a real \(\kappa\) with no z-dependence.
- Phase Shifted DFB lasers are assumed to have real \(\kappa\) and zero \(\Omega(z)\) but with a phase shifted section (or a section without gratings) somewhere along the waveguide.
- Chirped Grating DFB lasers can be represented by a linear change in z of \(\Delta \beta_{c h}\). This can be realized with changing the grating period linearly.
- Longitudinal Graded Index lasers can be represented by a linear change in \(\Delta \tilde{k}\).
- DBR lasers can be considered as a special case of DFB lasers with no grating in the active section. The passive mirror section has a regular grating with a low material gain. In such a case, more than one material segment may need to be defined.
- Gain/Loss Coupled DFB lasers can be considered as having complex \(\kappa\).
- Tapered structures with longitudinal variation of the cross section and optical confinement of the laser are modeled with the beam propagation method (BPM).

PICS3D provides every possibility of defining various variables within the framework of the coupled wave equation. It is interesting to note that a complex \(\kappa\) (i.e., gain coupled structure) has a similar (but not identical) effect on \(\kappa\) as changing the phase \(\Omega_{g}(z)\) (chirp grating). This is consistent with the well known fact that gain coupling, chirp grating and phase shifting all give similar results in the emission characteristics of the laser and help move the main emission peak into the spectrum bandgap.

\subsection*{16.12 Slope Efficiency Issues: 3D vs. 2D Simulation}

\subsection*{16.12.1 Introduction}

For laser diodes with strong longitudinal variation such as DBF and DBR lasers, 3D simulation is necessary. For Fabry-Perot (FP) lasers, it would be interesting to compare 2D and 3D model of power emission characteristics. To be more specific, we are interested in comparing the slope efficiency of 2D (as in LASTIP simulation) and 3D (as in PICS3D). The purpose of this section is to provide insight and guidance to users who use both LASTIP and PICS3D would like to know exactly what kind of difference to expect when comparing the results of 2D and 3D simulations.

In the following discussion, we assume the laser has been well driven into lasing with stimulated emission dominating.

Let us recall power emission models in LASTIP (2D model) for a Fabry-Perot laser. We use the mirror loss \(\alpha_{m}\) :
\[
\begin{equation*}
\alpha_{m}=1 /(2 L) \ln \left[1 /\left(R_{1} R_{2}\right)\right] \tag{16.138}
\end{equation*}
\]
where \(L\) is the cavity length; \(R_{1}\) and \(R_{2}\) are the facet power reflectivities. Following standard practice, our 2D simulator LASTIP computes the power emitted \(\left(P_{e}\right)\) from the laser diode as the photon number in the cavity \((S)\) times the mirror loss:
\[
\begin{equation*}
P_{e} /(\hbar \omega)=v_{g} \alpha_{m} S \tag{16.139}
\end{equation*}
\]
where \(v_{g}\) is the group velocity of light within the laser.
In a 2 D simulation, we usually assume the modal optical gain is uniform in the z dimension. Thus the injected current/power converts into stimulated recombination:
\[
\begin{equation*}
P_{i n j}(z) /(\hbar \omega)=v_{g} g_{m}(z) P_{t o t}(z) \tag{16.140}
\end{equation*}
\]

The lasing condition requires that:
\[
\begin{equation*}
g_{m 0}=\alpha_{i}+\alpha_{m} \tag{16.141}
\end{equation*}
\]
where \(\alpha_{i}\) is the internal material loss.
The efficiency can thus be written as,
\[
\begin{equation*}
\eta_{2 D}=P_{e} / P_{i n j}=1 /\left(1+\alpha_{i} / \alpha_{m}\right)=1 /\left(1+F_{r}\right) \tag{16.142}
\end{equation*}
\]
where, for the convenience of discussions later, we defined a fraction \(F_{r}\) :
\[
\begin{equation*}
F_{r 2 D}=\alpha_{i} / \alpha_{m}=\frac{2 L \alpha_{i}}{\ln \left[1 /\left(R_{1} R_{2}\right)\right]} \tag{16.143}
\end{equation*}
\]

\subsection*{16.12.2 3D simulation: general consideration}

Now let use examine the situation in 3D simulation with consideration of spatial hole burning. Here we define spatial hole burning (SHB) as gain (and index variation) in the z-direction caused by inhomogeneous stimulated recombination In the case of FP laser with uniform injection (as is the case for default setting in PICS3D) along the cavity of an edge laser, any variation in optical gain must be accompanied by variation in wave intensity when the laser is well above threshold [see Eq. (16.140)].
In the following derivation, we neglect the factor of \(\frac{1}{\hbar \omega}\) so that the power should be regarded as having units of \(\hbar \omega\).

We separate the linear power density in an arbitrary laser into right-going and leftgoing waves:
\[
\begin{equation*}
P_{t o t}(z)=P_{r}(z)+P_{l}(z) \tag{16.144}
\end{equation*}
\]

By definition of gain and loss, we have the following relation if we neglect any coupling between the left and right-going waves.
\[
\begin{align*}
d P_{r} / d z & =\left(g_{m}(z)-\alpha_{i}\right) P_{r} . \\
d P_{l} / d z & =-\left(g_{m}(z)-\alpha_{i}\right) P_{l} . \tag{16.145}
\end{align*}
\]

The injected power through stimulated recombination for the right going power is as follows,
\[
\begin{align*}
\int v_{g} P_{r}(z) g_{m}(z) d z & =\int v_{g} \alpha_{i} P_{r}(z) d z+\int v_{g} P_{r}(z)\left(g_{m}(z)-\alpha_{i}\right) d z \\
& =v_{g} \int \alpha_{i} P_{r}(z) d z+v_{g} \int d\left[P_{r}(z)\right] \\
& =v_{g} \int \alpha_{i} P_{r}(z) d z+v_{g}\left[P_{r}(z 2)-P_{r}(z 1)\right] \tag{16.146}
\end{align*}
\]

Please note that we have merely used the definition in Eq. (16.145) and no assumptions of uniformity in any quantities are made.

Similarly, integrated injected power for the left going wave is as follows:
\[
\begin{equation*}
v_{g} \int P_{l} \alpha_{i} d z+v_{g}\left(P_{l}(z 1)-P_{l}(z 2)\right) \tag{16.147}
\end{equation*}
\]

By simple algebraic manipulations, we can rewrite the injection power as follows:
\[
\begin{equation*}
P_{i n j}=v_{g} \int P_{t o t}(z) \alpha_{i} d z+v_{g} P_{l}\left(z_{1}\right)\left(1-R_{1}\right)+v_{g} P_{r}\left(z_{2}\right)\left(1-R_{2}\right) \tag{16.148}
\end{equation*}
\]
whose last two terms we identify as the power emission from both laser facets:
\[
\begin{align*}
P_{e} & =v_{g} P_{l}\left(z_{1}\right)\left(1-R_{1}\right)+v_{g} P_{r}\left(z_{2}\right)\left(1-R_{2}\right) \\
& =v_{g} P_{t o t}\left(z_{1}\right)\left(1-R_{1}\right) /\left(1+R_{1}\right)+v_{g} P_{t o t}\left(z_{2}\right)\left(1-R_{2}\right) /\left(1+R_{2}\right) \tag{16.149}
\end{align*}
\]

Therefore we obtain the following expression of efficiency for a general laser diode:
\[
\begin{equation*}
\eta_{3 D}=1 /\left(1+F_{r 3 D}\right) \tag{16.150}
\end{equation*}
\]
where, using definition of \(F_{r}\),
\[
\begin{equation*}
F_{r 3 D}=\frac{\int \alpha_{i} P_{t o t}(z) d z}{P_{t o t}\left(z_{1}\right)\left(1-R_{1}\right) /\left(1+R_{1}\right)+P_{t o t}\left(z_{2}\right)\left(1-R_{2}\right) /\left(1+R_{2}\right)} \tag{16.151}
\end{equation*}
\]

Please note that the above derivation neglects any grating/coupling effects. However, it can be shown that if the coupling coefficient is real, the formula in Eq. (16.151)applies to any type of lasers including FP, DFB, DBR and VCSEL with variations in all quantities.

This expression leads to some useful conclusions. Suppose we fix the photon density at the facets \(P_{\text {tot }}\left(z_{1}\right)\) and \(P_{\text {tot }}\left(z_{2}\right)\) and allow the intensity to vary inside the cavity. If the intensity inside is low (such as in FP laser), the integral in the numerator will be small and thus lead to a higher efficiency.

On the other hand, if the power is high in the mid-section and small near the facets, such as in \(1 / 4\) wavelength shifted DFB laser and VCSEL, the laser will be a less efficient laser.

\subsection*{16.12.3 Fabry-Perot laser with uniform gain}

We shall show that for FP laser with uniform gain, Eq. (16.151) reduces to our standard 2D expression in Eq. (16.143).

For simplicity, we assume that \(R_{1}=R_{2}\). If the optical gain is uniform in the longitudinal direction, we can write the wave intensity as follows.
\[
\begin{equation*}
P_{t o t}(z)=P_{0}\{\exp [g z]+\exp [g(L-z)]\} \tag{16.152}
\end{equation*}
\]
where \(g\) is the net gain: \(g=g_{m}-\alpha_{i}\). The integral in the numerator of Eq. (16.151) becomes:
\[
\begin{equation*}
\int \alpha_{i} P_{t o t}(z) d z=2 \alpha_{i} P_{0}[\exp (g L)-1] / g \tag{16.153}
\end{equation*}
\]

Using lasing condition \(g L=\ln (1 / R)\), we obtain
\[
\begin{align*}
\int \alpha_{i} P_{t o t}(z) d z & =\frac{2 \alpha_{i} P_{0}[(1 / R)-1]}{(1 / L) \ln (1 / R)} \\
& =2 \alpha_{i} P_{0}[(1 / R)-1] / \alpha_{m} \tag{16.154}
\end{align*}
\]

We notice that in the denominator of Eq. (16.151),
\[
\begin{equation*}
P_{t o t}\left(z_{1}\right)=P_{0}[1+\exp (g L)]=P_{0}[1+(1 / R)] \tag{16.155}
\end{equation*}
\]

Therefore, we obtain the following results for FP laser under uniform gain:
\[
\begin{align*}
F_{r 3 D} & =\frac{\int \alpha_{i} P_{\text {tot }}(z) d z}{2 P_{t o t}\left(z_{1}\right)(1-R) /(1+R)} \\
& =\frac{2 \alpha_{i} P_{0}[(1 / R)-1] / \alpha_{m}}{2 P_{0}[1+(1 / R)](1-R) /(1+R)} \\
& =\alpha_{i} / \alpha_{m} \tag{16.156}
\end{align*}
\]
which is exactly the model we use in 2D model.


Figure 16.2: Schematics of variation of power and gain within a Fabry-Perot laser.

\subsection*{16.12.4 Fabry-Perot laser with non-uniform gain}

In this subsection, we allow the optical gain in FP laser to vary. In general, there is no analytical expression if optical gain is allowed to vary. But we can assume a reasonable form for the gain variation in order to study its effect on laser emission characteristics. We assume the following parabolic variation of the net optical gain (see Fig. 16.2):
\[
\begin{equation*}
g(z)=g_{0}+\Delta g-\Delta g\left(\frac{2}{L}\right)\left(z-\frac{L}{2}\right)^{2} \tag{16.157}
\end{equation*}
\]

The optical power of the right-going wave can be expressed as follows from the definition of the net optical gain:
\[
\begin{equation*}
\ln \left(\frac{P_{r}(z)}{P_{r}(0)}\right)=\left(g_{0}+\Delta g\right) z-\frac{\Delta g}{3}\left(\frac{2}{L}\right)^{2}\left[\left(z-\frac{L}{2}\right)^{3}+\left(\frac{L}{2}\right)^{3}\right] \tag{16.158}
\end{equation*}
\]

By symmetry consideration, we can write down similar expression for the optical power of the left-going wave.
The lasing condition becomes:
\[
\begin{equation*}
\int_{0}^{L} g(z) d z=\ln (1 / R) \tag{16.159}
\end{equation*}
\]
or
\[
\begin{equation*}
g_{0}+2 \Delta g / 3=(1 / L) \ln (1 / R) \tag{16.160}
\end{equation*}
\]
which is to be compared with the case of uniform gain: \(g_{0}=(1 / L) \ln (1 / R)\).

Since the stimulated recombination is dominant above threshold, we require that the product of gain and total optical power is uniform because of uniform injection assumption. This is in general not possible for parabolic gain variation. However, we believe it will be reasonable to require that the product of gain-power be equal at facet and at the middle point of the cavity as follows:
\[
\begin{equation*}
g(0)\left[P_{r}(0)+P_{l}(0)\right]=g(L / 2)\left[P_{r}(L / 2)+P_{l}(L / 2)\right] \tag{16.161}
\end{equation*}
\]

Noting that
\[
\begin{equation*}
P_{r}(0)=P_{0}\left[1+\exp \left[\left(g_{0} L+2 \Delta g L / 3\right)\right]\right. \tag{16.162}
\end{equation*}
\]
and
\[
\begin{equation*}
P_{r}(L / 2)=P_{l}(L / 2)=P_{0} \exp \left[\left(g_{0}+2 \Delta g / 3\right)(L / 2)\right] \tag{16.163}
\end{equation*}
\]

Eq. (16.161) becomes
\[
\begin{equation*}
g_{0}\left[1+\exp \left(g_{0} L+2 \Delta g L / 3\right)\right]=\left(g_{0}+\Delta g\right) 2 \exp \left[\left(g_{0}+2 \Delta g / 3\right)(L / 2)\right] \tag{16.164}
\end{equation*}
\]

Using the lasing condition in Eq. (16.160), the above becomes:
\[
\begin{equation*}
g_{0}(1+1 / R)=2\left(g_{0}+\Delta g\right) \sqrt{1 / R} \tag{16.165}
\end{equation*}
\]

Combing the lasing condition in Eq. (16.160) with with Eq. (16.165), we obtain the following solution of spatial hole burning under the assumption of parabolic gain variation:
\[
\begin{align*}
\Delta g & =\left(\frac{1}{L} \ln \frac{1}{R}\right) \times\left[\frac{2}{3}+\frac{2 \sqrt{1 / R}}{1+(1 / R)-2 \sqrt{1 / R}}\right]^{-1}  \tag{16.166}\\
g_{0} & =\frac{1}{L} \ln \frac{1}{R}-\frac{2}{3} \Delta g \tag{16.167}
\end{align*}
\]

Having successfully solved the power distribution within the FP laser with spatial hole burning, we may now proceed to compute the quantum efficiency using Eq (16.151).
\[
\begin{aligned}
F_{r 3 D} & =\frac{\alpha_{i} \int P_{t o t}(z) d z}{2 P_{t o t}\left(z_{1}\right)(1-R) /(1+R)} \\
& =\frac{\alpha_{i} R}{1-R} \int_{0}^{L} \exp \left\{\left(g_{0}+\Delta g\right) z-\frac{\Delta g}{3}\left(\frac{2}{L}\right)^{2}\left[\left(z-\frac{L}{2}\right)^{3}+\left(\frac{L}{2}\right)^{3}\right]\right. \text { dleo. 168) }
\end{aligned}
\]

We find it convenient to write the above integral in the following form:
\[
\begin{align*}
F_{r 3 D} & =\frac{\alpha_{i} R}{1-R} \int_{0}^{L} \exp \left[\left(g_{0}+2 \Delta g / 3\right) z+h(z)\right] d z  \tag{16.169}\\
h(z) & =\frac{\Delta g z}{3}-\frac{\Delta g}{3}\left(\frac{2}{L}\right)^{2}\left[\left(z-\frac{L}{2}\right)^{3}+\left(\frac{L}{2}\right)^{3}\right] \tag{16.170}
\end{align*}
\]

Since \(h(z)\) is a small quantity (linear in \(\Delta g\) ) equal to zero at facet and at the midpoint of the cavity, we may use the following Taylor expansion:
\[
\begin{align*}
F_{r 3 D}= & \frac{\alpha_{i} R}{1-R} \int_{0}^{L} \exp \left[\left(g_{0}+2 \Delta g / 3\right) z\right] d z \\
& +\frac{\alpha_{i} R}{1-R} \int_{0}^{L} \exp \left[\left(g_{0}+2 \Delta g / 3\right) z\right] h(z) d z  \tag{16.171}\\
= & \text { term } 1+\text { term } 2 \tag{16.172}
\end{align*}
\]

We find the first term above reduces to that of the usual mirror loss:
\[
\begin{align*}
\text { term } 1 & =\frac{\alpha_{i} R}{1-R} \int_{0}^{L} \exp \left[\left(g_{0}+2 \Delta g / 3\right) z\right] d z  \tag{16.173}\\
& =\frac{\alpha_{i} R}{(1-R)\left(g_{0}+2 \Delta g / 3\right)}\left\{\exp \left[\left(g_{0}+2 \Delta g / 3\right) L\right]-1\right\} \tag{16.174}
\end{align*}
\]

Using the lasing condition again,
\[
\begin{align*}
\operatorname{term} 1 & =\frac{\alpha_{i} R}{(1-R)(1 / L) \ln (1 / R)}[(1 / R)-1] \\
& =\frac{\alpha_{i}}{(1 / L) \ln (1 / R)} \tag{16.175}
\end{align*}
\]

The second term term2 may be regarded as a correction term to the standard mirror loss model for the computation of quantum efficiency. It may be evaluated analytically. Since the final expression is rather lengthy, we shall only plot the numerical results of the correction term for a typical case of \(R=0.32\) and \(\alpha_{i}=10001 / \mathrm{m}\) in Fig. 16.3. Please note that the correction term, term2, is proportional to the internal loss. The correction term becomes larger as the cavity length increases, as we may expect from increased SHB. However, the magnitude of the correction term to the conventional mirror loss in FP laser is typically around \(0.1 \%\).

\subsection*{16.12.5 Conclusions}

In conclusion, we have derived a convenient formula for computation of slope efficiency of lasing characteristics from a given power distribution. It is convenient to be used to analyze the emission efficiency of an arbitrary laser under condition of spatial hole burning (SHB). For a Fabry-Perot laser, use of mirror loss ( \(1 / \mathrm{L}) \ln (1 / R)\) is equivalent to a model of power distribution with uniform gain. The effect of SHB on the efficiency of the standard mirror is in general rather small (about 0.1\%) for a Fabry-Perot laser. Thus, as far as FP lasers are concerned, 2D simulation (as in LASTIP) and 3D simulation (as in PICS3D) should yield the same result for practical purposes.


Figure 16.3: Correction to the inverse efficiency of a Fabry Perot laser due to spatial hole burning. The facet power reflectivity is taken to be 0.32 . The internal loss is set to be \(10001 / \mathrm{m}\)

In the case of a phase shifted DFB the SHB influence can be very significant. In that case both the gain distribution and index distribution will greatly affect the mirror loss. Thus it is important to perform longitudinal modelling.
The author of this section (Simon Li) wishes to acknowledge helpful discussions on the topic of spatial hole burning with Richard Schatz and Sebastian Mogg, Royal Institute of Technology, Stockholm."

\section*{Chapter 17}

\section*{PICS3D-SPECIFIC MODELS II: VCSEL Theory}

\subsection*{17.1 Introduction}

In the previous chapter, we introduced the longitudinal model used by PICS3D for edge-emitting devices. For VCSELs, much of the theory remains the same but there are a few important changes that need to be discussed.

The first major change is that the equations must be solved in the cylindrical coordinate system shown in Fig. 17.1. For a more detailed explanations on how the drift-diffusion and Poisson equations are altered by the change in coordinate system, the user is referred to Sec. 6.2.

\subsection*{17.2 Lateral Modes: Fiber-Like Index Model}

The exact solution of the optical mode in VCSEL involves the vector wave solution of a microcavity with complex boundaries. To see the complexity involved in a vector wave solution of even a simple cylindrical boundary, the reader is referred to Ref. [110]. Consequently, we have decided to start our VCSEL model from a simple scalar wave solution and build up our capabilities in later versions.

We consider the solution of a scalar wave propagating in the axial direction of a VCSEL structure (see the first and the second structure in Fig. 17.2. We assume that the wave distribution in the VCSEL is such that the top cylinder determines the optical confinement in the lateral direction and the lower cylinder only contributes an effective index change in the lateral cladding (outer core). Essentially, we approximate the optical confinement problem to that of an optical fiber.
We shall call this approximation a fiber-like index model in vertical structures [see


Figure 17.1: Cylindrical coordinate system used to solve VCSEL equations
the third structure in Figure 17.2]. Under this approximation, the problem is reduced to a simple one-dimensional equation with cylindrical boundaries and a closed-form solution [111].
The basic scalar wave equation is given by:
\[
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial W}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} W}{\partial \theta^{2}}+\frac{\partial^{2} W}{\partial z_{r}^{2}}+k^{2} W=0 \tag{17.1}
\end{equation*}
\]
where \(z_{r}\) is in the axial direction and coincides with the y -axis.
It has the following simple solution with cylindrical symmetry:
\[
\begin{equation*}
W=W_{r}(r) \exp \left(-j k_{z} z_{r}\right) \tag{17.2}
\end{equation*}
\]
where \(W_{r}(r)\) is solved from the Bessel equation of order m:
\[
\begin{equation*}
\frac{d^{2} W_{r}}{d r^{2}}+\frac{1}{r} \frac{d W_{r}}{d r}+\left(k^{2}-k_{z}^{2}-\frac{m^{2}}{r^{2}}\right) W_{r}=0 \tag{17.3}
\end{equation*}
\]

Using the well established Bessel and Hankel functions, the scalar wave equation can be solved efficiently in PICS3D. The fiber-like solution is the default lateral optical model used in PICS3D.


Figure 17.2: Schematic of how the fiber-like effective index approximation is used for a cylindrical VCSEL.

\subsection*{17.3 Effective Index Method for VCSELs}

\subsection*{17.3.1 Introduction}

In the previous section we describe a fiber-like solution for the lateral optical mode of a VCSEL; such a model has the advantage of being easy to interpret and handle. However, when the VCSEL structure becomes more complex, especially when there is oxide confinement layer, a more sophisticated lateral model becomes necessary.

The VCSEL Effective Index Method (VCSEL-EIM) approximation was first proposed by Hadley[112] and has been successfully used to calculate the optical modes of more complicated VCSEL structures. In PICS3D, we use this VCSEL EIM calculation method for the calculation of the lateral optical modes in VCSELs and it especially recommended for structures with an oxide confinement aperture.

\subsection*{17.3.2 Models}

The scalar wave equation in VCSELs is described by the following wave equation:
\[
\begin{equation*}
\nabla^{2} F(r, z, \phi, t)-\frac{\epsilon(r, z)}{c^{2}} \frac{\partial^{2} F(r, z, \phi, t)}{\partial t^{2}}=0 \tag{17.4}
\end{equation*}
\]
where \(\epsilon(r, z)\) is the relative permittivity, \(c\) is the speed of light in vacuum. The solution of above electric field can be separated into longitudinal \(\left(E_{i}(z)\right)\) and lateral
\((E(r, \phi, t))\) components in VCSELs:
\[
\begin{equation*}
F(r, z, \phi, t) \approx E_{i}(z) E(r, \phi, t) e^{-i \omega t} \tag{17.5}
\end{equation*}
\]
where \(i\) denotes a region in the transverse direction in which the effective index is calculated, and \(\omega_{0}\) is the angular oscillation frequency of the light. Substituting equation (17.5) into (17.4) and writing \(\nabla^{2}=\partial^{2} / \partial z^{2}+\nabla_{\perp}^{2}\), we have:
\[
\begin{align*}
& \frac{\partial^{2} E_{i}(z)}{\partial z^{2}} E(r, \phi, t)+E_{i}(z) \nabla_{\perp}^{2} E(r, \phi, t)+\epsilon_{i}(r, z) k_{0}^{2} E_{i}(z) E(r, \phi, t) \\
&  \tag{17.6}\\
& \quad+2 i \epsilon_{i}(r, z) k_{0} E_{i}(z) \frac{\partial E(r, \phi, t)}{c \partial t}-\epsilon_{i}(r, z) E_{i}(z) \frac{\partial^{2} E(r, \phi, t)}{c^{2} \partial^{2} t}=0
\end{align*}
\]
where \(k_{0}=\omega_{0} / c\). By neglecting the second derivative of \(E(r, \phi, t)\) with respect to time (slowly-varying envelope approximation) and writing the relative permittivity \(\epsilon(r, z)\) as the sum of a structural component \(\epsilon_{i}(z)\) and a nonstructural (depending on the carrier concentration, temperature etc.) component \(\epsilon_{r}(r)\), we can get the following two equations for \(E_{i}(z)\) (i.e. the optical standing wave pattern) and \(E(r, \phi, t)\) (i.e. the lateral mode) under the effective index approximation:
\[
\begin{gather*}
\frac{\partial^{2} E_{i}(z)}{\partial z^{2}}+k_{0}^{2}\left(1-\xi_{i}\right) \epsilon_{i}(z) E_{i}(z)=0  \tag{17.7}\\
\frac{\partial E(r, \phi, t)}{\partial t}=\frac{i c_{0}}{2 k_{0}\left\langle\epsilon_{i}\right\rangle}\left[\nabla_{\perp}^{2}+k_{0}^{2} \Delta \epsilon_{e f f}(r)\right] E(r, \phi, t) \tag{17.8}
\end{gather*}
\]
where \(\left\langle\epsilon_{i}\right\rangle=\int E_{i}^{*}(z) \epsilon_{i}(z) E_{i}(z) d z / \int E_{i}^{*}(z) E_{i}(z) d z\) and \(\Delta \epsilon_{e f f}(r)=\xi_{i}\left\langle\epsilon_{i}\right\rangle+\epsilon_{r}(r) . c_{0}\) is the speed of light. The real part of the eigenvalue \(\xi_{i}\) is related to the effective index and the imaginary part is related to the cavity loss (or gain). Using the conventional \(L P_{m n}\) notation, the transverse component of the electrical field can be written in the following way:
\[
\begin{equation*}
E_{m n}(r, \phi, t) \propto \Psi_{m n}(r, \phi, t) e^{-i \Delta \omega_{m n} t} \tag{17.9}
\end{equation*}
\]
where \(\Psi_{m n}\) is the slowly varying modal field distribution function, and the real part of \(\Delta \omega_{m n}\) is the deviation of the \(L P_{m n}\) mode from the angular oscillation frequency \(\omega_{0}\). For a system with a cylindrical symmetry with respect to the electrical field, the modal field distribution function \(\Psi_{m n}\) must have the following form
\[
\begin{equation*}
\Psi_{m n}(r, \phi, t) \equiv \Psi_{m n}(r, t) e^{i m \phi} \tag{17.10}
\end{equation*}
\]

Combining expressions of (17.8)-(17.10) and neglecting the time derivative of the slowly varying modal field distribution function \(\Psi_{m n}(r, \phi, t)\), we get the following eigenvalue equation in cylindrical coordinates:
\[
\begin{equation*}
\frac{-c_{0}}{2 k_{0}\left\langle\epsilon_{i}\right\rangle}\left[\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r}-\frac{m^{2}}{r^{2}}+k_{0}^{2} \Delta \epsilon_{e f f}\right] \Psi_{m n}=\Delta \omega_{m n} \Psi_{m n} \tag{17.11}
\end{equation*}
\]

In PICS3D, the equations (17.6) and (17.11) are solved numerically to obtain lateral optical modes in VCSELs.

\subsection*{17.4 Longitudinal Modes in VCSEL}

In both the lateral models described earlier in this chapter, we have a separation of variables. This means that like in our edge-emitting model from Chap. 16, we can solve the longitudinal field profile separately. However, there are some differences that justify the use of a different model to do so.

Recall that for a first-order grating, the period is approximately:
\[
L_{g}=\frac{\lambda}{2 n} \approx \frac{1.3}{2 \times 3.2} \approx 0.2 \mu m
\]

This means that a typical DFB/DBR laser cavity will have several thousand grating periods. The combined effect of this grating on the propagating wave is described by the coupled mode theory of Sec. 16.5. In this model, it is assumed that the grating is a weak perturbation with a sinusoidal shape.
However in a VCSEL (Fig. 17.3), the gratings consist of multiple layers of different materials with a large difference in refractive indices: using a sinusoidal function can be rather inaccurate. We also note that the number of gratings used in VCSEL is relatively small \((\approx 100)\). Therefore it is more convenient to apply the \(2 \times 2\) matrix method commonly used in multiple layer optics.
In the transfer matrix method, (TMM, see also Fig. 17.4), simple matrix elements represent propagation within a layer and the interface between layers: these are stacked together to build an equivalent transmittance/reflectance transfer matrix for a stack of layers. This is used to evaluate the round-trip gain and locate the position of the longitudinal modes.

The basic matrix elements are
\[
\left[\begin{array}{cc}
\exp \left[-j \beta_{1}\left(z-z_{k}\right)\right] & 0  \tag{17.12}\\
0 & \exp \left[j \beta_{1}\left(z-z_{k}\right)\right]
\end{array}\right]
\]
for propagation inside a layer of index \(n_{1}\) and
\[
\left[\begin{array}{cc}
1 / t_{1} & r_{1} / t_{1}  \tag{17.13}\\
r_{1} / t_{1} & 1 / t_{1}
\end{array}\right]
\]
for the interface between layers. The reflection and transmission coefficients are given by:
\[
\begin{align*}
r_{1} & =\frac{n_{1}-n_{2}}{n_{1}+n_{2}}  \tag{17.14}\\
t_{1} & =\sqrt{\frac{n_{1}}{n_{2}}} \frac{2 n_{2}}{n_{1}+n_{2}} \tag{17.15}
\end{align*}
\]


Figure 17.3: Schematics of surface-emitting lasers of front and back emission, respectively.
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{array}{r}
\mathrm{N} \\
\mathrm{~N}-1
\end{array}
\]} & n2 \\
\hline & n1 \\
\hline & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline 3 & n1 \\
\hline 2 & n2 \\
\hline layer 1 & n1 \\
\hline
\end{tabular}

Figure 17.4: Schematic of a simple multi-layer optical model for DFB/DBR gratings.

For a periodic stack of layers, these matrices are combined using the approach suggested by Makino in [113]. We also note that this model couples well with our earlier lateral models: the lateral effective index is used in the propagation and interface matrix.

\section*{PICS3D-SPECIFIC MODELS III: Spectrum and Modulation Response}

\subsection*{18.1 Update notes}

PICS3D has been undergoing several important changes in the model in the last few years as we transition from an older quasi-3D model controlled by the scan3d statement to a fully coupled 3D model based on the round-trip gain (RTG).

As a result, there have been several important model changes: most of the information from the previous two chapters remains unchanged from previous versions but this chapter is still undergoing major revisions. Some sections may be incomplete or have been temporarily removed while features from the previous model are re-implemented under the new system.

Here is a brief summary of changes.
- As of version 2008, PICS3D can no longer process the scan3d statement: all input files must be converted to use the RTG model.
- As of version 2009, PICS3D uses a new more stable rate equation model for the longitudinal modes. AC model now consistent with that of LASTIP.
- As of version 2012, the older (pre-2008) AC model derived by Tromborg [106, \(114,115]\) is re-introduced as an "analytical" solution to supplement the existing fully coupled analysis. While we believe the AM/FM response from this model is inferior to our new derivation, the old model allows for noise terms (RIN, FN) and second harmonic distortion (SHD) analysis which are not supported in the full 3D model.

\subsection*{18.2 Multi-mode complex pole expansion}

As we discussed in Sec. 16.4, a complex frequency term is used to represent the contribution of the spontaneous emission to the laser spectrum. This means that all longitudinal modes are zeroes of the Wronskian when evaluated on the complex plane.

Using this approach, we concentrate on getting the stationary multi-mode solution of a laser. We neglect any carrier dynamics and note that in Eq. (16.3), the numerator is only weakly dependent on \(\omega\).

Since now \(1 / W\) is non-singular for real optical frequencies, it can be expanded over the poles \(\omega_{i}\) of \(1 / W\) on the complex frequency plane:
\[
\begin{equation*}
\frac{1}{W} \doteq \sum_{i} \frac{1}{\frac{d W}{d \omega}\left(\omega-\omega_{i}\right)} \tag{18.1}
\end{equation*}
\]

The derivative \(d W / d \omega\) in (18.1) is evaluated for \(\omega\) equals \(\omega_{i}\), which is one of the zeros of the Wronskian on the complex plane.
In App. E, we show that the optical mode spectrum of a laser can be written as:
\[
\begin{equation*}
I_{\omega}=\frac{(2 \pi)^{-1} R_{s p, i}}{\left[\left(\omega-\omega_{r e, i}\right)^{2}+\omega_{i m, i}^{2}\right]} \tag{18.2}
\end{equation*}
\]
where the parameter \(R_{s p, i}\) defines the spontaneous emission rate into mode \(i\). It is given by:
\[
\begin{equation*}
R_{s p, i}=c \frac{\left[\int_{0}^{l} n(z) n_{g}\left|Z_{0}(z)\right|^{2} d z\right]\left[\int_{0}^{l}\left|Z_{0}\left(z^{\prime}\right)\right|^{2} n\left(z^{\prime}\right) g\left(z^{\prime}\right) n_{s p} d z^{\prime}\right]}{\left|\int_{0}^{l} n(z) n_{g} Z_{0}^{2}(z) d z\right|^{2}} \tag{18.3}
\end{equation*}
\]

Integrating over \(z\), we get the total number of photons in the cavity \(I_{p, i}\) in the \(i^{\text {th }}\) mode:
\[
\begin{equation*}
I_{p, i}=\frac{R_{s p, i}}{2 \omega_{i m, i}} \tag{18.4}
\end{equation*}
\]
which agrees with results from other works in the literature (see, e.g., Ref. [106]).
In the above formulas, \(Z_{0}(z)=Z_{0, i}(z)\) is the solution to the homogeneous scalar wave equation at \(\omega=\omega_{i}, v_{g}\) the group velocity, \(g(z)\) the modal gain, and \(n_{s p}\) the inversion parameter. The expression (18.3) agrees completely with the results in Ref. [106].
The above derivation shows that the longitudinal modes can be represented by a set of poles on the complex frequency plane. The simulator's multi-mode calculation then becomes a task of searching and following such a set of complex poles.

\subsection*{18.3 Mode Spectrum}

Once the steady state solution for the complex frequencies is found, we can compute the emission spectrum of the laser. We start by noting that the modal spectrum of Eq. (18.2) is actually the spectrum for the total photon number in the whole cavity.

For the emission spectrum from each facet, this must be scaled to represent the number of photons actually transmitted by that facet. To get the local photon flux inside the facet, we normalize the forward and backward waves \(L(z)\) and \(R(z)\) so that for each longitudinal mode, we have the normalization \(\int_{0}^{L} S_{i}(z) d z=1\) where \(S_{i}(z)=|L(z, i)|^{2}+|R(z, i)|^{2}\).
We note that \(L(z)\) and \(R(z)\) are known quantities used to evaluate the round-trip gain and the Wronskian during the search for longitudinal modes. The discretization is chosen so that the device is divided into sections where the optical propagation coefficient is uniform and the fields are sampled on either side of these sections.
For any given facet, we use only the forward or backward flux and correct for the the facet transmission coefficient. The photon density per unit of angular frequency is then given by:
\[
\begin{equation*}
S_{\omega, l e f t}=|L(0, i)|^{2}\left(1-R_{l e f t}\right) \frac{(2 \pi)^{-1} R_{s p, i}}{\left[\left(\omega-\omega_{r e, i}\right)^{2}+\omega_{i m, i}^{2}\right]} \tag{18.5}
\end{equation*}
\]
for the left facet and:
\[
\begin{equation*}
S_{\omega, r i g h t}=|R(L, i)|^{2}\left(1-R_{r i g h t}\right) \frac{(2 \pi)^{-1} R_{s p, i}}{\left[\left(\omega-\omega_{r e, i}\right)^{2}+\omega_{i m, i}^{2}\right]} \tag{18.6}
\end{equation*}
\]
for the right facet.
We note that this result is the "pure" spectrum of the laser, before any convolution with the finite resolution of a spectrum analyzer.

\subsection*{18.4 Time-Dependent Solution of Longitudinal Modes}

We now consider a time-dependent model where the mode amplitude varies as a result of an external time-dependent bias. We assume that the external bias source has a frequency much smaller than the optical frequency \(\omega\). This assumption is reasonable since the typical optical frequency is \(3 \times 10^{14} \mathrm{~Hz}\), while a typical external modulation biasing source is on the order of \(10 \mathrm{GHz}\left(1 \times 10^{10} \mathrm{~Hz}\right)\).
For any theory of large signal, our requirement is that it must be consistent with our model in CW. That is, at \(\Delta t \rightarrow \infty\), the equation must reduce to our CW theory.


Figure 18.1: Schematic of the evaluation of round-trip gain in a laser.

Therefore, it is useful for us to expand on our Green's function results from Chap. 16 to build our time-dependent model.

\subsection*{18.4.1 Alternative CW Solution of Longitudinal Modes}

Let us consider a laser device as shown in Fig. 18.1. We choose a reference point where both the left- and right-going waves \((L(z), R(z))\) are non-zero. By examining the equivalent reflectivities to the left \(\left(r_{L}\right)\) and right \(\left(r_{R}\right)\), we have the following equations:
\[
\begin{align*}
& L(z)=r_{R} R(z)+F_{L}  \tag{18.7}\\
& R(z)=r_{L} L(z)+F_{R} \tag{18.8}
\end{align*}
\]
where \(F_{L}\) and \(F_{R}\) are noise sources terms.
We note that we do not define \(r_{L}\) and \(r_{R}\) at this point. They are merely effective reflection coefficients and this derivation hold true no matter which method is being used to calculate the mode profiles. We then combine these two equation and note that by definition, the round-trip gain \(R_{g}\) is equal to the product of \(r_{L}\) and \(r_{R}\) :
\[
\begin{equation*}
\left(1-R_{g}\right) R(z)=r_{L} F_{L}+F_{R}=F_{\omega} \tag{18.9}
\end{equation*}
\]

As previously shown, the Wronskian is position-independent so the same holds true for \(R_{g}\). We thus re-use our previous result and note that under CW conditions, the laser oscillates at the complex solution \(\omega_{s}\) :
\[
\begin{equation*}
1-R_{g}\left(\omega_{s}\right)=0 \tag{18.10}
\end{equation*}
\]

\subsection*{18.4.2 Longitudinal Mode Transient Model}

As we mentioned earlier, the time scale involved can be separated into two different types. The optical frequency causes the modes to vary with \(\exp (j \omega t)\) while the slow external modulation causes a much slower change \(\exp (j \Omega t)\) in the wave amplitude. We assume that above time scales are so different that they can be treated as decoupled.
If we apply an external modulation of \(\exp (j \Omega t)\), the round trip gain as calculated by the optical frequency only may not be unity since the photon density must be allowed to change with time. However the derivation in the previous section is still valid if we assume the reflectivity is not the reflectivity at optical frequency but the instantaneous reflectivity at the transient state. That is we can still use \(R_{g}(\omega+\Omega)\) which includes the transient effect.
This approximation is consistent with our slow modulation hypothesis. At these time scales, there is enough time for photons to do several round-trips in the cavity and establish a solution that satisfies both mirror conditions simultaneously just like in our earlier derivation for the Wronskian. However, these photons may not necessarily be in equilibrium with the slower carriers.

In this case, we shall go back to our basic equation and regard the frequency as \(\omega+\Omega\) where \(\omega \gg \Omega\). Our basic equation becomes:
\[
\begin{equation*}
\left(1-R_{g}(\omega+\Omega)\right) R(\omega+\Omega)=F_{\omega+\Omega} \tag{18.11}
\end{equation*}
\]

Since \(R_{g}(\omega) \approx 1\), we make the following simplification:
\[
\begin{align*}
R_{g}(\omega+\Omega) & =R_{g}(\omega)\left[1+\frac{\partial \ln \left(R_{g}\right)}{\partial \omega} \Omega\right]  \tag{18.12}\\
& \approx R_{g}(\omega)+\frac{\partial \ln \left(R_{g}\right)}{\partial \omega} \Omega \tag{18.13}
\end{align*}
\]

We can derive \(\frac{\partial \ln \left(R_{g}\right)}{\partial \omega}\) by noting that for a FP laser:
\[
\begin{equation*}
R_{g}=r_{1} r_{2} \exp \left(-j 2 L k_{r}+g_{m} L\right) \tag{18.14}
\end{equation*}
\]

Applying this, we get:
\[
\begin{equation*}
\frac{\partial \ln \left(R_{g}\right)}{\partial \omega}=-j\left(\frac{2 L}{v_{g}}+j L \frac{\partial g_{m}}{\partial \omega}\right) \tag{18.15}
\end{equation*}
\]
where the group velocity is be written as \(v_{g}=\left(\frac{\partial k_{r}}{\partial \omega}\right)^{-1}\).
We assert that since Eq. (18.15) is derived from the round-trip gain, it is applicable to any kind of laser, not just Fabry-Perot cavities. However, the real and imaginary parts on the right-hand side are effective coefficients only. For example, in a DFB laser \(L\) would be the effective cavity length of a particular longitudinal mode rather the actual length of the laser.

By substitution into our basic equation, we get:
\[
\begin{equation*}
\left[1-R_{g}(\omega)+j\left(\frac{2 L}{v_{g}}+j L \frac{\partial g_{m}}{\partial \omega}\right) \Omega\right] R(\omega+\Omega)=F_{\omega+\Omega} \tag{18.16}
\end{equation*}
\]

At this point, we assume that the laser is oscillating at the peak gain wavelength so that \(\frac{\partial g_{m}}{\partial \omega} \approx 0\). Taking the inverse Fourier transform to get the slow time dependence and noting \(j \Omega=\frac{\partial}{\partial t}\), we obtain:
\[
\begin{equation*}
\left[1-R_{g}(\omega, t)+\frac{2 L}{v_{g}} \frac{1}{R(\omega, t)} \frac{\partial R(\omega, t)}{\partial t}\right] R(\omega, t)=F_{\omega, t} \tag{18.17}
\end{equation*}
\]

We can use the photon number \(S(t)\) to express \(R=\sqrt{S(t)} \exp (j \phi(t))\). From this, we get:
\[
\begin{equation*}
\frac{2 L}{v_{g}} \frac{1}{R(t)} \frac{\partial R(t)}{\partial t}=\frac{L}{v_{g}} \frac{1}{S(t)} \frac{\partial S(t)}{\partial t}+j \frac{2 L}{v_{g}} \frac{\partial \phi(t)}{\partial t} \tag{18.18}
\end{equation*}
\]

Our key result is as follows:
\[
\begin{equation*}
\left[1-R_{g}(t)+\frac{L}{v_{g}} \frac{1}{S(t)} \frac{\partial S(t)}{\partial t}+j \frac{2 L}{v_{g}} \frac{\partial \phi(t)}{\partial t}\right] R(t)=F_{t} \tag{18.19}
\end{equation*}
\]

In our simulation, we are not directly concerned with the phase variation but we are more interested in the emission frequency. The phase factor can be written as \(\exp [j \omega t+\phi(t)]\). We consider a short time interval \(\Delta t=t-t_{0}\).
The phase at time \(t_{0}\) is given by \(j \omega_{0} t_{0}+\phi\left(t_{0}\right)\). Assuming the fast oscillation frequency does not change substantially, the new phase is:
\[
\begin{equation*}
j \omega_{0} t+\phi\left(t_{0}\right)+\frac{\partial \phi(t)}{\partial t} \Delta t \tag{18.20}
\end{equation*}
\]

Therefore the new frequency should be:
\[
\begin{equation*}
\omega(t)=\omega_{0}+\frac{\partial \phi(t)}{\partial t} \tag{18.21}
\end{equation*}
\]

Our basic equation in terms of \(S(t)\) and \(\omega(t)\) can be written in a form easy for numerical implementation:
\[
\begin{equation*}
\left[1-R_{g}(t)+\frac{L}{v_{g}} \frac{1}{S(t)} \frac{\partial S(t)}{\partial t}+j \frac{2 L}{v_{g}}\left(\omega(t)-\omega\left(t_{0}\right)\right)\right] R(t)=F_{t} \tag{18.22}
\end{equation*}
\]

The above equation leads to the new oscillation condition:
\[
\begin{equation*}
1-R_{g}(t)+\frac{L}{v_{g}} \frac{1}{S(t)} \frac{\partial S(t)}{\partial t}+j \frac{2 L}{v_{g}}\left(\omega(t)-\omega\left(t_{0}\right)\right)=0 \tag{18.23}
\end{equation*}
\]

We have implemented Eq. (18.23) in PICS3D: each longitudinal mode is governed by such an equation. These equations are coupled together in the main Newton solver alongside all the other equations (e.g. current continuity) described in Chap. 5. This makes PICS3D a full 3D model and is at the heart of what we call the "coupled RTG method".

\subsection*{18.4.3 Comparison with Conventional Photon Rate Equation}

We are going to make sure the above is consistent with the commonly used rate equation for a FP laser. In the common textbook model, we are only interested in the propagation of photons, not fields, and changes in the emission frequency are neglected.

If we remove the terms related to these effects from Eq. (18.23) and rearrange it, we get:
\[
\begin{equation*}
\left|R_{g}(t)\right|=1+\frac{L}{v_{g}} \frac{1}{S(t)} \frac{\partial S(t)}{\partial t} \tag{18.24}
\end{equation*}
\]

If we take the logarithm on each side, we get:
\[
\begin{equation*}
\ln \left|R_{g}(t)\right|=\ln \left(r_{1} r_{2}\right)+g_{m} * L \tag{18.25}
\end{equation*}
\]
for the left side and
\[
\begin{equation*}
\ln \left(1+\frac{L}{v_{g}} \frac{1}{S(t)} \frac{\partial S(t)}{\partial t}\right) \approx \frac{L}{v_{g}} \frac{1}{S(t)} \frac{\partial S(t)}{\partial t} \tag{18.26}
\end{equation*}
\]
for the right side, assuming \(\frac{1}{S(t)} \frac{\partial S(t)}{\partial t} \ll \frac{L}{v_{g}}\) for the expansion.
So for slow and/or small-signal modulation, we get:
\[
\begin{equation*}
\ln \left(r_{1} r_{2}\right)+g_{m} * L=\frac{L}{v_{g}} \frac{1}{S(t)} \frac{\partial S(t)}{\partial t} \tag{18.27}
\end{equation*}
\]
which is equivalent to our desired expression:
\[
\begin{equation*}
g_{m}-\frac{1}{L} \ln \left(\frac{1}{r_{1} r_{2}}\right)=\frac{1}{v_{g} S(t)} \frac{\partial S(t)}{\partial t} \tag{18.28}
\end{equation*}
\]

Note that \(r 1, r 2\) are field reflection coefficients so a factor of 2 due to \(r=\sqrt{R}\) may be present in some textbooks.

\subsection*{18.5 AC modeling in PICS3D}

As of version 2009, the new rate equation model in Eq. (18.23) is used for all aspects of PICS3D. For AC modeling, it becomes one more equation to be solved and the techniques of Chap. 7 are used. This means that many effects such as carrier transit times are now included in the modulation response.

However we note that Eq. (18.23) is complex so there are actually two terms. The real part in \(\frac{\partial S}{\partial t}\) gives the amplitude response and, as shown in the previous section, should reduce to the AM response from LASTIP in the case of a Fabry-Perot laser. The second term in \(\omega(t)-\omega\left(t_{0}\right)\) produces the frequency response (FM).

\subsection*{18.6 Analytical model}

As of version 2012, the older (pre-2008) AC model derived by Tromborg [106, 114, 115 ] is re-introduced as an "analytical" solution to supplement the existing fully coupled analysis. This solution is based on a transient perturbation of the steady state solution but explicitly considers derivatives of the Wronskian rather than lumping all effects into the round-trip gain as we have previous done.

As a result, Tromborg's AC model relies on longitudinal integrals of these perturbation terms rather than coupling directly to the sparse AC solver used for the drift diffusion equations. We thus consider this an "analytical" 1D model since it mainly considers the longitudinal spatial hole burning effects. We believe that our fully coupled approach is superior since carrier transport times can have a strong effect on the modulation speed of a laser and this requires treatment of transverse effects.

However, the Tromborg model does define noise and second-harmonic generation terms which are not currently available in our full 3D model so we re-introduce it here.

\subsection*{18.6.1 Modulation response}

Without going into the detail of Tromborg's approach, we define the following general formula for the weighted longitudinal perturbation of some quantity \(X(z)\) :
\[
\begin{equation*}
C_{X}(z)=-j \frac{\delta W}{\delta k(z)} \frac{\partial k}{\partial X}(z) / \frac{\partial W}{\partial \omega} \tag{18.29}
\end{equation*}
\]
where \(k(z)\) is the wave propagation constant and \(W\) is the Wronskian defined in earlier sections.

The transient modulation response of the optical power and phase is defined as a function of the change in the carrier \((N)\) and photon \((S)\) longitudinal profiles. Using the shorthand notation of the dot product for \(\int d z\), we write:
\[
\begin{align*}
\frac{1}{2} P_{0} \frac{d \Delta P}{d t} & =C_{N r} \cdot \Delta N+C_{S r} \cdot \Delta S  \tag{18.30}\\
\frac{d \Delta \phi}{d t} & =C_{N i} \cdot \Delta N+C_{S i} \cdot \Delta S \tag{18.31}
\end{align*}
\]
where \(r\) and \(i\) indicate the real and imaginary parts of the perturbation functions.
We also assume that the current is acting as the modulation source which imposes the following current continuity equation at all z-points:
\[
\begin{equation*}
\frac{d \Delta N}{d t}=\Delta J-\Delta N / \tau_{R}(N)-v_{g} g \Delta S \tag{18.32}
\end{equation*}
\]
where \(\tau_{R}(N)\) is the carrier lifetime representing all recombination mechanisms except the stimulated emission.

Assuming that the modulation does not strongly distort the shape of the photon density profile, we can relate the variation of the power \(P\) (a scalar) to that of \(S(z)\) :
\[
\begin{equation*}
\Delta S(z) / S_{0}(z)=\Delta P / P_{0} \tag{18.33}
\end{equation*}
\]

Further assuming an input modulation \(\Delta J=\Delta J_{0}(z) \exp (j \Omega t)\), we can eliminate the carrier density fluctuation and obtain a useful formulation for the AM response:
\[
\begin{equation*}
\Delta P / P_{0}=\frac{2 C_{N r} \cdot \Delta J /\left(j \Omega+1 / \tau_{R}\right)}{j \Omega+2 C_{N r} \cdot v_{g} g S_{0} /\left(j \Omega+1 / \tau_{R}\right)-2 C_{S r} \cdot S_{0}} \tag{18.34}
\end{equation*}
\]

The FM response can be derived in the same way from the imaginary terms of the perturbation functions. Re-using our results from the AM response, we get:
\[
\begin{equation*}
\Delta \omega=\frac{d \Delta \phi(t)}{d t}=\frac{C_{N i} \cdot \Delta J}{j \Omega+1 / \tau_{R}}+\left[C_{S i} \cdot S_{0}-\frac{C_{N i} \cdot v_{g} g S_{0}}{j \Omega+1 / \tau_{R}}\right]\left(\frac{\Delta P}{P_{0}}\right) \tag{18.35}
\end{equation*}
\]

\subsection*{18.6.2 Second Harmonic Distortion}

The rate equations for the photon number \(I_{p}(t)\) and the carrier density \(N(z, t)\) can be written using the same notation as above:
\[
\begin{gather*}
\frac{d I_{p}}{d t}=2 I_{p}(t)\left\{C_{N r} \cdot \Delta N+C_{S r} \cdot \Delta S\right\}  \tag{18.36}\\
\frac{d N}{d t}=J-R(N)-G(N, S) S \tag{18.37}
\end{gather*}
\]

We assume that the injection current density is modulated at an angular frequency \(\omega\) :
\[
\begin{equation*}
J(z, t)=J_{s}(z)+\Delta J(z) e^{j \Omega t} \tag{18.38}
\end{equation*}
\]

To evaluate the second harmonic distortion (SHD), the carrier density and the photon number are expanded to second order:
\[
\begin{align*}
N(z, t) & =N_{s}(z)+\Delta N_{1}(z) e^{j \Omega t}+\Delta N_{2}(z) e^{j 2 \Omega t}  \tag{18.39}\\
I_{p}(t) & =I_{p s}+\Delta I_{p 1} e^{j \Omega t}+\Delta I_{p 2} e^{j 2 \Omega t} \tag{18.40}
\end{align*}
\]

In addition, to simplify the calculation, we make the assumption that
\[
\begin{equation*}
S(z, t)=\frac{S_{s}(z)}{I_{p s}} I_{p}(t) \tag{18.41}
\end{equation*}
\]

Equations (18.36)-(18.41) are solved for \(\Delta I_{p 1}\) and \(\Delta I_{p 2}\), following a straight forward small signal analysis. We then define the SHD as:
\[
\begin{equation*}
S H D=\frac{\Delta I_{p 2}}{\Delta I_{p 1}} \tag{18.42}
\end{equation*}
\]

\subsection*{18.6.3 Noise Terms}

The noise analysis in Tromborg's model follows the same approach as the modulation functions defined above. However, instead of a current source modulating the laser, additional noise terms are added to equations 18.30 and 18.31. The noise spectrum is then derived from the Fourier transform and correlation of these Langevin noise functions. The derivation of these terms is beyond the scope of this section and the user is referred to [106] for further details.

\section*{Part IV}

\section*{SELECTED TUTORIAL EXAMPLES}


\section*{Chapter 19}

\section*{APSYS EXAMPLES}

\subsection*{19.1 Introduction}

This chapter will describe a few selected examples of APSYS simulations. The relevant input files can be found in your local installation directory (default is c: \crosslig \apsys_examples): the section name corresponds to the examples's location on your hard drive. These examples have been selected to teach the basic operation of the software, explain key concepts essential to device simulation, showcase some popular applications/devices and preemptively answer common user questions.

Note that the examples from this chapter are only a small subset of the included tutorial files. There are a number of other examples that are supported through accompanying README files and comments in the simulation files. Crosslight support staff will also be happy to explain these examples in more detail if you need further assistance.

It is relevant to note that all examples are subject to change as the software is updated. Between each release, there are often bug fixes, material macro changes, new models and other improvements which can affect the results. In most cases, these should result in negligible changes in the results which do not alter the tutorial value of these examples. If any major inconsistencies are found, please report them to Crosslight support staff. Most examples listed here were last updated as part of the 2009 manual release. Whenever possible, we will note examples which have been updated since then.

Throughout this chapter, we will concentrate on the specific simulation statements and physical models that are needed for a particular device. Particular attention will also be given to model parameters that may affect the convergence or reliability of the simulation.
It is also assumed that the reader is familiar with the basic structure of the input files so some of the basic setup steps for will be omitted for the sake of brevity. If you have
not already done so, we strongly urge you to read through Chapter 3. Of particular interest will be the sections dealing with the use of the command-line setup tools as well as their integration into SimuCenter. If you are working using GUI tools such as LayerBuilder, additional online help is available through SimuCenter.

In some cases, the setup tools will only provide the basic framework of an input file and some direct editing may be required to complete the setup. If this is the case, new users are encouraged to use the built-in Wizard option in SimuAPSYS: this will present all the available statements and parameters. New statements may be created by right-clicking on an empty line and selecting the Wizard option: existing statements can be modified in the same way.

Note that users of other Crosslight tools besides APSYS may also benefit from this chapter. In many cases, the physical models described here are relevant to other devices that are not within the scope this software. While the input files themselves cannot always be reused, most of the syntax will carry over to other Crosslight tools.


Figure 19.1: Schematic of camel diode

\subsection*{19.2 A_tutorial}

This is example is a camel diode, which is related to the planar doped barrier diode. It is a \(n-p-n\) majority carrier diode which finds applications in high-speed switches, mixers, fast photodiodes, BARRITT devices and thermionic emission transistors. This particular device is adapted from[116].

\section*{Layer Structure}

The major feature of this device is a thin highly-doped p-layer inside the intrinsic region as shown in Fig. 19.1. The corresponding layer file is shown below:
```

begin_layer
\$
column column_num=1 w=1. mesh_num=2 r=1.
\$
bottom_contact column_num=1 from=0 to=1. contact_num=1
\$
layer_mater macro_name=si column_num=1
layer d=1. n=15 r=-1.1 n_doping1=1.5e24
layer_mater macro_name=si column_num=1
layer d=0.2480 n=30 r=-1.1 n_doping1=1e2

```
```

layer_mater macro_name=si column_num=1
layer d=0.0039 n=15 r=1. p_doping1=1.5e24 \&\&
gaussian_tail=0.0001
layer_mater macro_name=si column_num=1
layer d=0.0480 n=30 r=-1.1 n_doping1=1.e2
layer_mater macro_name=si column_num=1
layer d=1. n=15 r=-1.1 n_doping1=4.e24
\$
top_contact column_num=1 from=0 to=1. contact_num=2
\$
end_layer

```

One major difference from the device in the reference above is the lower doping concentration of the p+ layer. Since this is a current-blocking structure, we have chosen to lower the barrier height to make convergence easier. As explained in Sec. 4.10.1, there are many possible solutions of the current continuity equations in structures where the current is being blocked. In these conditions, the simulation is not stable since it may oscillate between different solutions that lie within the specified numerical precision.

One possible solution to this instability is to use relaxed convergence criterion such as a larger tolerance value (var__tol parameter) in the newton_par statement. As long as we find that the equation residue is low and that the currents on the electrodes sum up to zero (i.e. Kirchoff's law), we can consider the solution as valid. To maintain convergence with stricter tolerance values, more advanced techniques such as those of Chap. 4 may be required.

\section*{Simulation Setup}

To run the simulation, use the following .sol file:
```

\$file:camel.sol
\$***********
begin
load_mesh mesh_inf=camel.msh
include file=camel.doping
include file=camel.mater
output sol_outf=camel.out
more_output ac_data=yes
newton_par damping_step=5. var_tol=1.e-9 res_tol=1.e-9 \&\&

```
```

 max_iter=100 opt_iter=15 stop_iter=50 print_flag=3
 \$ equilibrium solution is counted as scanline=1
equilibrium
newton_par damping_step=1 \&\&
max_iter=30 opt_iter=15 stop_iter=15 print_flag=3
\$ The first scan statement is counted as scanline=2
scan var=voltage_1 value_to=1.6
\$ The first scan statement is counted as scanline=3
scan var=voltage_1 value_to=-0.5 max_step=0.05 print_step=0.2
end

```

Since both contacts are n-doped, it is difficult to determine whether a particular bias will put the device in a forward or reverse state. To capture both characteristics, we apply bias in one direction and then reverse it with the next scan statement. The shape of the I-V curve as well as the internal potential will help us identify the reverse bias region.

Note that we will also be interested in doing some AC post-processing analysis for this device so we use the more_output statement to generate the necessary auxiliary data files (.ac extension). Also note the numbering of the scan lines in the comments: this will be used to group together some of the data sets for later analysis.

\section*{Post-Processing}

After the simulation, the results are post-processed in the .plt file as shown below:
```

\$file:camel.plt
\$ **************
begin_pstprc
plot_data plot_device=postscript
\$ ---- plot structure data at first data set (equilibrium)
get_data main_input=camel.sol sol_inf=camel.out \&\&
xy_data=(1 1)
plot_1d variable=band from=(0.5 0.0) to=(0.5, 2.3)
plot_1d variable=donor_conc from=(0.5 0.0) to=(0.5, 2.3)

```
```

plot_1d variable=acceptor_conc from=(0.5 0.0) to=(0.5, 2.3)
\$ ---- plot structure data at last data set (max. voltage bias)
get_data main_input=camel.sol sol_inf=camel.out \&\&
xy_data=(2 2)
plot_1d variable=band from=(0.5 0.0) to=(0.5, 2.3)
plot_1d variable=potential from=(0.5 0.0) to=(0.5, 2.3)
plot_1d variable=field_mag from=(0.5 0.0) to=(0.5, 2.3)
plot_1d variable=elec_curr_y from=(0.5 0.0) to=(0.5, 2.3)
plot_1d variable=hole_curr_y from=(0.5 0.0) to=(0.5, 2.3)
plot_1d variable=elec_conc from=(0.5 0.0) to=(0.5, 2.3)
plot_1d variable=hole_conc from=(0.5 0.0) to=(0.5, 2.3)
\$ Plot bias dep. quantities using scanline specification.
\$ Please make sure scan_data range is large enough to cover
\$ the intended scanline.
get_data main_input=camel.sol sol_inf=camel.out \&\&
scan_data=(3 13)
plot_scan scan_var=voltage_1 variable=current_1 scanline=3
\$ ====> AC analysis as a post-processing step
\$ AC analysis at max. voltage
get_data main_input=camel.sol sol_inf=camel.out \&\&
xy_data=(2 2)
\$ AC analysis vs. freq.
ac_voltage log_freq1=6. log_freq2=10. contact_num=1
plot_ac_curr variable=capacitance_1
plot_ac_curr variable=conductance_1
\$ Physical distribution of AC current @ 1 MHz
ac_voltage current_distr=yes log_freq1=6. log_freq2=6.
plot_1d_ac_curr variable=elec_curr_y imag_part=no from=(0.5 0.) to=(0.5 2.3)
plot_1d_ac_curr variable=hole_curr_y imag_part=no from=(0.5 0.) to=(0.5 2.3)
\$ We plot capacitance-voltage and conductance-voltage here at 1 MHz
\$ To generate reasonable AC vs. bias plots, please save sufficient
\$ number of data sets. AC analysis plots cannot include equilibrium data
get_data main_input=camel.sol sol_inf=camel.out \&\&
scan_data=(3 13)

```
```

ac_voltage log_freq1=6. log_freq2=6. contact_num=1 \&\&
freq_point=2 versus_bias=yes scanline=3
set_xydata_for_scan scan_var=voltage_1
plot_ac_curr variable=capacitance_1
plot_ac_curr variable=conductance_1
\$ For purpose of demonstrating the plotting,
\$ let us plot y parameters assuming input=output=eletrode No. 1
ac_parameters versus_bias=yes log_freq1=6. log_freq2=6. \&\&
input_contact=1 output_contact=1 freq_point=2 scanline=3
plot_ac_parameters parameter_type=y smith_chart=no
end_pstprc

```

The I-V curve of the device is shown in Fig. 19.2. Note that we use scan line \(\# 3\) to capture the part of the IV curve that has both negative and positive bias (i.e. the third scan statement). From the shape of the I-V curve, we see that the positive bias on electrode \(\# 1\) yields reverse bias of the diode. This is confirmed by the internal potential profile shown in Fig. 19.3: the potential of the \(\mathrm{p}+\) region is below that of both \(\mathrm{n}+\) regions so the two junctions are reverse-biased.

At the maximum bias point, we also find there is a strong local field (Fig 19.4): this indicates that even though we have neglected it for the sake of simplicity, impact ionization may be significant in this region.
As mentioned before, we also want to do small-signal AC analysis on this device. This is done via the ac__voltage statement to apply 1 V of AC voltage on a particular electrode: all other electrodes are connected to the AC ground even though they may have a different DC bias.

Depending on the quantity we are interested in, there are different kinds of AC analysis:
- AC quantity vs. frequency at a particular bias point
- AC quantity vs. bias at a particular frequency
- Physical distribution of AC current at a particular bias and frequency

All of the above analyses are done in the above .plt file. For example, the capacitance vs. bias plot is shown in Fig. 19.5. Since these different kinds of AC analysis are mutually exclusive, the ac__voltage statement is issued multiple times to generate new AC data before each plot.


Figure 19.2: I-V curve of low-barrier camel diode


Figure 19.3: Internal potential profile of camel diode under reverse bias


Figure 19.4: Local field magnitude of camel diode under reverse bias


Figure 19.5: Capacitance of camel diode vs. bias


Figure 19.6: LED structure as shown in LayerBuilder

\subsection*{19.3 LED_GaN_MQW \(\backslash 2 \mathrm{~d} \backslash\) InGaN}

This example \({ }^{1}\) is a light emitting diode (LED) based on multiple \(\mathrm{In}_{x} \mathrm{Ga}_{1-x} \mathrm{~N}\) quantum wells. Modeling of nitride devices is an active area of research and so requires special care for accurate modeling: as a result, this example will be more complicated than usual.

Since these devices are grown on an insulating sapphire substrate, both contacts are on the top of the device (Fig. 19.6). The transparent indium tin oxide (ITO) contacts are represented here as ideal ohmic contacts for the purposes of the electrical simulation. However, these contacts are not completely transparent and have optical properties that need to be considered: this will be done as part a ray tracing simulation in the post-processing stage.

\section*{Layer Structure}

The layer file used to define this device is shown below:
```

\$ ----
begin_layer
\$
\$ this has been moved to ganled.sol
\$set_polarization ref_column=1 screening=0.5

```

\footnotetext{
\({ }^{1}\) Last updated July 2011
}
```

independent_mqw
column column_num=1 w=200 mesh_num=10 r=0.85
column column_num=2 w=100 mesh_num=8 r=1.15
top_contact column_num=1 from=0.0 to=50 contact_num=2
top_contact column_num=2 from=30 to=100 contact_num=1
\$
layer_mater macro_name=sapphire column_num=1
layer_mater macro_name=sapphire column_num=2
layer d=100. n=8 r=0.7
layer_mater macro_name=algan var1=0 column_num=1 var_symbol1=x
layer_mater macro_name=algan var1=0 column_num=2 var_symbol1=x
layer d=2.5 n=8 r=0.8 n_doping1=5e24 n_doping2=5e24
layer_mater macro_name=algan var1=0 column_num=1 var_symbol1=x
layer_mater macro_name=void column_num=2
layer d=0.5 n=5 r=0.8 n_doping1=5e24
\$ MQW region
include file=ganled.bar
include file=ganled.qw
include file=ganled.bar
\$ for superlattice, we use effective medium theory and anisotropic
\$ mobility and thermal conductivity, 24 SL
layer_mater macro_name=algan var1=0.07 column_num=1 var_symbol1=x
layer_mater macro_name=void column_num=2
layer d=0.18 n=6 r=1.0 p_doping1=3e23
\$p+
layer_mater macro_name=algan var1=0 column_num=1 var_symbol1=x
layer_mater macro_name=void column_num=2
layer d=0.015 n=4 r=1.0 p_doping1=1.2e24

```
```

\$
end_layer

```

Note the use of the include statement used to define the barrier and well regions: this is a common technique to more easily define periodic structures. The main advantage is that any change in well or barrier composition only needs to be done once instead of for each well. When using direct input of the layer file, it also makes the repeated structure of the MQW more obvious. The barrier and well input files are shown below:
```

\$
layer_mater macro_name=ingan var1=0.0 column_num=1 var_symbol1=x \&\&
n_doping=3.e23
layer_mater macro_name=void column_num=2 n_doping=3.e23
layer d=0.015 n=12 r=-1.4
\$
layer_mater macro_name=ingan var1=0.11 \&\&
column_num=1 active_macro=InGaN/InGaN \&\&
avar1=0.11 avar2=0. \&\&
avar_symbol1=xw avar_symbol2=xb var_symbol1=x
layer_mater macro_name=void column_num=2 active_macro=void
layer d=0.0022 n=8 r=-1.3

```

Users working with LayerBuilder can also easily build a MQW region by copying \& pasting layers in the GUI.

We note that we have used the algan macro for many layers but that the composition is set to \(x=0\). In truth, those layers are simply GaN and we could have used the gan macro. However, using the ternary/quaternary macro is often a good idea in this situation: since the same interpolation formulas are used everywhere, it ensures that there is no conflict in the material parameters from different macros.

Aside from the MQW region, there is one other layer of particular importance: the AlGaN layer with \(x=0.07\) near the top of the device. This layer is special in that we use it to represent a superlattice region: the composition is averaged and represents an effective medium. Superlattices are often used to block leakage current and have different properties than a material having the same composition as the effective medium: this will be handled in the .sol file later on.

There are a few other points of importance in this layer file which are related to the interface charges between layers (common in c-plane nitride materials). These
settings are not available in the LayerBuilder GUI and must be added manually afterwards.

The first point is the set_polarization statement: this instructs the layer.exe program to automatically calculate the interface charge between layers and add them to the .mater file. However, this model is considered deprecated as of the 2011 version of APSYS and has been commented out. A more accurate model based on material macros will be discussed below. The older model is still available and many other wurtzite examples have not been ported to the new syntax yet. We strongly recommend the use of the new model in any new simulation project. However, care should be taken not to use the new and old models at once as this will double-count the interface charges.

Because this simulation will have interface charges, the bands will be tilted by the local field these charges generate. In order to move beyond the flat-band approximation in the QW mdoel, a self-consistent simulation will need to be used. Since the field value will not necessarily be uniform, we also use the independent__mqw statement. This forces the software to assign different material numbers to each QW and explicitly solve the Schrödinger equation for each one; by the default, the software would normally try to save time by re-using the QW solution of wells with identical compositions. See subsection 8.2.4 for details.

\section*{Simulation Setup}

To run the simulation, we use the following .sol file:
```

\$file:ganled.sol
\$ *******
begin
load_mesh mesh_inf=ganled.msh
output sol_outf=ganled.out
more_output qw_states=yes
\$ *******
include file=ganled.doping
include file=ganled.mater
polarization_charge_model screening=0.5 vector=(0 1 0)
set_active_reg tau_scat=0.4e-13
modify_qw tail_energy=0.03
\$self-consistent is necessary for polarization
self_consistent wave_range=0.005

```
```

\$ Quantum transport model helps deal with thin,deep wells
q_transport
\$.mater shows superlattice is mater=9
mobility_xy dir=y factor_elec=0.2 mater=9
thermal_kappa_xy dir=y factor=0.1 mater=9
\$ n-layer mobility may be enhanced due to SL design
max_electron_mob value=1 mater=2
min_electron_mob value=1 mater=2
\$ Isothermal temperature at equilibrium
temperature temp=300
\$ Turn on self-heating model
heat_flow damping_step=1
\$ thermal_cond at contact here will determine self-heating
contact num=2 type=ohmic thermal_type=3 \&\&
thermal_cond=200. extern_temp=300
\$ ----- initialize optical constatns------
set_wavelength wavelength=0.40 backg_loss=2000
\$ Set LED model to "simple": we will calculate actual
\$ extraction efficiency with raytracing later
led_simple wavelength=0.40 spectrum_num=50
\$ Export raytracing data: convert 2D electrical simulation into
\$ 3D raytracing boxes
export_raytrace ray3d_convert=yes
\$
\$ start solving
\$
newton_par damping_step=5. max_iter=100 print_flag=3
equilibrium
newton_par damping_step=1. print_flag=3
scan var=voltage_1 value_to=-10 init_step=0.1 max_step=0.5 \&\&
auto_finish=current_1 auto_until=1.0 auto_condition=above
scan var=current_1 value_to=600. print_step=150 \&\&
init_step=1 min_step=1e-3 max_step=30

```
end

As mentioned earlier, the 2011 version of APSYS introduces a new model for the interface charges present in most wurtzite-based devices. This model is in two parts: updated material macros which define the polarization_charge formulas and the polarization_charge_model which activates it. When active, this model computes the fixed interface charge in a particular region by examining the polarization vector on each side of the interface. Graded regions (not used here) automatically produce a 3D distribution of fixed charges with this new model.
The first statement is included in the new material macros and defines the spontaneous and strain-induced polarization. By default, all our macros assume the existence of a GaN buffer which determines the strain in the device; the macro should be adjusted if another type of buffer layer (such as AlN) is used. A sample declaration can be seen below and uses a well-established formula from theory[117]:
```

polarization_charge variation=function
function(temper)
substrate_latt=3.189;
alattice_GaN=3.189;
P_sp= -0.034;
a_latt=alattice_GaN;
strain=(substrate_latt - a_latt)/a_latt;
P_pz2 = -0.918*strain +9.541*strain**2;
P_pz_all = P_pz2;
P_sp + P_pz_all
end_function

```

The second statement modifies this polarization vector and adds a screening coefficient to account for deviations from theory due to compensation by defects and other effects. It also defines the direction of the polarization vector: here (010) indicates that the c-plane growth axis is in the \(+y\) direction, like most conventional devices. This may be altered when studying non-polar or semi-polar devices.
To turn on the self-consistent QW calculations, we use the self_consistent. This model allows the local field generated by the interface charges to affect the QW states and gain/spontaneous emission calculations. When this model is turned on, .qws output files are created which contain details of the Schrödinger solver calculations. As we will see later, we can use this to plot the QW wave functions.

The gain calculation are also modified by the set__active__reg and modify__qw statements. The first is used to modify the broadening width and the second introduces a tail into the bandgap region to create inhomogeneous broadening.

In many MQW nitride devices, we have found that the standard drift-diffusion model greatly overestimates the turn-on voltage. It is also believed that carrier leakage is an important effect which contributes to efficiency droop \({ }^{2}\). Both of these effects may be explained by the fact that these devices have very deep and thin wells where the classical drift-diffusion model fails and non-local transport mechanisms play an important role. We have implemented this in the q_transport statement: please consult the reference section for details. This subject is highly experimental and careful calibration of parameters may be required.

As indicated above, we have a superlattice layers has different properties than the effective medium. We introduce anisotropic behavior with the mobility__xy and thermal_kappa_xy statements. These will scale the mobility and thermal conductivity of the effective medium in the direction of the superlattice periodicity.
Note that for electrical modeling of superlattices, there is also a miniband tunneling model available (see reference section for tunneling). This model is not used here for simplicity and because it does not include any of the thermal effects associated with a superlattice.
For thermal modeling, we activate self-heating with the heat_flow statement. The thermal boundary conditions are important here and determine how much the active region temperature increases. The contact statement must be re-issued in .sol to override a default thermal boundary setting. In truth, thermal modeling is not strictly required for LED devices such as this; the current density is not as high as in laser devices the thermal increase is not sufficient to strongly affect material parameters. We include this effect here purely for its tutorial value. For a more detailed discussion on thermal modeling, consult Sec. 20.3.

For all LED modeling, a key concern is how much light is actually output from the device (i.e. the extraction efficiency). This requires an optical model which means that the optical constants for the various materials must be initialized in the code. For historical reasons, this used to be done with the init__wave statement which is also used to define waveguides.
This is still the method which should be used when using the LED model of Sec. 14.2 and the led_control statement. However, we have decided to use the simpler model of led_simple in this simulation so the optical constants are initialized with set_wavelength instead.
In the led_simple model, the solver makes no attempt to calculate the extraction efficiency and a value must be provided. The LED optical output will be assumed to be the total spontaneous emission source power multiplied by this coefficient. However, we still want to calculate the extraction efficiency rather than rely on an estimated value.

\footnotetext{
\({ }^{2}\) This is still the subject of active research. Other explanations based on Auger recombination mechanisms have also been suggested
}

To do this, we will use the ray tracing approach of Sec. 14.5. This is a post-processing step but it requires that some necessary data be output during the main solution. This is done with the export_raytrace statement. There is a conversion to be done here since the electrical simulation is in 2D whereas the ray tracing model operates on 3D objects.

The rest of the .sol file should be simple to understand but we mention in passing the auto_finish parameter in the voltage scan. This ensures that we transition from voltage to current control once there is at least a little bit of current flowing. More details on the reasons why this is necessary can be found in Chapter 4.

\section*{Post-Processing}

In this simulation, there is a lot of post-processing to be done so we split things into separate, more manageable files. Note that we use the same root name for all the post-processing files: the extensions also all start with .plt as a matter of convention. The first file is ganled.plt and is used to plot the results from the electrical/thermal simulation as shown below:
```

\$file:ganled.plt
\$ **************
begin_pstprc
plot_data plot_device=postscript
get_data main_input=ganled.sol sol_inf=ganled.out \&\&
scan_data=(1 6)
plot_scan scan_var=voltage_1 variable=current_1 scale_horizontal=-1
plot_scan scan_var=current_1 variable=led_power
plot_scan scan_var=current_1 variable=led_effi
get_data main_input=ganled.sol sol_inf=ganled.out \&\&
xy_data=(4 6)
led_spectrum
gain_spectrum variable=gain
get_data main_input=ganled.sol sol_inf=ganled.out \&\&
xy_data=(6 6)
plot_1d variable=band from=(100. 100.0) to=(100. 104.)
plot_1d variable=band from=(100. 102.98) to=(100. 103.12)
plot_1d variable=band from=(100. 102.98) to=(100. 103.12) \&\&

```
```

 qw_wave=1 qw_wave_ht=0.3
 plot_1d variable=elec_conc from=(100. 102.98) to=(100. 103.12)
\$------------------------
plot_2d variable=lattice_temp grid_sizes=40 40
plot_2d variable=potential grid_sizes=40 40
plot_2d variable=total_curr grid_sizes=20 20 \&\&
point_ll=(0. 100.) point_ur=(300 103.296) \&\&
xrange=(0. 300) yrange=(100 103.296)
plot_2d variable=hole_curr grid_sizes=20 20 \&\&
point_ll=(0. 100.) point_ur=(300 103.296) \&\&
xrange=(0. 300) yrange=(100 103.296)
plot_2d variable=elec_curr grid_sizes=20 20 \&\&
point_ll=(0. 100.) point_ur=(300 103.296) \&\&
xrange=(0. 300) yrange=(100 103.296)
plot_2d variable=lattice_temp grid_sizes=20 20 \&\&
point_ll=(0. 100.) point_ur=(300 103.296) \&\&
xrange=(0. 300) yrange=(100 103.296)
plot_2d variable=potential grid_sizes=20 20 \&\&
point_ll=(0. 100.) point_ur=(300 103.296) \&\&
xrange=(0. 300) yrange=(100 103.296)
end_pstprc

```

The I-V and curve is shown in Fig. 19.7 while the light output is shown in Fig. 19.8. Note that this "broad-area power" is the output of the LED model chosen in .sol. In the simplified model we have chosen, the extraction efficiency is assumed to be \(10 \%\). We will see below that the ray tracing model predicts a very different value.

The internal quantum efficiency is also an important quantity in LED modeling and many efforts have been made to study the origin of the reduced efficiency at high current density (i.e. "IQE droop"). In Fig. 19.9, we see the calculated IQE curve which shows this effect.

As mentioned earlier, self-consistent simulations allow us to plot the wave functions of the quantum wells. This is shown in Fig. 19.10. In the original .plt file, we use the qw_wave_ht parameter to scale the wave functions vertically (for aesthetic reasons).

As of the 2011 version of APSYS, the ray tracing model has been moved to a separate program called Optowizard where we also split things into separate files. The raytrace.sol has statements that configure and launch the external ray tracing program. This can be a time-consuming step so we separate it from the raytrace.plt file which plots the results of the last ray tracing simulation:


Figure 19.7: I-V curve of InGaN LED


Figure 19.8: Broad-area power vs. current for InGaN LED


Figure 19.9: IQE curve of InGaN LED


Figure 19.10: Band diagram and wave functions of InGaN LED
```

begin_optowizard
setup_raytrace filebase=ganled
rt3d_contact_reflector transp_contact=yes \&\&
contact1_compindex=(2. 0.5) contact1_thick=0.05 \&\&
contact2_compindex=(2. 0.5) contact2_thick=0.05
\$ No dome
do_raytrace_3d precision=0.01 datafile_range=(2,6) initial_rays=8000
\$ With dome external package
\$do_raytrace_3d precision=0.01 datafile_range=(2,6) initial_rays=8000 \&\&
\$ external_package=dome working_direction=+y \&\&
\$ dome_cyl_height=110 dome_base_thickness=10 \&\&
\$ dome_cyl_radius=500 dome_sph_radius=500 \&\&
\$ package_refr_index=(1.7,1.0e-6)
end_optowizard
begin_optowizard
plot_data plot_device=postscript
get_raytrace_data filebase=ganled xy_data=(6 6) scan_data=(2 6)
\$ Plot previously generated RT results
3drayplot_bias variable = total_source
3drayplot_bias variable = transmitted
3drayplot_bias variable = transmitted relative=yes
3drayplot_phi theta=90.0 smooth=yes
end_optowizard

```

We note the use of the rt3d__contact__reflector statement in the setup of the ray tracing simulation: this sets up the optical properties of the contacts. In this case, we have semi-transparent ITO contacts with a thickness of \(0.05 \mu \mathrm{~m}\) and a complex refractive index of \(2+0.5 i\).

Users of previous versions of APSYS may remember that the contact optical properties were defined in the export_raytrace statement. Moving this to the postprocessing avoids having to re-run the electrical simulation to study how the optical properties of the contacts affect the light extraction.

We also note that there are two set of ray tracing commands; one of them is commented out so we do not do two ray tracing simulations in sequence. The first operates on the LED itself while the other encapsulate the LED in a hemispherical dome with a mirrored flat bottom. We see in Fig. 19.11 and Fig. 19.12 how the dome affects the extraction efficiency and emission pattern of the LED.

The ray tracing model shows in Fig. 19.11 that our earlier estimate of \(10 \%\) in led__simple was inaccurate: even without encapsulation, we expect extraction efficiency above \(25 \%\). With encapsulation, this can rise to above \(35 \%\).

The output log of the ray tracing program also provides clues to help in further optimization of the design. For example, the power loss due to various reasons is accounted for separately and printed. In this case, we see there is a lot of power loss in the contacts:
```

. .(ETC . .) . . .
Total source power (W/m)
472.380007985757
TRANSMITTED POWER in absolute and relative to emitted (%) units
126.663735282548 26.8139491810093
SEMICONDUCTOR ABSORBED POWER in absolute and relative to emitted (%) units
88.3668556033336 18.7067306214191
CONTACTS ABSORBED POWER in absolute and relative to emitted (%) units
257.349417099875 54.4793201975716

```


Figure 19.11: (a) Extraction efficiency of InGaN LED. (b) With dome encapsulation.


Figure 19.12: (a) Angular emission pattern of InGaN LED. (b) With dome encapsulation.


Figure 19.13: Solar cell structure as shown in LayerBuilder GUI

\section*{19.4 solar_cell \(\backslash\) Si_simple}

This example is a simple bulk crystalline silicon solar cell with contact lines on the top side. Since a practical device must consider the effects of shading by the contacts, we make this a 2D device (see Fig 19.13). Note that because of symmetry, we could conceivably cut this device in half to save on mesh.

\section*{Layer Structure}

The device is built p-side up with a \(100 \mu m\) lightly doped intrinsic region: this is where we want most of the absorption to take place so the drift current can dominate the transport. The width of the device is \(6 \mu m\) with a \(5 \mu m\) space between the contacts:
```

\$file:solar.layer
begin_layer
column column_num=1 w=0.5 mesh_num=4 r=1.
column column_num=2 w=5 mesh_num=12 r=-1.2
column column_num=3 w=0.5 mesh_num=4 r=1.
bottom_contact column_num=1 from=0 to=0.5 \&\&
contact_num=1 contact_type=ohmic
bottom_contact column_num=2 from=0 to=5 \&\&
contact_num=1 contact_type=ohmic
bottom_contact column_num=3 from=0 to=0.5 \&\&

```
```

 contact_num=1 contact_type=ohmic
 \$
layer_mater macro_name=si column_num=1
layer_mater macro_name=si column_num=2
layer_mater macro_name=si column_num=3
layer d= 0.5 n= 6 r= 0.8000E+00 n_doping1=0.2000E+26 \&\&
n_doping2= 0.2000E+26 n_doping3= 0.2000E+26
\$
layer_mater macro_name=si column_num=1
layer_mater macro_name=si column_num=2
layer_mater macro_name=si column_num=3
layer d=100. n= 100 r= 0.8000E+00 n_doping1= 0.2000E+22 \&\&
n_doping2= 0.2000E+22 n_doping3= 0.2000E+22
\$
layer_mater macro_name=si column_num=1
layer_mater macro_name=si column_num=2
layer_mater macro_name=si column_num=3
layer d=0.5 n= 6 r= 0.1200E+01 p_doping1= 0.5000E+26 \&\&
p_doping2= 0.5000E+26 p_doping3= 0.5000E+26
\$
top_contact column_num=1 from=0 to=0.5 \&\&
contact_num=2 contact_type=ohmic
top_contact column_num=3 from=0 to=0.5 \&\&
contact_num=2 contact_type=ohmic
end_layer

```

We note in the above layer file that most of the mesh points are allocated near the top of the device: this is necessary in a solar cell. Since the light decays exponentially, most of the recombinations occur near the surface so this region must be well-sampled. If it is not, then the linear interpolation can overestimate the optical generation rate and, in some cases, produce results with over \(100 \%\) efficiency.

\section*{Simulation Setup}

To run the simulation, we use the following .sol file:
\$file:solar.sol
\(\$ * * * * * * * * * * *\)
begin
load_mesh mesh_inf=solar.msh
include file=solar.mater
include file=solar.doping
```

output sol_outf=solar.out
more_output light_reflection=yes
\$ Attach a 50 ohm resistor on the top contact.
\$ Assume cell depth of 10 cm = 1e5 um
\$external_cir resistance=50 z_dim=1e5 contact=2
minispice circuit_file=res.cir z_dim=1e5 \&\&
contact2_to_spice_node=0 spice_node_scan=1
newton_par damping_step=5. var_tol=1.e-9 res_tol=1.e-9 \&\&
max_iter=100 opt_iter=15 stop_iter=50 print_flag=3
\$
\$ Solve for equilibrium condition.
\$
equilibrium
newton_par damping_step=1. var_tol=1.e-4 res_tol=1.e-5 \&\&
max_iter=30 opt_iter=15 stop_iter=15 print_flag=3 \&\&
change_variable=yes
\$
\$ Turn up the light
\$
scan var=light value_to=1. print_step=1. \&\&
init_step=0.01 min_step=1.e-5 max_step=0.1
\$
\$ Apply a forward bias to offset the photo current
\$
scan var=voltage_1 value_to=-0.7 \&\&
init_step=0.01 min_step=1.e-5 max_step=0.02
\$
\$ photo-sensitive device:
\$
light_power spectrum_file=solar.am15 light_dir=top profile=(0.5 5.5 0.1 0.1) \&\&
angle=0.0
optic_coating spectrum_file=solar.sio2 thickness=0.05
index_spectrum spectrum_file=solar.silicon mater=1
end

```

The most important feature of this .sol file is the way in which the incident light is
defined. This is done with the light__power statement as discussed in Section 12.7. Here, we choose to use the AM15 solar spectrum as the optical pumping source: it is provided in the solar.am15 file in the simulation directory.

The light input is confined to the center of the device to simulate the shadowing effect of the contacts. However, should the user actually want to model the optical decay in semi-transparent contacts, actual metal layers need to be used: contact regions in a layer file are merely equipotential boundary regions with no optical properties of their own.

In addition to the light input, the boundary conditions are important. In this example, we use a 50 nm layer of \(\mathrm{SiO}_{2}\) on the top surface as a simple antireflection layer. The bottom surface is left unspecified which means that it is assumed to be transparent: a boundary condition can be applied with the back_reflection statement.

Another point to consider in solar cell simulations is that we must deal with a very broad range of wavelengths. Therefore, a single value of the complex refractive index \((n, k)\) is inappropriate and we use the index_spectrum statement to provide experimental \(n, k\) values the software can use.
A common concern on solar cell performance is how the device will behave when external circuit elements are taken into account. We show on to model this by providing an external resistance with the external_cir statement.

Now that we have explained the basic setup of the simulation, let us move on to the actual simulation. As explained in Section 12.7, the initial equilibrium calculations describe a state of thermal equilibrium with no external bias. Since optical pumping is a form of bias, it needs be turned on via a scan statement: when the "light" variable reaches 1.0, then the full value of the light defined in light__power is applied to the device. Larger values can be used to model the effects of concentrators and multi-sun illumination.

After the first scan statement is over, the current has reached its maximum value. In order to get the open-circuit voltage \(\left(V_{o c}\right)\), we must apply a forward bias large enough to cancel the photocurrent.

\section*{Post-Processing}

After the simulation, we can plot the results with the following .plt file. Note that we use .plt here in order to use some post-processing parameter extraction commands that are not yet available in CrosslightView.
```

\$file:solar.plt

```
\(\$ * * * * * * * * * * * * * * *\)
begin_pstprc
```

plot_data plot_device=postscript
\$ before light is on
get_data main_input=solar.sol sol_inf=solar.out \&\&
xy_data=(1 1)
plot_multilayer_optics variable=absorption
plot_multilayer_optics variable=reflection
plot_1d variable=band from=(0.5 0.0) to=(0.5, 101.0)
plot_1d variable=incident_power from=(0.5 0.0) to=(0.5, 101.0)
plot_2d variable=incident_power
plot_3d variable=incident_power
\$ after light is on
get_data main_input=solar.sol sol_inf=solar.out \&\&
xy_data=(2 2)
plot_1d variable=band from=(0.5 0.0) to=(0.5, 101.0)
plot_2d variable=total_curr
plot_2d variable=incident_power
plot_3d variable=incident_power
\$ I-V curve
get_data main_input=solar.sol sol_inf=solar.out \&\&
scan_data=(2 3)
plot_scan scan_var=voltage_1 variable=current_2 \&\&
scale_vertical=1 scale_horizontal=-1
\$ Scale from A/m to A/m~2 = 1/5e-6 = 2e5
\$ Use parameter extraction on this curve to get Isc, Voc and max. power
para_extract file=Isc.txt fit_hori_from=0.02 \&\&
fit_hori_to=0.2 type=fit_line
plot_scan scan_var=voltage_1 variable=current_2 \&\&
scale_vertical=2e5 scale_horizontal=-1 \&\&
user_ylabel=A/m^2 yrange=[0 300]
para_extract file=Voc.txt hori_intercept=0
plot_scan scan_var=voltage_1 variable=current_2 \&\&
scale_vertical=2e5 scale_horizontal=-1 \&\&
user_ylabel=A/m^2 yrange=[0 300]
para_extract file=power.txt xy_hori_from=0 xy_vert_from=0 \&\&

```
```

 type=xy_product_search
 plot_scan scan_var=voltage_1 variable=current_2 \&\&
scale_vertical=2e5 scale_horizontal=-1 \&\&
user_ylabel=A/m^2 yrange=[0 300]
\$ Use parameter extraction to get max. effiency
\$ Power result above is in W/m^2 so this time, we normalize
\$ by the total power intensity of the AM15 solar spectrum: 963.56 W/m^2
para_extract file=eff.txt xy_hori_from=0 xy_vert_from=0 \&\&
xy_product_scale=1.037818e-3 type=xy_product_search
plot_scan scan_var=voltage_1 variable=current_2 \&\&
scale_vertical=2e5 scale_horizontal=-1 \&\&
user_ylabel=A/m^2 yrange=[0 300]
end_pstprc

```

It is also useful to use the .plt to scale the axes into more convenient plotting units. Recall that the current continuity equations are formulated in terms of the local current density \(\left(\mathrm{A} / \mathrm{m}^{2}\right)\). However, in a 2 D simulation, the solver reports the linear current density in \(\mathrm{A} / \mathrm{m}\). This is done by integrating the local current density at various mesh points over the width of the contact region. Similarly, dividing this value by the contact width defines an average current density.

However, current density is a spatially-dependent quantity so the average density varies depending on where it is measured in the device: for example, the value defined above would be the average density at that particular contact. In a laser or LED, the user might care about the density in the active region and would use a mesa width or ridge width.

For a solar cell, we choose to divide by the size of illuminated area ( \(5 \mu \mathrm{~m}\) ) in order to better compare with experiments. When running their own comparisons, users are strongly encouraged to verify how the current density value has been defined experimentally.

Using this scale factor allows us to plot the I-V curve of Fig. 19.14:
Note this figure appears several times in the output of the post-processing step: this is because the para_extract statement operates on the next plot in the .plt file. Since we wish to extract several different parameters, we need to plot the I-V curve several times.

From this extraction, we note that \(I_{s c}=260.68 \mathrm{~A} / \mathrm{m}^{2}\) and \(V_{o c}=0.68115 \mathrm{~V}\). The maximum power product of the I-V curve is \(P=142.69 \mathrm{~W} / \mathrm{m}^{2}\). The maximum efficiency ( \(14.81 \%\) ) can be computed from this value by dividing by the total power density of the input AM15 spectrum. The fill factor ( \(80.36 \%\) ) can also be computed by dividing the maximum power by the product of \(I_{s c}\) and \(V_{o c}\).


Figure 19.14: Solar cell I-V curve with current density units

\section*{Chapter 20}

\section*{D}

\section*{LASTIP EXAMPLES}

\subsection*{20.1 Introduction}

This chapter will describe a few selected examples of LASTIP simulations \({ }^{1}\). The relevant input files can be found in your local installation directory (default is c: \crosslig \lastip_examples): the section name corresponds to the examples's location on your hard drive. These examples have been selected to teach the basic operation of the software, explain key concepts essential to device simulation, showcase some popular applications/devices and preemptively answer common user questions.
Note that the examples from this chapter are only a small subset of the included tutorial files. There are a number of other examples that are supported through accompanying README files and comments in the simulation files. Crosslight support staff will also be happy to explain these examples in more detail if you need further assistance.

It is relevant to note that all examples are subject to change as the software is updated. Between each release, there are often bug fixes, material macro changes, new models and other improvements which can affect the results. In most cases, these should result in negligible changes in the results which do not alter the tutorial value of these examples. If any major inconsistencies are found, please report them to Crosslight support staff. Most examples listed here were last updated as part of the 2009 manual release. Whenever possible, we will note examples which have been updated since then.

Throughout this chapter, we will concentrate on the specific simulation statements and physical models that are needed for a particular device. Particular attention will also be given to model parameters that may affect the convergence or reliability of the simulation.

\footnotetext{
\({ }^{1}\) As of v.2016, the functionality of LASTIP has been merged with PICS3D. All files processed using LASTIP in this chapter should now use PICS3D instead.
}

It is also assumed that the reader is familiar with the basic structure of the input files so some of the basic setup steps for will be omitted for the sake of brevity. If you have not already done so, we strongly urge you to read through Chapter 3. Of particular interest will be the sections dealing with the use of the command-line setup tools as well as their integration into SimuCenter. If you are working using GUI tools such as LayerBuilder, additional online help is available through SimuCenter.

In some cases, the setup tools will only provide the basic framework of an input file and some direct editing may be required to complete the setup. If this is the case, new users are encouraged to use the built-in Wizard option in SimuLASTIP: this will present all the available statements and parameters. New statements may be created by right-clicking on an empty line and selecting the Wizard option: existing statements can be modified in the same way.

Note that users of other Crosslight tools besides LASTIP may also benefit from this chapter. In many cases, the physical models described here are relevant to other devices that are not within the scope this software. While the input files themselves cannot always be reused, most of the syntax will carry over to other Crosslight tools.

\subsection*{20.2 A_tutorial \(\backslash 1 \mathrm{D}\) _laser}

This example is a simple GaAs/AlGaAs laser with a single quantum well and a GRINSCH structure. It also shows how to define layers with composition gradings.

\section*{Layer Structure}

The layers are defined as follows:
\begin{tabular}{|c|c|c|c|}
\hline \(1.35 \mu m\) & \(\mathrm{Al}_{1-x} \mathrm{Ga}_{x} \mathrm{As}\) & \(\mathrm{x}=0.71\) & \(\mathrm{n}=1 \mathrm{e} 24\) \\
\hline \(0.1462 \mu \mathrm{~m}\) & \(\mathrm{Al}_{1-x} \mathrm{Ga}_{x} \mathrm{As}\) & \(\mathrm{x}=0.71 \rightarrow \mathrm{x}=0.33\) & \(\mathrm{n}=1 \mathrm{e} 23\) \\
\hline \(0.0076 \mu \mathrm{~m}\) & GaAs & & undoped \\
\hline \(0.1462 \mu \mathrm{~m}\) & \(\mathrm{Al}_{1-x} \mathrm{Ga}_{x} \mathrm{As}\) & \(\mathrm{x}=0.33 \rightarrow \mathrm{x}=0.71\) & \(\mathrm{p}=1 \mathrm{e} 23\) \\
\hline \(1.35 \mu \mathrm{~m}\) & \(\mathrm{Al}_{1-x} \mathrm{Ga}_{x} \mathrm{As}\) & \(\mathrm{x}=0.71\) & \(\mathrm{p}=1 \mathrm{e} 24\) \\
\hline
\end{tabular}

We use a 1D model for simplicity so the width of the device is not relevant. However, some value must be provided for program to function so we simply use \(1 \mu \mathrm{~m}\). Experienced users of the software may notice that earlier versions of this example did not have doping in the graded layers. However we have found that by adding this, it smooths out the carrier injection and eliminates a kink in the I-V curve. As a result, the threshold current is lowered and the resonance frequency is increased.
The actual layer file corresponding to this structure can be built using the LayerBuilder program or the command-line setuplayer program as discussed in Chapter 3. In LayerBuilder, the result looks like Fig. 20.1.

With some modifications, the final layer file is as follows:
```

\$file:gaas10.layer
begin_layer
column column_num=1 w=1. mesh_num=2 r=1.
bottom_contact column_num=1 from=0 to=1 contact_num=1 \&\&
contact_type=ohmic
\$
layer_mater column_num=1 macro_name=algaas \&\&
var_symbol1=x var1=0.71
layer d=1.35 n=20 r=0.9 n_doping1=1e24
\$
layer_mater column_num=1 macro_name=algaas \&\&
var_symbol1=x grade_var=1 \&\&
grade_from=0.71 grade_to=0.33
layer d=0.1462 n=10 r=0.9 n_doping1=1e23
\$

```


Figure 20.1: Device structure
```

layer_mater column_num=1 macro_name=gaas \&\&
active_macro=AlGaAs/AlGaAs \&\&
avar_symbol1=xw avar1=0.0 \&\&
avar_symbol2=xb avar2=0.33
layer d=0.0076 n=5 r=1
\$
layer_mater column_num=1 macro_name=algaas \&\&
var_symbol1=x grade_var=1 \&\&
grade_from=0.33 grade_to=0.71
layer d=0.1462 n=10 r=+1.1 p_doping1=1e23
\$
layer_mater column_num=1 macro_name=algaas \&\&
var_symbol1=x var1=0.71
layer d=1.35 n= 20 r=+1.1 p_doping1=1e24
\$
top_contact column_num=1 from=0 to=1 contact_num=2 \&\&
contact_type=ohmic
end_layer

```

For the mesh point allocation, we must correctly sample the optical mode shape and the barrier potentials in the device. By controlling the mesh point ratios with the \(\mathbf{r}\) parameter in layer, we can meet these two goals simultaneously. The layer statement also controls the linear grading of the doping that accompanies the composition grading in this example.

\section*{Simulation Setup}

A basic .sol file to run the simulation can be generated with the command-line setuplastip program as discussed in Chapter 3. With a few modifications, we get the following:
```

\$file:gaas10.sol
\$***********
begin
load_mesh mesh_inf=gaas10.msh
output sol_outf=gaas10.out
\$ ****************************
include file=gaas10.doping
include file=gaas10.mater
more_output ac_data=yes
direct_eigen
init_wave length=400 backg_loss=500. \&\&
boundary_type=((2 2 1 1) init_wavel=0.83 mirror_ref=0.32 \&\&
wavel_range=(0.80, 0.85)
newton_par damping_step=5. max_iter=100 print_flag=3
\$ scan_num=0
equilibrium
\$stop
newton_par damping_step=1. print_flag=3
\$ scan_num=1
scan var=voltage_1 value_to=-2 \&\&
init_step=1e-3 max_step=0.1 \&\&
auto_finish=current_1 auto_until=1e-3 auto_within=5e-4
\$ scan_num=2
scan var=current_1 value_to=20. print_step=2. \&\&
init_step=1.e-3 max_step=0.2
\$
end

```

For LASTIP simulations, one of the key statements in the .sol file is init__wave. This statement defines the length of the laser, mirror coefficients and background


Figure 20.2: Optical mode profile
scattering losses. It also initializes the mode solver by setting the boundary conditions as well the wavelength range for the mode search. The mode solver itself is invoked with direct_eigen. Since we will want to do AC analysis on this device, we also add the more_output statement so the necessary data is saved during the simulation.

Once these quantities have been defined, we can apply bias. As explained in Section 4.1, we cannot apply a current bias right away so after getting the equilibrium state, a small voltage bias is applied in order to get a small amount of current flowing. Here, we show how to use the auto_finish parameter of the scan statement to automate the procedure but it is not required. A value of \(80-90 \%\) of the built-in bias as the ending point of the voltage scan would do just as well:
\[
0.8 * \frac{1.24 \mathrm{eV}}{0.83 \mu m} \approx 1.2 \mathrm{~V}
\]

\section*{Post-Processing}

To plot the simulation results, several options are available. One of them is CrosslightView, which can be accessed from SimuLastip by right-clicking any .std output file. The results are shown in Fig 20.2.
Some post-processing steps such as AC analysis still require the older .plt system which produces plots in PostScript (.ps) format. We use the following .plt file in this example:
```

\$file:gaas10.plt
\$ **************
begin_pstprc
plot_data plot_device=postscript
\$ plot structure data at equilibrium
get_data main_input=gaas10.sol sol_inf=gaas10.out \&\&
xy_data=(1 1)
plot_1d variable=wave_intensity from=(0.5 0.0) to=(0.5, 3.0)
plot_1d variable=band from=(0.5 1.3) to=(0.5, 1.7)
\$ plot structure data at max. data set (max. current injection)
get_data main_input=gaas10.sol sol_inf=gaas10.out \&\&
xy_data=(12 12)
plot_1d variable=band from=(0.5 1.3) to=(0.5, 1.7)
\$ plot DC/CW bias dependent quantities.
get_data main_input=gaas10.sol sol_inf=gaas10.out \&\&
scan_data=(1 12)
plot_scan scan_var=voltage_1 variable=current_1 scan_num=2
\$ para_extract extracts data from the next plotting statetment
\$ (L-I curve in this case). We fit the data above 1 mW to
\$ a straight line in order to find the threshold current.
\$ We also find the drive current at 8 mW output.
para_extract type=fit_line fit_vert_from=1 \&\&
hori_intercept=8.
\$ laser_current is a special LASTIP variable where current density (A/m)
\$ is converted to current (mA) by multiplying by the device length
\$ and scaling for symmetry (factor of 2).
\$ laser_power is the total output power from both facets and is also
\$ scaled for symmetry.
plot_scan scan_var=laser_current_1 variable=laser_power scan_num=2
\$ Add marker to subsequent plots
modify_plot show_data_points=yes
\$ AC analysis (vs. freq.) at max. current
get_data main_input=gaas10.sol sol_inf=gaas10.out \&\&
xy_data=(12 12)

```
```

ac_voltage log_freq1=6. log_freq2=10.3 \&\&
contact_num=1 freq_point=40 log_scan=no modulate_gain=yes

```
\$ AM response
plot_ac_laser
plot_ac_modal_gain
\$ Capacitance derived from AC current on electrode \#1
plot_ac_curr variable=capacitance_1
\$ AC analysis vs. bias (must start above equilibrium) at 10 GHz
get_data main_input=gaas10.sol sol_inf=gaas10.out \&\&
    scan_data=(2 12)
ac_voltage log_freq1=10. log_freq2=10.3 \&\&
    contact_num=1 freq_point=2 versus_bias=yes scan_num=2
\$ AC data is regarded as xydata and this command would
\$ enable plotting AC data versus scan variable
set_xydata_for_scan scan_var=laser_current_1 scan_num=2
plot_ac_laser
plot_ac_curr variable=capacitance_1
end_pstprc

Structural data is plotted with plot_1d at equilibrium and at maximum bias. We note that when plotting the wave intensity in the .plt system, the confinement factor of the mode is printed in the title. This information can also be found by examining the .sol.msg file.
The I-V and L-I curves are obtained with the plot__scan statement. Note the use of scan line numbers which matches the comments of the .sol file: this is not required but it avoids the direct use of the scan_data numbers in get_data. The special variables laser_power and laser_current_i are unique to LASTIP and are used to convert the units of the 2D simulation to something more convenient to the user. However, we note that since this is a 1D simulation, the device has no real impact on the device simulation aside from scaling the current; instead, dividing the current_i value (in \(A / m\) ) by the device width to give a current density value in \(A / m^{2}\) may be a more useful representation of pumping in a broad-area device.
AC analysis is done by invoking the ac__voltage statement. This defines the contact number that is to be modulated as well as the frequency range of the analysis. AC analysis can be done either as a function of the modulation frequency or as a function


Figure 20.3: Band diagram at equilibrium


Figure 20.4: LI curve of laser


Figure 20.5: AM response of laser at maximum bias
of bias. The two are mutually exclusive so ac__voltage must be re-issued if both sets of data are of interest. For further examples of AC analysis, consult Sec. 19.2.

\subsection*{20.3 A_tutorial \(\backslash 1\) D_therm}

This example explains how to include self-heating and thermal effects in a simulation. Proper thermal boundary conditions and the behavior of the substrate are key points to consider.

To model the substrate, some users prefer to abstract it as a fixed thermal resistance boundary condition (see Chapter 11). Although this approach is certainly viable in this simplified example, it could neglect important physical effects in other cases. Therefore, we will also use this example to show how to explicitly include substrate layers.

\section*{Layer Structure}

We base this example on Sec. 20.2 so the substrate layer will be GaAs; it will be highly n-doped in order to form an ohmic contact. Adding this layer can be done easily in the LayerBuilder GUI or by editing the layer file and adding the appropriate layer and layer__mater statements. The resulting file is shown below:
```

\$file:gaas10.layer
begin_layer
column column_num=1 w=1. mesh_num=2 r=1.
bottom_contact column_num=1 from=0 to=1 contact_num=1 \&\&
contact_type=ohmic
layer_mater column_num=1 macro_name=gaas solve_wave=no
layer d=100 n=30 r=0.9 n_doping1=1e24
layer_mater column_num=1 macro_name=algaas \&\&
var_symbol1=x grade_var=1 \&\&
grade_from=0.0 grade_to=0.71 solve_wave=no
layer d=1.0 n=20 r=0.9 n_doping1=1e24
\$
layer_mater column_num=1 macro_name=algaas \&\&
var_symbol1=x var1=0.71
layer d=1.35 n=20 r=0.9 n_doping1=1e24
\$
layer_mater column_num=1 macro_name=algaas \&\&
var_symbol1=x grade_var=1 \&\&
grade_from=0.71 grade_to=0.33
layer d=0.1462 n=10 r=0.9 n_doping1=1e23
\$

```
```

layer_mater column_num=1 macro_name=gaas \&\&
active_macro=AlGaAs/AlGaAs \&\&
avar_symbol1=xw avar1=0.0 \&\&
avar_symbol2=xb avar2=0.33
layer d=0.0076 n=5 r=1
\$
layer_mater column_num=1 macro_name=algaas \&\&
var_symbol1=x grade_var=1 \&\&
grade_from=0.33 grade_to=0.71
layer d=0.1462 n=10 r=+1.1 p_doping1=1e23
\$
layer_mater column_num=1 macro_name=algaas \&\&
var_symbol1=x var1=0.71
layer d=1.35 n= 20 r=+1.1 p_doping1=1e24
\$
top_contact column_num=1 from=0 to=1 contact_num=2 \&\&
contact_type=ohmic
end_layer

```

However, because the substrate layer is GaAs, it creates a few additional problems that might not occur in other material systems (such as devices grown on InP). The first issue we have to deal with is that in this structure, the layer interfacing with the substrate is also heavily doped and has a very different composition than GaAs. This forms an abrupt heterojunction (c.f. Sec. 5.2.3) which will block current and cause convergence problems. There are a few ways of resolving this issue:
- Alter the doping profile of the original device and user a lighter doping in the bottom \(\mathrm{Al}_{0.71} \mathrm{Ga}_{0.29}\) As layer. Since the Fermi level is not pinned on both sides, it avoids forming a barrier.
- Add a thin layer with graded composition: the pinned Fermi level can safely follow the composition grading and a thin layer should not disrupt the simulation too much.
- Introduce quantum tunneling to the simulation so the current can flow past this abrupt junction.

For tutorial purposes, we have chosen the second approach.
The second problem is the behavior of the mode solver in this new device. Since the refractive index of AlGaAs is lower than that of GaAs, adding the substrate means the structure now supports additional modes that peak in this region. These modes have very poor confinement in the active region and do not compete with the lasing mode but they have a higher effective index. Since the mode solver sorts modes
in order of decreasing index, we would have to use an extremely high number of optical modes to ensure that the lasing mode is included in the calculations. This is impractical so we use another approach.
Since we know from Sec. 20.2 that the desired mode is well-confined in the active region and does not leak, we exclude the high-index substrate layers from the mode solver altogether. This is done by using the parameter solve_wave=no in the relevant layer__mater statement. When the .layer file is processed, this will modify the wave__boundary statement in the .mater file and restrict the mode calculations to a range that does not include the offending layers.

\section*{Simulation Setup}

The .sol file is virtually unchanged from Sec. 20.2. We will concentrate here only on the statements relevant for a thermal simulation:
```

\$file:gaas10.sol
\$***********
begin
load_mesh mesh_inf=gaas10.msh
output sol_outf=gaas10.out
\$ ***************************
include file=gaas10.doping
include file=gaas10.mater
more_output ac_data=yes
direct_eigen
init_wave length=400 backg_loss=500. \&\&
boundary_type=(2 2 1 1 l) init_wavel=0.83 mirror_ref=0.32 \&\&
wavel_range=(0.80, 0.85)
\$ Heat flow modeling
temperature temp=300
heat_flow fit_range=500
contact num=1 thermal_type=3 thermal_cond=10
contact num=2 thermal_type=2 heat_flow=0
\$ Free carrier losses
passive_carr_loss ncarr_loss=5e-22 pcarr_loss=5e-22 mater=1
passive_carr_loss ncarr_loss=5e-22 pcarr_loss=5e-22 mater=2
passive_carr_loss ncarr_loss=5e-22 pcarr_loss=5e-22 mater=3
passive_carr_loss ncarr_loss=5e-22 pcarr_loss=5e-22 mater=5
set_active_reg ncarr_loss=5e-22 pcarr_loss=5e-22

```
```

newton_par damping_step=5. max_iter=100 print_flag=3
\$ scan_num=0
equilibrium
\$stop
\$ scan_num=1
scan var=voltage_1 value_to=-2 init_step=1e-3 max_step=0.1 \&\&
auto_finish=current_1 auto_until=0.1 auto_condition=above
newton_par damping_step=1.0 max_iter=100 opt_iter=50 stop_iter=10
\$ print_step can sometimes fail during thermal simulations
\$ so use multiple scan statements to print intermediate data
\$ scan_num=2
scan var=current_1 value_to=10. \&\&
init_step=1.e-2 min_step=1e-8 max_step=0.1
\$ scan_num=3
scan var=current_1 value_to=20. \&\&
init_step=1.e-2 min_step=1e-8 max_step=0.1
\$ scan_num=4
scan var=current_1 value_to=30. \&\&
init_step=1.e-2 min_step=1e-8 max_step=0.1
\$ scan_num=5
scan var=current_1 value_to=40. \&\&
init_step $=1 . e^{-2}$ min_step $=1 e-8$ max_step $=0.1$
\$ scan_num=6
scan var=current_1 value_to=50. \&\&
init_step $=1 . e-2$ min_step $=1 e-8$ max_step $=0.1$

```
end

The first relevant item is the temperature statement: this is used to define the temperature at which the equilibrium calculations are done. In an isothermal simulation, this is also the temperature for the rest of the simulation. This statement can safely be omitted in many cases: a value of 300 K will be assumed. However, certain
designs call for active cooling which means that before the device is turned on, it will have reached a different thermal equilibrium. If that is the case, this statement must be used to define the new equilibrium point correctly.
The heat__flow statement activates the self-heating model from Chapter 11. This model is decoupled from the main electrical solver so after each electrical step, the temperature distribution and material parameters are updated. As a result, the user must ensure the electrical step is always sufficiently small. Not only will this increase the self-consistency of the simulation but it helps with convergence: a sudden temperature change can invalidate the initial guess used for the next electrical step.
Thermal boundaries are set by two different methods. For contact regions, it is part of the contact statement. Usually, this statement is generated automatically when processing the .layer file but this sets the thermal boundaries to a default setting: a fixed temperature of 300 K . In all thermal simulations, the user is advised to re-issue the contact statements in order to provide the desired thermal boundary. For non-contact regions, the thermal boundary conditions may be defined with the thermal_inter statement.
For both these situations, there are several types of boundary conditions available (see Chapter 11). For the bottom contact, we use the more realistic model (type 3) with a fixed thermal conductivity. For the top contact, we wish to present a "worst-case" scenario in which no heat can escape through the top layer: this is done by using an interface of type 2 and explicitly setting the heat flow to zero. We can expect significant heat build-up in the active region as a result of this choice.
If a particular design has different thermal boundaries (e.g. substrate is cooled at 77 K but top layers are exposed to air at 300 K ), then there is an inconsistency in the equilibrium calculations. By definition, this calculation assumes the absence of either current or heat flow so if there is an externally applied thermal gradient, the the equilibrium state will need to be revised. The nstep parameter can be used to re-run the equilibrium state multiple times so that it stabilizes to take this gradient into account. Note that doing this abuses the concept of equilibrium but we only need require an functioning initial guess to the scan statements.
The next element of thermal laser modeling to discuss is not strictly a thermal term but we have found that it is important in modeling the expected power rolloff in lasers at high temperature. This effect is an optical loss term commonly referred to as "free carrier losses": these are carrier-dependent and material-specific loss coefficients that are added to the background loss coefficient defined in the init_wave statement.
For passive regions, the free carrier losses may be defined through the passive__carr_loss statement in the .sol file. It is also possible to use elec_ccarr__loss and hole_ccarr__loss in the macro file. For active regions, these losses are defined in the .sol file with set__active_reg.

The user may also note that multiple scan statements are used in the bias current scan: this is used to generate intermediate data sets for post-processing and plotting purposes. Normally, we could use the print_step parameter in the scan statement to accomplish this. However, since the thermal and electrical problems are not full coupled in the Newton solver, it is not always possible to exactly match a requested current value. Since print__step is designed to always print at specific values, the conflict between the two can sometimes cause problems. By using multiple scan statements, we can generate intermediate data and although the solver may complain that the requested current value at the end of each scan cannot be matched exactly, it will be close enough for most purposes.

\section*{Post-Processing}

The post-processing is done with the following .plt file:
```

\$file:gaas10.plt
\$**************
begin_pstprc
plot_data plot_device=postscript
\$ plot structure data at equilibrium
modify_plot show_data_points=no
get_data main_input=gaas10.sol sol_inf=gaas10.out \&\&
xy_data=(1 1)
plot_1d variable=real_index from=(0.5 99.0) to=(0.5, 104.0)
plot_1d variable=wave_intensity from=(0.5 99.0) to=(0.5, 104.0)
plot_1d variable=band from=(0.5 99.0) to=(0.5, 104.0)
\$ plot structure data at max. data set (max. current injection)
get_data main_input=gaas10.sol sol_inf=gaas10.out \&\&
xy_data=(7 7)
plot_1d variable=band from=(0.5 99.0) to=(0.5, 104.0)
plot_1d variable=lattice_temp from=(0.5 0.0) to=(0.5, 104.0)

```
\$ plot DC/CW bias dependent quantities.
get_data main_input=gaas10.sol sol_inf=gaas10.out \&\&


Figure 20.6: L-I curve of laser with thermal effects included
```

 scan_data=(1 7)
 plot_scan scan_var=voltage_1 variable=current_1
plot_scan scan_var=laser_current_1 variable=laser_power
plot_scan scan_var=laser_current_1 variable=temp_max
end_pstprc

```

The key points to observe are the roll-over in the L-I curve in Fig. 20.6 and the accompanying increase in maximum temperature in Fig. 20.7.

\section*{Application notes for thermal laser simulations}

It may be helpful to note that many of the default Crosslight macros do not include the full temperature dependence of the refractive index. While the index change calculations (see. Sec. 8.4) are affected by the temperature, the equilibrium contribution to the refractive index is controlled solely by the real_index statement in the macro file.

If this effect is deemed important in a particular design, the user is advised to check the various macros used in the simulation. To include temperature dependence, the real__index statement in the macro must be a function of the reserved keyword "temper". If not, the user may override the macro in the .sol file or use a custom macro file.


Figure 20.7: Maximum temperature increase vs. bias

Since high-power/thermal laser applications cover a wide variety of wavelength ranges, it is also recommended to check if the macro index values are consistent with the lasing wavelength. In particular, the default Crosslight macros for GaAs-based compounds are set up for the 830 nm range. However, this material is also used in 980 nm applications so the index may have to de redefined to cover a different wavelength range.

For transient analysis in a thermal simulation, the user must be sure to turn on thm_transient in the heat_flow statement. The user must also specify values for the specific heat (spec__heat) and density (mass__density of the materials since most of the default macros omit these values.

\subsection*{20.4 A_tutorial \(\backslash\) basic_ridge}

This example is a basic ridge waveguide laser. It introduces how to work with the mode solver and deal with multiple lateral modes.

\section*{Layer Structure}

This example is a simple modification of the 1D laser from Sec. 20.2. This time, we want to model a ridge waveguide laser so we will need a second column. Note that by doing this, we are using the symmetry of the device to our advantage in order to save on mesh points and speed up the simulation. However, this means that the user should scale the current and power output during the post-processing stage: unlike older versions of the software LASTIP no longer automatically scales its output by assuming symmetry exists. In current versions of the software, "what you see is what you get" as far as symmetry is concerned.
The simplest way to get our second column is to take the layer file from the 1D laser case and open it in LayerBuilder; it is then possible to copy/paste the column. Some modifications must then be made, either by using LayerBuilder or editing the layer file:
- Define the width of the columns; unlike the 1 D case, this is important
- Assign mesh points to the column statements in order to sample the lateral variation of the device
- Split the top layer into two and replace the material in the second column in order to represent the etch depth for the ridge
- Remove the top contact from the second column

In this example, we are using an etch depth of \(1 \mu \mathrm{~m}\). We also decide to use an arbitrary ridge width of \(1 \mu \mathrm{~m}\) : since we are using symmetry, this means the first column will be \(0.5 \mu \mathrm{~m}\). The second column needs to be wide enough to not artificially confine the optical mode (because of boundary conditions) without wasting too many mesh points: again, we use a value of \(1 \mu \mathrm{~m}\).
The appearance of the final design in LayerBuilder is shown in Fig. 20.8. The corresponding layer file is shown below:
```

\$file:gaas20.layer
begin_layer
column column_num=1 w=0.5 mesh_num=5 r=-1.1

```


Figure 20.8: Device structure
column column_num=2 \(\mathrm{w}=1\). mesh_num=5 \(\mathrm{r}=1.1\)
bottom_contact column_num=1 from=0 to=1 contact_num=1 contact_type=ohmic
bottom_contact column_num=2 from=0 to=1 contact_num=1 contact_type=ohmic \$
layer_mater column_num=1 macro_name=algaas var_symbol1=x var1=0.71 \&\&
n_doping=1e24
layer_mater macro_name=algaas column_num=2 var_symbol1=x var1=0.71 \&\&
n_doping=1e24
layer \(d=1.35 \quad n=20 \quad r=-1.1\)
\$
layer_mater column_num=1 macro_name=algaas var_symbol1=x grade_var=1 \&\& grade_from=0.71 grade_to=0.33 n_doping=1e23
layer_mater macro_name=algaas column_num=2 var_symbol1=x grade_var=1 \&\&
grade_from=0.71 grade_to=0.33 n_doping=1e23
layer \(\mathrm{d}=0.1462 \mathrm{n}=10 \quad \mathrm{r}=-1.1\)
\$
layer_mater column_num=1 macro_name=gaas active_macro=AlGaAs/AlGaAs \&\&
avar_symbol1=xw avar1=0.0 avar_symbol2=xb avar2=0.33
layer_mater macro_name=gaas column_num=2 active_macro=AlGaAs/AlGaAs \&\&
avar_symbol1=xw avar1=0 avar_symbol2=xb avar2=0.33
layer \(\mathrm{d}=0.0076 \mathrm{n}=5 \mathrm{r}=1\)
\$
layer_mater column_num=1 macro_name=algaas var_symbol1=x grade_var=1 \&\&
grade_from=0.33 grade_to=0.71 p_doping=1e23
layer_mater macro_name=algaas column_num=2 var_symbol1=x grade_var=1 \&\&
```

 grade_from=0.33 grade_to=0.71 p_doping=1e23
 layer d=0.1462 n=10 r=-1.1
\$
layer_mater column_num=1 macro_name=algaas var_symbol1=x var1=0.71 \&\&
p_doping=1e24
layer_mater macro_name=algaas column_num=2 var_symbol1=x var1=0.71 \&\&
p_doping=1e24
layer d=0.35 n=5 r=-1.1
\$
layer_mater column_num=1 macro_name=algaas var_symbol1=x var1=0.71 \&\&
p_doping=1e24
layer_mater macro_name=air column_num=2
layer d=1.0 n=15 r=-1.1
\$
top_contact column_num=1 from=0 to=1 contact_num=2 contact_type=ohmic
end_layer

```

Note that we use the "air" macro in the etched-away region instead of "void". The difference is that "void" will define a region without mesh points: this means it will not be used in the mode solver and the boundary conditions will be applied at the ridge wall. On the other hand, "air" and "vacuum" macros will define an isolating region with the proper refractive index: this prevents the mode solver from artificially confining the optical mode under the ridge.

\section*{Simulation Setup}

The .sol file needed to run this simulation is fairly similar to the one from from Section 20.2. However, please note the difference in boundary conditions and the use of the multimode statement:
```

\$file:gaas20.sol
\$************
begin
load_mesh mesh_inf=gaas20.msh
output sol_outf=gaas20.out
\$ ***************************
include file=gaas20.doping
include file=gaas20.mater
more_output ac_data=yes
direct_eigen
init_wave length=400 backg_loss=500. \&\&

```
```

 boundary_type=(\begin{array}{llll}{2}&{1}&{1}&{1}\end{array}) init_wavel=0.83 mirror_ref=0.32 &&
 wavel_range=(0.80, 0.85)
multimode mode_num=6 boundary_type1=($$
\begin{array}{llll}{2}&{1}&{1}&{1}\end{array}
$$) boundary_type2=($$
\begin{array}{llll}{1}&{1}&{1}&{1}\end{array}
$$)
newton_par damping_step=5. max_iter=100 print_flag=3
\$ scan_num=0
equilibrium
\$stop
newton_par damping_step=1. print_flag=3
\$ scan_num=1
scan var=voltage_1 value_to=-2 \&\&
init_step=1e-3 max_step=0.1 \&\&
auto_finish=current_1 auto_until=1e-3 auto_within=5e-4
\$ scan_num=2
scan var=current_1 value_to=20. print_step=2. \&\&
init_step=1.e-3 max_step=0.2
\$
end

```

The two types of boundary conditions are needed to obtain both odd and even modes in this symmetric structure. Since we use two boundary conditions, half of the modes will have the symmetry of boundary_type1 and the other half will have that of boundary_type2. Within each set, modes are sorted in order of decreasing modal index. In this example, the highest order even mode is number \#1 and the highest order odd mode is \(\# 4\); they are respectively shown in Fig. 20.9 and Fig. 20.10.

Please keep in mind that depending on the structure, it is not necessarily the fundamental mode or the mode with the largest confinement factor that lases: the only thing that matters is the modal gain. For example, the .sol.msg output file for this structure reports the following information at maximum bias:
\begin{tabular}{cccc}
----Optical data & (in \(1 / \mathrm{m}\) ) for segment\# \\
Mode & Modal_gain & Conf._factor Int._loss \\
1 & \(0.2848 \mathrm{E}+04\) & \(0.2953 \mathrm{E}-01\) & \(0.4852 \mathrm{E}+03\) \\
2 & \(0.2843 \mathrm{E}+04\) & \(0.2959 \mathrm{E}-01\) & \(0.4852 \mathrm{E}+03\) \\
3 & \(0.2843 \mathrm{E}+04\) & \(0.2961 \mathrm{E}-01\) & \(0.4852 \mathrm{E}+03\) \\
4 & \(0.2840 \mathrm{E}+04\) & \(0.2965 \mathrm{E}-01\) & \(0.4852 \mathrm{E}+03\) \\
5 & \(0.2845 \mathrm{E}+04\) & \(0.2961 \mathrm{E}-01\) & \(0.4852 \mathrm{E}+03\) \\
6 & \(0.2840 \mathrm{E}+04\) & \(0.2961 \mathrm{E}-01\) & \(0.4852 \mathrm{E}+03\)
\end{tabular}
Mode Modal_gain Conf._factor Int._loss
\(2 \quad 0.2843 \mathrm{E}+04 \quad 0.2959 \mathrm{E}-01 \quad 0.4852 \mathrm{E}+03\)
\(3 \quad 0.2843 \mathrm{E}+04 \quad 0.2961 \mathrm{E}-01 \quad 0.4852 \mathrm{E}+03\)
\(4 \quad 0.2840 \mathrm{E}+04 \quad 0.2965 \mathrm{E}-01 \quad 0.4852 \mathrm{E}+03\)
6 \(0.2840 \mathrm{E}+04\)


Figure 20.9: Mode \# 1


Figure 20.10: Mode \# 4

Even though mode \#1 has the lowest confinement factor, it has the highest modal gain since it does not peak in the un-pumped region that extends beyond the ridge. In other structures, the opposite can happen and a higher-order mode may lase instead of the fundamental mode.

\section*{Post-Processing}

The output file above shows that the modal gain values are quite close, which would indicate significant mode competition. This is shown by plotting the total laser power from all modes as well as that of the individual lateral modes in the following .plt file:
```

\$file:gaas20.plt
\$ ***************
begin_pstprc
plot_data plot_device=postscript
\$ plot structure data at equilibrium
modify_plot show_data_points=no
get_data main_input=gaas20.sol sol_inf=gaas20.out \&\&
xy_data=(1 1)
plot_2d variable=wave_intensity mode_index=1
plot_2d variable=wave_intensity mode_index=2
plot_2d variable=wave_intensity mode_index=3
plot_2d variable=wave_intensity mode_index=4
plot_2d variable=wave_intensity mode_index=5
plot_2d variable=wave_intensity mode_index=6
plot_1d variable=band from=(0.5 1.3) to=(0.5, 1.7)
\$ plot structure data at max. data set (max. current injection)
get_data main_input=gaas20.sol sol_inf=gaas20.out \&\&
xy_data=(12 12)
plot_1d variable=band from=(0.5 1.3) to=(0.5, 1.7)
plot_2d variable = total_curr
\$ plot scan results

```


Figure 20.11: Total power from all modes
```

get_data main_input=gaas20.sol sol_inf=gaas20.out \&\&
scan_data=(1 12)
plot_scan scan_var=voltage_1 variable=current_1 scan_num=2
\$ Compare the total power vs. power in individual modes
plot_scan scan_var=laser_current_1 variable=all_mode_power scan_num=2
plot_scan scan_var=laser_current_1 variable=laser_power scan_num=2 mode_index=1
plot_scan scan_var=laser_current_1 variable=laser_power scan_num=2 mode_index=2
plot_scan scan_var=laser_current_1 variable=laser_power scan_num=2 mode_index=3
plot_scan scan_var=laser_current_1 variable=laser_power scan_num=2 mode_index=4
plot_scan scan_var=laser_current_1 variable=laser_power scan_num=2 mode_index=5
plot_scan scan_var=laser_current_1 variable=laser_power scan_num=2 mode_index=6
end_pstprc

```

As shown in Figures 20.11 and 20.12, most of the power is carried in mode \(\# 1\) so it is indeed the main lasing mode. However, it only accounts for about half of the output power which confirms that higher-order modes are significant in this structure.

We also note that the higher-order modes have significant intensity near the right side of the device: this may indicate that these modes are artificially confined by the boundary and are actually leaky/radiative modes. To account for this, the user may need to introduce PML boundary conditions as described in Sec. 12.6. However, this is beyond the scope of this example: users who wish to know more are encouraged to consult some of the other examples included in LASTIP.


Figure 20.12: Power output from mode \#1

\section*{Chapter 21}

\section*{PICS3D EXAMPLES}

\subsection*{21.1 Introduction}

This chapter will describe a few selected examples of PICS3D simulations. The relevant input files can be found in your local installation directory (default is c: \crosslig \(\backslash\) pics3d_examples): the section name corresponds to the examples's location on your hard drive. These examples have been selected to teach the basic operation of the software, explain key concepts essential to device simulation, showcase some popular applications/devices and preemptively answer common user questions.

Note that the examples from this chapter are only a small subset of the included tutorial files. There are a number of other examples that are supported through accompanying README files and comments in the simulation files. Crosslight support staff will also be happy to explain these examples in more detail if you need further assistance.

It is relevant to note that all examples are subject to change as the software is updated. Between each release, there are often bug fixes, material macro changes, new models and other improvements which can affect the results. In most cases, these should result in negligible changes in the results which do not alter the tutorial value of these examples. If any major inconsistencies are found, please report them to Crosslight support staff. Most examples listed here were last updated as part of the 2009 manual release. Whenever possible, we will note examples which have been updated since then.

Throughout this chapter, we will concentrate on the specific simulation statements and physical models that are needed for a particular device. Particular attention will also be given to model parameters that may affect the convergence or reliability of the simulation.
It is also assumed that the reader is familiar with the basic structure of the input files so some of the basic setup steps for will be omitted for the sake of brevity. If you have
not already done so, we strongly urge you to read through Chapter 3. Of particular interest will be the sections dealing with the use of the command-line setup tools as well as their integration into SimuCenter. If you are working using GUI tools such as LayerBuilder, additional online help is available through SimuCenter.

In some cases, the setup tools will only provide the basic framework of an input file and some direct editing may be required to complete the setup. If this is the case, new users are encouraged to use the built-in Wizard option in SimuPICS3D: this will present all the available statements and parameters. New statements may be created by right-clicking on an empty line and selecting the Wizard option: existing statements can be modified in the same way.

Note that users of other Crosslight tools besides PICS3D may also benefit from this chapter. In many cases, the physical models described here are relevant to other devices that are not within the scope this software. While the input files themselves cannot always be reused, most of the syntax will carry over to other Crosslight tools.


Figure 21.1: 2D cut of quarter-wave-shifted DFB laser

\subsection*{21.2 A_tutorial}

This example is an index-coupled distributed feedback (DFB) laser with a quarterwave phase shift in the middle. This kind of structure is often used to guarantee the device lases on a single longitudinal mode and provides some immunity against external cavity feedback. Users of previous versions of the software will note this example has been altered significantly.

\section*{Layer Structure}

We start by defining a 2D cut of the device as shown in Fig. 21.1. The device is grown on an InP substrate and a bulk active region tuned to \(1.3 \mu \mathrm{~m}\) is used for simplicity:
\begin{tabular}{|c|c|c|c|}
\hline \(1.0 \mu m\) & \(\operatorname{InP}\) & & \(\mathrm{n}=2 \mathrm{e} 24\) \\
\hline \(0.3 \mu m\) & \(\mathrm{In}_{1-x} \mathrm{Ga}_{x} \mathrm{As}_{y} \mathrm{P}_{1-y}\) & \(\mathrm{x}=\) lattice-matched, \(\mathrm{y}=0.26\) & \(\mathrm{n}=5 \mathrm{e} 23\) \\
\hline \(0.2 \mu \mathrm{~m}\) & \(\mathrm{In}_{1-x} \mathrm{Ga}_{x} \mathrm{As}_{y} \mathrm{P}_{1-y}\) & \(\mathrm{x}=\) lattice-matched, \(\mathrm{y}=0.64\) & undoped \\
\hline \(0.3 \mu \mathrm{~m}\) & \(\mathrm{In}_{1-x} \mathrm{Ga}_{x} \mathrm{As}_{y} \mathrm{P}_{1-y}\) & \(\mathrm{x}=\) lattice-matched, \(\mathrm{y}=0.26\) & \(\mathrm{p}=5 \mathrm{e} 23\) \\
\hline \(1.0 \mu m\) & InP & & \(\mathrm{p}=2 \mathrm{e} 24\) \\
\hline
\end{tabular}

When defining this structure, care must be taken when selecting the macros: the material properties will be very different if the selected macro is lattice-matched to GaAs or InP. Some macros also allow for strain in which case the exact composition must be provided. The user is advised to consult the comments accompanying
each macro to select the right one: improper macro selection is a common cause of problems with simulations using the InGaAsP system.
An easy way to do this is to use the LayerBuilder GUI: it not only shows a full alphabetized list of available macros but also the comments in the macro header. It is also possible to consult the macros directly by opening the crosslig.mac and more.mac files in your installation directory with a text editor. However, we do not recommend making any changes to the default macro files: it is better to use a custom macro file if you wish to make changes to the material parameters.

For the sake of simplicity, the grating layer has been abstracted away in the above structure. Conceptually, we may assume that part of the top cladding layer is in fact an average material for the grating. We will define an effective grating as part of the longitudinal setup in the .sol file below. More accurate models to define grating layers are available, as will be shown in Sec. 21.4.

For an additional simplification, we neglect any changes in the lateral direction so the 2D cut is actually a 1D device. We have touched on this subject in a previous LASTIP example (Sec. 20.2) so we will omit the rest of the setup steps for the layer file. As can be seen below, it is quite simple:
```

\$file:inp13.layer
begin_layer
column column_num=1 W= 0.100000E+01 mesh_num=2 r=1.
bottom_contact column_num=1 from=0 to= 0.100000E+01 \&\&
contact_num=1 contact_type=ohmic
\$
layer_mater macro_name=inp column_num=1
layer d=1.0 n= 10 n_doping1=2e24 r=0.9
\$
layer_mater macro_name=ingaasp column_num=1 \&\&
var_symbol1=y var1=0.26
layer d=0.3 n=9 n_doping1=5e23 r=0.9
\$
layer_mater macro_name=ingaasp column_num=1 \&\&
var_symbol1=y var1= 0.64 \&\&
active_macro=InGaAsP \&\&
avar_symbol1=yw avar1=0.64
layer d=0.2 n= 12 r=-1.1
\$
layer_mater macro_name=ingaasp column_num=1 \&\&
var_symbol1=y var1=0.26
layer d=0.3 n=9 p_doping1=5e23 r=1.1
\$
layer_mater macro_name=inp column_num=1

```
```

layer d=1.0 n= 10 p_doping1=2e24 r=0.9
\$
top_contact column_num=1 from=0 to= 0.100000E+01 \&\&
contact_num=2 contact_type=ohmic
end_layer

```

\section*{Simulation Setup}

The following .sol file is used to run this example:
```

\$file:inp13.sol
begin
3d_solution_method 3d_flow=yes z_connect=no
z_structure uniform_length=500.0 zplanes=7 zseg_num=1
load_mesh mesh_inf=inp13.msh
\$
\$ Include the gain file which contains material info.
include file=inp13.gain
include file=inp13.doping
\$
output sol_outf=inp13.out
\$
\$ Set parameters for wave equation
init_wave backg_loss= 0.5000E+03 init_wavel=1.3 \&\&
boundary_type=[ll 2 2 1 1
direct_eigen
\$ Set Newton parameters for equilibrium solution
newton_par damping_step=3. var_tol=1.e-8 res_tol=1.e-8 \&\&
max_iter=100 opt_iter=15 stop_iter=50 print_flag=3
\$
\$ Solve equations at equilibrium
equilibrium
\$
rtgain_phase density=1.25e24
\$
\$ You may stop here to examine the round trip gain
\$
\$stop
\$

```
```

\$ Set Newton parameters for solution with bias
newton_par damping_step=1. var_tol=1.e-4 res_tol=1.e-4 \&\&
max_iter=50 opt_iter=15 stop_iter=9 print_flag=3
\$ Ramp up bias voltage
scan var=voltage_1 value_to=-5.0 \&\&
init_step=1e-3 max_step=0.1 \&\&
auto_finish=current_1 auto_until=1e-3 auto_condition=above
\$ Ramp up bias to near threshold as judged by RT-Gain
scan var=current_1 value_to=20e-3 \&\&
init_step=1e-3 max_step=5e-3 print_step=10e-3 \&\&
auto_finish=rtgain auto_until=0.8 auto_within=0.1
\$ Activate 3D C-RTG solver
scan var=current_1 value_to=20e-3 \&\&
init_step=1e-5 max_step=1e-4 print_step=10e-3 \&\&
solve_rtg=yes
\$
end
\$ Longitudinal mode session:
begin_zsol
\$ Set up grating at 1.3 um
longitudinal ref_wavel=1.3e-6 \&\&
left_f_refl=0 right_f_refl=0
\$ Quarter-wave phase shift: 90 degress=0.5*pi
section length=250e-6 kappa_real=2e3 \&\&
sec_num=1 mesh_points=10 phase_shift=0.5
section length=250e-6 kappa_real=2e3 \&\&
sec_num=2 mesh_points=10
\$ longitudinal mode search parameters
mode_srch omega_xrange = 20 adjust_range = yes
end_zsol

```

In this section, we will skip over most of the details regarding the waveguide setup and concentrate on the PICS3D-specific aspects of the simulation. The most important point to understand is that there are two aspects to the 3D setup: electrical modeling and optical modeling. These will be described below.

\section*{3D Electrical Simulation}

The first part of the 3D setup is the electrical simulation and it is identical to what would be used in an APSYS simulation. In both cases, the 3D model is activated with the 3d__solution__method statement and one or more segments are defined. These segments combine multiple 2D mesh planes and define a 3D volume for the simulation. For a more detailed discussion on this topic, the user is referred to Sec. 6.3.

In this example, the layer file we defined above can represent a 2 D cut at any z position of the device. Therefore, we have a single segment and only one z_structure statement defines the device for the electrical model. Note that since there is only a single segment, zseg_num=1 is implicitly defined which simplifies the input file somewhat: we will see in Sec. 21.4 how to deal with multiple segments.
The longitudinal electrical mesh is determined by the number of mesh planes defined in z_structure. Since there is only a single segment, a minimum of two planes is needed to define a volume. However, a minimum of three planes is needed to observe a longitudinal variation of material parameters (i.e. longitudinal hole burning). More planes provide better sampling in the z direction but require more memory and processing power so there is always a compromise: we use seven mesh planes in this example.

\section*{3D Optical Simulation}

The second part of the 3D simulation is the optical propagation: this is tied to the concept of the round-trip gain (RTG) discussed in Sec. 6.4. This longitudinal model is at the very core of PICS3D and involves several setup steps. These require a lengthy explanation so we will divide them into four main categories:
- Optical propagation model
- Longitudinal mode search
- Gain profile definition
- Bias setup

\section*{Optical Propagation Model}

The optical propagation model is tied to the concept of "sections": these define the optical cavity in the same way that "segments" define the 3D geometry of the electrical simulation. In this case, we have a \(500 \mu \mathrm{~m}\) laser but with a phase shift in the middle so we use two sections of equal length and define a phase shift at the end
of the first section. This phase value must be expressed as a multiple of \(\pi\) so \(\frac{\lambda}{4}\) is equivalent to 0.5 .

Within each section, the same propagation model is used: for edge-emitting devices such as this one, it is the coupled-wave transfer matrix of Sec. 16.5. The detuning term is based on the DFB grating's reference frequency so we must define it with the longitudinal statement. This statement also controls the boundary conditions used in the longitudinal propagation model (i.e. mirror reflectivities).

We also define a pure index grating of \(\kappa=2000\) in each section so that the total grating strength for the laser is \(\kappa L=1\). This method of defining the grating is the simplest and most convenient way available in PICS3D. More accurate models are available but they require an explicit definition of the grating composition in the layer file: we will show an example of this method in Sec. 21.4.

We note in passing that the two statements above replace some of the functionality provided by init__wave in LASTIP: if the user attempts to use it to define the cavity length or mirror strength, it will be ignored by the software. In PICS3D, the init__wave statement is only used to define the background loss of the optical propagation and to control the lateral mode solver.

\section*{Longitudinal Mode Search}

The longitudinal mode search is controlled by the mode_srch statement. This statement defines the search range for the longitudinal modes. This can be done either explicitly with wavel_xrange or using a fixed-size window with omega_xrange. This window is usually centered on the reference wavelength of the grating but can be allowed to shift in order to center it on the strongest mode with adjust_range=yes.
As described in Chap. 16, longitudinal modes are found using the zeros of the Wronskian, which is equivalent to evaluating the RTG. However, evaluating the RTG while considering the photon coupling is tricky: the photon density can only be known by evaluating the RTG but evaluating the RTG requires knowledge of the photon density because of its impact on the longitudinal gain profile (i.e. spatial hole burning). To provide an initial guess, we must assume that the photon coupling is negligible at first and use a flat gain profile to find the longitudinal modes.
As part of its initialization, PICS3D requires a preview of the RTG and longitudinal mode search with the rtgain__phase statement. Since this statement only produces a preview of the RTG (i.e. with no photon coupling), it must be used before any actual bias is applied but after the equilibrium calculations.

In addition to its normal use in initialization, rtgain__phase can also be useful to troubleshoot device designs and ensure that the cavity modes are as expected. The simulation may be stopped at this point by using the stop statement if the user wishes to examine the result before going any further.

The results of the longitudinal mode search will be shown in the simulation \(\log\) as shown below:
\begin{tabular}{cc}
\begin{tabular}{c} 
Longitudinal modes found: \\
Wavelength (um)
\end{tabular} & Round-Trip-Gain \\
\(0.130504 \mathrm{E}+001\) & \(0.976213 \mathrm{E}-002\) \\
\(0.130457 \mathrm{E}+001\) & \(0.122080 \mathrm{E}-001\) \\
\(0.130398 \mathrm{E}+001\) & \(0.148400 \mathrm{E}-001\) \\
\(0.130352 \mathrm{E}+001\) & \(0.201960 \mathrm{E}-001\) \\
\(0.130292 \mathrm{E}+001\) & \(0.271156 \mathrm{E}-001\) \\
\(0.130247 \mathrm{E}+001\) & \(0.441081 \mathrm{E}-001\) \\
\(0.130186 \mathrm{E}+001\) & \(0.760265 \mathrm{E}-001\) \\
\(0.130141 \mathrm{E}+001\) & \(0.226975 \mathrm{E}+000\) \\
\(0.130061 \mathrm{E}+001\) & \(0.873341 \mathrm{E}+000\) \\
\(0.129981 \mathrm{E}+001\) & \(0.171932 \mathrm{E}+000\) \\
\(0.129937 \mathrm{E}+001\) & \(0.505705 \mathrm{E}-001\) \\
\(0.129874 \mathrm{E}+001\) & \(0.235128 \mathrm{E}-001\) \\
\(0.129832 \mathrm{E}+001\) & \(0.126577 \mathrm{E}-001\) \\
\(0.129769 \mathrm{E}+001\) & \(0.754646 \mathrm{E}-002\) \\
\(0.129728 \mathrm{E}+001\) & \(0.487527 \mathrm{E}-002\) \\
\(0.129664 \mathrm{E}+001\) & \(0.318803 \mathrm{E}-002\) \\
\(0.129624 \mathrm{E}+001\) & \(0.224836 \mathrm{E}-002\) \\
\(0.129559 \mathrm{E}+001\) & \(0.153203 \mathrm{E}-002\) \\
\(0.129521 \mathrm{E}+001\) & \(0.113569 \mathrm{E}-002\)
\end{tabular}

However, more information is also available by using the plot_rtgain statement in the .rtgain file as shown in Fig. 21.2.
We note in passing that \(R T G \geq 1\) is an unphysical situation and should be ignored. It usually indicates a point above threshold, which means that the photon density is too strong to be ignored and the evaluation of the RTG is not realistic (i.e. hole burning and carrier clamping effects were neglected or solution is not properly converged yet). To be more accurate, \(\mathrm{RTG}=1\) is a limit corresponding to an ideal cavity without spontaneous emission: the RTG only approaches 1 in a real device and there is no clear-cut value of the RTG at threshold.

\section*{Gain profile definition}

During the RTG preview, a carrier density value must be provided since no bias has been applied yet: this is used to obtain the propagation constant from tabulated gain values. A convenient ways to provide these tables is to include the .gain file instead of the .mater file in the .sol: the .mater file will still be included recursively.


Figure 21.2: Round-trip gain (RTG) of quarter-wave-shifted DFB laser below threshold

The actual gain tables for the preview are generated by the gain__wavel statement. If it has not been defined already, a simple .gain template with the necessary statements can be generated by right-clicking the .mater file in SimuCenter. It is a good idea to process this file before the main simulation to optimize the gain curve peak vs. the grating's reference wavelength.

The user may also find it useful to manually add a gain__density statement to the .gain file before processing: this will generate a material gain vs. carrier density curve that can help locate a reasonable carrier density at which to preview the RTG.

During the full simulation (i.e. scan statements), PICS3D does not need to use tabulated gain values. Instead, it uses the information from the electrical simulation to obtain local gain values: these values will be linearly interpolated from the electrical mesh planes onto the optical mesh points defined by the section statements and used to evaluate the RTG.

\section*{Bias setup}

When applying bias, we still have the same problem of initializing the photon coupling that we described earlier: we need to provide an accurate initial guess of the photon density and the wavelength of the longitudinal modes to ensure the convergence of the Newton solver. As we discussed earlier, this means selecting a bias point below threshold so that the starting photon density is negligible and the flat gain profile approximation is realistic.

However, it is well-known that the longitudinal mode wavelengths can shift below threshold since increasing bias produces carrier-induced index changes. This means that we cannot select a bias point that is too far below threshold since we might risk missing the lasing mode during the mode search. This is a commonly encountered problem in devices with many longitudinal modes such as very long Fabry-Perot cavities.

A reasonable compromise is to select a bias point where the modal gain is positive but not yet lasing. To do this, use the auto_finish parameter of the scan statement. The RTG value selected to terminate the scan should be larger than what is provided by the mirror feedback but still less than 1.

This auto_finish parameter is also required by PICS3D to initialize the coupled RTG solution in the Newton solver. The photon coupling can be turned on immediately afterwards by using solve_rtg=yes in the next scan statement. Once photon the coupling is turned on, the user must take care to always use small bias steps since the solution state will shift strongly as the threshold region is crossed: although mode wavelengths tend to stabilize as the carrier density is clamped, the photon density of the lasing modes will increase by several orders of magnitude.

Additional hints on how to configure the bias steps in PICS3D are discussed in Chap. 4.

\section*{Post-Processing}

Once the simulation has been run, results can be plotted using the following .plt file:
```

\$file:inp13.plt
begin_pstprc
plot_data plot_device=postscript
get_data main_input=inp13.sol \&\&
sol_inf=inp13.out \&\&
xy_data=[$$
\begin{array}{ll}{5}&{5}\end{array}
$$]\quad\mathrm{ scan_data=[ll}15
\$
plot_scan scan_var=current_1 \&\&
variable=rtg_2facet_power_allmode \&\&
scan_num= 3
plot_scan scan_var=current_1 \&\&
variable=rtg_peak_wavelength \&\&
scan_num= 3
modify_plot longitudinal_mode=10
plot_scan scan_var=current_1 \&\&

```
```

variable=wavelength \&\&
scan_num= 3

```
gain_spectrum variable=rtg_spectrum
\$ Plot at xy cross sections
\$
lplot_xy variable=band xy_from=[ \(0.1000 \mathrm{E}+00\) 0.0000E+00] \&\&
    xy_to \(=\left[\begin{array}{ll}0.1000 E+00 & 0.2800 E+01\end{array}\right] \quad z=0\)
\$
lplot_xy variable=elec_curr_y xy_from=[ 0.1000E+00 0.0000E+00] \&\&
    xy_to=[ \(0.1000 \mathrm{E}+000.2800 \mathrm{E}+01] \mathrm{z}=0\)
lplot_xy variable=hole_curr_y xy_from \(=\left[\begin{array}{lll}0.1000 E+00 & 0.0000 E+00\end{array}\right] \& \&\)
    xy_to \(=\left[\begin{array}{lll}0.1000 E+00 & 0.2800 E+01\end{array}\right] z=0\)
vplot_xy variable=total_curr \&\&
    z=0 grid_sizes=[llll 35 35
\$
cplot_xy variable=wave_intensity \&\&
    \(z=0\) grid_sizes=[lllll 35 35]
splot_xy variable=elec_conc \&\&
    grid_sizes=(35, 35) \&\&
    view_xrot=0 view_zrot=30 z=0
splot_xy variable=hole_conc \&\&
    grid_sizes=(35, 35) \&\&
    view_xrot=0 view_zrot=30 z=0
\$
\$ Plot for all dimensions of xyz [for edge laser only].
\$
splot_xyz variable=wave_intensity \&\&
    xy_from \(=\left[\begin{array}{lll}0.1000 \mathrm{E}+00 & 0.0000 \mathrm{E}+00\end{array}\right]\) \&\&
    \(x y \_t o=[\quad 0.1000 \mathrm{E}+00 \quad 0.2800 \mathrm{E}+01]\) \& \&
    grid_sizes=[50, 20] view_zrot=20.
modify_plot show_data_points=yes
lplot_xyz variable=wave_intensity xy_point=(0.0 1.4)
\$
end_pstprc


Figure 21.3: L-I curve of DFB laser

When plotting results, there are several differences between LASTIP and PICS3D. The most important one of these is that results are always in 3D so no special variables are needed for unit conversion. Another important point is that unlike LASTIP, PICS3D does not apply any scaling factors due to symmetry: this is a software design choice prompted by the fact that PICS3D must handle many devices with different kinds of symmetry: for example unlike ridge waveguides, VCSELs use rotational symmetry. The user should keep this in mind and apply appropriate scaling of the current and power when comparing PICS3D and LASTIP results for the same structure. Many variable names are also different than in LASTIP: for example, most of the variables obtained from the coupled RTG calculations are prefixed by "rtg_".
To plot the L-I curve for the laser, we use the plot__scan statement as in Fig. 21.3 . Power from individual modes can also be plotted by specifying the longitudinal mode index with modify__plot before the plot command. Note that the mode_index parameter in plot_scan is used to specify lateral mode index and cannot be used for this purpose.
plot_scan can also be used to plot other variables vs. bias. For example, Fig. 21.4 shows the peak emission wavelength which confirms our earlier comment about the shift in longitudinal mode positions. The change in photon number can also be plotted in this way.

To plot spectral data, the gain_spectrum statement has been re-purposed to plot different physical quantities. One of these is the mode spectrum as shown in Fig. 21.5 which shows the strong side-mode suppression and single-mode behavior that is


Figure 21.4: Peak emission wavelength of DFB laser vs. bias
expected from this structure.
When plotting structural data, special plotting commands must be used to deal with the 3D data but most of the plotting commands from 2D have a corresponding command in 3D. For example, plot__1d is replaced by lplot__xy or lplot__xyz depending on the direction of the line cut.
As an example of this, Fig. 21.6 shows the longitudinal distribution of the wave intensity: the cut is taken in the center of the active region. As we discussed earlier, we only used seven mesh planes since there is a compromise between the amount of longitudinal sampling and the speed \& resources required for the simulation. However, we see that even this rough amount of sampling is enough to obtain good results for the L-I curve and spectral properties of the laser.


Figure 21.5: Mode spectrum of DFB laser

File:inp13.plt Gamma \(=0.3528522520\)


Figure 21.6: Longitudinal mode profile of DFB laser

\section*{21.3 amplifier_3D \(\backslash\) inp13amp}

This example is a semiconductor optical amplifier (SOA): we define incoming power on the left facet and study the outgoing power and amplified spontaneous emission (ASE) of the device. The modeling techniques described here can also be applied to electro-absorbing modulators (EAM) and superluminescent diodes (SLED) with a few simple modifications.

\section*{Layer Structure}

The layer structure used here is based on the one used in Sec. 21.2. The only difference is that we do not assume there is a grating layer that is abstracted away and defined later in the simulation: in most SOA applications, optical feedback must be minimized so this device really has no grating.

In practical terms, it means that the .layer input file for this example is exactly the same as in Sec. 21.2. In order to save time, we will simply reuse this file instead of creating a new one from scratch. However, for the sake of consistency, we will rename this file to inp13amp.layer so it matches the rest of our project files.

\section*{Simulation Setup}

Defining the 3D model in an SOA is a bit different than for an edge-emitting laser. The electrical part is the same as before and we use multiple mesh planes to define a simulation volume. Depending on the precision required, more mesh planes may be required: SOA saturation at high power is clearly related to longitudinal spatial hole burning so the quality of the sampling in the z direction may be important.

We use the following .sol file for this simulation:
```

\$file:inp13amp.sol
begin
z_structure uniform_zseg_from=0. uniform_zseg_to=500. zseg_num=1 \&\&
zplanes=5
3d_solution_method 3d_flow=yes
load_mesh mesh_inf=inp13amp.msh
\$
include file=inp13amp.gain
include file=inp13amp.doping
\$
output sol_outf=inp13amp.out

```
```

more_output pics3d_ase=yes wave_phase=yes
\$
\$ Set parameters for wave equation
init_wave backg_loss=500 boundary_type=[2 2 1 1] \&\&
init_wavel=1.29 wavel_range=[ll.28 1.32]
direct_eigen
\$
\$ ASE model assumes input single wavelength is close to gain peak
\$
3d_amplifier_model wavelength=1.29 input_watt=1.e-4
\$
\$ Set Newton parameters for equilibrium solution
newton_par damping_step=3. var_tol=1.e-8 res_tol=1.e-8 \&\&
max_iter=100 opt_iter=15 stop_iter=50 print_flag=3
\$
equilibrium
\$
rtgain_phase density=1.4e24
\$
\$
\$ Set Newton parameters for solution with bias

```
newton_par damping_step=1. var_tol=1.e-4 res_tol=1.e-4 \&\&
max_iter=50 opt_iter=15 stop_iter=9 print_flag=3
\$ Ramp up bias voltage (adjust 1 volt for your case)
scan var=voltage_1 value_to= -1. print_step= 1. \&\&
    init_step \(=0.1\) min_step=1.e-5 max_step=0.5
\$ auto_finish=rtgain is actually used to initialize parameters
scan var=current_1 value_to=18.5e-3 max_step=1.e-3 \&\&
    auto_finish=rtgain auto_until=0.9
newton_par damping_step=1. var_tol=1.e-4 res_tol=1.e-4 \&\&
max_iter=50 opt_iter=25 stop_iter=9 print_flag=3
scan var=light value_to=1 init_step=1.e-3 \&\&
var2=current_1 value2_to=18.5e-3 max_step=0.02 solve_rtg=yes
end
```

\$ Longitudinal mode session:
begin_zsol
\$ this is to control the data points in ASE spectrum
freq_control data_points=200
longitudinal ref_wavel= 0.12900E-05 \&\&
left_f_refl= 0.0000E+00 \&\&
right_f_refl= 0.0000E+00
section length= 0.5000E-03 \&\&
sec_num=1 mesh_points=20
mode_srch omega_xrange=10.
end_zsol

```

\section*{3D Optical Simulation}

The longitudinal part of the 3D problem is a bit different since the longitudinal behavior is caused by an external light input rather than being due to the existence of cavity modes. The 3 d __amplifier__model statement is used to define the wavelength and power of this input light. Alternatively, waveguide__input can also be used.

We will consider here an ideal SOA with no optical feedback so the section statements do not define any grating and the longitudinal statement defines facet reflectivities of zero.

In the absence of optical feedback, the longitudinal mode solver will not find any modes. However, the solution method is based on a variation of the coupled RTG equations so we need to define the optical propagation correctly. This means that the longitudinal statement needs to define a reference frequency that will be used to calculate the detuning term: this can be set as the SOA's input wavelength. We also need to initialize the mode search in the same way as for a DFB laser: the user is referred to Sec. 21.2 for details.
When calculating the ASE spectrum, we need to do two things. The first is to use the freq_control to define the number of points in the spectrum. The second is to use more_output to force PICS3D to include the ASE spectrum in the output data: it is not included by default since it is not usually relevant in lasers.

\section*{Bias setup}

When applying bias, we refer to our solar cell example in APSYS (Sec. 19.4) and note that the equilibrium calculations produce a state where no bias exists. The input light to the SOA is a form of bias so it is turned off at the beginning of the simulation.

Just like in Sec. 19.4, we use the "light" scan variable to turn on this input light. However, instead of being a multiple of light__power, this variable now represents a fraction of the value defined in 3d__amplifier__model. A starting point of zero light is also consistent of our usual strategy for the photon coupling: in order to ensure convergence of the coupled RTG equations, we assume a flat gain profile in the initial guess.

As in previous examples, the photon coupling is turned on by using solve_rtg=yes in the scan statement. Again, this must be preceded by a scan statement using auto_finish=rtgain. However, we note that in the absence of optical feedback, the round-trip gain value is meaningless: this parameter will only initialize the RTG model and will not terminate the current scan.

\section*{Post-Processing}

After the simulation has been run, the results can be shown with the following .plt file:
```

\$file:inp13amp.plt
begin_pstprc
plot_data plot_device=postscript
get_data main_input=inp13amp.sol sol_inf=inp13amp.out \&\&
xy_data=(4 4) scan_data=(4 4)
modify_plot show_data_points=yes
plot_scan scan_var=light variable=rtg_wave_phase
plot_scan scan_var=light variable=rtg_right_power_allmode
plot_scan scan_var=light variable=rtg_ase_left
plot_scan scan_var=light variable=rtg_ase_right
gain_spectrum variable=rtg_asespec_left
gain_spectrum variable=rtg_asespec_right
modify_plot show_data_points=no
\$
\$ Plot for all dimensions of xyz [for edge laser only].
\$
splot_xyz variable=wave_intensity \&\&
xy_from=[0.1000E+00 0.0000E+00] \&\&
xy_to=[0.1000E+00 0.2800E+01] \&\&
grid_sizes=[50, 20] view_zrot=20. wave_option=right
\$

```
```

\$
\$ Plot at xy cross sections first
\$
lplot_xy variable=band xy_from=[0.1000E+00 0.0000E+00] \&\&
xy_to=[0.1000E+00 0.2800E+01] z=5
splot_xy variable=elec_conc z=5. grid_sizes=(35, 35) \&\&
xrange =[0.0000E+00 0.1000E+01] \&\&
yrange=[0.0000E+00 0.2800E+01] \&\&
view_xrot=0 view_zrot=30
\$
vplot_xy variable=elec_curr \&\&
xrange =[0.0000E+00 0.1000E+01] \&\&
yrange =[0.0000E+00 0.2800E+01] \&\&
z=5 grid_sizes=[$$
\begin{array}{lll}{35 35}\end{array}
$$]
\$
cplot_xy variable=wave_intensity \&\&
xrange =[0.0000E+00 0.1000E+01] \&\&
yrange =[0.0000E+00 0.2800E+01] \&\&
z=5 grid_sizes=[$$
\begin{array}{ll}{35}&{35}\end{array}
$$]
end_pstprc
\$

```

Again, we use plot_scan to show results vs. bias. In Fig. 21.7, we show the expected signal saturation of the SOA as the input power (i.e. "light" variable) is varied. We also see in Fig. 21.8 that this is accompanied by a reduction in the amount of amplified spontaneous emission. Note that the amount of ASE depends on which facet it is being observed.

The ASE spectrum can be plotted in the same way as the RTG spectrum in a laser: a specific variable has been defined to use in conjunction with the gain_spectrum statement as shown in Fig. 21.9.


Figure 21.7: Output power of SOA vs. input light


Figure 21.8: ASE on right facet of SOA vs. input light


Figure 21.9: ASE spectrum on right facet of SOA

\section*{21.4 \(\mathrm{DBR} \backslash\) 3section_tunable}

This example \({ }^{1}\) is a tunable edge-emitting laser with a Distributed Bragg Reflector (DBR). It consists of three segments: a gain region on the left, a tuner in the middle and a Bragg mirror on the right. We use this example to show how PICS3D handles complex structures where the device structure changes in the longitudinal direction.

We also use this example to show how to explicitly define grating layers. Unlike the simplified method shown in Sec. 21.2, here PICS3D will calculate the coupling coefficient ( \(\kappa\) ) by using the index profile of the grating and its overlap with the optical mode.

\section*{Layer Structure}

Since the device structure varies longitudinally in this example, we need multiple 2D cuts and .layer files: each of these cuts represents a single segment that will be defined later in the .sol file.

The different .layer files can be created independently from each other using the same techniques discussed in our other examples. However, in order to process these files correctly and generate correct material numbers, the previous_layer statement should be used after the first layer.

The user can also automatically generate all the .layer files for this project at once by using the Layer3D GUI program (shown in Fig. 21.10). Each of the 2D cuts are built using the same rules as the LayerBuilder GUI but the previous_layer statement will be added automatically.
The gain segment is very similar to previous devices we have considered:
```

begin_layer
column column_num=1 w=1.5 mesh_num=2 r=1.0
bottom_contact column_num=1 from=0.0 to=1.5 contact_num=1
layer_mater macro_name=inp column_num=1
layer d=1.5 n=8 r=0.8 n_doping1=1e24
layer_mater macro_name=ingaasp var1=0.568 column_num=1 \&\&
var_symbol1=y
layer d=0.08 n=4 r=0.9
\$ total thickness of the following MQW is 0.15 um

```

\footnotetext{
\({ }^{1}\) Last updated Nov. 2011
}


Figure 21.10: 2D \& 3D view of tunable DBR laser
```

include file=tune1.well
include file=tune1.bar

```
layer_mater macro_name=ingaasp var1=0.568 column_num=1 \&\&
    var_symbol1=y
layer \(d=0.05 \mathrm{n}=4 \quad \mathrm{r}=1.1\)
layer_mater macro_name=inp column_num=1
layer \(\mathrm{d}=1.55 \mathrm{n}=9 \mathrm{r}=1.2 \mathrm{p}\) _doping1=5e23
top_contact column_num=1 from=0.0 to=1.5 contact_num=2
end_layer

The active region is an unstrained MQW InGaAsP region tuned to peak around \(1.55 \mu \mathrm{~m}\). Again, we use external files and the include statement to simplify this declaration:
layer_mater macro_name=ingaasp var1=0.568 column_num=1 var_symbol1=y layer \(\mathrm{d}=0.0225 \mathrm{n}=3 \quad \mathrm{r}=1\).
layer_mater macro_name=ingaasp var1=0.950 column_num=1 \&\&
active_macro=InGaAsP/InP avar1=0.443 avar2=0.95 \&\&
\(\operatorname{avar} 3=0.262\) avar4=0.568 \&\&
var_symbol1=y avar_symbol1=xw avar_symbol2=yw avar_symbol3=xb avar_symbol4=yb layer \(\mathrm{d}=0.0075 \mathrm{n}=3 \mathrm{r}=1\).

Users working with the LayerBuilder GUI program can also copy \& paste layers to easily create a MQW region.

For the tuning section, we need to consider what is the mechanism involved. In this case, we wish to consider bias-induced index change due to interband transitions: this is modeled by an active region and an active macro just like in the gain segment.

However, this particular active region has a very different bandgap and only the tail edge of the the gain curve is visible in the \(1.55 \mu \mathrm{~m}\) range. We call this a "mildly active" layer for historical reasons: the gain is calculated but it is so small that it has no practical effect beyond contributing to the index change.

The resulting layer file for the tuning section is shown below:
```

begin_layer

```
\$ Make sure the program knows there is a segment before this structure. \$ The programs needs this information to generate the material numbers \$ correctly.
```

previous_layer file=tune1.layer

```
column column_num=1 w=1.5 mesh_num=2 r=1.0
bottom_contact column_num=1 from=0.0 to=1.5 contact_num=1
layer_mater macro_name=inp column_num=1
layer \(\mathrm{d}=1.5 \mathrm{n}=8 \quad \mathrm{r}=0.8 \mathrm{n}\) _doping1=1e24
\$ Passive waveguide material declared to be "active"
\$ so that interband optical model for index change can be used.
layer_mater macro_name=ingaasp var1=0.5 column_num=1 \&\&
    active_macro=InGaAsP avar1=0.5 \&\&
    var_symbol1=y avar_symbol1=yw
layer \(\mathrm{d}=0.38 \mathrm{n}=9 \mathrm{r}=1\).
layer_mater macro_name=inp column_num=1
layer d=1.45 n=9 r=1.2 p_doping1=5e23
top_contact column_num=1 from=0.0 to=1.5 contact_num=3
end_layer

For the DBR segment, we use the same "mildly active" region as the tuner (unstrained \(\operatorname{InGaAs}(0.5) \mathrm{P}\) ) as the base of the grating. Conceptually, we can imagine that we partially etch this region and regrow with InP to form an average material (unstrained \(\operatorname{InGaAs}(0.25) \mathrm{P}\) ).

We quickly note that the regrowth region is below the original layer so things look upside down. This is simply due to our usual convention of defining devices n-side down which can be confusing if the original design is on a p-type substrate. However, this convention is merely for the sake of consistency and the user is free to change it.
When defining the grating layer, we start by defining a layer made of the average material in layer__mater. However, this is overridden immediately afterwards by the grating_compos statement: the original layer material is replaced by a virtual embedded structure and two sets of material macros are used for the same material. This is shown in the following excerpt of the tune3.mater file, which generated when all the layer files are processed:
```

\$ -->grating region based on composition variation
grating_model grating_order=1 \&\&
use_active_mater= 5 \&\&
d_high= 0.100000000000E+000 d_low= 0.100000000000E+000 \&\&
d_fall= 0.000000000000E+000 d_rise= 0.000000000000E+000
\$
\$ -->high index grating region
load_macro name=ingaasp mater= 5 \&\&
var_symbol1=y var1= 0.5000E+00
get_active_layer name=InGaAsP mater= 5 \&\&
var_symbol1=yw var1= 0.5000E+00
active_reg embedded_structure=1 mater= 5 \&\&
thickness= 0.200000000000E+000
\$
\$ -->low index grating region
load_macro name=ingaasp mater= 5 \&\&
var_symbol1=y var1= 0.0000E+00
get_active_layer name=InGaAsP mater= 5 \&\&

```
```

 var_symbol1=yw var1= 0.0000E+00
 active_reg embedded_structure=1 mater= 5 \&\&
thickness= 0.200000000000E+000

```

When defining the grating composition, we specify both passive and active macros for the low and high index regions. This means that the grating is also a "mildly active" layer: the index step will be affected by interband transitions. Note that the bandgap values for the high and low regions are still far away from \(1.55 \mu \mathrm{~m}\) : otherwise, this would a gain- or loss-coupled laser, which a very different kind of device. The user can also choose to omit the active macro: this means that the index step of the grating will be frozen at its equilibrium value.

Alternatively, one can also define the grating using the grating_model statement in the .layer file. In this case, the refractive index of the high and low regions must be provided instead of the macro parameters. Also, the average material defined in layer__mater will be used in the electrical simulation instead of being overridden with the grating macros.

The layer file used for the DBR segment is shown below:
```

begin_layer

```
\$ Make sure the program knows there is a segment before this structure. \$ The programs needs this information to generate the material numnbers \$ correctly.
previous_layer file=tune2.layer
column column_num=1 w=1.5 mesh_num=2 r=1.0
bottom_contact column_num=1 from=0.0 to=1.5 contact_num=1
layer_mater macro_name=inp column_num=1
layer \(\mathrm{d}=1.3 \mathrm{n}=8 \quad \mathrm{r}=0.8 \mathrm{n}\) _doping1=1e24
```

\$
\$ 0.2 um corrugation grating is made between InP and InGaAs(0.5)P
\$ So the average material is InGaAs(0.25)P. Let us declare it
\$ as mild region to let the program treat it mildly.
\$
layer_mater macro_name=ingaasp var1= 0.25 \&\&
active_macro=InGaAsP avar1= 0.25 \&\&
column_num=1 embedded_structure=1 \&\&
var_symbol1=y avar_symbol1=yw
grating_compos column_num=1 \&\&

```
```

 d_high= 0.1 d_low= 0.1 &&
 hi_macro_name=ingaasp hi_var1=0.5 &&
 hi_active_macro=InGaAsP hi_avar1=0.5 &&
 lo_macro_name=ingaasp lo_var1=0. &&
 lo_active_macro=InGaAsP lo_avar1=0. &&
 hi_var_symbol1=y &&
 hi_avar_symbol1=yw &&
 lo_var_symbol1=y &&
 lo_avar_symbol1=yw
 layer d= 0.2 n= 9 \&\&
n_doping1= 1.E+23 \&\&
r= 0.9

```
\$ Passive waveguide material declared to be "active"
\$ so that interband optical model for index change can be used.
layer_mater macro_name=ingaasp var1=0.5 column_num=1 \&\&
    active_macro=InGaAsP avar1=0.5 \&\&
    var_symbol1=y avar_symbol1=yw
layer \(\mathrm{d}=0.38 \mathrm{n}=9 \mathrm{r}=1\).
layer_mater macro_name=inp column_num=1
layer \(\mathrm{d}=1.45 \mathrm{n}=9 \mathrm{r}=1.2 \mathrm{p}\) _doping1=5e23
top_contact column_num=1 from=0.0 to=1.5 contact_num=4
end_layer

\section*{Simulation Setup}

The following .sol file is used in this simulation:
```

\$***********
begin
use_macrofile macro1=my.mac
3d_solution_method 3d_flow=yes z_connect=no
z_structure uniform_zseg_from=0. uniform_zseg_to=400. zseg_num=1 zplanes=3
z_structure uniform_zseg_from=400. uniform_zseg_to=500. zseg_num=2
z_structure uniform_zseg_from=500. uniform_zseg_to=800. zseg_num=3 zplanes=3

```
```

load_mesh mesh_inf=tune1.msh zseg_num=1
load_mesh mesh_inf=tune2.msh zseg_num=2
load_mesh mesh_inf=tune3.msh zseg_num=3
output sol_outf=tune.out

```
begin_zmater zseg_num=1
include file=tune1.gain
include file=tune1.doping
end_zmater
begin_zmater zseg_num=2
include file=tune2.gain
include file=tune2.doping
end_zmater
```

begin_zmater zseg_num=3
include file=tune3.gain
include file=tune3.doping
end_zmater
optical_field profile=effective_index x_segment=4
init_wave backg_loss=500 \&\&
boundary_type=(2 2 1 1) init_wavel=1.55 \&\&
wavel_range=(1.5, 1.60)

```
prop_constant_model zseg_num=1 precalculated_index=yes
prop_constant_model zseg_num=2 precalculated_index=yes
prop_constant_model zseg_num=3 precalculated_index=yes
newton_par damping_step=10. var_tol=1.e-9 res_tol=1.e-9 \&\&
    max_iter=100 opt_iter=15 stop_iter=50 print_flag=3 mf_solver=2
equilibrium
rtgain_phase density=1.6e24 zseg_num=1
rtgain_phase density=1.6e24 zseg_num=2
rtgain_phase density=1.6e24 zseg_num=3
\$parallel_linear_solver
newton_par damping_step=10.0 var_tol=1.e-4 res_tol=1.e-4 \&\&
    max_iter=30 opt_iter=16 stop_iter=17 print_flag=3 mf_solver=2
scan var=voltage_1 value_to=-0.8
```

scan var=current_2 value_to=-2.4e-3 init_step=1e-6 \&\&
min_step=1e-8 max_step=0.1e-3 \&\&
var2=current_3 value2_to=-0.3e-3 \&\&
var3=current_4 value3_to=-0.9e-3 \&\&
auto_finish=rtgain auto_until=0.9 auto_within=0.09
scan var=current_2 value_to=-7.2e-3 \&\&
var2=current_3 value2_to=-0.3e-3 \&\&
var3=current_4 value3_to=-0.9e-3 \&\&
init_step=1e-6 min_step=1e-8 max_step=0.5e-3 solve_rtg=yes
newton_par damping_step=10.0 var_tol=1.e-3 res_tol=1.e-1 \&\&
max_iter=30 opt_iter=16 stop_iter=17 print_flag=3 mf_solver=2
scan var=current_4 value_to=-18.e-3 \&\&
var3=current_2 value3_to=-7.2e-3 \&\&
var2=current_3 value2_to=-0.3e-3 \&\&
init_step $=1 e-6$ min_step $=1 e-8$ max_step $=0.4 e-3$ solve_rtg=yes
\$ alternatively, one may tune the laser by changing the middle phase section
\$scan var=current_3 value_to=-10.e-3 \&\&
\$var3=current_2 value3_to=-7.2e-3 \&\&
\$var2=current_4 value2_to=-0.9e-3 \&\&
\$init_step=1e-6 min_step=1e-8 max_step=0.4e-3 solve_rtg=yes
end

```
```

\$ *

```
$ *
begin_zsol
longitudinal ref_wavel=1.55e-6 left_f_refl=0.3 right_f_refl=0.3
section length=400.e-6 sec_num=1 mesh_points=10
section length=100.e-6 sec_num=2 mesh_points=10
section length=300.e-6 sec_num=3 mesh_points=10
mode_srch omega_xrange=16. adjust_range=yes
end_zsol
```

Like all edge-emitting devices in PICS3D, this is a 3D simulation with multiple mesh planes so we must use the 3d_solution_method statement with 3d_flow=yes. We also use three different \mathbf{z} _structure statements to define the segment lengths as well as the number of mesh planes within each segment.

The 2D mesh used at the various z points in each segment is loaded by a series of load__mesh statements. Material properties are loaded in the same way as in Sec. 21.2 but since there is more than one segment, the include statements for each segment must be bracketed by begin_zmater and end_zmater to identify the segment being defined.

Optical Propagation Model

To define the optical cavity, we use three sections to match the segments defined above. Note that no grating is defined at this stage: the earlier grating definition will be used calculate the coupling coefficient automatically. Based on the index step and wave profile, the solver prints this kind of information in the simulation log at each bias step:

```
At lambda= 1.55379871355004
Grating Reg. Opt. Conf.= 0.180108918999968
Real kappa (1/m)= 36386.4705291671
Imag kappa ( }1/\textrm{m})=-5.748666808201413E-01
```

As we can see, the gain coupling coefficient is negligible, which is consistent with our "mildly active" model. The real part of the grating indicates a highly reflective mirror ($\kappa L \approx 10.9$ for this segment).

To calculate the round-trip gain (RTG), we need a reference point in the cavity. For best results, this point should be in the middle of the gain region so we modify the default value of ref_midpoint in the longitudinal statement. We also use this statement to specify the facet boundary conditions and the reference wavelength for the longitudinal mode search.
To save on computation time, we also use prop__constant__model to instruct the software to use precalculated index change tables from the .gain preview. This may be less accurate then calculating the index automatically but often helps solve certain convergence issues.

Bias setup

When defining the .layer files above, we note that we used the same electrode number (1) for the n-side bottom electrode but we used a different number $(2,3,4)$ for the top p-side electrode. This means that the bottom electrode is shared across all segments whereas the top electrodes are split and can be used to independently bias each individual segment.
Since at the equilibrium point, we define a situation where all electrodes are grounded at 0 V , this can create unexpected bias configurations. For example, if one were to
ramp up the bias on electrode (\#2) only, the current would naturally flow towards the other top electrodes since that is the shortest electrical path. This is not the desired situation so we apply a small bias to the bottom shared electrode (\#1) instead. This method shifts the reference ground and is equivalent to biasing all the top electrodes simultaneously.

After this initial voltage scan, there is a trickle of current flowing down in each segment so we can use a current bias on the top electrodes and bias each individual segment separately. We note that by convention, current flowing into an electrode is positive (and vice versa) so that the bias currents on the p-side electrodes are negative in a forward bias situation.

When applying bias on the top electrodes, we use multiple scan variables: this is because we want to control multiple currents simultaneously. If we omit a particular electrode from the scan (i.e. electrode $\# 1$), then only its voltage value would be controlled: it would be kept at its previous value during the new scan. This means that as we apply current on the top electrodes, the voltage of these electrodes changes; meanwhile, the voltage on the bottom electrode stays fixed at -0.8 V but the current on this electrode changes.

The current scans are split into three steps: the first step initializes the coupled RTG model at a point below threshold, as described in Sec. 21.2. The second one ramps the gain segment above threshold to produce the L-I curve of the laser. The last scan keeps the gain segment current at its previous value but applies a tuning current to the middle segment. In the last two scans, the photon coupling is turned on with solve_rtg=yes.

Post-Processing

Once the simulation has been run, results can be plotted using the following .plt file:

```
$file:tune.plt
$ **************
begin_pstprc
plot_data plot_device=postscript
get_data sol_inf = tune.out main_input=tune.sol scan_data=(1 4)
plot_scan scan_var=current_1 variable = rtg_left_power_allmode
get_data sol_inf = tune.out main_input=tune.sol scan_data=(5 5) &&
xy_data=(5 5)
```

```
plot_scan scan_var = current_4 variable = rtg_left_power_allmode &&
    scale_horizontal=-1
plot_scan scan_var = current_4 variable =rtg_peak_wavelength &&
    scale_horizontal=-1
get_data sol_inf = tune.out main_input=tune.sol &&
xy_data=(4 4)
gain_spectrum variable=rtg_spectrum
get_data sol_inf = tune.out main_input=tune.sol &&
xy_data=(5 5)
gain_spectrum variable=rtg_spectrum
lplot_xy variable=band xy_from=(0.5 1.1) &&
    xy_to=(0.5 2.2) z=200.
splot_xyz variable=wave_intensity xy_from=(0.05, 0.0) xy_to=(0.05 3.38) &&
    grid_sizes=(80, 20) view_zrot=20.
end_pstprc
```

As before, we use the plot_scan statement to plot bias-related data. However because of our current convention, we need to use a scaling factor of -1 to plot curves in the usual direction when using the current of the top electrodes.

The L-I curve during bias ramp is shown in Fig. 21.11. We plot versus the current on electrode \#2 since the bottom electrode has current contributions from other segments. We also plot the power on the left facet since we have already determined that the DBR section on the right is highly reflective.
To plot the results of the tuning, we do the same with current $\# 3$. As can be seen in Fig. 21.12 a), the tuning current produces small variations in the output power of the device. This is due to changes in the position of the longitudinal modes with respect to the peaks of the gain curve and DBR reflection spectrum. As the power of one mode goes down, a new mode becomes favored by the cavity and a mode hop occurs. This can be shown by plotting the changes in the peak mode wavelength vs bias, as seen in Fig. 21.12 b).
For structural data, the same rules as in Sec. 21.2 apply.

Figure 21.11: Bias ramp in gain segment of tunable DBR laser

Figure 21.12: Tuning characteristics of DBR laser

Figure 21.13: 2D cut of VCSEL

21.5 VCSELS \backslash jim__vcsel

This example is a basic vertical cavity surface emitting laser (VCSEL). Since the optical propagation takes place perpendicularly to the active region, we will use a different method to define segments and sections.

Layer Structure

This VCSEL is a GaAs-based MQW device designed to lase at $0.835 \mu m$. The DBRs consist of alternating $\mathrm{Al}_{0.25} \mathrm{Ga}_{0.75} \mathrm{As} / \mathrm{AlAs}$ quarter-wave layers. However, since it would require a lot of mesh to model all the layers of the DBR stack, we approximate this region by an average material $\left(\mathrm{Al}_{0.625} \mathrm{Ga}_{0.375} \mathrm{As}\right)$ as shown in Fig. 21.13. This is only for the purposes of the electrical simulation though: to model the optical propagation, we must explicitly consider the alternating layers of the DBR.

Optical Propagation Model

Since the light propagation takes place in the vertical direction, the layer file of a VCSEL must also define the optical cavity. Strictly speaking, each individual layer should be considered as an individual section for the purposes of propagation but that would require too much computation time.

Instead, groups of layers are assigned to the same section by assigning them a vcsel_type label in the layer statement. This label refers to a section specified
by vcsel__section which defines the optical propagation model used for a particular layer or group of layers. New users of PICS3D may find it easier to use the LayerBuilder GUI to define VCSEL sections: right-click on a given layer and select the VCSEL tab.

For example, the average layer used to represent the DBR electrically is assigned a model that describes propagation in a periodic stack of layers. The spacer region is a single layer and is treated as such optically. For reasons that are explained below, the MQW region is also approximated by a single layer.
When defining VCSEL sections, care must be taken not to interleave section labels: it is not supported by the software at this time. For example, assigning a particular section label (e.g. "b") to the barrier region and another to the well region (e.g. " w ") may result in the label sequence "b/w/b" which would be an error and produce incorrect section lengths. Therefore, we recommend that a single VCSEL section label be used for the entire MQW region.

In a simple VCSEL design such as this one, the user needs to define only five VCSEL sections: n-DBR, n-spacer, mqw_active, p-spacer, p-DBR. This is shown in the .layer file below:

```
begin_layer
$layer_input_convention layer_unit=relative ref_wavelength=0.84
$
column column_num=1 W=7.5 mesh_num=4 r=1.
$
bottom_contact column_num=1 from=0 to=7.5 contact_num=1
$
$ to save mesh, use effective media: AlGaAs Al=0.625
$ n-mirror
$
```

vcsel_section vcsel_type=n-dbr \&\&
dbr_period_from_macro=yes \&\&
active=no mesh_points=10
\$ this is the effective medium
layer_mater macro_name=algaas var1=0.625 column_num=1 var_symbol1=x
\$ let's define a DBR period using macro like this (use column 1 only)
\$ (also possible to define grading within a DBR period)
vertical_dbr_layer_mater macro_name=algaas var_symbol1=x var1=0.25 \&\&
thick=0.0595

```
vertical_dbr_layer_mater macro_name=algaas var_symbol1=x var1=1. &&
    thick=0.0706
$ thickness here is actually determined by DBR periods above
layer d=1. n=15 r=0.9 &&
    n_doping1=2.e24 vcsel_type=n-dbr use_dbr_period=29
$
$ add a spacing layer Al(0.6) GaAs of 1 lambda: 0.825/3.2=0.26
$
$ We choose the spacer carefully because the emission
$ wavelength depends on it.
$
vcsel_section vcsel_type=n-spacer &&
    grating_model=1layer active=no &&
    mesh_points=5
layer_mater macro_name=algaas var1=0.6 column_num=1 var_symbol1=x
layer d=0.23 n=6 r=0.9 vcsel_type=n-spacer
$
$ MQW system:
$
vcsel_section vcsel_type=mqw_active &&
    grating_model=1layer active=yes &&
    mesh_points=9
include file=jim.bar
include file=jim.well
include file=jim.bar
include file=jim.well
include file=jim.bar
include file=jim.well
include file=jim.bar
$
$
$ add a spacing layer Al(0.6) GaAs of 1 lambda: 0.825/3.2=0.26
$
$ We choose the spacer carefully because the emission
$ wavelength depends on it.
$
vcsel_section vcsel_type=p-spacer &&
    grating_model=1layer active=no &&
    mesh_points=5
$
layer_mater macro_name=algaas var1=0.6 column_num=1 var_symbol1=x
layer d=0.23 n=6 r=0.9 vcsel_type=p-spacer
```

```
$
$ to save mesh, use effective media: AlGaAs Al=0.625
$
vcsel_section vcsel_type=p-dbr &&
    dbr_period_from_macro=yes &&
    active=no mesh_points=10
$ effective medium layer
layer_mater macro_name=algaas var1=0.625 column_num=1 var_symbol1=x
$ let's define a DBR period using macro like this (use column 1 only)
$ (also possible to define grading within a DBR period)
vertical_dbr_layer_mater macro_name=algaas var_symbol1=x var1=1. &&
    thick=0.0706
vertical_dbr_layer_mater macro_name=algaas var_symbol1=x var1=0.25 &&
    thick=0.0595
$ thickness here is actually determined by DBR periods above
layer d=1. n=12 r=1.1 &&
    p_doping1=3.e24 vcsel_type=p-dbr use_dbr_period=20
$
top_contact column_num=1 from=0 to=7.5 contact_num=2
$
end_layer
```

Note that we used the include statement above to repeat the MQW more easily. The well and barrier regions are defined below:
layer_mater macro_name=algaas var $1=0.25$ \&\&
column_num=1 var_symbol1=x
layer $d=0.0100 \mathrm{n}=3 \mathrm{r}=1 . \mathrm{xp} 1=1 \mathrm{xp} 2=1 \mathrm{vcsel}$ _type=mqw_active
layer_mater macro_name=gaas \&\&
column_num=1 active_macro=AlGaAs/AlGaAs \&\&
avar1=0. avar2=0.25 \&\&
avar_symbol1=xw avar_symbol2=xb
layer $d=0.0070 \mathrm{n}=3 \mathrm{r}=1 . \mathrm{xp} 1=1 \mathrm{xp} 2=1 \mathrm{vcsel}$ _type=mqw_active

When using the LayerBuilder GUI, MQW regions can also be created easily by copying and pasting layers. However, when using this method, it is recommended that the VCSEL sections be defined only after all layers have been copied. The
reason for this is that VCSEL section labels get copied right along with the layer itself which can inadvertently produce alternating section labels.

The thickness of the n and p spacer regions determines the cavity length and thus, the lasing wavelength. Since longitudinal modes are found where the round-trip phase is a multiple of π, it is common to use a quick rule (thickness $=\frac{\lambda}{n}$) when designing VCSELs.

However, this approximation does not include the phase contribution from the DBR mirrors (penetration depth) and propagation in the active region (non-zero thickness). Therefore, choosing the spacer thickness is an iterative process: the estimate above can be used as a starting guess but the optimal thickness will likely be a bit smaller. We recommend using the round-trip gain (RTG) preview from .sol to facilitate the procedure; see below or Sec. 21.2 for details.

When the .layer file is processed, it creates a .vcsel file in addition to the usual output files. This contains various statements such as section that define the longitudinal cavity model that will be used by PICS3D in the .sol file. The starting and ending points of these sections should correspond to the layer positions defined above:

```
$
$ type:n-dbr
section length= 0.377290000000E-005 &&
    sec_num= 1 mesh_points= 10 &&
    active=no dbr_period_mater= 1
passive_3d nref_type2=2.e24 index_nref=2.e24 &&
    sec_num = 1
$
$ type:n-spacer
section grating_model=1layer &&
    length= 0.230000000000E-006 &&
    sec_num= 2 mesh_points= 5 &&
    active=no
passive_3d nref_type2=2.e24 index_nref=2.e24 &&
    sec_num = 2
$
$ type:mqw_active
section grating_model=1layer &&
    length= 0.610000000000E-007 &&
    sec_num= 3 mesh_points= 9 &&
    active=yes
$
$ type:p-spacer
section grating_model=1layer &&
    length= 0.230000000000E-006 &&
```

```
    sec_num= 4 mesh_points= 5 &&
    active=no
passive_3d nref_type2=2.e24 index_nref=2.e24 &&
    sec_num = 4
$
$ type:p-dbr
section length= 0.260200000000E-005 &&
    sec_num= 5 mesh_points= 10 &&
    active=no dbr_period_mater= 5
passive_3d nref_type2=2.e24 index_nref=2.e24 &&
    sec_num = 5
section_location start = 0.000000000000E+000 end= 0.689590000000E+001
```


Simulation Setup

The following .sol file is used to run the simulation:

```
$file:jim.sol
$************
begin
load_mesh mesh_inf=jim.msh
include file=jim.gain
include file=jim.doping
output sol_outf=jim.out
more_output rtgain_scan=yes
$
$ ***************************
$ VCSEL parameters:
$
vcsel_model index_core=3.2 index_cladding=1.0 &&
    core_radius =7.5 bessel_order=0
sor_par max_iter=0
init_wave backg_loss=500 init_wavel=0.83 wavel_range=(0.75, 0.90)
cylindrical axis=y
$
newton_par damping_step=5. var_tol=1.e-9 res_tol=1.e-9 &&
    max_iter=100 opt_iter=15 stop_iter=50 print_flag=3
$restart
equilibrium
rtgain_phase density=4.5e24
$stop
```

```
$
newton_par damping_step=2. var_tol=1.e-2 res_tol=1.e-3 &&
    max_iter=50 opt_iter=25 stop_iter=10 print_flag=3 change_variable=yes
scan var=voltage_1 value_to=-1.3 print_step=1.3 &&
    init_step=0.2 min_step=1.e-5 max_step=0.5
$ better to start with low RTG and progress slowly
$ auto_finish=rtgain is mandatory to get RTG ready
$
scan var=current_1 value_to=8.e-3 print_step=0.15e-3 &&
    init_step=0.1e-4 min_step=1.e-6 max_step=0.5e-3 &&
    auto_finish=rtgain auto_until=0.95 auto_condition=above
$ it is wise to start with a small step here.
scan var=current_1 value_to=8.e-3 solve_rtg=yes &&
    init_step=0.01e-3 max_step=0.1e-3
$
end
$*****************************
begin_zsol
longitudinal ref_wavel=0.825d-6 left_f_refl=0.32 right_f_refl=0.32
```

```
$
```

\$
include file=jim.vcsel
include file=jim.vcsel
\$
\$
mode_srch iter_num=75 wavel_xrange=(0.75e-6 0.9e-6)
mode_srch iter_num=75 wavel_xrange=(0.75e-6 0.9e-6)
bias3d step_num=10
bias3d step_num=10
end_zsol
end_zsol
\$

```

As we previously discussed in Sec. 6.4, all PICS3D simulations are in 3D. However, since this VCSEL has rotational symmetry, only a single mesh plane is required: this means that most of the setup steps are the same as in a 2 D simulation. What turns this example into a 3D simulation is the simple addition of the cylindrical statement: the y axis of the .layer file becomes the z axis of the cylindrical system defined in 6.2.

Since this simulation is using cylindrical coordinates, a different mode solver must be used. In this example, we use the fiber-like EIM model from Sec. 17.2 as defined in the vcsel__model statement. As a result, many of the parameters from init__wave are
inoperative. Here, this statement should only be used to define an initial wavelength estimate for the mode solver, a wavelength range for material properties as well as the background propagation loss coefficient.

\section*{Optical Propagation Model}

The RTG is calculated by using a reference point in the cavity. For best results, this point should be in the middle of the gain region so we modify the default value of ref_midpoint in the longitudinal statement. We also use this statement to specify the facet boundary conditions that lie beyond the DBR layers and the reference wavelength for the longitudinal mode search.

The sections that define the optical cavity were generated by the layer.exe program earlier. By adding the jim.vcsel file to the simulation with the include statement, the .sol file can use this information.

\section*{Longitudinal Mode Search}

Since a DBR cavity is very short, it must be tuned correctly to make the most of the available material gain: the spacer thickness must be adjusted to get the desired emission wavelength and the DBR stacks have to be optimized for this particular wavelength.
To do this, we use the RTG preview we introduced in Sec. 21.2. This previews the round-trip gain of the cavity using the tabulated gain from the .gain file and does a preliminary search for longitudinal modes. The output is shown in the .log file:
```

Longitudinal modes found:
Wavelength (um) Round-Trip-Gain
0.895948E+000 0.447049E+000
0.889152E+000 0.615152E+000
0.834478E+000 0.997190E+000
0.785883E+000 0.437601E+000
0.780535E+000 0.344013E+000
0.771981E+000 0.330875E+000
0.760833E+000 0.500443E+000
0.752508E+000 0.136641E+000
Printing standing wave pattern near the active
region along with MQW information
End of Printing
Longitudinal standing wave gain
enhancement factor gfactor_stdwave= 1.70915643886328

```


Figure 21.14: Feedback provided by bottom(left) and top(right) DBR stacks

In addition to this information, more data is available by using the plot_rtgain statement in the.rtgain file. For example, we can verify the DBR stacks individually by comparing the left (bottom) and right (top) RTG values with respect to the cavity reference point defined earlier. This is shown in Fig. 21.14.
For VCSELs, additional information is available from the standing wave file (.stw) generated by the RTG preview. This information is provided by adding standing_wave to the plot_rtgain statement.

For example, the standing wave overlap with the quantum well region is shown in Fig. 21.15. In edge-emitting lasers, the standing wave is in the plane of the MQW region so its contribution usually averages out. In a correctly tuned VCSEL cavity however, the standing wave produces significant gain enhancement: the value is shown in the .log printout above.

\section*{Bias setup}

When applying bias, we follow the guidelines of Sec. 4.2. Since VCSELs have very low threshold currents, the initial voltage scan not only terminates on a current condition, it also initializes the coupled RTG model. That model is turned on by solve_rtg=yes in the following scan statement.
In previous sections, we tried to emphasize the fact that the RTG initialization should not take place at too low a bias value. This general rule does not apply to VCSELs since the cavity is very short: even with a wide search window, there are few longitudinal modes so it is unlikely that the lasing mode will be missed in the


Figure 21.15: Standing wave pattern of VCSEL and overlap with MQW region
below-threshold search. However, we still need to turn on the photon coupling before threshold is reached: the auto_finish=rtgain scan must use small bias steps in order not to overshoot the desired bias point.

\section*{Post-Processing}

Once the simulation has been run, results can be plotted using the following .plt file:
```

\$ ***************
\$file:jim.plt
\$**************
begin_pstprc
plot_data plot_device=postscript
get_data main_input=jim.sol sol_inf=jim.out \&\&
xy_data=(4 4) scan_data=(1 4)
\$
plot_scan scan_var=current_1 \&\&
variable=rtg_2facet_power_allmode
plot_scan scan_var=current_1 \&\&
variable=rtg_left_power_allmode
plot_scan scan_var=current_1 \&\&
variable=rtg_right_power_allmode

```


Figure 21.16: Band diagram of VCSEL
```

gain_spectrum variable=rtg_spectrum
\$
\$ Plot at xy cross sections first
\$
plot_1d variable=band from=(0.5 0.0) to=(0.5 6.9)
plot_2d variable=total_curr grid_sizes=(35, 35)
plot_2d variable=wave_intensity grid_sizes=(35, 35)
end_pstprc

```

Since the simulation uses only a single mesh plane, structural data is plotted using the same commands as for 2D simulations. For example, the band diagram in Fig. 21.16 was generated with the plot__1d statement. The ( \(\mathrm{x}, \mathrm{y}\) ) coordinates are equivalent to \((\mathrm{r}, \mathrm{z})\) in the cylindrical system.

For bias-dependent data, the same plot_scan statement is used. The 3D nature of the simulation is already taken into account so unlike 2 D simulations, the current is plotted in Amperes. We show in Fig. 21.17 the power from the "right" side of the device which corresponds to the top side of the VCSEL: there are fewer DBR layers on that side of the device so it is where most of the output power comes out.


Figure 21.17: Emission power from top facet

\section*{Part V}

\section*{REFERENCE}


\section*{Chapter 22}

\section*{COMMAND SYNTAX}

\subsection*{22.1 Introduction}

This chapter explains the syntax of the various statements used in our software. Each statement also supports a number of parameters: they are detailed in the relevant section below.

\subsection*{22.2 2nd_harmonic}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline freq_shd1 & real & {\([0.1 \mathrm{e} 9](\mathrm{Hz})\)} \\
\hline freq_shd2 & real & {\([0.1 \mathrm{e} 9](\mathrm{Hz})\)} \\
\hline freq_shd3 & real & {\([0.1 \mathrm{e} 9](\mathrm{Hz})\)} \\
\hline freq_shd4 & real & {\([0.1 \mathrm{e} 9](\mathrm{Hz})\)} \\
\hline freq_shd5 & real & {\([0.1 \mathrm{e} 9](\mathrm{Hz})\)} \\
\hline freq_shd_num & intg & {\([1]\)} \\
\hline
\end{tabular}

The statement 2nd_harmonic is used to specify the the modulation frequencies at which the second harmonic distortion ratio is computed.

\section*{Parameters}
- freq_shd\# is the modulation frequency of channel number \(\#\).
- freq_shd__num is the number of modulation channels being considered for calculation.

\section*{Examples}

2nd_harmonic freq_shd1=1.e7 freq_shd2=1.e8 freq_shd3=2.e8 \&\&
freq_shd4=6.e8 freq_shd_num=4

\subsection*{22.3 3d_amplifier_model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline input_spec_shape & char & \\
\hline interband_bulk_absorption & char & \\
\hline wavelength & real & {\([1.55](\mu m)\)} \\
\hline input_watt & real & {\([0.001](\mathrm{Watt})\)} \\
\hline linewidth_ghz & real & {\([1].(\mathrm{GHz})\)} \\
\hline more_wavelength_pair & intg & {\([0]\)} \\
\hline
\end{tabular}

The statement 3d_amplifier_model is used to specify the input power and wavelength of the semiconductor optical amplifier (SOA) or photo-absorbing waveguide/modulator. It is assumed that input light is incident from the left facet and output power is from the right facet.

\section*{Parameters}
- input__spec_shape defines the spectral shape of the light input to the SOA or modulator. The input file defined here should consist of a text file with two columns: wavelength (in \(\mu \mathrm{m}\) ) and normalized intensity.
- interband_bulk_absorption is needed to turn on the optical generation due to the SOA/modulator light input when the device consists only of passive bulk regions. This step is necessary due to the separation (in the code) of the optical generation related to optical pumping (i.e. light_power) and the generation that occurs as a result of negative stimulated recombination.

3d__amplifier__model and waveguide__input are both designed with an amplifier model in mind and use this second term to amplify/absorb the input light. If no active material is present to trigger the calculation of the stimulated recombination term, the simulation may not behave correctly. Using this parameter substitutes the bulk absorption coefficient for the computed gain/absorption value in the stimulated recombination term.
- wavelength is the input light wavelength in \(\mu m\).
- input_watt is the input light power in Watt. This value is scaled by the light variable in the scan statement. This scaling factor is equal to zero under equilibrium conditions.
- linewidth_ghz can be used to quickly define an input spectrum having a flat profile and a certain width. It does not correspond to the linewidth of a laser line input to the device.
- more_wavelength_pair defines the number of additional mode peaks in the spectral window being solved. Each peak will be solved self-consistently to get the photon number and amplified spontaneous emission spectra.

\section*{Examples}
```

3d_amplifier_model wavelength=1.3 input_watt=1.e-4
\$ Bias steps omitted ...
scan var=light value_to=1 init_step=1.e-3 \&\&
var2=current_1 value2_to=18.5e-3 max_step=0.02 solve_rtg=yes

```

\subsection*{22.4 3d_attachment}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline xy & realx2 & {\(\left[\begin{array}{lll||}\hline 0 & 0\end{array}\left(\mu m^{2}\right)\right.\)} \\
\hline to_xy & realx2 & {\(\left[\begin{array}{ll}0 & 0\end{array}\right]\left(\mu m^{2}\right)\)} \\
\hline zeg_num & intg & {\([1]\)} \\
\hline to_zseg_num & intg & {\([1]\)} \\
\hline
\end{tabular}

In a conventional 3D setup, z-segments are stacked on top of each other to form a long back to back sequence of 3D objects. The \(\mathbf{3 d}\) __attachment command is used to break this sequence and attach any z-segment to any previously defined z-segment: this is used to design complicated 3D structures.

\section*{Parameters}
- \(x y\) is a reference point on the segment being attached. This point will be connected to to__xy during the attachment process.
- to__xy is a reference point on the segment that is the target of the attachment.
- zeg_num is the segment being attached.
- to_zeg_num is the segment that is the target of the attachment.

\section*{Examples}
```

z_structure uniform_zseg_from=0 uniform_zseg_to=1 \&\&
zseg_num=2 zplanes=4
z_structure uniform_length=0.3 \&\&
zseg_num=3 zplanes=4
3d_attachment xy=(0.4 0.4) to_xy=(0.5 0.5) \&\&
zseg_num=3 to_zseg_num=2

```

\subsection*{22.5 3d_plane_control}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline z_link_same_mater_only & char & {\([\) no \(]\)} \\
\hline min_cyl_plane_distance & real & {\([1 . \mathrm{e}-4](\mathrm{um})\)} \\
\hline scale_z_coupling & real & {\([1]\).} \\
\hline
\end{tabular}

The statement \(3 \mathrm{~d} \_\)plane_control is similar to \(3 \mathrm{~d} \_\)solution__method and is used to control the connectivity between stacked mesh planes in a 3D simulation.

\section*{Parameters}
- z__link_same__mater_only would force mesh connectivity only between the same material. This can help avoid undesirable current leakage through different materials.
- min_cyl_plane__distance specifies a minimum distance between planes stacked in a cylindrical system. At \(r=0\), the distance between planes is also zero and allowing mesh connectivity can cause problems in some cases.
- scale_z__coupling would be used to artificially scale the coupling coefficient (in units of areas) between z-planes.

\section*{Examples}
```

3d_plane_control z_link_same_mater_only=yes

```

\subsection*{22.6 3d_solution_method}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline 3d_flow & char & [yes],no \\
\hline z_connect & char & yes,[no] \\
\hline z_connect_method & char & [gpc1],gpc2 \\
\hline xy_compatible_mesh & char & yes,[no] \\
\hline traveling_wave_model & char & yes,[no] \\
\hline suprem_insert_mesh & char & yes,[no] \\
\hline save_z_connect_data & char & yes,[no] \\
\hline load_z_connect_data & char & yes,[no] \\
\hline skip_fv_data & char & yes,[no] \\
\hline
\end{tabular}

The statement 3d__solution__method is used to define the solution method for a 3D structure. It is related to the statement z_structure.

Note that this is used only for devices with more than one mesh plane. Cylindrical devices with a single mesh plane rely on rotational symmetry to define the third dimension and should use the cylindrical statement instead.

\section*{Parameters}
- 3d_flow is obsolete and used for historical reasons only. All current versions of the software should use \(\mathbf{3 d} \_\)flow \(=\)yes when modeling devices with more than one mesh plane. If necessary, the electrical connection between mesh planes can be turned off with \(\mathbf{z}\) _connect.
- z__connect is used when modeling multiple mesh planes at once is required (as in the coupled-RTG method of PICS3D) but it is not necessary to allow current to flow between planes. This should not be used in devices where the main current flow direction is perpendicular to the mesh planes.
- z_connect_method controls the algorithm used to evaluate the connection between mesh points on neighboring planes; this connection is a function of the overlap between the polygon boxes surrounding each mesh points. Two methods are available: gpc1 which favors speed and gpc2 which favors accuracy.
- xy_compatible_mesh can be used to simplify the problem when all mesh planes use the same identical layout. The software will alter the way is positions planes at z-segment boundaries and will not calculate the mesh point overlap between planes. Warning: using this option when the planes are not compatible is a serious error so this option should be used with care.
- traveling_wave__model is used in 3D amplifier and SLED models in PICS3D. It is used to calculate the round-trip propagation based on power flux rather then optical fields.
- suprem_insert_mesh is used only when importing 3D mesh data from CSUPREM where additional bent mesh planes have been added.
- save_z_connect_data instructs the software to save the connection data between mesh planes. In subsequent simulations, load_z__connect_data may be used to speed up the simulation by re-using these results.
- skip_fv__data instructs the software not to store filling volume data. This statement should be used in simulations where multiple 2D devices are solved using a single 3D mesh but the devices are not actually monolithically integrated.

\section*{Examples}
```

3d_solution_method 3d_flow=yes

```

This setting is used for full 3D simulations in APSYS.

3d_solution_method 3d\_flow=yes z_connect=no

In PICS3D the above would mean decoupling all plane interactions except for the optical wave propagation (coupled round-trip gain).

\subsection*{22.7 3drayplot_angle}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & void \\
\hline smooth & char & {\([\) yes \(]\) no } \\
\hline view_xrot & real & {\([0]\).} \\
\hline view_zrot & real & {\([0]\).} \\
\hline theta_range & realx2 & {\([0.180]\).} \\
\hline phi_range & realx2 & {\([0.360]\).} \\
\hline smooth_width & real & {\([8].(\) degree \()\)} \\
\hline
\end{tabular}


Figure 22.1: The spherical coordinates used for raytracing commands

3drayplot__angle is used after a 3D raytracing simulation to plot the emitted power distribution. The power is shown in the form power(phi,theta) where the two angles (in degrees) are defined in the spherical coordinate system of Fig. 22.1.

In order to save time, it is common to use separate .plt files to do the raytracing simulation and plot its results. If that is the case and symmetry conditions have been enforced with set__3dray__mirror during the raytracing simulation, then this statement should be reused to guarantee the symmetry of the plot.
Note that 1D cuts of this data are available with the 3 d__rayplot__phi and 3d__rayplot__theta. This should be used when plotting results from a 2D simulation since the raytracing program will only emit rays in a plane: 3drayplot_angle cannot be used in that case.

\section*{Parameters}
- data_file copies the plot results to the specified data file.
- view_xrot rotates the plot around the phi-axis.
- view_zrot rotates the plot around the power-axis.
- theta_range narrows the area plot within theta angle range.
- phi_range narrows the area plot within phi angle range.
- smooth indicates if data smoothing is performed. This is usually recommended since there are only a finite number of rays in a given simulation.
- smooth_width is the width of the data broadening/smoothing. A Gaussian function is used for smoothing and this parameter is the standard deviation. The larger the standard deviation, the smoother the data curve appears to be.

\section*{Examples}

3drayplot_angle phi_range=(180. 360.)

\subsection*{22.8 3drayplot_bias}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & [transmitted] \\
\hline relative & char & {\([\) no \(]\) yes } \\
\hline bias_variable & char & {\([\) current \(]\) voltage } \\
\hline data_file & char & {\([\) void \(]\)} \\
\hline bias_electrode & intg & {\([1]\)} \\
\hline
\end{tabular}

3drayplot_bias is used to plot bias-dependent results from a 3D raytracing simulation.

In order to save time, it is common to use separate .plt files to do the raytracing simulation and plot its results. If that is the case and symmetry conditions have been enforced with set__3dray__mirror during the raytracing simulation, then this statement should be reused to scale the results properly.

\section*{Parameters}
- variable is the physical variable to be plotted. It takes one of the following values:
\begin{tabular}{||l|l||}
\hline variable & description \\
\hline total_source & Total power of the emission source. \\
transmitted & Total transmitted power. \\
semicond_absorb & Power absorbed in LED, excluding losses due to metal contacts. \\
contact_absorb & Power absorbed in LED due to metal contacts. \\
upper_half & Power emitted towards the upper half semi-sphere. \\
lower_half & Power emitted towards the lower half semi-sphere. \\
left_half & Power emitted towards the left half semi-sphere.
\end{tabular}
\begin{tabular}{l|l} 
right_half \\
front_half & \begin{tabular}{l} 
Power emitted towards the right half semi-sphere. \\
back_half
\end{tabular} \\
Power emitted towards the front half semi-sphere. \\
upper_side & Power emitted towards the back half semi-sphere. \\
lower_side & Power emitted through the upper side facet(s). \\
left_side & Power emitted through the lower side facet(s). \\
Power emitted through the left side facet(s). \\
right_side & Power emitted through the right side facet(s). \\
front_side & Power emitted through the front side facet(s). \\
back_side & Power emitted through the back side facet(s).
\end{tabular}
- relative indicates whether relative or absolute values are being plotted.
- bias__variable is the bias variable to appear in the horizontal axis of the plot.
- data_file copies the plot results in the specified data file.
- bias_electrode is the electrode/contact number of parameter bias__variable.

\section*{Examples}

3drayplot_bias variable=transmitted bias_variable=current

The above statement plots the total transmitted LED power versus the current from electrode number 1.

\subsection*{22.9 3drayplot_phi}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & {\([\) void \(]\)} \\
\hline smooth & char & {\([\) yes \(]\) no } \\
\hline polar & char & {\([\) yes \(]\) no } \\
\hline theta & real & {\([0\).\(] (degrees)\)} \\
\hline smooth_width & real & {\([8\).\(] (degree)\)} \\
\hline
\end{tabular}

3drayplot__phi is used after a 3D raytracing simulation to plot the emitted power distribution. The power is shown as a 1D of power(phi,theta) at a specific theta
value. Both angles are in degrees and are defined in the spherical coordinate system of Fig. 22.1.

In order to save time, it is common to use separate .plt files to do the raytracing simulation and plot its results. If that is the case and symmetry conditions have been enforced with set__3dray__mirror during the raytracing simulation, then this statement should be reused to guarantee the symmetry of the plot.

\section*{Parameters}
- theta is the fixed-theta angle for the plot of power versus phi. It ranges from 0 to 180 degrees.
- data_file copies the plot results to the specified data file.
- polar determines whether or not the results are shown in polar coordinates.
- smooth indicates if data smoothing is performed. This is usually recommended since there are only a finite number of rays in a given simulation.
- smooth_width is the width of the data broadening/smoothing. A Gaussian function is used for smoothing and this parameter is the standard deviation. The larger the standard deviation, the smoother the data curve appears to be.

\section*{Examples}

3drayplot_pho theta=0

\subsection*{22.10 3drayplot_project}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline view_xrot & real & {\([0]\).} \\
\hline view_zrot & real & {\([0]\).} \\
\hline distance & real & {\([1]\).} \\
\hline radius & real & {\([2]\).} \\
\hline position_phi & real & {\([270]\).} \\
\hline position_theta & real & {\([90]\).} \\
\hline
\end{tabular}

3drayplot__project is a post-processing statement for a 3D raytracing simulation. It shows the power distribution as projected onto a screen some distance away from


Figure 22.2: The variables distance and radius of 3drayplot_project statement
the LED as shown in Fig. 22.2. Position on the screen is determined by the angles phi and theta (see Fig. 22.1) of a spherical coordinate system centered on the LED.

\section*{Parameters}
- view_xrot rotates the plot around the phi-axis.
- view_zrot rotates the plot around the power-axis.
- distance is the distance between the screen center and the center of the LED.
- radius is the radius of the circle area of projection.
- position_phi is a screen center position defined by the angle phi.
- position_theta is a screen center position defined by the angle theta.

The angle values are given in degrees. The distance and radius are in units of meter.

\section*{Examples}

3drayplot_project radius=3. position_phi=90.

\subsection*{22.11 3drayplot_spectrum}
\begin{tabular}{|l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & [transmitted] \\
\hline data_file & char & \\
\hline relative & char & yes,[no] \\
\hline
\end{tabular}

3drayplot_spectrum is used after a 3D raytracing simulation to plot various wavelength-dependent results.

\section*{Parameters}
- variable is the variable being plotted. The definitions are the same as in 3drayplot__bias.
- data_file copies the plot results to the specified data file.
- relative is used to show plots using absolute power units or as a percentage.

\section*{Examples}

3drayplot_spectrum variable=transmitted relative=yes

\subsection*{22.12 3drayplot_surfpower}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & {\([\) void \(]\)} \\
\hline smooth & char & {\([y e s]\) no } \\
\hline side & char & \(-x,+x,-y,+y,-z,+\mathrm{z}\) \\
\hline x_range & realx2 & {\([-9999 .,-9999\).\(] (um)\)} \\
\hline y_range & realx2 & {\([-9999 .,-9999\).\(] (um)\)} \\
\hline smooth_width & real & {\([1].(\mathrm{um})\)} \\
\hline
\end{tabular}

3drayplot __surfpower is used to plot the surface emission power in a 3D ray tracing simulation.

\section*{Parameters}
- data_file copies the plot results to the specified data file.
- side determines which side is to be plotted.
- smooth indicates if data smoothing is performed.
- smooth_width is the width of the data broadening/smoothing. A Gaussian function is used for smoothing and this parameter is the standard deviation. The larger the standard deviation, the smoother the plot.
- x_range and y_range can be used to zoom in on a particular section of the plot. Note however that the original data is still limited by surface__power_grid in do__raytrace_3d.

\section*{Examples}

3drayplot_surfpower side=+y

\subsection*{22.13 3drayplot_theta}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & {\([\) void] } \\
\hline smooth & char & {\([\) yes \(]\) no } \\
\hline polar & char & {\([\) yes] no } \\
\hline phi & real & {\([90\).\(] (degrees)\)} \\
\hline smooth_width & real & {\([8\).\(] (degree)\)} \\
\hline
\end{tabular}

3drayplot__theta is used after a 3D raytracing simulation to plot the emitted power distribution. The power is shown as a 1D of power(phi,theta) at a specific phi value. Both angles are in degrees and are defined in the spherical coordinate system of Fig. 22.1.

In order to save time, it is common to use separate .plt files to do the raytracing simulation and plot its results. If that is the case and symmetry conditions have been enforced with set__3dray__mirror during the raytracing simulation, then this statement should be reused to guarantee the symmetry of the plot.

\section*{Parameters}
- phi is the fixed-phi angle for the plot of power versus theta. It ranges from 0 to 360 degrees.
- data_file copies the plot results to the specified data file.
- polar determines whether or not the results are shown in polar coordinates.
- smooth indicates if data smoothing is performed. This is usually recommended since there are only a finite number of rays in a given simulation.
- smooth_width is the width of the data broadening/smoothing. A Gaussian function is used for smoothing and this parameter is the standard deviation. The larger the standard deviation, the smoother the data curve appears to be.

\section*{Examples}

3drayplot_theta phi=90

\subsection*{22.14 a__bar}

The material statement a_well is an active layer macro statement used for zincblende materials to define the total hydrostatic deformation potential (eV) in the barrier of a quantum well. This value is split between the conduction and valence bands \(\left(a_{c}+a_{v}=a\right)\). The exact ratio between these values is determined by av__over__a in active__reg.

Please note that for wurtzite, a more complex strain model is required so this parameter is ignored. See ac__bar for details.

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.15 a_bulk}

This statement is obsolete. Please see ac__bulk for details.

\subsection*{22.16 a__well}

The material statement a__well is an active layer macro statement used for zincblende materials to define the total hydrostatic deformation potential (eV) in a quantum well or bulk active region. This value is split between the conduction and valence bands \(\left(a_{c}+a_{v}=a\right)\). The exact ratio between these values is determined by av_over_a in active_reg.

Please note that for wurtzite, a more complex strain model is required so this parameter is ignored. See ac__well for details.

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.17 absorption}

This material statement is used to defined the optical absorption or loss (in units of \(1 / \mathrm{m}\) ) in passive materials of the device. For active materials, this value is overridden by the internal gain calculations.

The default macro setting for this parameter is zero which means that a default background loss will be applied for this material. This background loss will be determined either by a hard-coded value in the software or from the backg_loss value in init_wave or set__wavelength. Note that conversely, a non-zero value of absorption will override the background loss for this material.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.18 ac_bar}
ac__bar is an active layer macro statement that is used for wurtzite materials [62]. It defines the hydrostatic deformation potential (in eV) applied to the conduction band in the barrier of a quantum well. This parameter is applied to the lateral strain coefficient \(\epsilon_{x x}\); see acz__bar for the matching coefficient which is applied to \(\epsilon_{z z}\).
This value is used to position the band edges based on the value of band__offset and the strained bandgap difference, as discussed in Sec. 10.1
The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.19 ac_bulk}

The material statement ac__bulk is a passive macro statement used to define the hydrostatic deformation potential (eV) applied to the conduction band in wurtzite bulk regions[62].

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\section*{Important Note}

This parameter is used internally to solve the bulk Wurtzite Hamiltonian and compute band edges as part of the fitting procedure for the effective masses in Sec. 13.1. However, it is not used to actually shift the conduction band that is used for transport.

Users who wish to see strain effects affect the position of bulk band edges are advised to modify the affinity statement to include the hydrostatic shift. It may also be necessary to use bulk_strain_exist=yes in wurtzite__offset__model.

\subsection*{22.20 ac_light}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline output_file & char & {\([\) void \(]\)} \\
\hline current_distr & char & {\([\) no \(]\) yes } \\
\hline versus_bias & char & yes [no] \\
\hline log_freq1 & real & {\([6]\).} \\
\hline log_freq2 & real & {\([12]\).} \\
\hline freq_point & intg & {\([20]\)} \\
\hline scanline & intg & {\([-9999]\)} \\
\hline scan_num & intg & {\([-9999]\)} \\
\hline
\end{tabular}
ac_light is a post-processing statement used to apply a small AC light signal to a photosensitive device being simulated. It is otherwise similar to ac__voltage and the required AC data must be gathered during the main simulation with the more_output statement.

\section*{Parameters}
- output_file is the output file where AC small signal analysis data for this statement will be saved.

- current_distr is used to indicate if AC current distribution data is to be saved in the output file for later use.
- versus_bias indicates if the plot is against bias (or scanned variable) or vs. the modulation frequency.
- log_freq1 is the starting frequency in \(\log 10\) scale for the frequency scan.
- log_freq2 is the ending frequency in \(\log 10\) scale for the frequency scan.
- freq_point is the number of frequency points for the AC scan.
- scanline is used only when versus__bias=yes. It is the same as in plot__scan.
- scan__num equals scanline-1.


\section*{Examples}
ac_light output_file=testlight.ac log_freq1=6. log_freq2=12. \&\&
freq_point=20

\subsection*{22.21 ac__parameters}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline output_file & char & {\([\) void \(]\)} \\
\hline log_scan & char & {\([\) yes \(]\) no } \\
\hline versus_bias & char & yes [no] \\
\hline scan_label & char & {[]} \\
\hline modulate_gain & char & {\([\) no], yes } \\
\hline mixmode & char & {\([\) no \(]\), yes } \\
\hline log_freq1 & real & {\([6]\).} \\
\hline log_freq2 & real & {\([12]\).} \\
\hline scale_lit & real & {\([1]\).} \\
\hline scale_curr & real & {\([1]\).} \\
\hline input_contact & intg & \\
\hline output_contact & intg & \\
\hline freq_point & intg & {\([20]\)} \\
\hline scanline & intg & {[]} \\
\hline scan_num & intg & {[]} \\
\hline
\end{tabular}
ac__parameters is used to set up the AC analysis for a 2-port high frequency model. Once the input and output contacts are defined, the analysis is performed with an AC voltage signal at the input and output contacts; the resulting current responses are saved in a data file so that AC characteristics (such Y- and S-parameters) can be plotted afterwards.

This statement is used in .plt files as a post-processing statement after the DC results are obtained. To use this statement, more__output should be used in the .sol file to instruct the program to save the necessary extra AC data while performing the DC simulation.

To apply the AC bias to a single electrode, use ac__voltage.

\section*{Parameters}
- output_file is the output file where AC small signal analysis data for this statement will be saved for later use. The simulator will assign an internal file name if this parameter is not defined.
- log_scan indicates whether frequency points are spaced equally on a logarithmic or linear scale.
- versus_bias indicates if the plot is against bias (or scanned variable) or vs. the modulation frequency.
In the first case, data sets at multiple bias values are used so the input range for the AC analysis is defined by the scan_data parameter of the preceding get_data statement. A single frequency value is used for all bias points.

In the latter case, a single bias value is used so the input range is instead set by xy_data in the same command. Multiple frequency points are used to analyse this single bias point. Note that the equivalence between the data set number and the exact voltage/current bias value is shown in the .log and .sol.msg files for each simulation.
- \(\log\) _freq1 is the starting frequency in \(\log 10\) scale for the frequency scan; the end of the range is given by log_freq2. If versus_bias=yes, these two values should be identical to set the single frequency at which the AC analysis is done.
- scale_lit is applicable for laser simulation and scales the light power to account for the symmetry of the device; scale_lit is similar but scales the laser current. Previous versions of LASTIP assumed symmetry and set both of these values to 2 by default; see plot_scan for more information.
- input_contact is the input contact in a 2-port system; similarly, output_contact is the output contact. For example, in the common emitter configuration of a BJT, the input contact would be the base while the output contact would be the collector.

Please note that during the AC analysis, all other contacts are assumed to have a zero AC voltage bias unless otherwise specified or controlled in some way. To define a floating electrode that can still supply a DC bias, an external circuit with a large inductance may be used.
- freq_point is the number of frequency points for the AC scan when versus_bias=no.
- scanline is used only when versus_bias=yes; the definition is the same as in plot_scan. This parameter filters the data sets defined in get__data so that only some of them get processed in the AC analysis.
Alternatively, scan_num = scanline- 1 may be used to select data sets. A previously-defined scan label may also be used with scan_label.
- modulate_gain is used in laser simulations to include the effects of the photon rate equation on the AC response.
- mixmode is used in mixed-mode (minipsice) simulations to include the effects of external circuit elements in the AC response.

\section*{Examples}

To plot y , s or h-parameters vs. the input voltage at 1 MHz :
\$ For purpose of demonstrating the plotting,
\$ let us plot y parameters assuming input=output=electrode \#1
get_data main_input=camel.sol sol_inf=camel.out \&\&
    scan_data=(3 13)
ac_parameters versus_bias=yes log_freq1=6. log_freq2=6. \&\&
    input_contact=1 output_contact=1 freq_point=2 scanline=3
plot_ac_parameters parameter_type=y smith_chart=no

For a frequency analysis between 1 kHz and 10 GHz for data set \(\# 6\) :
```

\$ contact 1 = collector
\$ contact 2 = emitter
\$ contact 3 = base
\$
\$ AC results
get_data main_input=bi_mi.sol sol_inf= bi_mi.out \&\&
xy_data=(l 6 6)
ac_parameters log_freq1=3. log_freq2=10. \&\&
freq_point=20 input_contact=3 output_contact=1
plot_ac_parameters parameter_type=y smith_chart=no
plot_ac_parameters parameter_type=s smith_chart=no
plot_ac_parameters parameter_type=s smith_chart=yes

```

\subsection*{22.22 ac_sparse__solver}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline use_mf & char & [yes],no \\
\hline
\end{tabular}
sparse_eigen_solver is used to control the sparse solver used in the .plt file for AC small signal analysis. The default setting is usually optimal and should be used unless there is a convergence problem.

\section*{Parameters}
- use__mf is used to indicate whether multi-frontal solver will be used.

\section*{Examples}
```

ac_sparse_solver use_mf=yes

```

\subsection*{22.23 ac_voltage}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline output_file & char & {\([\) void \(]\)} \\
\hline current_distr & char & yes, [no] \\
\hline log_scan & char & {\([\) yes \(]\), no } \\
\hline versus_bias & char & yes, [no] \\
\hline scan_label & char & {[]} \\
\hline modulate_gain & char & {\([\) no \(]\), yes } \\
\hline mixmode & char & {\([\) no], yes } \\
\hline log_freq1 & real & {\([6]\).} \\
\hline log_freq2 & real & {\([12]\).} \\
\hline scale_lit & real & {\([1]\).} \\
\hline scale_curr & real & {\([1]\).} \\
\hline contact_num & intg & \\
\hline freq_point & intg & {\([20]\)} \\
\hline scanline & intg & {[]} \\
\hline scan_num & intg & {[]} \\
\hline
\end{tabular}
ac__voltage is used to apply a small AC bias voltage on one of the electrodes; the resulting current responses are saved in a data file so that AC characteristics can be plotted afterwards.

This statement is used in .plt files as a post-processing statement after the DC results are obtained. To use this statement, more__output should be used in the .sol file to instruct the program to save the necessary extra AC data while performing the DC simulation.

For devices with more than two electrodes, ac_parameters may be used to perform a similar small-signal analysis using a two-port model.

\section*{Parameters}
- output_file is the output file where AC small signal analysis data for this statement will be saved for later use. The simulator will assign an internal file name if this parameter is not defined.
- current_distr instructs the software to output the AC current distribution instead of data related to the AC current on the electrodes. Since this current flow is shown vs. \(\mathrm{x}-\mathrm{y}\) coordinates, the AC analysis can only be done at a single frequency rather than over a range.
- log_scan indicates whether frequency points are spaced equally on a logarithmic or linear scale.
- versus_bias indicates if the plot is against bias (or scanned variable) or vs. the modulation frequency.
In the first case, data sets at multiple bias values are used so the input range for the AC analysis is defined by the scan_data parameter of the preceding get_data statement. A single frequency value is used for all bias points.
In the latter case, a single bias value is used so the input range is instead set by xy_data in the same command. Note that the equivalence between the data set number and the exact voltage/current bias value is shown in the .log and .sol.msg files for each simulation.
- log_freq1 is the starting frequency in \(\log 10\) scale for the frequency scan; the end of the range is given by log_freq 2 . If versus_bias or current_distr are set to yes, these two values should be identical to set the single frequency at which the AC analysis is done.
- scale_lit is applicable for laser simulation and scales the light power to account for the symmetry of the device; scale_lit is similar but scales the laser current. Previous versions of LASTIP assumed symmetry and set both of these values to 2 by default; see plot_scan for more information.
- contact_num is the input contact for the AC voltage; all other contacts are assumed to have a zero AC voltage bias unless controlled in some other way.

Please note that during the AC analysis, all other contacts are assumed to have a zero AC voltage bias unless otherwise specified or controlled in some way. To define a floating electrode that can still supply a DC bias, an external circuit with a large inductance may be used.
- freq_point is the number of frequency points for the AC scan when versus_bias=no.
- scanline is used only when versus__bias=yes; the definition is the same as in plot_scan. This parameter filters the data sets defined in get__data so that only some of them get processed in the AC analysis.

Alternatively, scan_num = scanline-1 may be used to select data sets. A previously-defined scan label may also be used with scan_label.
- modulate_gain is used in laser simulations to include the effects of the photon rate equation on the AC response.
- mixmode is used in mixed-mode (minipsice) simulations to include the effects of external circuit elements in the AC response.

If this setting is used then the input source for the AC voltage are defined in the SPICE circuit file and the contact_num setting is ignored: all TCAD electrode voltages become unknowns that must be solved for.

\section*{Examples}

This example shows analysis vs. frequency for data set \#2. The real and imaginary parts of the AC current for electrode \#1 is used to obtain G-f and C-f plots, respectively.
```

\$ AC analysis at max. voltage
get_data main_input=camel.sol sol_inf=camel.out \&\&
xy_data=(2 2)
\$ AC analysis vs. freq.
ac_voltage log_freq1=6. log_freq2=10. contact_num=1
plot_ac_curr variable=capacitance_1
plot_ac_curr variable=conductance_1

```

We wish to emphasize that in the above, capacitance is obtained directly from the AC electrode current ( \(I=V Y\), with \(Y=G+j \omega C\) ). Different electrodes may have different AC current values, in which case the capacitance values will also be different; this may occur in current-blocking device simulations with numerical accuracy difficulties or in devices where multiple electrodes split the current. This definition of capacitance is thus similar to what is obtained experimentally and lumps together all effects which add a "lag" to the signal response including, but not limited to, junction capacitance and carrier transit time in thick layers.
This second example is the same as above except that instead of looking at data from the electrodes, the physical distribution of AC current inside the device is shown.
```

\$ AC analysis at max. voltage
get_data main_input=camel.sol sol_inf=camel.out \&\&
xy_data=(2 2)

```
\$ Physical distribution of AC current @ 1 MHz
ac_voltage current_distr=yes log_freq1=6. log_freq2=6.
plot_1d_ac_curr variable=elec_curr_y imag_part=no from=(0.5 0.) to=(0.5
plot_1d_ac_curr variable=hole_curr_y imag_part=no from=(0.5 0.) to=(0.5

The third example shows C-V and G-V plots at 1 MHz . The electrode used to input the AC signal (\#1) serves as the horizontal axis of the C-V plot which means that it was also used as the original DC bias electrode.
\$ We plot capacitance-voltage and conductance-voltage here at 1 MHz
\$ To generate reasonably smooth AC vs. bias plots, please save a sufficient \$ number of data sets. AC analysis plots cannot include equilibrium data. get_data main_input=camel.sol sol_inf=camel.out \&\&
scan_data=(3 13)
ac_voltage log_freq1=6. log_freq2=6. contact_num=1 \&\&
freq_point=2 versus_bias=yes scanline=3
set_xydata_for_scan scan_var=voltage_1
plot_ac_curr variable=capacitance_1
plot_ac_curr variable=conductance_1

Our final example is a mixed-mode AC simulation, new to v. 2015 of the software.
```

get_data main_input=tt.sol \&\&
sol_inf=tt.out xy_data=[[$$
\begin{array}{ll}{2}&{2}\end{array}
$$]

```
ac_voltage mixmode=yes log_freq1=6. log_freq2=10 \&\&
            current_distr=no freq_point=20
plot_ac_curr variable=t_real_2
plot_ac_curr variable=d_real_2
plot_ac_curr variable=capacitance_2
plot_ac_minispice variable=voltage node=2 element=void
plot_ac_minispice variable=current node=2 element=Dtcad1
plot_ac_minispice variable=current node=2 element=R2
plot_ac_minispice variable=current node=2 element=Dtcad1 imag_part=yes
plot_ac_minispice variable=current node=2 element=R2 imag_part=yes

As in the first example, capacitance is extracted from the electrode's (\#2) current response. However this time, the input AC voltage is located outside the device and is applied to a SPICE node, as shown in the following circuit file:
```


test circuit

R1 0 1 1k
Vcc 1 0 0.65V AC_INPUT
R2 1 2 1k
R3 0 2 0.5k
Dtcad1 2 0 tcadmesh
. END

```

\subsection*{22.24 ac_well}
ac__well is an active layer macro statement that is used for wurtzite materials [62]. It defines the hydrostatic deformation potential (in eV ) applied to the conduction band in a quantum well or in a bulk active region. This parameter is applied to the lateral strain coefficient \(\epsilon_{x x}\); see acz__well for the matching coefficient which is applied to \(\epsilon_{z z}\).

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\section*{Important Note}

In quantum wells, this parameter is used, among other things, to compute the band edges based on the value of band__offset and the strained bandgap difference, as discussed in Sec. 10.1.

However, in a bulk active region the position of the conduction band is inherited from the underlying passive macro. As such, this parameter is not used to actually shift the conduction band that is used for transport. This parameter is only used internally as part of the band fitting procedure for the effective masses in Sec. 13.1.

Users who wish to see strain effects affect the position of bulk active band edges are advised to modify the affinity statement (in the underlying passive macro) to include the hydrostatic shift. It may also be necessary to use bulk_strain__exist=yes in wurtzite_ooffset__model.

\subsection*{22.25 active_macro_override}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline complex_macro & char & {\([\mathrm{yes}]\)} \\
\hline
\end{tabular}

The statement active_macro__override is used to control how parameters that are defined in both active and passive macros co-exist in the simulation. For example, bandgap is necessary for both the gain calculations (active macro, can be used in stand-alone gain preview mode) and the electrical solver (passive macro, aligns the band edges). By default, the passive macro is always overridden by the active macro.

In the conventional active macros, passive parameters belonging to both the quantum well and barrier may be overridden. More complex situations can occur when using complex MQW macros where the distinction between barrier and well is fuzzier so this statement allows for a convenient way of going back to a simpler model and disabling the active macro override.

See also use__bulk__affinity, use__bulk__bandgap and use__bulk_property for a partial disabling of the active macro override system.

\section*{Parameters}
- The complex_macro flag turns on (default) or off the override of passive material parameters by complex MQW macros.

\subsection*{22.26 active_reg}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mode & char & {\([\) te],tm } \\
\hline broadening & char & \begin{tabular}{l} 
[lorentzian], landsberg, lands- \\
berg_2
\end{tabular} \\
\hline axial_approx & char & [yes],no \\
\hline valence_mixing & char & [no],yes \\
\hline analytical_recomb & char & [no],yes \\
\hline bandgap_renorm & char & [no],yes \\
\hline gain_coulomb & char & [no],yes \\
\hline exciton & char & [no],yes \\
\hline coulomb_dim & char & [quasi2d],2d,3d \\
\hline coulomb_screen & char & [yes],no \\
\hline
\end{tabular}
\begin{tabular}{||l|l|l||}
\hline franz_keldysh & char & {\([\) no \(]\), yes } \\
\hline mater_label & char & \\
\hline bulk_active & char & {\([\) no \(]\), yes } \\
\hline strained_bulk_active & char & {\([\) no \(]\),yes } \\
\hline uniaxial_strain & char & {\([\) no \(]\), yes } \\
\hline exch_coef & real & {\([0.0](\mathrm{eV} / \mathrm{m})\)} \\
\hline tau_scat & real & {\([2 . \mathrm{e}-13](\mathrm{sec})\)} \\
\hline a_scat & real & {\([0.0]\left(\mathrm{eV} \mathrm{m}^{3 / 2}\right)\)} \\
\hline thickness & real & {\([0.05](\mathrm{mm})\)} \\
\hline ncarr_loss & real & {\([0.0]\left(\mathrm{m}^{2}\right)\)} \\
\hline pcarr_loss & real & {\([0.0]\left(\mathrm{m}^{2}\right)\)} \\
\hline dip_factor & real & {\([1]\).} \\
\hline k_range & real & {\([0.06]\)} \\
\hline tau_bkg & real & {\([5 . \mathrm{e}-13](\mathrm{sec})\)} \\
\hline expo_mix & real & {\([0.01](\mathrm{eV})\)} \\
\hline active_loss & real & {\([0].(1 / \mathrm{m})\)} \\
\hline av_over_a & real & {\([0.33333]\)} \\
\hline k_range__wurt & real & {\([0.1]\)} \\
\hline diel_av & real & {\([13.1]\)} \\
\hline plasma_coeff & real & {\([1.0]\)} \\
\hline sommerfeld_fac & real & {\([1.7]\)} \\
\hline rmesh_fd & real & {\([0.2]\)} \\
\hline two_photon_loss & real & {\([0]\left(\mathrm{m}^{2}\right)\)} \\
\hline two_photon_carr & real & {\([0]\left(\mathrm{m}^{5}\right)\)} \\
\hline mater & intg & {\([1]\)} \\
\hline qw_print & intg & {\([1]\)} \\
\hline level_srch & intg & {\([30]\)} \\
\hline fd_mesh & intg & {\([80]\)} \\
\hline qw_plane & intg & {\([100]\)} \\
\hline coulomb_int_acc & intg & {\([6]\)} \\
\hline embedded_structure & intg & {\([0], 1,2\)} \\
\hline & & \\
\hline
\end{tabular}

The statement active_reg is used to define active regions where optical gain/absorption is calculated according to the usual formulas (i.e. Fermi's golden rule). This statement should be used in conjunction with get__active__layer to load active macro parameters such as composition.
active_reg also defines various gain calculation settings on a per-material basis. In practice, users who wish to alter these settings in their simulation want to change
them for all active regions in the device: this means using set__active_reg is often preferred to change these settings. With a few exceptions, the two statements share the same set of input parameters.

For wurtzite structures, additional relevant parameters are controlled by the modify__wurtzite statement.

\section*{Parameters}
- mode defines whether TE or TM modes are assumed in the gain calculation. The spontaneous emission is not affected by this choice because spontaneous emission is randomly polarized.
- broadening defines the type of energy level broadening used in the quantum well gain calculation. Bulk optical gain is not affected by this option since this effect is much smaller than in quantum wells. The following choices are available:
- lorentzian uses the ideal Lorentzian function with constant half-width \(\Gamma\) over all frequencies. Refer to Sec. 8.3.3 for details.
- landsberg uses a broadening function of the Landsberg type, i.e., a Lorentzian function with an energy and carrier concentration dependent \(\Gamma\). Note that this model does not include any broadening for optical gain below transparency (or loss). Therefore the gain spectrum contains step-like jumps in the negative gain region. Refer to Sec. 8.3.4 for details.
- landsberg_2 is a modified version of the ideal Landsberg model that combines useful features of the previous two options. The original Landsberg model assumes no broadening below transparency and results in sharp edges in the quantum well spectrum. The modified Landsberg model replaces the spectrum below transparency by a Lorentzian broadened gain with a different broadening tau equal to tau_bkg (for tau of background). Above the transparency, the gain function is a mixture of Landsberg broadened gain and Lorentzian broadened gain controlled by expo_mix. Physically the background Lorentzian broadening can be considered as contributions from scattering mechanisms other than carrier-carrier interaction.
- axial__approx turns on/off the axial approximation in k.p band dispersion calculation.
- valence_mixing turns on/off the valence mixing model in the k.p quantum well theory. The \(4 \times 4\) Luttinger-Kohn Hamiltonian is solved for the quantum well system based on the formulas of S.L. Chuang. For the wurtizte structure system, a \(6 \times 6\) Hamiltonian is used: refer to Chap. 13 for details.
- analytical_recomb is used to indicate if the analytical recombination term Bnp defined with the radiative_recomb statement in the passive macro is used to model the spontaneous recombination term. In bulk active regions, this is always the case but the default setting for quantum wells is to use the integral of the spontaneous recombination spectrum.
- override__barrier is here for historical reasons. It determines whether active layer macros from the quantum well can override passive layer macros for the barrier. This is the default behavior in newer versions of the software although setting this to no can recover the behavior of older versions.
- bandgap_renorm turns on the internal bandgap renormalization model when considering many-body Coulomb interaction. If this is used, exch_coef should be set to zero to avoid double-counting the bandgap renormalization term.
- gain_coulomb turns on many-body Coulomb interactions in the optical gain model. The shape of the gain and spontaneous emission spectrum may become more symmetric as a result of this model and the magnitude of the gain/PL spectrum may be enhanced.
- exciton turns on the exciton model.
- coulomb_dim specifies the dimension of the Coulomb potential used for the derivation of the exciton binding energy. The most appropriate for excitons confined to thin (but not zero thickness) semiconductor layers is the quasi2d model. \(3 d\) is a normal Coulomb potential without any spatial confinement; 2d is a Coulomb potential acting only in a 2-dimensional plane of charges (zero thickness) and is only used here for comparative studies.
- coulomb_screen means two options of Coulomb potential model for the purpose of finding binding energy of an exciton with screening ("yes") or without screening ("no").
- franz__keldysh turn on/off the Franz-Keldysh effect for bulk active layer.
- exch_coef is the bandgap renormalization coefficient due to exchange effects:
\[
\begin{equation*}
\Delta E_{g}=A_{x}\left(\frac{n+p}{2}\right)^{1 / 3} \tag{22.1}
\end{equation*}
\]

The value of this parameter sets \(A_{x}\); a typical value is \(\sim 10^{-10} \mathrm{eV} . \mathrm{m}\). Care should be taken not to double-count this effect if bandgap_renorm and gain_coulomb are used.
- tau__scat and a_scat are parameters defining the gain broadening due to carrier scattering. For the Lorentzian model, this defines an effective broadening
constant:
\[
\begin{equation*}
\frac{\hbar}{\tau}=\frac{\hbar}{\tau_{\text {scat }}}+a_{\text {scat }} \sqrt{\frac{n+p}{2}} \tag{22.2}
\end{equation*}
\]

For the Landsberg model, we simply have:
\[
\begin{equation*}
\Gamma_{0}=\frac{\hbar}{\tau_{\text {scat }}} \tag{22.3}
\end{equation*}
\]

Refer to Sec. 8.3 for more details.
- thickness defines the thickness of the active quantum well and is used to compute the subband structures of the quantum well in the absence of mesh information. Note that this parameter should be consistent with the device geometry given in the .geo input file. This parameter is not used for bulk active regions.
- ncarr_loss and pcarr_loss are the loss coefficients due to free carrier absorption for n and p carriers. pcarr_loss can also be used to model the intervalence band absorption effects because it is also proportional to the p-carrier densities. Note that this only applies for active regions. For passive regions, the equivalent statements elec_carr__loss and hole__carr_loss should be used in the material macro.
- dip_factor is an artificial scaling factor for the dipole moment of the interband optical transition.
- k_range specifies the k -space range within which the in-plane effective mass is fitted from k.p theory for a strained material. It is given in units of \(2 \pi / a_{0}\), where \(a_{0}\) is the lattice spacing of the substrate material. Large values tend to average out the details of the k.p band structure and produce lower optical gain. Small values tend to over-estimate the optical gain and run the risk of producing invalid fitted mass values. Caution: zone center masses can be negative in some material compositions and this may cause numerical trouble.
- tau_bkg is the background scattering lifetime. It is used with broadening \(=\) landsberg_2 to broaden the negative part of the gain spectrum.
- expo__mix defines the amount of mixing of Landsberg and Lorentzian broadening, used in an exponential factor
\[
\begin{aligned}
& \text { Gain }=\text { Gain }_{\text {lorentzian }} \exp \left(-\Delta E_{\text {imref }} / \text { expo_mix }\right) \\
& + \text { Gain }_{\text {landsberg }}\left(1-\exp \left(-\Delta E_{\text {imref }} / \text { expo_mix }\right)\right)
\end{aligned}
\]
where \(\Delta E_{\text {imref }}\) is the difference between Fermi level splitting and transition bandgaps. This formula indicates that when \(\Delta E_{\text {imref }}\) is greater than expo__mix,
the Lorentzian component is negligible and the Landsberg component takes over. expo__mix may be on the order of kT to signal the onset of thermallyactivated carrier-carrier scattering.
- active_loss is used to add a background loss to the active region to account for loss mechanisms other than interband transition and free carrier absorption.
- av__over__a is the fraction of hydrostatic potential appearing in the valence band. For wurtzite, refer to ac__bar and ac__well instead.
- \(\mathbf{k} \_\)range__wurt is the same as \(\mathbf{k} \_\)range except it applies to the wurtzite material system.
- diel__av is the average dielectric constant of the well and the barrier for the many-body gain model.
- plasma_coeff is the plasma coefficient used in the many-body gain model.
- sommerfeld_fac typically takes a value between unity and two. Often called the Sommerfeld enhancement factor, it characterizes the degree of contribution of continuum state excitons into the exciton absorption. The continuum state excitons give some background in absorption without absorption peak, which is characteristic for bound excitons.
- rmesh_fd is a mesh ratio used to control the uniformity of the finite difference mesh for the gain calculations. A schematic diagram illustrating the effect of various ratios is given in Fig. 22.22.
- two__photon_loss is a two-photon absorption term in \(S^{2}\) for this active region. See two__photon_loss for details.
- two__photon_carr is a free carrier loss coefficient related to the two-photon absorption process: these two effects combine to create an \(S^{3}\) loss term for this active region. See two__photon_carr for details.
- mater is the material number assigned to a specific material. This number should always be consistent with the value used in the mesh generator and .geo file. If a label has previous been assigned to the material, mater_label may be used instead.
- qw__print is a flag number controlling the amount of information on quantum well models printed to the screen and to the message file with extension ".msg". When the value is " 1 ", only limited or no amount of information is printed to the screen. When it is " 2 ", detailed information on the quantum well model such as subband levels and transition matrix elements is printed to a file with extension " .msg" or as a screen runtime message.
- level_srch is a parameter used in the case where the well width is very large ( 500 Åor greater) and the subband level finder can miss some quantum levels. To fix this problem, level_srch may be used to sample the boundary condition function to search for the subband levels. When subband levels are very close to the bottom of the energy bands, a large level_srch should be used.
- fd_mesh is the finite difference mesh points used in computing the active region MQW subbands.
- qw__plane takes 100,111 or 110. These are crystallographic planes used in the quantum MOS model. For non-polar or semi-polar wurtzite plane orientations, see modify__wurtzite.
- coulomb_int__acc is a selection number on the scale 1-9, which determines the order of Gauss-Legendre quadrature used in calculating integrals of electronhole Coulomb interaction matrix element. The result is subsequently use in calculating exciton binding energy by Ritz variational method.
- 1 corresponds to 2 nd order quadrature.
- 6 corresponds to 12 th order quadrature; this is the default value.
- 9 corresponds to 24 th order quadrature.
- embedded_structure takes types 1 and 2. If it is set to zero, no embedded structures are present for the present layer/region. It is used to define an active material embedded inside a regular active layer.
For type 1, it is used to define a corrugation grating in a \(\mathrm{DFB} / \mathrm{DBR}\) waveguide. A corrugation structure is regarded as two different kinds of active material embedded within an active layer material which has a material property equal to the overall average of the grating layer. The two embedded layers are considered active because interband model is used to calculate refractive index change. This kind of material was formerly referred to as "mildly active" because the gain at the lasing wavelength is close to zero: only the index change really matters.
The 2nd type of embedded structure involves a quantum dot (QDOT) embedded within the wetting layer (regular quantum well). For quantum dot material, material style "cx-" is required. The solver will combine the quantum levels of the dot and and wetting layer to calculate the optical gain and spontaneous emission.
- bulk_active switches the gain model to use bulk calculations rather than those for a QW. This parameter is intended to be used as part of the new shared material library system in the 2014 version.
- strained__bulk__active is used to enable the use of strain in zincblende bulk active macros: normally, zincblende macros only support strain in QW active macros. This parameter is currently of limited use and was developed to model SiGe lasers.
- uniaxial_strain switches the default strain calculations from biaxial strain to uniaxial strain in zincblende active macros. This parameter is currently of limited use and was developed to model SiGe lasers.
Note that in both models, the lateral strain from the epitaxial growth \(\left(\epsilon_{x x}\right)\) is defined by commands such as strain__well. For biaxial strain, we further set \(\epsilon_{y y}=\epsilon_{x x}\) while for uniaxial strain, we use \(\epsilon_{y y}=\epsilon_{z z}\).
The remaining strain component is obtained by enforcing a zero stress condition along the growth axis:
\[
\sigma_{z z}=0=C_{12} *\left(\epsilon_{x x}+\epsilon_{y y}\right)+C_{11} * \epsilon_{z z}
\]
where \(C_{11}\) and \(C_{12}\) are stiffness coefficients. Shear strain terms such as \(\epsilon_{x y}\) are not considered.

\section*{Examples}
active_reg exch_coef=3.e-10 \&\&
tau_scat=1.e-13 thickness=0.010 mater=3

\subsection*{22.27 active_reg_zdim}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline zdim & real & \(0.01(\mathrm{um})\) \\
\hline
\end{tabular}
active_reg_zdim is a statement used in the .layer file to define an active region thickness in the z direction. This is used in 3D simulations when each layer file represents a single \(\mathrm{x}-\mathrm{y}\) plane and the quantum well normal is along the z direction. The solver still needs to know the quantum well thickness to find the energy levels.

\section*{Parameters}
- zdim is the z-dimension thickness in microns.

\section*{Examples}
active_reg_zdim zdim=0.01

\subsection*{22.28 active_temper}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & \\
\hline ref_temper & real & {\([300\).\(] degree\)} \\
\hline delta_tau_scat & real & {\([0].(\mathrm{sec} / \mathrm{K})\)} \\
\hline delta_ncarr_loss & real & {\([0].\left(\mathrm{m}^{2} / \mathrm{K}\right)\)} \\
\hline delta_pcarr_loss & real & {\([0].\left(\mathrm{m}^{2} / \mathrm{K}\right)\)} \\
\hline delta_active_loss & real & {\([0].\left(\mathrm{m}^{-1} / \mathrm{K}\right)\)} \\
\hline delta_two_photon_loss & real & {\([0].\left(\mathrm{m}^{2} / \mathrm{K}\right)\)} \\
\hline delta_two_photon_carr & real & {\([0].\left(\mathrm{m}^{5} / \mathrm{K}\right)\)} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}

The statement active_temper is used to specify temperature dependence in some of the important parameters for the active region of a laser diode. This statement may be used in the gain or .sol files.
The linear temperature dependence of the parameters controlled by this statement is given by the following formula:
\[
\operatorname{apar}=\operatorname{apar} 0+\Delta \operatorname{apar}\left(T-T_{r e f}\right)
\]
where apar 0 is the initial value of the parameter at the reference temperature \(T_{\text {ref }}\) and \(\Delta a p a r\) is the rate of temperature variation.

Note that for parameters defined in a macro file (see section 22.456), the temperature dependence can also be written as a function in the macro itself.

\section*{Parameters}
- ref_temper is the reference temperature.
- delta_tau_scat is the rate of temperature change for the intra-band scattering lifetime.
- delta_ncarr_loss is the rate of temperature change for the intra-band electron free carrier absorption loss.
- delta_pcarr_loss is the rate of temperature change for the intra-band hole free carrier absorption loss.
- delta__active_loss is the rate of temperature change for the additional loss mechanism in the active region.
- delta_two_photon_loss is the rate of temperature change for the twophoton absorption coefficient in the active region.
- delta_two_photon_carr is the rate of temperature change for the carrierinduced two-photon loss absorption coefficient in the active region.
- mater is the material number assigned to the active region and must match the value in the active_reg statement. If a label has previously been assigned to this material, mater_label may be used instead.

\section*{Examples}
```

active_temper ref_temper=300 delta_tau_scat=-0.01e-13 mater=3

```

\subsection*{22.29 acz_bar}

Like ac__bar, this command defines the hydrostatic deformation potential in the barrier region of wurtzite quantum wells. However, it applies to the perpendicular strain \(\epsilon_{z z}\).

\subsection*{22.30 acz__well}

Like ac__well, this command defines the hydrostatic deformation potential in wurtzite quantum wells. However, it applies to the perpendicular strain \(\epsilon_{z z}\).

\subsection*{22.31 add_acmemory}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline megbyte & real & {\([0]\).} \\
\hline
\end{tabular}
add_acmemory is used to add memory to the ac solver. This is used only for special cases where the default memory allocation is insufficient.

\section*{Parameters}
- megbyte is the amount of memory in megabyte to be added.

\section*{Examples}
add_acmemory megbyte=2

\subsection*{22.32 add_arnoldimemory}
add__arnoldimemory is used to add memory to the direct Arnoldi eigenmode sparse solver. This is used only for special cases where the default memory allocation is insufficient. For more details, see the add__acmemory statement.

\subsection*{22.33 add_boundary}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline polygon_name & char & \\
\hline edge_points & charx2 & (void void) \\
\hline limits & realx2 & \((0.1 .0)(\mu \mathrm{m})\) \\
\hline boundary_num & intg 1 & \\
\hline
\end{tabular}
add__boundary is used in the mesh generator to define a boundary region on the edge of a given polygon. It should be used instead of the polygon statement's own boundary definition parameters when there are multiple boundaries on the same polygon edge.

\section*{Parameters}
- polygon_name is the name of the polygon.
- edge_points are the point labels (defined with the point statement) used to identify which edge of a polygon is being affected. Point labels should be given in counter-clockwise order.
- limits are the beginning and ending coordinates of the boundary. The first point label in edge__points is the zero reference.
- boundary__num is a number identifying the boundary region being applied to this polygon.

\section*{Examples}
add_boundary polygon_name=poly1 edge_points=(a1 a2) \&\&
limits=(0.0 1.0) boundary_num=1

\subsection*{22.34 add_mainmemory}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline megbyte & real & {\([0]\).} \\
\hline sparse_fill & real & {\([0\).\(] (megabyte)\)} \\
\hline symbolic & real & {\([0\).\(] (megabyte)\)} \\
\hline
\end{tabular}
add__mainmemory is used to add memory to the main solver. This is used only for special cases where the default memory allocation is insufficient. Usually, there will be error messages suggesting the use of this statement.

The most frequent case is 3 D simulations where the connection between mesh elements on different planes result in non-zero terms that are far from the sparse matrix diagonal. This requires using more fill-in terms.

\section*{Parameters}
- megbyte is the memory added to main sparse solver at the numerical factorization stage.
- sparse_fill is the memory added to the sparse filling space.
- symbolic is the memory added to the symbolic factorization stage of the sparse solver.

\section*{Examples}
add_mainmemory sparse_fill=50

\subsection*{22.35 add_rcled_lambertian}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mix_fraction & real & {\([0]\).} \\
\hline extraction & real & {\([0.1]\)} \\
\hline
\end{tabular}

This statement replaces rcled_mix_lambertian from previous versions of the software. Like its predecessor, it is used to artificially mix the angle-dependent optical power from the RCLED model with a background component having a Lambertian form. These two components can be understood as light being emitted from different parts of the LED.

Unlike its predecessor, this statement is used in the .plt post-processing rather than in the .sol file.

\section*{Parameters}
- mix_fraction is the fraction of the light having a Lambertian emission profile.
- extraction is the extraction efficiency for the Lambertian light component. The extraction for the RCLED component is determined internally.

\section*{Examples}
```

add_rcled_lambertian mix_fraction=0.2 extraction=0.1

```

\subsection*{22.36 add_thermalmemory}
add_thermalmemory is used to add memory to the thermal solver. This is used only for special cases where the default memory allocation is insufficient. See add__acmemory for further examples and details.

\subsection*{22.37 adjust_active_reg}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline valence_mixing & char & [void] \\
\hline exch_coef & real & \\
\hline tau_scat & real & \\
\hline ncarr_loss & real & \\
\hline pcarr_loss & real & \\
\hline dip_factor & real & \\
\hline active_loss & real & \\
\hline two_photon_loss & real & \\
\hline two_photon_carr & real & \\
\hline qw_print & intg & \\
\hline
\end{tabular}
adjust__active_reg is used in the .layer file to adjust the parameters of the active_reg statement that is automatically generated as part of the active material declaration when this file is processed. In general, this is not used and a global override of gain calculation settings with set__active__reg is preferred.

Refer to active_reg for further details.

\subsection*{22.38 adjust_column_screening}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline screening & real & {\([0.5]\)} \\
\hline
\end{tabular}
adjust_column_screening is used in the .layer file to locally adjust the screening coefficient of the set_polarization command. It can be used to account for local defects and surface states which compensate the fixed charge due to piezoelectric effects.

The modified screening coefficient will apply to all layer interfaces in a given column. See also adjust_layer_screening.

\section*{Parameters}
- screening is the local value of the screening coefficient for all layer interfaces in this column.

\section*{Examples}
```

column column_num=1 w=0.04 mesh_num=10 r=-1.1
adjust_column_screening screening=0.0

```

This will force all the interface charges in column \(\# 1\) to be zero.

\subsection*{22.39 adjust_doping}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline impurity & char & [void] \\
\hline pf_model & char & void \\
\hline level & real & \\
\hline
\end{tabular}
adjust_doping is used in the .layer file to adjust parameters in the doping statement that is automatically generated when processing the file. See dopingfor further details and examples.

\subsection*{22.40 adjust_layer_screening}
\begin{tabular}{|l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline interface & char & {\([\) top],bottom } \\
\hline screening & real & {\([0.5]\)} \\
\hline
\end{tabular}
adjust_layer_screening is used in the .layer file to locally adjust the screening coefficient of the set__polarization command. It can be used to account for local defects and surface states which compensate the fixed charge due to piezoelectric effects.

See also adjust__column__screening.

\section*{Parameters}
- interface defines the location of the interface whose screening coefficient is modified. The position is defined relative to the preceding layer statement.
- screening is the local value of the screening coefficient.

\section*{Examples}
layer_mater macro_name=gan
layer \(\mathrm{d}=0.0025 \mathrm{n}=20 \mathrm{r}=-1.1\)
adjust_layer_screening interface=top screening=0.44

This will modify the interface charges on top of the GaN layer.

\subsection*{22.41 affinity}
affinity is a passive macro material statement defining the electron affinity (in eV) of a material. In metal and resistors, this value is equal to the work function: it is the difference between the vacuum level and the conduction band edge. For active layers, affinity will be overridden by band offset parameters from the active macro.
The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.42 a1_bar}
ai__bar, \(\mathbf{i}=\mathbf{1} \ldots \mathbf{6}\) are a set of parameters used to define barrier properties in wurtzite quantum well active macros. They define the effective valence mass terms of the Hamiltonian, labelled as \(\left(A_{i}\right)\) in Ref [62]. The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.43 a2_bar}

See Sec. 22.42.

\subsection*{22.44 a3_bar}

See Sec. 22.42.

\subsection*{22.45 a4_bar}

See Sec. 22.42.

\subsection*{22.46 a5_bar}

See Sec. 22.42.

\subsection*{22.47 a6 bar}

See Sec. 22.42.

\subsection*{22.48 a1_bulk}
ai__bulk, \(\mathbf{i}=1 \ldots \mathbf{6}\) are a set of parameters used to define material properties in bulk wurtzite active macros. They define the effective valence mass terms of the Hamiltonian, labelled as \(\left(A_{i}\right)\) in Ref [62].
The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.49 a2 bulk}

See Sec. 22.48.

\subsection*{22.50 a3_bulk}

See Sec. 22.48.

\subsection*{22.51 a4_bulk}

See Sec. 22.48.

\subsection*{22.52 a5_bulk}

See Sec. 22.48.

\subsection*{22.53 a6_bulk}

See Sec. 22.48.

\subsection*{22.54 a1_well}
ai__well,i=1...6 are a set of parameters used to define well properties in wurtzite quantum well active macros. They define the effective valence mass terms of the Hamiltonian, labelled as \(\left(A_{i}\right)\) in Ref [62].

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.55 a2_well}

See Sec. 22.54.

\subsection*{22.56 a3 well}

See Sec. 22.54.

\subsection*{22.57 a4_well}

See Sec. 22.54.
22.58 a5_well

See Sec. 22.54.

\subsection*{22.59 a6 well}

See Sec. 22.54.

\subsection*{22.60 align_complex}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline x_range & realx2 & (um) \\
\hline
\end{tabular}

This statement defines the limits of a complex quantum-coupled region along the x axis. It is primarily used when importing mesh from CSUPREM.

See also y_from_bottom in begin__complex.

\subsection*{22.61 alignment_ref}

This statement defines a reference energy level used to compute Schottky contact barrier heights. It is commonly used when a single contact touches different materials.

This energy level is defined via a material macro and composition so all parameters are the same as in layer__mater.

\subsection*{22.62 alpha_n}

See electron__mobility

\subsection*{22.63 alpha_p}

See hole__mobility.


\subsection*{22.64 alpha_wavel}
alpha_wavel is the same as gain__wavel except that it plots the linewidth enhance factor \(\alpha\).

\subsection*{22.65 analytical__gain}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline import_fit_data & char & [no] \\
\hline fit_data_file & char & [fitgain.txt] \\
\hline import_spectrum_only & char & {\([\) no] } \\
\hline fit_density & real & {\([2 . \mathrm{e} 24]\left(\mathrm{m}^{-3}\right)\)} \\
\hline fit_density_p & real & {\([-9999].\left(\mathrm{m}^{-3}\right)\)} \\
\hline fit_gain & real & {\([10000]\left(\mathrm{m}^{-1}\right)\)} \\
\hline dg_dn & real & {\([1 . \mathrm{e}-19]\left(\mathrm{m}^{2}\right)\)} \\
\hline dg_dp & real & {\([1 . \mathrm{e}-19]\left(\mathrm{m}^{2}\right)\)} \\
\hline dg2_dlambda2 & real & {\([3 . \mathrm{e} 8]\left(\mathrm{m}^{-1} / \mu \mathrm{m}^{2}\right)\)} \\
\hline peak_wavelength & real & {\([0.83]\left(\mathrm{\mu m}^{2}\right)\)} \\
\hline peak_shift_n & real & {\([0].\left(\mathrm{m}^{-1} / \mu \mathrm{m}^{-3}\right)\)} \\
\hline peak_shift_p & real & {\([0].\left(\mathrm{m}^{-1} / \mathrm{mm}^{-3}\right)\)} \\
\hline
\end{tabular}

This statement overrides the internal gain calculations and replaces them with a simple analytical model often found in textbooks:
\[
\begin{align*}
g_{\text {peak }} & =g_{0}+\frac{\partial g}{\partial n}\left(n-n_{0}\right)+\frac{\partial g}{\partial p}\left(p-p_{0}\right) \\
\lambda_{\text {peak }} & =\lambda_{0}+\frac{\partial \lambda}{\partial n}\left(n-n_{0}\right)+\frac{\partial \lambda}{\partial p}\left(p-p_{0}\right)  \tag{22.4}\\
g(\lambda) & =g_{\text {peak }}-\frac{1}{2} \frac{\partial^{2} g}{\partial \lambda^{2}}\left(\lambda-\lambda_{\text {peak }}\right)
\end{align*}
\]

These values may be obtained by using the fit_gain__wavel statement in the .gain file.

\section*{Parameters}

Most of the parameters are defined in Eq. 22.4 above.
- import_fit__data uses fitting parameters from fit_data_file instead of the parameters from this statement.
- import_spectrum_only imports only the spectral shift information.
- fit_density and fit_density__p are equal to \(n_{0}\) and \(p_{0}\), respectively. By default, \(p_{0}=n_{0}\).
- fit__gain is \(g_{0}\).
- dg_dn and dg_dp are \(\frac{\partial g}{\partial n}\) and \(\frac{\partial g}{\partial p}\), respectively.
- dg2_dlambda2 is equal to \(\frac{\partial^{2} g}{\partial \lambda^{2}}\). It can be related to the gain width.
- peak_wavelength is \(\lambda_{0}\).
- peak__shift__n and peak__shift__p are \(\frac{\partial \lambda}{\partial n}\) and \(\frac{\partial \lambda}{\partial p}\), respectively.

\section*{Examples}
analytical_gain fit_density=1.5e24 peak_wavelength=1.55

\subsection*{22.66 auger_n}
auger_n is a passive macro material statement defining the Auger coefficient for electrons. See Sec. 5.1.1 for details.

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.67 auger__p}
auger_p is a passive macro material statement defining the Auger coefficient for holes. See Sec. 5.1.1 for details.

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.68 auto_tunneling}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline carrier_type & char & {\([\) both], electron, hole } \\
\hline max_range & real & {\([0.02](\mu m)\)} \\
\hline min_barrier & real & {\([0.1](\mathrm{eV})\)} \\
\hline ratio_division & real & {\([1]\).} \\
\hline shift_division & real & {\([0].(\mu m)\)} \\
\hline division & intg & {\([1]\)} \\
\hline
\end{tabular}
auto_tunneling instructs the software to automatically look for barriers that block current flow and define an appropriate intraband tunneling command. In effect, this command replaces manual usage of the tunneling command and defines a propagation matrix model for the automatically-detected tunneling range.

Note that this command only looks for barriers present under equilibrium conditions: barrier heights may increase or decrease with applied bias.

\section*{Parameters}
- carrier_type determines whether the software looks for barriers that block the flow of a particular kind of charge carrier.
- max_range determines the maximum distance allowed for the automatic tunneling profile.
- min_barrier is the minimum barrier height required during the search to trigger the declaration of an automatic tunneling range. Smaller barriers will be ignored and will default back to the usual thermionic emission model.
- division is a factor used to oversample the existing mesh for the purposes of the tunneling model. ratio_division and shift__division control the distribution profile of this new mesh, following the usual rules outlined in the put__mesh commands.

\subsection*{22.69 az_bar}
\(\mathbf{a z} \_\)bar is the same as a__bar except in the \(\mathbf{z}\)-direction (c-plane axis).

\subsection*{22.70 az_well}
\(\mathbf{a z} \_\)well is the same as a__well except in the \(\mathbf{z}\)-direction (c-plane axis).

\subsection*{22.71 b_bar}

This active layer statement is identical to b_well except that it refers to the barrier material in a simplified quantum well macro. Note that this parameter is not used in complex MQW macros.

\subsection*{22.72 b_well}

The material statement b__well is an active layer macro statement used to define the shear deformation potential (eV) in a quantum well and thus, the separation between the heavy and light hole bands. Note that this parameter only applies to materials with zincblende symmetry. For wurtzite materials, a set of parameters define in ai__well, \(i=1 . . .6\) are used instead.

See Sec. 10.1 for additional details on band alignment rules.
The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.73 back_index}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline real_index & real & {\([-9999]\).} \\
\hline imag_index & real & {\([0]\).} \\
\hline
\end{tabular}
back_index is an outside index value used as a boundary condition for optical pumping. The default value assumes a continuous index to prevent back reflections. This command has no practical effect if back_reflection is used.

See the theory section in front_reflection for more details.

\subsection*{22.74 back_reflection}

See front reflection.

\subsection*{22.75 band_discont}
band__discont is an active layer macro statement that defines the conduction band discontinuity (in eV ) between an active layer and the neighboring passive layer. This value overrides both the band__offset statement from active macros and the affinity statement from passive macros. A negative value can be used to define a type II band alignment.

Note that band__discont will define the discontinuity on both sides of the layer unless band__discont_right is used. In that case, it only defines the discontinuity
on the left. This should be used in complex MQW regions (cx-style macros) so the discontinuity is set correctly on the edges of the complex region.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.76 band_discont_right}

See band__discont.

\subsection*{22.77 band_distance}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline use_fermi_level & char & {\([\) no \(]\)} \\
\hline conc_logscale & char & {\([\) no \(]\)} \\
\hline prop_file & char & {\([\) void \(]\)} \\
\hline ignore_cband & char & {\([\) no \(]\)} \\
\hline ignore__vband & char & {\([\) no \(]\)} \\
\hline plot_qcl_3levels & char & {\([\) no \(]\)} \\
\hline band_edge_file & char & {\([\) void \(]\)} \\
\hline use_sheet_density & char & {\([\) yes \(]\)} \\
\hline conc & real & {\([1 . \mathrm{e} 15]\left(m^{-2}\right.\) or \(\left.m^{-3}\right)\)} \\
\hline pn_ratio & real & {\([1]\).} \\
\hline qw_wave_ht & real & {\([0.1]\)} \\
\hline fermi_n & real & {\([0]\).} \\
\hline fermi_p & real & {\([0]\).} \\
\hline band_range & realx2 & {\([-1.51 .5]\)} \\
\hline data_point & intg & {\([90]\)} \\
\hline cond_valley & intg & {\([1]\)} \\
\hline val_valley & intg & {\([1]\)} \\
\hline cond_valley_prop & intg & {\([0]\)} \\
\hline val_valley_prop & intg & {\([0]\)} \\
\hline
\end{tabular}
band_distance plots the band and subband structure versus distance. This statement is only used in the gain preview module or preview session before a full-blown simulation.

By default, a flat band model is used. A local field can be defined gain__module but self_consistent should also be used in this case.

\section*{Parameters}
- data_file is an output file containing a copy of the plot data in ASCII format.
- use_fermi_level tells the software to directly set the Fermi levels according to fermi_n and fermi_p.
- conc_logscale used to indicate whether log scale is used in plotting any concentrations.
- prop_file is a file to store the property results from this statement. All results will be appended to this file so that multiple simulations can be summarized within this file.
- ignore_cband will ignore conduction band so that only the valence band will appear.
- ignore__vband will ignore valence band so that only the conduction band will appear.
- plot_qcl_3levels lets the program plot only the 3 critical quantum levels related to intersubband transition in a quantum cascade laser.
- band__edge_file instruct the program to save the band edge profile to this file so that an upper level project can use it later.
- conc is the total electron concentration used to determine the Fermi levels and subband population. The units of this parameter change depending on the use__sheet_density setting. If set to yes, sheet density in \(m^{-2}\) is used; otherwise, bulk density in \(m^{-3}\) is used. As of the 2012 version, the new default is to use the sheet density.
Sell also the gain_module statement which also enables the use of sheet density in other gain preview commands.
- pn_ratio is the ratio of hole over electron concentrations. Note that this ratio can be set to an arbitrary number in the gain preview. In the main solver, this ratio is determined automatically by the simulator according to the local Fermi levels.
- qw__wave_ht is the height of the quantum wave amplitude as plotted on the band diagram.
- fermi_n is the electron Fermi level (eV) from the conduction band edge.
- fermi__p is the hole Fermi level (eV) from the HH valence band edge.
- band_range is the energy range (in units of eV) in a band diagram plot.
- data_point is the number of data points in one curve.
- cond__valley directs the program to plot properties related to a particular conduction band valley with this valley index. The valley index means band valleys with labels such as Gamma, L, X, or Delta2, Delta4, etc.
- val_valley directs the program to plot properties related to a particular valence band valley with this valley index. The valley index means band valleys with labels such as HH, LH, SO, etc.
- cond__valley_prop is kth the conduction band property as defined by statement condj__valley__propk. The valley number j is defined by the parameter cond__valley.
- val__valley__prop is kth the conduction band property as defined by statement valj__valley_propk. The valley number j is defined by the parameter val__valley.

\subsection*{22.78 band_gap}
band_gap is a passive macro material statement used the define the energy bandgap (in eV ) of a bulk semiconductor. For quantum well barriers and active regions, this value will be overridden with the values of eg0_bar or eg0__well from the active macro.

For wurtzite materials, the bulk unstrained bandgap is given by eg0__bulk instead of band_gap.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.79 band_offset}
band__offset is an active layer macro statement defining the band offset of a quantum well as defined in Sec. 10.1. This value overrides the affinity statement from the passive macro and may itself be overridden by band__discont.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.80 bandgap_narrow}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline model & char & [slotboom] \\
\hline
\end{tabular}

The statement bandgap__narrow is used to include the bandgap narrowing effect. Currently, only the Slotboom model is supported.

\subsection*{22.81 bandgap_optical_gen}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline allowed & char & {\([\) no],yes } \\
\hline bandgap_gen_iqe & real & {\([0.1]\)} \\
\hline
\end{tabular}
bandgap_optical_gen is used to enable optical generation at photon energies smaller than the bandgap of the material.

\section*{Parameters}
- allowed turns this effect on or off.
- bandgap_gen_iqe is the internal quantum efficiency (IQE) for the belowbandgap optical generation.

\section*{Examples}
bandgap_optical_gen allowed=yes bandgap_gen_iqe=0.01

\subsection*{22.82 barrier_correction_by_qw_model}

This statement overrides the band alignment for the last barrier of a complex MQW region so that it follows the same rules that are used for the inner wells (c.f. Sec. 10.1). It also instructs the software to use other aspects of the quantum well model for that region, such as the carrier masses.

This statement is only used for the simplified complex library system (c.f. Sec. 3.5.1); it has no additional parameters.

\subsection*{22.83 basic_var_symbol}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline var_lib & char & \\
\hline var_basic & char & \\
\hline
\end{tabular}
basic__var_symbol translates a variable/symbol name from the library to the underlying basic/passive macro. This statement can be omitted if the variable name is the same in both the library and the macro.
See material__lib and complex__var_symbol for further information.

\section*{Examples}
```

begin_library AlGaAs
import_basic name=algaas
import_complex name=cx-AlGaAs
complex_var_symbol var_lib=x var_complex=xw
end_library

```

This set of commands defines the "AlGaAs" library as being composed of the "algaas" passive macro and the "cx-AlGaAs" active macro. The material parameter \(x\) used when invoking the library is translated into the \(x w\) parameter of the active macros and used "as-is" in the passive macro.

\subsection*{22.84 begin_bpmplot}
begin_bpmplot is used as the starting point of a post-processing file displaying results from the Crosslight BPM model. The matching end command is end__bpmplot.

\subsection*{22.85 begin_cavity}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline cavity_num & intg & {\([1]\)} \\
\hline
\end{tabular}
begin_cavity is used as a starting bracket for the statements belonging to a laser cavity in a multiple laser cavity application. The matching closing bracket is end_cavity.
This can be used in multi-junction devices where the optical modes peak in different active regions and there is poor overlap between the two sets of modes. It can also be used in quantum dot devices where there are multiple gain peaks at very different wavelength ranges.

\section*{Parameters}
- cavity_num is the cavity number.

\section*{Examples}
```

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$$$
$ Cavity #1 at 1.55 um
$$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$

begin_cavity cavity_number=1
init_wave init_wavel=1.55
multimode ...
end_cavity

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$$$
$ Cavity #2 at 1.3 um
$$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$

begin_cavity cavity_number=2
init_wave init_wavel=1.3
multimode ...
end_cavity

```

\subsection*{22.86 begin_complex}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline tag & char & void \\
\hline cx_qw__side & char & [bottom], top \\
\hline use_xy_range & char & [no] yes \\
\hline y_start_label & char & [void] \\
\hline qw__thick & real & (um) \\
\hline y_start_complex & real & (um) \\
\hline x_start_complex & real & (um) \\
\hline y_from_bottom & real & (um) \\
\hline layer_num & intg & {\([3]\)} \\
\hline column_num & intg & {\([1]\)} \\
\hline
\end{tabular}
begin_complex is used as a starting bracket for a group of layers coupled to each other quantum mechanically, forming a roughly rectangular region. The matching closing bracket is end_complex.

See complex_region for examples and more details.

\section*{Parameters}
- tag is a user-defined label to define identical complex MQW regions: this helps the solver save on computation time by re-using the solutions of the Schrödinger solver. It is usually defined through the start__same_complex command in the .layer file.
- layer_num is the number of layer within a complex.
- column__num is the number of columns within a complex.
- use_xy_range indicates whether the rectangle region is defined using an x-y range or by using the polygon names. The latter method is usually preferred.
- y__start_label and \(\mathbf{y} \_\)end_label are position labels used to define the yrange of the rectangle region.
- y__start_complex specifies the absolute y-coordinate of the starting point of the rectangle (um).
- x_start_complex specifies the absolute \(x\)-coordinate of the starting point of the rectangle (um).
- y_from__bottom specifies the y-position of the starting point of the rectangle (um) relative to the bottom of the mesh. It is primarily used in conjunction with align_complex when importing mesh from CSUPREM.
- cx__qw_side is used to define a special case of a complex MQW region with only two layers. For historical reasons (see complex_region) an odd number of layers is normally required in a complex region and the even-numbered layers are defined as quantum wells. With cx__qw_side, one of the two layers is internally split by the software to produce this barrier-well-barrier layout: this parameter specifies which of the two layers is to be split. The parameter qw_thick defines how much of this layer is used as a quantum well region.

This parameter is most often used in GaN HEMT simulations where the piezoelectric potential defines the quantum confinement region. In this case, the two layers used to define the complex are a thick GaN region which serves as both barrier and well and an AlGaN cap layer which forms the top barrier.

\subsection*{22.87 begin_qwire_complex}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline x1 & real & \((\mu \mathrm{m})\) \\
\hline x2 & real & \((\mu \mathrm{m})\) \\
\hline y1 & real & \((\mu \mathrm{m})\) \\
\hline y2 & real & \((\mu \mathrm{m})\) \\
\hline x1_label & char & \\
\hline x2_label & char & \\
\hline y1_label & char & \\
\hline y2_label & char & \\
\hline auto_search & char & yes,[no] \\
\hline
\end{tabular}
begin_qwire_complex is used in the .mater or .sol file and is usually generated automatically by the .layer file statement start_qwire__complex. It serves the same role as begin_complex except that it defines the start of a 2 D quantumconfined region (a quantum wire) rather than a complex MQW region with 1D confinement.
end__qwire_complex is the closing tag for this statement. Between these two commands, qwire_complex_region statements are used to define the materials in the quantum wire cross-section.

\section*{Parameters}
- \(\mathbf{x} \mathbf{1}, \mathbf{x} \mathbf{2}, \mathbf{y} \mathbf{1}\) and \(\mathbf{y} \mathbf{2}\) define the xy range of the quantum wire cross-section. If position labels have been defined, x1_label, x2_label, y1_label and y2_label may be used instead.
- auto_search automatically sets the cross-section range based on material numbers. When importing mesh from CSUPREM, material labels must be set to correctly identify the quantum region.

\subsection*{22.88 begin_zdir_complex}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline num_segment & intg & {\([1]\)} \\
\hline
\end{tabular}
begin_zdir_complex is used as a starting bracket for a group of layers coupled to each other quantum mechanically in the z direction (i.e. stacked mesh planes in a 3D simulation). The matching closing bracket is end__zdir_complex.

See also zdir__cx for more information.

\section*{Parameters}
- num_segment is the z-segment number where the quantum-confined region begins.

\section*{Examples}
```

begin_zdir_complex num_segment= 9
zdir_cx zseg= 16 type=barrier mater= 3
zdir_cx zseg= 17 type=barrier mater= 3
zdir_cx zseg= 18 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 19 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 20 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 21 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 22 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 23 type=barrier mater= 3
zdir_cx zseg= 24 type=barrier mater= 3
end_zdir_complex

```

\subsection*{22.89 begin_zmater}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline zseg_num & intg & {\([1]\)} \\
\hline
\end{tabular}
begin_zmater is used as a starting bracket for the material and doping statements belonging to a given z -segment. The matching closing bracket is end__zmater.

\section*{Parameters}
- zseg_num is the z-segment number

\section*{Examples}
```

{
begin_zmater zseg_num=1
include file=ref.mater
include file=ref.doping
end_zmater
}

```

\subsection*{22.90 bend_extern}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variation & char & function,table,[constant] \\
\hline var_symboli \((1=1 . .5)\) & char & void \\
\hline vari(i=1..5) & real & \\
\hline value & real & \\
\hline func_num & intg & {\([1]\)} \\
\hline
\end{tabular}
bend__extern is used to define an external function used by bend__xy__plane.

\section*{Parameters}

Except for func__num, all parameters are the same as in bend__xy__plane.
- func__num is a label to identify different external functions so that this statement can be used more than once.

\section*{Examples}

See bend__xy__plane.

\subsection*{22.91 bend_xy_plane}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variation & char & linear_x,linear_y,function,[constant] \\
\hline var_symboli \((1=1 . .5)\) & char & void \\
\hline vari(i=1..5) & real & \\
\hline value & real & \\
\hline zseg_num & intg & {\([1]\)} \\
\hline
\end{tabular}

To realize complex device shapes, the user may bend 2D mesh planes ( \(\mathrm{x}-\mathrm{y}\) ) in the z-direction. This bending is represented by a small local offset of the mesh point:
\[
\begin{equation*}
(x, y, z) \rightarrow(x, y, z+\Delta z(x, y)) \tag{22.5}
\end{equation*}
\]
bend_xy__plane defines this bending function \(\Delta z(x, y)\) for a single plane. It should return an offset value in microns. External functions may be defined to re-use certain elements and simplify the declaration by passing the z-position of the plane as a function argument: see bend_extern.

\section*{Parameters}
- variation defines how the offset varies with position. There are two options for this parameter:
- constant means that a fixed value is used everywhere.
- function means a mathematical function of the form:
```

function(variable1, variable2, ...)

```
end_function

All lines in a function except the last one must end with a semicolon (;) to suppress the line output. The output of the last line is the value returned by the function. The rules for mathematical functions are further explained in Appendix B. Three reserved keywords can be used in addition to user-defined variables: x_point and y_point (the in-plane point coordinates) and z_plane (the position of the mesh plane before bending).
- var_symboli is an external function variable symbol to be used by the function mentioned above.
- vari is an external function variable value to be used by the function mentioned above.
- value is the constant value of shift in z-direction if variation=constant.
- zseg_num is the z-segment number affected by this statement.

\section*{Examples}
```

\$ bend function at z=350
\$ bend = 0 @ y = 402, > 0 @ y =0 => points downwards
bend_extern func_num=1 variation=function
function(x_point,y_point)
y_0=0; z_0=-350; radius=sqrt(350**2+402**2);
z_0+sqrt(radius**2-(y_point-y_0)**2)
end_function
\$ z-segment \#1 is unbended
bend_xy_plane variation=function zseg_num=2
function(z_plane,x_point,y_point)
z0 = 100.0; z1 = 350.0;
zfac=(z_plane-z0)/(z1-z0);
bend_extern1*zfac
end_function

```

\subsection*{22.92 beta_mte}
beta_mte is used in the modified transferred-electron mobility model for GaN. When this model is activated, the software actually implements the mixture of the MTE and Canali models proposed in Eqn.(11) of Ref. [7]. This model has a number of hard-coded parameters taken from the above reference but the value defined by beta_mte corresponds to \(\beta_{T}\) in Eqn.(3).

A number of other parameters related to the Canali model are also defined as usual. For example. beta_n corresponds to \(\beta_{C}\) in Eqn.(1).

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.93 beta_n}
beta_n defines a parameter in the "beta" field-dependent mobility model for electrons (see Eq. 5.37).

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.94 beta_p}
beta_p defines a parameter in the "beta" field-dependent mobility model for holes (see Eq. 5.38).

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.95 bias_output_at_maximum}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & \\
\hline xrange & realx2 & \((\mu \mathrm{m})\) \\
\hline yrange & realx2 & \((\mu \mathrm{m})\) \\
\hline zrange & realx2 & \((\mu \mathrm{m})\) \\
\hline
\end{tabular}
bias_output__at__maximum replaces the previous more_bias__output command; this command is specialized to output the spatial maximum of a variable. See also the following related commands which also replace more__bias__output:
- bias__output__curr_ffux
- bias_output__tunneling
- bias_output_longitudinal
- bias_output_near__point
- bias__output__spatial_integral
- bias__output__wave__average

These various commands generate additional bias-dependent data for later plotting using the plot_scan command. Each statement generates a new plotting variable stored in more_bias_vari, \(i=1 . .15\); the numbering corresponds to the order of the various bias_output commands in the .sol input file.

\section*{Parameters}
- variable is the variable being exported:
- optical_loss: the total optical loss
- optical_loss_mirror: the optical mirror losses
- optical_loss_ncarr: the optical loss due to electron free carrier absorption
- optical_loss_pcarr: the optical loss due to hole free carrier absorption
- optical_loss_two_photon: the optical loss due to the two-photon absorption process
- optical_loss_two_photon_carr: the optical loss from free carriers generated during the two-photon absorption process
- potential: the internal potential \(V\)
- field_mag: the electric field magnitude
- electron: the electron concentration
- hole_curr_mag: the hole current magnitude
- recomb_aug: the Auger recombination rate
- recomb_rad: the total spontaneous emission rate
- recomb_rad_te: the TE mode spontaneous emission rate
- recomb_rad_tm: the TM mode spontaneous emission rate
- recomb_srh: the SRH recombination rate
- recomb_st: the stimulated recombination rate
- recomb_all: the total recombination rate
- impact_alpha_n: impact ionization coefficient for electrons
- impact_alpha_p: impact ionization coefficient for holes
- impact_ionization: total impact ionization rate
- impact_elec_rate: electron impact ionization rate
- impact_hole_rate: hole impact ionization rate
- xrange, yrange and zrange define the coordinates inside which the search for the spatial maximum takes place.

\subsection*{22.96 bias_output_curr_flux}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & \\
\hline at_y & real & \((\mu m)\) \\
\hline
\end{tabular}
bias_output_curr_flux replaces the previous more__bias__output command; this command is specialized to output local current values at specific points of the device. See also the following related commands which also replace more_bias_output:
- bias__output_tunneling
- bias__output__at_maximum
- bias_output_longitudinal
- bias__output__near__point
- bias__output__spatial_integral
- bias_output__wave__average

These various commands generate additional bias-dependent data for later plotting using the plot_scan command. Each statement generates a new plotting variable stored in more_bias_vari,i=1..15; the numbering corresponds to the order of the various bias_output commands in the .sol input file.

\section*{Parameters}
- variable is the variable being exported:
- elec_curr: the electron current magnitude
- hole_curr: the hole current magnitude
- nonloc_esc_cap_curr_n: non-local escape current for electrons in q__transport model.
- nonloc_fly_over_curr__ \(n\) : non-local flyover current for electrons in q__transport model.
- at __y is the position of the y cutline used to export the data.

\subsection*{22.97 bias_output_ii_integral}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & [max_alpha], \\
\hline method & char & [via_max_field], manual \\
\hline between_contacts & intgx2 & {\([13]\)} \\
\hline pointi \((\mathrm{i}=1 . .9)\) & realx3 & \((\mu \mathrm{m})\) \\
\hline
\end{tabular}
bias_output_ii__integral is used to integrate the impact ionization profile and output the result as a variable that can be plotted vs. bias in the post-processing stage. Each statement generates a new plotting variable stored in more_bias_vari,i=1..15; the numbering corresponds to the order of the various bias_output commands in the .sol input file.

\section*{Parameters}
- variable is the variable being integrated:
- impact_alpha_n: the impact generation rate for electrons
- impact_alpha_p: the impact generation rate for holes
- max_alpha: the maximum of the two above values
- method
- between_contacts
- pointi (i=1..9)

\subsection*{22.98 bias_output_longitudinal}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & \\
\hline long_fraction & realx2 & {\([0.5]\)} \\
\hline long_mode_index & intg & {\([1]\)}
\end{tabular}
bias__output_longitudinal replaces the previous more__bias__output command; this command is specialized to output longitudinal data from PICS3D. See also the following related commands which also replace more_bias_output:
- bias__output__curr_flux
- bias__output__tunneling
- bias__output__at_maximum
- bias_output__near__point
- bias_output__spatial_integral
- bias__output__wave__average

These various commands generate additional bias-dependent data for later plotting using the plot__scan command. Each statement generates a new plotting variable stored in more_bias_vari,i=1..15; the numbering corresponds to the order of the various bias_output commands in the .sol input file.

\section*{Parameters}
- variable is the variable being exported:
- kappa_l_real: real part of the \(\kappa L\) coupling coefficient
- kappa_l_imag: imaginary part of the \(\kappa L\) coupling coefficient
- phase_index: effective index of the optical mode
- alpha_l_over_2: \(\frac{\alpha L}{2}\) from the coupled round-trip gain model
- delta_beta_l: \(\delta \beta L\) from the coupled round-trip gain model
- alpha_integral: integrated value of \(\frac{\alpha(z)}{2}\) in the round-trip gain model
- delta_beta_integral: integrated value of \(\delta \beta(z)\) in the round-trip gain model
- linewidth_spon: linewidth contribution from spontaneous emission noise
- linewidth_carrier: linewidth contribution from carrier density fluctuations
- linewidth_cross: linewdith contribution due to cross-carrier modulation
- linewidth_sidemode: linewidth contribution due to side modes
- linewidth_total: total linewidth of main mode
- linewidth*power: linewidth power product
- effective_alpha: linewidth enhancement factor \(\left(\alpha_{H}\right)\)
- density_mode_average: carrier density averaged using the local mode profile as a weighting coefficient
- long_fraction sets the export position of the data as a fraction of the optical cavity length. It is not used for integrated variables.
- long_mode_index specifies which longitudinal mode is used in the export.

\subsection*{22.99 bias_output_mater_average}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & \\
\hline mater_label & char & \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
bias__output__mater__average is similar to other commands in the bias_output family. This version of the command is specialized to output the average of a variable over all the mesh points belonging to a specific material.
All commands in the bias_output family generate additional bias-dependent data for later plotting using the plot_scan command. Each statement generates a new plotting variable stored in more_bias_vari, \(i=1 . .15\); the numbering corresponds to the order of the various bias_output commands in the .sol input file.

\section*{Parameters}
- variable is the variable being exported.
- mater_label is the material label identifying the material for the variable average.
- mater is the material number for the variable average.

\subsection*{22.100 bias_output_near_point}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & \\
\hline near_xyz & realx3 & \((\mu \mathrm{m})\) \\
\hline
\end{tabular}
bias__output__near__point replaces the previous more__bias__output command; this command is specialized to output a spatial variable near a specified point. See also the following related commands which also replace more_bias_output:
- bias__output__curr_flux
- bias_output__tunneling
- bias_output_longitudinal
- bias_output__at_maximum
- bias_output_spatial_integral
- bias_output__wave__average

These various commands generate additional bias-dependent data for later plotting using the plot_scan command. Each statement generates a new plotting variable stored in more_bias_vari,i=1..15; the numbering corresponds to the order of the various bias_output commands in the .sol input file.

\section*{Parameters}
- variable is the variable being exported:
- optical_loss: the total optical loss
- optical_loss_mirror: the optical mirror losses
- optical_loss_ncarr: the optical loss due to electron free carrier absorption
- optical_loss_pcarr: the optical loss due to hole free carrier absorption
- optical_loss_two_photon: the optical loss due to the two-photon absorption process
- optical_loss_two_photon_carr: the optical loss from free carriers generated during the two-photon absorption process
- potential: the internal potential \(V\)
- field_mag: the electric field magnitude
- electron: the electron concentration
- hole_curr_mag: the hole current magnitude
- recomb_aug: the Auger recombination rate
- recomb_rad: the total spontaneous emission rate
- recomb_rad_te: the TE mode spontaneous emission rate
- recomb_rad_tm: the TM mode spontaneous emission rate
- recomb_srh: the SRH recombination rate
- recomb_st: the stimulated recombination rate
- recomb_all: the total recombination rate
- impact_alpha_n: impact ionization coefficient for electrons
- impact__alpha_p: impact ionization coefficient for holes
- impact_ionization: total impact ionization rate
- impact_elec_rate: electron impact ionization rate
- impact_hole_rate: hole impact ionization rate
- near_xyz defines a set of coordinates; the mesh point nearest to these coordinates will be used for the export.

\subsection*{22.101 bias_output_peak_wavelength}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & \\
\hline
\end{tabular}
bias__output_peak__wavelength searches for the peak wavelength of a spectral variable and outputs it for all bias steps so that it may be plotted in the post-processing stage. Each statement generates a new plotting variable stored in more_bias_vari, \(i=1 . .15\); the numbering corresponds to the order of the various bias_output commands in the .sol input file.

\section*{Parameters}
- variable is the spectral variable that is searched when exporting the peak. This variable corresponds to the full spectrum plot available in gain_spectrum or plot__spectrum.

\subsection*{22.102 bias_output_spatial_integral}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & \\
\hline active_reg_only & char & {\([\) no], yes } \\
\hline inactive_reg_only & char & {\([\) no], yes } \\
\hline xrange & realx2 & \((\mu m)\) \\
\hline yrange & realx2 & \((\mu m)\) \\
\hline zrange & realx2 & \((\mu m)\) \\
\hline
\end{tabular}
bias__output__spatial_integral replaces the previous more__bias__output command; this command is specialized to output the integral of a spatial variable over a specified range. See also the following related commands which also replace more__bias_output:
- bias_output__curr_flux
- bias__output__tunneling
- bias__output__longitudinal
- bias__output__at_maximum
- bias__output__near__point
- bias_output__wave__average

These various commands generate additional bias-dependent data for later plotting using the plot__scan command. Each statement generates a new plotting variable stored in more_bias_vari,i=1..15; the numbering corresponds to the order of the various bias_output commands in the .sol input file.

\section*{Parameters}
- variable is the variable being exported:
- potential: the internal potential \(V\)
- field_mag: the electric field magnitude
- electron: the electron concentration
- hole_curr_mag: the hole current magnitude
- recomb_aug: the Auger recombination rate
- recomb_rad: the total spontaneous emission rate
- recomb_rad_te: the TE mode spontaneous emission rate
- recomb_rad_tm: the TM mode spontaneous emission rate
- recomb_srh: the SRH recombination rate
- recomb_st: the stimulated recombination rate
- recomb_all: the total recombination rate
- impact_alpha_n: impact ionization coefficient for electrons
- impact_alpha_p: impact ionization coefficient for holes
- impact_ionization: total impact ionization rate
- impact_elec_rate: electron impact ionization rate
- impact_hole_rate: hole impact ionization rate
- active_reg_only restricts the integration to optically active regions.
- inactive__reg_only restricts the integration to optically passive regions.
- xrange, yrange and zrange define the integration range.

\subsection*{22.103 bias_output_tunneling}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & \\
\hline tunnel_region & intg & {\([1]\)} \\
\hline
\end{tabular}
bias_output_tunneling replaces the previous more__bias_output command; this command is specialized to output tunneling data for a specific tunneling region. See also the following related commands which also replace more_bias_output:
- bias__output__curr_ffux
- bias__output__at__maximum
- bias__output__longitudinal
- bias__output__near__point
- bias_output__spatial_integral
- bias__output__wave__average

These various commands generate additional bias-dependent data for later plotting using the plot__scan command. Each statement generates a new plotting variable stored in more_bias_vari, \(i=1 . .15\); the numbering corresponds to the order of the various bias_output commands in the .sol input file.

\section*{Parameters}
- variable is the variable being exported:
- tunnel_average_factor: the averaged (over the barrier) enhancement factor applied to the Drift-Diffusion current due to tunneling
- tunnel_enhance_factor: the peak (at barrier maximum) enhancement factor applied to the Drift-Diffusion current due to tunneling
- tunnel_peak_transmittance: the peak transmittance of the tunneling region
- tunnel_peak_energy: the energy at which the tunneling transmittance peaks
- tunnel_above_bar_refl: the reflection coefficient for carriers above the tunneling barrier
- tunnel_negf_current: the tunneling current from the NEGF model, independent from terminal/electrode current.
- tunnel_region is the tunneling region used for the export, numbered according to the order of the tunneling statements in the .sol input file.

\subsection*{22.104 bias_output_wave_average}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & \\
\hline active_reg_only & char & {\([\) no], yes } \\
\hline inactive_reg_only & char & {\([\) no], yes } \\
\hline xrange & realx2 & \((\mu \mathrm{m})\) \\
\hline yrange & realx2 & \((\mu \mathrm{m})\) \\
\hline zrange & realx2 & \((\mu m)\) \\
\hline wave_mode_index & intg & {\([1]\)} \\
\hline long_mode_index & intg & {\([1]\)} \\
\hline
\end{tabular}
bias_output__wave__average replaces the previous more_bias_output command; this command is specialized to output the average of a variable, weighted by the optical mode profile. See also the following related commands which also replace more__bias_output:
- bias_output__curr_flux
- bias__output__tunneling
- bias_output_longitudinal
- bias__output__at__maximum
- bias_output__near__point
- bias__output__spatial_integral

These various commands generate additional bias-dependent data for later plotting using the plot_scan command. Each statement generates a new plotting variable stored in more_bias_vari, \(i=1 . .15\); the numbering corresponds to the order of the various bias_output commands in the .sol input file.

\section*{Parameters}
- variable is the variable being exported. This command supports two categories of variables:
- Quantities averaged over the lateral wave profile:
* optical_loss: the total optical loss
* optical_loss_ncarr: the optical loss due to electron free carrier absorption
* optical_loss_pcarr: the optical loss due to hole free carrier absorption
* optical_loss_two_photon: the optical loss due to the two-photon absorption process
* optical_loss_two_photon_carr: the optical loss from free carriers generated during the two-photon absorption process
* optical_loss_backg: the optical loss due to background scattering
* optical_loss_bandtoband: the optical loss from band-to-band transitions.
* optical_gain_bandtoband: the optical gain from band-to-band transitions.
* optical_loss_mirror: the optical mirror loss in Fabry-Perot lasers
* modal_index_change: the modal effective index change vs. the equilibrium value
- Quantities averaged over the longitudinal wave profile:
* alpha_l_over_2: \(\frac{\alpha L}{2}\) from the coupled round-trip gain model in PICS3D
* delta_beta_l: \(\delta \beta L\) from the coupled round-trip gain model in PICS3D
* density_mode_average: electron carrier density averaged over lateral mode
* kappa_l_real: real part of the \(\kappa L\) coupling coefficient
* kappa_l_imag: imaginary part of the \(\kappa L\) coupling coefficient
* phase_index: effective index of the optical mode

Please note that most of the variables that are longitudinally averaged in this command are, by definition, already averaged over the lateral mode.
- active_reg_only restricts the integration to optically active regions.
- inactive_reg_only restricts the integration to optically passive regions.
- xrange, yrange and zrange define the integration range.
- wave__mode__index is the lateral mode index used to average data in the x,y plane.
- long_mode_index is the longitudinal mode index used for the average along z.

\subsection*{22.105 blank_area}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline point1 & realx2 & {\(\left[\begin{array}{lll||}0 . & 0 .\end{array}\right](\mu \mathrm{m})\)} \\
\hline point2 & realx2 & {\(\left[\begin{array}{lll}0 . & 0 .\end{array}\right](\mu \mathrm{m})\)} \\
\hline point3 & realx2 & {\(\left[\begin{array}{lll}0 . & 0 .\end{array}\right](\mu \mathrm{m})\)} \\
\hline point4 & realx2 & {\(\left[\begin{array}{lll}0 . & 0 .\end{array}\right](\mu m)\)} \\
\hline num_points & intg & 4 \\
\hline
\end{tabular}

This statement can be used repeatedly to blank out areas in plotting statements in the .plt files. It is especially useful when areas with no material ("void" material) show non-physical current flows.

Each statement can only blank out one area of quadrilateral or triangle.

\section*{Parameters}
- pointk, \(\mathrm{k}=1 . .4\) is the x and y coordinates of point k in counter-clockwise order.
- num_points takes either 4 or 3, representing quadrilateral or triangle.

\section*{Examples}
blank_area point1=(0.0.) point2=(1. 0.) \&\&
point3=(1. 0.5) point4=(0. 0.5)

\subsection*{22.106 bottom_contact}
left_contact is the same as top_contact except that the contact is placed at the bottom.

\subsection*{22.107 boundary_smooth}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mesh_inf & char & \\
\hline mesh_outf & char & \\
\hline order & char & [yes],no \\
\hline
\end{tabular}

The mesh generation statement boundary_smooth is used to make the extension of added mesh lines (by using double__mesh) from one polygon to the adjacent one smooth. This prevents the accumulation of too many terminated mesh lines extending to the adjacent polygon.

Note that this statement is used only when the user wants to manually refine the mesh in a region of the device geometry. In most cases, this statement is not needed because the mesh may be automatically refined using refine__mesh.

\section*{Parameters}
- mesh_inf is the mesh input file.
- mesh_outf is the mesh output file.
- order specifies the format of the mesh output. If the mesh output from this statement is directly to be used by the solver, choose yes. Choose no if further manipulations are required.

\section*{Examples}
```

boundary_smooth mesh_inf=case1.msh1 \&\&
mesh_outf=case1.msh2 order=yes

```

\subsection*{22.108 boundary_xpoint}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline xp_size & real & {\([0.0001]\) (um) } \\
\hline boundary & intg & {\([1]\)} \\
\hline
\end{tabular}

The statement boundary__xpoint is used to control the internal extra point at a contact. The mesh spacing at a Schottky contact is important since the simulator treats the contact mesh point as a point at the metal while the next mesh point inside is regarded as the semiconductor. Therefore, the mesh spacing defines the sharpness of the interface and the Schottky barrier height.

Thus we need to allocate an extra point near every Schottky contact. If a contact is defined as Schottky contact in .layer file, this statement will be automatically generated in the .geo file. The distance at which the extra point is placed can be set in the contact definition in the .layer file.

\section*{Parameters}
- boundary is the contact or electrode number.
- \(\mathbf{x p}\) _size is the distance at which the extra point is placed. It is recommended that a value of around \(1 \AA\) Åbe used unless it causes convergence problems. In the limit of zero, the internal numerical Schottky barrier height is exactly as defined by the user in the contact statement.

\subsection*{22.109 bpm}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline go_backward & char & {\([\) yes \(]\), no } \\
\hline update & char & yes,[no] \\
\hline paraxial_model & char & {\([\) yes],no } \\
\hline symmetrize & char & yes,[no] \\
\hline fft & char & {\([\) yes],no } \\
\hline initialize_backward & char & {\([\) no],yes } \\
\hline coupled_mode & char & {\([\) no],yes } \\
\hline zstep_size & real & {\([0.1]\)} \\
\hline x_ratio & real & {\([1.0]\)} \\
\hline y_ratio & real & {\([1.0]\)} \\
\hline x_center & real & {\([1.0]\)} \\
\hline y__center & real & {\([1.0]\)} \\
\hline transm_xrange & realx2 & \((\mu m)\) \\
\hline transm_yrange & realx2 & \((\mu m)\) \\
\hline xsize__power2 & intg & 6 \\
\hline ysize_power2 & intg & 6 \\
\hline smooth_step & intg & 0 \\
\hline update_per_scan & intg & \\
\hline round_trip & intg & 1 \\
\hline ipade & intg & {\([0]\)} \\
\hline semi_vect & intg & {\([0]\)} \\
\hline nx_mesh & intg & {\([40]\)} \\
\hline ny_mesh & intg & {\([40]\)} \\
\hline transm_2d_mode_zseg & intg & \\
\hline
\end{tabular}
bpm activates the Beam Propagation Method (BPM) to solve the wave equation in PICS3D. The BPM assumes a known wave distribution at an initial x-y plane and solves the wave distribution on the next plane in the z-direction. Repeating this procedure propagates the beam along the whole waveguide.
Please note that our BPM method maintains its own propagating power in both directions but only for the purpose of computing the lateral wave profile. Since the BPM method works on a relatively coarse mesh, the coupling with the local refractive index is not accurate enough to be used in actual lasing power computation.

Instead, the BPM method is used to obtain a lateral wave profile which is then mapped to our usual 2 x 2 transfer matrix plane wave model (coupled-wave theory). This transfer matrix is then solved self-consistently with the Drift-Diffusion equations
and takes into account the coupling of the gain, refractive index and \(\mathrm{DFB} / \mathrm{DBR}\) gratings.
This Crosslight-specific method can be viewed as a hybrid method that combines the benefits of BPM propagation with our complex round-trip gain (RTG) model.

\section*{Frequently Asked Questions}


Q: Is Crosslight BPM bidirectional? A: Yes and no. The iteration method itself does not define a distributed reflection from local detailed grating but at the end of the wave guide, a reflective beam is launched with calculated intensity so that (go_backward=yes) both backward and forwards beams are present in the cavity and the lateral mode used by the solver is the sum of the two.

Q: Is BPM necessary for a tapered laser/amplifier ? A: Yes. The 2D eigenmode solver no longer gives an accurate solution when there is a longitudinal variation of the lateral waveguide dimensions. BPM works best when launched from a single mode/straight segment where the lateral profile is initialized by the usual 2D eigen mode solver.
Q: Can BPM used for tapers and DBR gratings ? A: Yes. The DBR grating is taken care of by the 2 x 2 transfer matrix approach (coupled-wave theory) while only the lateral wave profile from BPM is used. The hybrid approach ensures efficiency and self-consistency with local gain/index

\section*{Parameters}
- go__backward directs the wave to be propagated backwards towards \(\mathrm{z}=0\) once it reaches the end of the device so it makes one or more complete round-trips (defined by round_trip). However, the current version of the Crosslight BPM code is not a fully bidirectional BPM method.
- initialize_backward tells the BPM solver to use the mode profile to initialize the backwards propagation rather than the forward propagated wave. In general, this setting should not be used unless the forward wave output is heavily distorted.
- coupled__mode enables use of the bpm__coupled__mode statement.
- update tells the software to update the results of the BPM method during the simulation. The BPM is recalculated automatically as needed when the bias increases but this can be explicitly controlled using update__per_scan.
- paraxial_model determines whether a paraxial approximation is used in the BPM code.
- symmetrize may be used to artificially force a symmetric BPM output.
- zstep_size is the BPM step size (in units of wavelength) within the semiconductor medium.
- fft switches between an older FFT-BPM algorithm and a newer FD-BPM method.

For the FFT-BPM method, the mesh size must be a power of two: xsize__power2 and ysize_power2 set the exponent of that power of two in the x and y direction, respectively. Otherwise (FD-BPM), the number of mesh points in the x and y direction are defined using \(\mathbf{n x} \_\)mesh and ny __mesh. These points are distributed along center points \(\mathbf{x} \_\)center and \(\mathbf{y} \_\)center using mesh ratios \(\mathbf{x} \_\)ratio and \(\mathbf{y} \_\)ratio. This system is somewhat similar to the way mesh point ratios are allocated in the layer file and in put__mesh.
- smooth_step is used to transfer solution of regular mesh to BPM mesh smoothly. Usually the regular simulation mesh is non-uniform and much different from the uniform BPM mesh. Since the initial solution is provided on the regular mesh, transferring it BPM mesh does not give a smooth solution. Using this parameter (can be set to several hundred) will allow the wave to be propagated with the uniform mesh (without taper) until it becomes smooth and can be regarded as a real solution on the BPM mesh.
- ipade is the order of the Padé approximation used.
- semi_vect specifies the semi-vectorial settings for the BPM method:

0 scalar BPM
1 semi-vectorial BPM with TE mode
2 semi-vectorial BPM with TM mode
- transm_xrange and transm_yrange are used to compute the transmission factor by integrating the BPM mode over a xy window. As an alternative, the mode profile in a particular z-segment specified by transm_2d__mode_zseg may be used to compute the transmission using a mode overlap criterion.

\section*{Examples}
```

bpm zstep_size=0.2 xsize_power2=5 ysize_power2=5 update=yes

```

\subsection*{22.110 bpm_coupled_mode}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline z_from & real & \((\mu m)\) \\
\hline z_to & real & \((\mu m)\) \\
\hline mode_num & intg & {\([1]\)} \\
\hline zseg_num & intg & \\
\hline
\end{tabular}
bpm_coupled_mode works in conjunction with the bpm statement; it enables a filtering model that restricts the shape of the BPM mode at each propagation point \(z_{B P M}\). Instead of the natural output of the BPM method, we use an approximate solution that is based on the shape of the eigenmodes present in the simulation; this has the advantage of eliminating spurious elements of the BPM solution which may accidentally propagate.

We describe this process by writing our filtered BPM mode shape (using bra-ket notation) as:
\[
\begin{equation*}
\left|w_{B P M}^{f}>=\sum_{i=1}^{N} a_{i}\right| w_{A i}>+\sum_{j=1}^{N} b_{j} \mid w_{B j}> \tag{22.6}
\end{equation*}
\]
where \(\left|w_{A i}\right\rangle\) are the sets of eigenmodes present at \(z=z_{A}\) and \(\left|w_{B j}\right\rangle\) is another set of modes present at \(z=z_{B}\). The A and B reference planes are chosen to be the z-segments (c.f. Chap 6.3) surrounding the current BPM propagation point so that \(z_{A}<=z_{B P M}<=z_{B}\). We note that the eigensolver is only called once per z-segment and not once for each electrical mesh plane.

To obtain the coefficients of the expansion, we left-multiply the above by \(<w_{A i} \mid\) and \(<w_{B j} \mid\) to obtain a set of linear equations; when solved, this yields a set of \(a_{i}, b_{j}\) coefficients which minimize the error between the actual BPM solution and the filtered mode shape.

The filtered BPM mode is then used as the initial value for the next propagation step; this process is repeated for all selected BPM steps. When the BPM propagates in reverse, the same method is used but an independent set of expansion coefficients is obtained.

\section*{Parameters}
- \(\mathbf{z}\) _from and \(\mathbf{z} \_\)_to describe the range of BPM steps where the filtering occurs; outside this range, the standard BPM mode shape is used as-is. If multiple independent ranges need to be filtered, the bpm_coupled__mode statement may be issues multiple times in the .sol input file.
- mode_num describes the number of eigenmodes used in the filtering expansion. If zseg_num is omitted, this number is used for all z-segments; if not, this number is set only for the specified z-segment.

\subsection*{22.111 bpm_initial_import}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline intensity & char & [power_arb_unit.txt] \\
\hline phase_in__pi & char & [void] \\
\hline
\end{tabular}
bpm_initial_import works in conjunction with the bpm statement. By default, the software uses the eigenmode profile at \(z=0\) as the initial wave profile for the BPM method; by using this statement, the user may import an external wave profile as this initial wave.

\section*{Parameters}
- intensity is the name of a text file containing the BPM mode shape being imported. This data should be stored in a GnuPlot-compatible format with three columns: \(x, y\) and arbitrary power/intensity value.
- phase__in_pi is the name of a text file containing the local phase of the imported field; if empty, the phase factor is set to zero. This data should be stored in a GnuPlot-compatible format with three columns: \(x, y\) and the local phase value expressed as a multiple of \(\pi\).

\subsection*{22.112 bpm_longmode_splot}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline data_file & char & \\
\hline variable & char & \\
\hline plane & char & {\([\mathrm{xy}], \mathrm{xz}, \mathrm{yz}\)} \\
\hline cut_near & real & {\([0.0](\mu m)\)} \\
\hline longmode & intg & \\
\hline
\end{tabular}
bpm_longmode_splot does a surface plot of the Beam propagation Method wave solution and other relevant model information. Unlike other BPM plotting commands, this statement does not fit inside a begin_bpmplot block: instead, it is meant to be used alongside regular .plt post-processing commands.

\section*{Parameters}
- data_file may be used to save a copy of the plot data to a text file.
- variable is the variable being plotted:
- BPM_fwd_wave_intensity is the forward wave intensity
- BPM_fwd_wave_phase is the forward wave phase factor
- BPM_bck_wave_intensity is the backward wave intensity
- BPM_bck_wave_phase is the backward wave phase factor
- BPM_real_index is the real part of the refractive index used for propagation
- BPM_imag_index is the imaginary part of the refractive index used for propagation
- BPM_fwd_longmode_intensity is the forward intensity of a given longitudinal mode.
- BPM_bck_longmode_intensity is the backward intensity of a given longitudinal mode.
- plane controls which plane is used for the surface plot. The position of the cut plane along the remaining axis is determined by cut__near.
- longmode controls which longitudinal mode is used in the plot. If this parameter is omitted, the plot will show a sum over all longitudinal modes.

\subsection*{22.113 bpm__multimode}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline initial_amplitude & real & {\([0.2]\)} \\
\hline initial_phase & real & {\([0.0]\)} \\
\hline mode_index & intg & {\([2]\)} \\
\hline
\end{tabular}
bpm_multimode is used to define an initial optical field profile consisting of more than one lateral mode for the beam propagation method.

\section*{Parameters}
- initial__amplitude is the initial amplitude of mode profile relative to the fundamental mode.
- initial_phase is the initial phase (as a multiple of \(\pi\) ) of the mode profile relative to the fundamental mode.
- mode_index is the mode index label (integer) of the lateral mode.

\section*{Examples}

The following statements define a profile with 3 modes, with 2 nd and 3rd order modes of amplitude being 50 percent and 10 percent of the 1st order mode, respectively.
bpm_multimode initial_amplitude=0.5 initial_phase=0 mode_index=2
bpm_multimode initial_amplitude=0.1 initial_phase=0 mode_index=3

\subsection*{22.114 bpmintegr_xy}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline outfile & char & [void] \\
\hline backward & char & {\([\) no] } \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline z & real & {\([0.0]\)} \\
\hline
\end{tabular}
bpmintegr_xy may be used to integrate the Beam Propagation Method (BPM) wave intensity over an x-y plane. This statement must be used inside a begin_bmplot block.

\section*{Parameters}
- outfile is the output file used to save the result of the numerical integration
- backward, if enabled, integrates the backward wave instead of the forward wave.
- xrange and yrange are the integration ranges in the x and y direction, respectively.
- \(\mathbf{z}\) is the position of the \(\mathrm{x}-\mathrm{y}\) plane.

\section*{Examples}
bpmintegr_xy \(z=10\). outfile=tmp.data3

\subsection*{22.115 bpmplot_xy1d}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline direction & char & {\([\mathrm{y}], \mathrm{x}\)} \\
\hline plot_phase & char & {\([\mathrm{no}]\)} \\
\hline backward & char & {\([\mathrm{no}]\)} \\
\hline rel_cutpoint & real & {\([0.5]\)} \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline z & real & {\([0.0]\)} \\
\hline
\end{tabular}
bpmplot_xy1d is used to plot a 1D cut of the Beam Propagation Method wave solution on a specified x-y plane. This statement must be used inside a begin__bmplot block.

\section*{Parameters}
- direction is used to indicate the direction of the cut-line.
- contour indicates if contour plot is required.
- plot_phase indicates whether the phase or intensity is plotted.
- backward, if enabled, plots the backward wave instead of the forward wave.
- rel_cutpoint is the relative cut point position.
- xrange and yrange are the plot ranges in the x and y directions, respectively.
- \(\mathbf{z}\) is the position of the \(\mathrm{x}-\mathrm{y}\) plane.

\section*{Examples}
```

bpmplot_xy1d direction=y rel_cutpoint=0.5 z=105 plot_phase=no backward=no

```

\subsection*{22.116 bpmplot_xyz1d}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline plot_phase & char & {\([\) no \(]\)} \\
\hline backward & char & {\([\mathrm{no}]\)} \\
\hline rel_x & real & {\([0.5]\)} \\
\hline rel_y & real & {\([0.5]\)} \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline
\end{tabular}
bpmplot_xyz1d is used to plot the Beam Propagation Method wave solution on a line along the z-direction. This statement must be used inside a begin__bmplot block.

\section*{Parameters}
- plot_phase indicates whether the phase or intensity is plotted.
- backward, if enabled, plots the backward wave instead of the forward wave.
- rel_x and rel_y are respectively the relative x and y positions of the cut line.
- xrange and yrange are the plot ranges in the x and y directions, respectively.

\section*{Examples}
```

bpmplot_xyz1d plot_phase=no backward=no

```

\subsection*{22.117 bpmsplot_xy}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline contour & char & {\([\) no] } \\
\hline plot_phase & char & {\([\) no \(]\)} \\
\hline backward & char & {\([\) no] } \\
\hline view_xrot & real & {\([0]\).} \\
\hline view_zrot & real & {\([0]\).} \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline zrange & realx2 & \\
\hline z & real & {\([0.0]\)} \\
\hline
\end{tabular}
bpmsplot_xy is used to plot the Beam propagation Method wave solution on an specified x-y plane. This statement must be used inside a begin__bmplot block.

\section*{Parameters}
- contour indicates if contour plot is required.
- plot_phase indicates whether the phase or intensity is plotted.
- backward, if enabled, plots the backward wave instead of the forward wave.
- view_xrot and view_xrot rotate the surface plot along the \(x\) and \(z\) axes, respectively.
- xrange, yrange and zrange are the plot ranges in the \(\mathrm{x}, \mathrm{y}\) and z directions, respectively.
- \(\mathbf{z}\) is the position of the \(\mathrm{x}-\mathrm{y}\) plane.

\section*{Examples}
bpmsplot_xy \(z=400\) contour=no plot_phase=yes backward=no

\subsection*{22.118 bpmsplot}
\(\qquad\)
bpmsplot__xz is used to plot the Beam propagation Method wave solution on an specified x-z plane. This statement must be used inside a begin__bmplot block.

\section*{Parameters}

With the following exceptions, most parameters for this statement are identical to those of bpmsplot_xy:
- rel_y is the relative y position of the \(\mathrm{x}-\mathrm{z}\) plane.
- abs_y is the absolute y position of the \(\mathrm{x}-\mathrm{z}\) plane (in microns). This parameter will override rel_y.

\subsection*{22.119 bpmsplot_yz}
bpmsplot__yz is used to plot the Beam propagation Method wave solution on an specified y-z plane. This statement must be used inside a begin__bmplot block.

\section*{Parameters}

With the following exceptions, most parameters for this statement are identical to those of bpmsplot_xy:
- rel_x is the relative x position of the \(\mathrm{y}-\mathrm{z}\) plane.
- abs__ \(\mathbf{x}\) is the absolute x position of the \(\mathrm{y}-\mathrm{z}\) plane (in microns). This parameter will override rel_x.

\subsection*{22.120 bulk_dos__model}
\begin{tabular}{||l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline carrier & char & [electron],hole \\
\hline model & char & {\([3 \mathrm{~d}], 2 \mathrm{~d}\)} \\
\hline mater_label & char & \\
\hline 2d_thick & real & {\([0.01](\mu m)\)} \\
\hline 2d_barrier & real & {\([0.3](\mathrm{eV})\)} \\
\hline scale & real & {\([1]\).} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}

This statement is used to modify the density of states used in a bulk layer. The most common application is when a thick MQW region is approximated by a single
average bulk material: the density of states in that case should be that of the original quantum wells and not that of the bulk material.

\section*{Parameters}
- carrier is the carrier type whose density of states will be modified.
- model changes between the 2D (QW) and 3D (bulk) DOS models.
- 2d_thick is the thickness of the QW to be used in the 2D DOS model.
- 2d_barrier is the barrier height of the QW to be used in the 2D DOS model.
- scale is a scaling factor for the DOS.
- mater is the number identifying the material being modified. If a label alias has previously been defined for this material, mater_label may be used instead.

\section*{Examples}
```

bulk_dos_model model=2d carrier=electron mater=2

```

\subsection*{22.121 bulk_treatment}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline type & char & {\([\) void]n, p} \\
\hline
\end{tabular}

The statement bulk_treatment is used to turn on/off the quantum treatment for one type of carrier. By default, both electron and hole subbands of a quantum well are solved simultaneously. If one wish to achieve faster simulation or easier convergence, one may use this statement to skip the quantum treatment and treat the less important carrier as if it were in a bulk region.

\section*{Parameters}
- type is the type of carrier to be treated as bulk carrier without quantum models.

\section*{Examples}
```

bulk_treament type=p

```

The above statement will instruct the program to only compute the quantum states of the n-type carriers.

\subsection*{22.122 bulk_xfunc1}
bulk_xfunck, \(\mathrm{k}=\mathbf{1 . . 9}\) are a set of external functions that can be used as part of a passive macro declaration. They can for example, define a bandgap formula that is reused in the declaration of different parameters.

These statements follow the same rules for functions defined for other material macro statements. See section 22.456 for examples and further details.

\subsection*{22.123 bulk xfunc2}

See bulk xfunc1.

\subsection*{22.124 bulk_xfunc3}

See bulk_xfunc1.

\subsection*{22.125 bulk_xfunc4}

See bulk_xfunc1.

\subsection*{22.126 bulk_xfunc5}

See bulk_xfunc1.

\subsection*{22.127 bulk_xfunc6}

See bulk_xfunc1.

\subsection*{22.128 bulk_xfunc7}

See bulk xfunc1.

\subsection*{22.129 bulk_xfunc8}

See bulk_xfunc1.

\subsection*{22.130 bulk_xfunc9}

See bulk xfunc1.

\subsection*{22.131 c11_bar}
cij__bar are a set of statements defining the stiffness tensor (elastic constants) of the barrier material in the active macro of a quantum well. It is necessary to define strain effects on bandgap and other material properties.
See c11__well for a list of tensor elements used in zincblende and wurtzite materials.
The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.132 c12_bar}

See c11_bar
22.133 c13_bar

See c11__bar


\subsection*{22.134 c33_bar}

See c11_bar

\subsection*{22.135 c44_bar}

See c11 bar

\subsection*{22.136 \\ c11_bulk}
cij__bulk are a set of statements defining the stiffness tensor (elastic constants) in a passive material macro. This is only used for wurtzite materials since the software does not support strained bulk zincblende.

See c11__well for a list of applicable tensor elements.
The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.137 c12_bulk}

See c11_bulk

\subsection*{22.138 c13_bulk}

See c11__bulk

\subsection*{22.139 c33_bulk}

See c11_bulk

\subsection*{22.140 c44_bulk}

See c11__bulk

\subsection*{22.141 c11_well}
cij__well are a set of statements defining the stiffness tensor (elastic constants) in the active macro of a quantum well or bulk active region. It is necessary to define strain effects on bandgap and other material properties.

For zincblende, the following \(C_{i j}\) values are used[118]:
\[
\left(\begin{array}{cccccc}
C_{11} & C_{12} & C_{12} & 0 & 0 & 0  \tag{22.7}\\
C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\
C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & 4 C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & 4 C_{44} & 0 \\
0 & 0 & 0 & 0 & 0 & 4 C_{44}
\end{array}\right)
\]

For wurtzite, the following \(C_{i j}\) combinations are used:
\(\left(\begin{array}{cccccc}C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{13} & 0 & 0 & 0 \\ C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & 2\left(C_{11}-C_{12}\right)\end{array}\right)\)
The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.142 c12_well}

See c11__well

\subsection*{22.143 c13_well}

See c11__well

\subsection*{22.144 c33_well}

See c11_ _well

\subsection*{22.145 c44_well}

See c11_ well

\subsection*{22.146 column}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline indep_xmqw & char & [no] yes \\
\hline add_top_mesh & char & {\([\) no] yes } \\
\hline w & real & \\
\hline r & real & {\([1]\).} \\
\hline column__num & intg & {\([1]\)} \\
\hline mesh_num & intg & {\([6]\)} \\
\hline shift_center & real & {\([0\).\(] (fraction)\)} \\
\hline
\end{tabular}
column is the statement used in the .layer file to define a column in the cross section of the device; it also defines the mesh allocation in the vertical direction within said column.

In that sense, this command is analogous to the layer statement which defines horizontal properties.

\section*{Parameters}
- indep_xmqw may be used to force the active layers in different columns to be treated as different (or independent) active regions even if the material parameters are the same. Such treatment may be necessary if the potential distribution in the two columns are substantially different in a self-consistent simulation.
- add__top__mesh instructs the software to define a mesh line boundary at the top of the column. By default, this boundary is defined at the bottom of the column so if a void region is present in a column, this may cause issues for the mesh generator.
- column_num is a number assigned to the column for identification purposes.
- \(w\) defines the width of the column.
- mesh_num sets the number of vertical mesh lines for this column. This mesh line boundary is processed by the mesh generator.
- \(\mathbf{r}\) is the ratio for mesh line distribution. See Fig. 22.22.
- shift__center is used when \(\mathbf{r}\) is negative and a symmetric mesh distribution is requested. This parameter moves the position of the point around which the mesh is symmetric.

\section*{Examples}
column column_num=1 \(\mathrm{w}=1.0\) mesh_num=6 \(\mathrm{r}=0.8\)

\subsection*{22.147 column__position}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline label & char & \\
hline location & char & {\([\) right \(]\)} \\
hline delta_x_from_left & real & {\([-9999].(\mu \mathrm{m})\)} \\
\hline delta_x_from_right & real & {\([-9999].(\mu \mathrm{m})\)} \\
\hline
\end{tabular}

This statement is similar to layer__position and is used to mark a specific x coordinate for later use. This is useful to automatically track changes to a device structure without having to redefine coordinates in other commands.

All the parameters from this statement are analogous to those of layer_position. The main difference is that all positions are defined relative to the preceding column statement.

\subsection*{22.148 compact_junction_region}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_column & char & \\
\hline data_folder & char & \\
\hline data_file & char & [compact_junction_data.csv] \\
\hline materi_label \((\mathrm{i}=1 \ldots 9)\) & char & \\
\hline yrange & realx2 & \\
\hline materi \((\mathrm{i}=1 \ldots 9)\) & intg & \\
\hline
\end{tabular}
compact_junction_region works in conjunction with compact__semiconductor__model and essentially allows the MQW region of an optical device to be modeled like a "black box" using experimental data curves. It instructs the software to load a data file that contains optical emission information that would normally be computed to solve current continuity equations but which is unavailable in the compact semiconductor model.

\section*{Parameters}
- materi ( \(\mathbf{i}=\mathbf{1} \ldots \mathbf{9}\) ), with " i " as a placeholder number, define the different material numbers that are part of the semiconductor junction and which are affected by this command. Alternatively, pre-existing material labels can be defined using materi_label ( \(\mathrm{i}=\mathbf{1} \ldots \mathbf{9}\) ), with "i" as a placeholder number again.
- yrange is the spatial extent of the region affected by this command.
- data_file defines the name of data file being loaded. The data must be stored in a comma-separated value (CSV) text format.
- data_folder defines the path to the data file being loaded.
- data_column specifies the column format for the CSV file. At present, the following settings are possible:
- v_j_iqe/temp is a 3-column format with the first line containing column headers that will be ignored. The first column is the voltage, the second column is the current and the third column is the internal quantum efficiency (IQE) of a LED.
Multiple curves at different temperatures can be included in the same file. The 3 -column data blocks should be separated by a single-column line containing the new temperature; the first data block is assumed to be at 300 K .
- j_gain/temp is a 2-column format with the first line containing column headers that will be ignored. The first column is the current and the second column is the optical gain; this format is primarily used for lasers. Multiple curves at different temperatures can be included in the same file. The 2 -column data blocks should be separated by a single-column line containing the new temperature; the first data block is assumed to be at 300 K .

\subsection*{22.149 compact_semiconductor_model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline set_min_elec_density & real & \(\left(\mathrm{m}^{-3}\right)\) \\
\hline set_min_hole_density & real & \(\left(\mathrm{m}^{-3}\right)\) \\
\hline set_max_resistivity & real & \((\Omega \cdot m)\) \\
\hline
\end{tabular}
compact__semiconductor_model turns on a simplified electrical transport model for the simulation: instead of solving the coupled drift-diffusion equations of Chapter 5 , only the Poisson equation is solved in the main Newton solver. The reduction in problem size that comes from solving only one equation greatly simplifies convergence and speeds up the computation speed in large 3D problems.

Since this approach does not solve the current continuity equations, only the drift current is available in this model: this current is obtained from the gradient of the potential, assuming an ohmic resistor model for all points. The local equivalent resistivity is computed from the carrier mobility defined in the material macros and the carrier density from the solution of the Poisson equatio. This conversion can be shown using the definition of the net drift-diffusion current in Eq. 5.6:

\[
\begin{aligned}
J_{n} & =n \mu_{n} \nabla E_{f n} \\
& \approx n \mu_{n} \nabla V \\
& \approx \frac{\nabla V}{\rho_{n}}
\end{aligned}
\]
from which we obtain \(\rho_{n}=\frac{1}{n \mu_{n}}\).
As this model is an extreme simplification, using very small voltage steps in the scan command is strongly recommended to reduce the variation of carrier density between scan steps and obtain a smooth I-V curve.

\section*{Parameters}
- set_min_elec_density sets the minimum value of the electron carrier density used to obtain the local resistivity: this is used to avoid dividing by zero during the conversion. set_min__hole_density is likewise the minimum value of the hole carrier density used in the conversion.
- set_max_resistivity artificially caps the value of the local resistivity. This cap thus takes into account small values in both the carrier density and carrier mobility.

\subsection*{22.150 complex_region}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline polygon__name & char & \\
\hline mater_label & char & \\
\hline thickness & real & {\([0.01](\mu m)\)} \\
\hline x_size & real & \((\mu m)\) \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}

The statement complex_region is used to describe a rectangle region of material within a complex; that is a group of layers coupled to each other quantum mechanically. Note that there should be odd number of layer for each column due to historical reasons: the convention is that a complex describes a coupled MQW system in the sequence of barrier-well-barrier...well-barrier. As of the 2012 version, there is a special exception to this rule which can be used to define a complex region with only two layers: see begin_complex for details.

Also for historical reasons, the optical gain is only calculated in the even-numbered layers of a complex. This can be changed with inner_bar_gain but only for the "inner" barriers: the gain will not be calculated in the outer layers and only serve as boundary regions where the wavefunction decays. The user may split certain layers into smaller pieces to account for this.

Note that complex MQW region declarations are usually generated automatically by the layer.exe program. All that is needed is to use the appropriate complex MQW active macros (prefixed by "cx-") in the layer_mater statement.

\section*{Parameters}
- polygon_name is the name of the polygon as defined in the .geo file.
- thickness is the thickness of the region in microns.
- x_size is the width of the region in microns.
- mater is the material number of the region. If a label has previous been defined for this material, mater_label may be used instead.

\section*{Examples}
```

begin_complex layer_num= 5 column_num= 1
complex_region polygon_name=p002 mater= 2 thickness= 0.785000000000E-001

```
complex_region polygon_name=p003 mater= complex_region polygon_name=p004 mater= complex_region polygon_name=p005 mater= complex_region polygon_name=p006 mater= end_complex
3 thickness \(=0.750000000000 \mathrm{E}-002\)
2 thickness \(=0.850000000000 \mathrm{E}-002\)
3 thickness \(=0.750000000000 \mathrm{E}-002\)
2 thickness \(=0.785000000000 \mathrm{E}-001\)

\subsection*{22.151 complex_var__symbol}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline var_lib & char & \\
\hline var_complex & char & \\
\hline
\end{tabular}
complex_var_symbol translates a variable/symbol name from the library to the underlying complex/active macro. This statement can be omitted if the variable name is the same in both the library and the macro.

See material__lib and basic__var_symbol for further information.

\section*{Examples}
```

begin_library AlGaAs
import_basic name=algaas
import_complex name=cx-AlGaAs
complex_var_symbol var_lib=x var_complex=xw
end_library

```

This set of commands defines the "AlGaAs" library as being composed of the "algaas" passive macro and the "cx-AlGaAs" active macro. The material parameter \(x\) used when invoking the library is translated into the \(x w\) parameter of the active macros and used "as-is" in the passive macro.

\subsection*{22.152 compute_inductance}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline ref_contact & intg & {\([1]\)} \\
\hline critical_curr & real & \(\left(A / m^{2}\right)\) \\
\hline ref_zplane & real & {\([8.0](\mu m)\)} \\
\hline
\end{tabular}
compute_inductance is a post-processing statement used to compute the magnetic inductance \(\left(L=\frac{d \Phi}{d i}\right)\) of the device. The software will compute the magnetic flux density \((B=\nabla \times A)\) based on Ampere's law \(\left(\nabla \times B=\mu_{0} J\right)\) and the DC current flow in the device.

\section*{Parameters}
- ref_contact is the contact number used to inject current in this model.
- critical_curr is a current density used to determine an equivalent coil geometry based on the current distribution inside the device.
- ref_zplane is the position of z-plane used to compute the magnetic flux \(\Phi\).

\subsection*{22.153 cond__band2_edge}
cond__bandj__edge, \(\mathbf{j}=\mathbf{2 , 3}\) are a set of material statements used in active macros with the layer_type of general_cx_strain. They define the offset (in eV) of the 2 nd or 3rd conduction band valley with respect to the lowest conduction band valley.

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.154 cond_band3_edge}

See cond__band2__edge.

\subsection*{22.155 cond_band1_valley}
cond__bandj__valley, \(\mathbf{j}=\mathbf{1 . . 3}\) are a set of material statements used in active macros with the layer_type of general_cx_strain. When used, they override the number of band valleys defined for the conduction bands in that statement.
The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.156 cond_band2_valley}

See cond__band1__valley.

\subsection*{22.157 cond_band3_valley}

See cond__band1__valley.

\subsection*{22.158 cond_dos_mass_ratio_n}

The statements cond__dos_mass_ratio_n and cond__dos_mass_ratio__p are used to define the ratio:
\[
\text { ratio }=\frac{\text { conduction mass }}{\text { DOS mass }}
\]
for electrons and holes, respectively. This allows the user to indirectly set the conduction mass of a material.

\section*{Theory}

In the macros, the mass definitions are related to the density of states (DOS) and the curvature of the energy dispersion relation: i.e., the DOS mass is a measure of "how many" carriers there are in the material.
On the other hand, tunneling transparency (see Sec. 9.2) is derived from the Schrõdinger equation. This means that the mass used in the WKB approximation and other models originates from a kinetic energy term: it is a measure of "how fast" the carriers are. This is often called the conduction mass since it can be related to the carrier mobility.
We note however that since the software directly uses the mobility as a macro variable, the conduction mass is not used in the drift-diffusion model.

\section*{Parameters}

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.159 cond_dos_mass_ratio_p}

See Sec. 22.158

\subsection*{22.160 cond1_mass_para}
condj__mass_para, \(\mathbf{j}=\mathbf{1 . . 2}\) are a set of active macro parameters defining the relative conduction band mass of valley j in a direction parallel to the quantum well[119].

The mass defined in this statement can also be modified by non-parabolic terms with the condj__para__e_dep__mass1 and condj__para__e_dep_mass2 statements:
\[
\begin{aligned}
m(E) & =a+b E+c E^{2} \\
E(k) & =\frac{\hbar^{2} k^{2}}{2 m_{0} m(E)}
\end{aligned}
\]

Note that the j placeholder value must be the same in all thee statements since they all refer to the same band valley.

\section*{Parameters}

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\section*{Examples}

This statement is used for general complex strained macros; the most common applications are for strained silicon, SiGe and II-VI lead salt materials.
```

layer_type type=general_cx_strain valley_c1=4 valley_v1=4 \&\&
optic_trans_valley_pair1=(1 1)
\$ Define band gap as a bulk_xfunc1, to be referred to later by other functions
ext_func1 variation=function
function(x,temper)
0.17+0.057*x-0.095*x**2+sqrt(4.e-4+2.56e-7*temper**2)
end_function
cond1_mass_para value=0.05

```
```

cond1_para_e_dep_mass1 variation=function
function(x)
em_parab=0.05;
egt=ext_func1;
2.*em_parab/egt
end_function

```

This defines a mass equal to \(m(E)=0.05+0.1 \frac{E}{E_{g}}\) in the notation above.

\subsection*{22.161 cond2__mass_para}

Se st:cond1__mass__para.

\subsection*{22.162 cond1__mass__perp}
condj__mass_perp, \(\mathbf{j}=\mathbf{1 . . 2}\) are a set of active macro parameters defining the relative conduction band mass of valley \(j\) in a direction perpendicular to the quantum well[119].

The mass defined in this statement can also be modified by non-parabolic terms with the condj__perp_e__dep__mass1 and condj__perp__e__dep__mass2 statements:
\[
\begin{aligned}
m(E) & =a+b E+c E^{2} \\
E(k) & =\frac{\hbar^{2} k^{2}}{2 m_{0} m(E)}
\end{aligned}
\]

Note that the j placeholder value must be the same in all thee statements since they all refer to the same band valley.

\section*{Parameters}

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\section*{Examples}

This statement is used for general complex strained macros; the most common applications are for strained silicon, SiGe and II-VI lead salt materials.
```

layer_type type=general_cx_strain valley_c1=4 valley_v1=4 \&\&
optic_trans_valley_pair1=(1 1)
\$ Define band gap as a bulk_xfunc1, to be referred to later by other functions
ext_func1 variation=function
function(x,temper)
0.17+0.057*x-0.095*x**2+sqrt(4.e-4+2.56e-7*temper**2)
end_function
cond1_mass_perp value=0.05
cond1_perp_e_dep_mass1 variation=function
function(x)
em_parab=0.05;
egt=ext_func1;
2.*em_parab/egt
end_function

```

This defines a mass equal to \(m(E)=0.05+0.1 \frac{E}{E_{g}}\) in the notation above.

\subsection*{22.163 cond2_mass_perp}

Se st:cond1_mass__perp.

\subsection*{22.164 cond1_para_e__dep_mass1}

See cond1__mass__para.

\subsection*{22.165 cond1_para_e__dep_mass2}

See cond1__mass__para.

\subsection*{22.166 cond2__para_e__dep_mass1}

See cond1__mass__para.

\subsection*{22.167 cond2_para_e_dep_mass2}

See cond1_mass_para.

\subsection*{22.168 cond1_perp_e_dep_mass1}

See cond1_mass_perp.
22.169 cond1_perp_e_dep_mass2

See cond1_mass_perp.
22.170 cond2__perp_e__dep__mass1

See cond1_mass_perp.

\subsection*{22.171 cond2__perp__e__dep__mass2}

See cond1_mass_perp.

\subsection*{22.172 cond1__valley__prop1}
condj__valley_propk are a set of active layer macro statements: j and k are placeholder values that indicate the conduction subband valley number ( \(\mathrm{j}=1 . .2\) ) and the property number (k). For each valley, the subband concentrations are used to compute material properties.

This parameter is not directly used for simulation but it allows for printing of data in the post-processing stage. The statement more__output must be used to specifically turn on the printing of this data.

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.173 cond2_valley_prop1}

See cond1__valley_prop1.

\subsection*{22.174 contact}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline type & char & {\([\) ohmic], schottky } \\
\hline touch_macro & char & \\
\hline touch_var_symbolk \((\mathrm{k}=1 . .0)\) & char & \\
\hline mater_label & char & \\
\hline auto_numbering & char & {\([\mathrm{no}]\), yes } \\
\hline barrier & real & \((\mathrm{eV})\) \\
\hline junc_coefs & realx2 & {\([1.1]\).} \\
\hline elec_temp & real & {\([1.5]\)} \\
\hline hole_temp & real & {\([1.5]\)} \\
\hline lattice_temp & real & {\([300].(\mathrm{K})\)} \\
\hline heat_flow & real & {\([100].(3 \mathrm{D}: \mathrm{W}, 2 \mathrm{D}: \mathrm{W} / \mathrm{m})\)} \\
\hline thermal_cond & real & {\([10].(3 \mathrm{D}: \mathrm{W} / \mathrm{K}, 2 \mathrm{D}:(\mathrm{W} / \mathrm{m}) / \mathrm{K})\)} \\
\hline extern_temp & real & {\([300]\).} \\
\hline work_function & real & \((\mathrm{eV})\) \\
\hline touch_vark(k=1..9) & real & \\
\hline num & intg & \\
\hline thermal_type & intg & {\([1]\)} \\
\hline touch_mater & intg & \\
\hline
\end{tabular}

The statement contact defines the properties of an equipotential region belonging to an electrode or metal contact. It does not define any other properties associated with a metal contact such as optical absorption: this can be handled by using real metal layers in the device or other statements relevant to a particular model.

For ohmic contacts, the simulation program must determine a built-in voltage based on the flat band condition of semiconductor material in contact with the electrode. Therefore, the program will get confused if an ohmic contact is in contact with more than one semiconductor materials. In such a case, a solution is to use the parameters started with "touch_" to force the electrode to use the properties of a specific semiconductor.

In all thermal simulations, it is strongly recommended to override automatic contact definitions from the .layer file in order to guarantee that the correct thermal boundary
conditions are applied to the simulation. The default values may not make sense in all cases.

\section*{Parameters}
- type defines the type of the contact.
- touch_mater is used to specify the material number used to compute the contact boundary conditions. For example, an ohmic contact touching two different materials cannot be at two different energy levels simultaneously so it only "touches" one of them. mater_label can also be used to identify the "touch" material if the material has previously been given an alias.
The "touch" material can also be detected automatically by the software using the name of the material macro (touch_macro) and the macro parameters (touch_var__symbolk \((\mathrm{k}=1 . .9)\) and touch__var__symbolk \((\mathrm{k}=1 . .9))\).
- auto_numbering may be used to automatically assign numbers to contact based on the local doping profile and "touch" material composition.
- barrier is the barrier height in eV which is used only for Schottky contacts. It is equal to semiconductor affinity minus the work function of the metal. The user should define either barrier or work_function but not both.
- junc_coefs are the Schottky junction coefficients of a contact used in the formulas of thermionic emission current model. They scale the emission velocities of electrons and holes, respectively.
- num is the contact number. It much match the boundary number information from the .geo file and the mesh.
- elec_temp and hole_temp are the electron and hole temperatures at the contact (in units of kT ). This is used as the boundary condition for the hydrodynamic model and should not be confused with the lattice temperature which is a boundary of the thermal model.
- lattice_temp is the lattice temperature at the contact for thermal contact type 1.
- heat_flow is the heating power flow going out of the contact for thermal contact type 2. The unit of Watt/m for a 2D section of a cubic coordinate system. The unit is Watt for 3D device or a 2D section of a cylindrical system.
- thermal_cond is the thermal conductance connected to the contact for thermal contact type 3. The total heat flow (in Watt) to/from the device is given
by \(\Sigma\left(T-T_{\text {ext }}\right)\) where \(\Sigma\) is the thermal conductance and \(T_{\text {ext }}\) is the external thermal contact.

For a realistic 3D device, the unit is Watt/K. For a 2D simulation, the heat flow is in unit of Watt/m and the unit of \(\Sigma\) is Watt \(/ \mathrm{m} / \mathrm{K}\) for a 2 D section of a cubic coordinate system. That is, one must divide the total thermal conductance by the device depth (in z-direction).

For an ideal uniform device, the thermal conductance of a cubic system can be converted to that of cylindrical system by formula: \(\Sigma_{c y l}=\frac{\pi R^{2}}{2 D} \Sigma_{c u b} . R\) is the radius of the cylindrical device and \(D\) is the half-width of the cubic device.

If external_cir is used to specify the resistance of this thermal conductor, the self-heating effect will also be taken into account. A temperature difference will appear between the contact and the external heat sink.

Important Note: many users make the mistake of using the thermal conductivity ( \(k\) ) instead of the thermal conductance \((\Sigma)\) in thermal_cond. These two quantities are related by:
\[
\begin{align*}
\Sigma_{3 D} & =k \frac{w \times L}{t}  \tag{22.9}\\
\Sigma_{2 D} & =k \frac{w}{t} \tag{22.10}
\end{align*}
\]
where \(w, L, t\) are the width,length and thickness of the contact, respectively. The 2D thermal conductance thus has, unfortunately, the same units of \(W m^{-1} K^{-1}\) as the thermal conductivity but the two values may differ by several orders of magnitude.
- extern_temp is the temperature of the heat sink connected to the thermal conductance for thermal contact type 3 .
- See barrier above.
- thermal_type is the thermal boundary condition. All three types are defined in Sec. 11.5. Please also see contact__heating for self-heating due to contact resistance or other external circuit elements.

\section*{Examples}
```

contact num=1 type=ohmic
contact num=2 type=schottky barrier=0.84

```

\subsection*{22.175 contact_heating}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline resistance & real & {\([0.1](\Omega)\)} \\
\hline contact_num & intg & {\([1]\)} \\
\hline
\end{tabular}
contact_heating is used to supplement the contact statement in thermal simulations that use the minispice external circuit model. If the thermal boundary of the contact is Type 3 as defined in Sec. 11.5, this command will add a heat flow equal to the resistor's self-heating \(\left(R I^{2}\right)\) to the boundary condition.

Note that the resistance value defined in this command should be equal to the resistance of the path between the contact and the external heat sink, no matter how many resistors are actually connected to the contact node in the minispice circuit layout.

\subsection*{22.176 contact_metal_interface}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline use_fix_charge & char & {\([\) no], yes } \\
\hline interface_thickness & real & {\([1 . \mathrm{e}-3](\mu \mathrm{m})\)} \\
\hline
\end{tabular}
contact__metal_interface overrides some of the default behavior associated with electrical contact boundaries.

\section*{Parameters}
- use_fix_charge controls whether or not fixed charges are applied on contact boundaries. This setting is relevant when dealing with ohmic contacts (which impose charge neutrality at the boundary) in wurtzite materials since a net polarization vector may be present at the outer surfaces of the device. The default behavior has the effect of automatically neutralizing the piezoelectric charge on contact boundary regions, leaving the usual ohmic behavior intact.
- interface_thickness is the effective thickness of the contact. Because each mesh point touching the contact may have its own effective thickness and node area, a common reference is needed so that the total charge can be collected/summed over the entire contact.

\subsection*{22.177 convention}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline positive_current_flow & char & [outward],inward \\
\hline
\end{tabular}

The command convention is used to define the positive current flow. By default, the simulator treats current flowing out of the device and in to a contact as being positive.
22.178 couple_input_power
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline fraction & real & {\([1]\).} \\
\hline lateral_mode & intg & {\([1]\)} \\
\hline
\end{tabular}

This statement is used in PICS3D when modeling semiconductor optical amplifiers (SOA) and modulators. It controls how much of the input light goes into each of the various lateral modes.

\section*{Parameters}
- fraction is the fraction of power that is input into a given lateral mode.
- lateral_mode is the number of the lateral mode receiving a fraction of the input power.

\section*{Examples}
```

\$ Make sure these sum up to 1.0 ...
couple_input_power fraction=0.8 lateral_mode=1
couple_input_power fraction=0.2 lateral_mode=2

```

\subsection*{22.179 couple_next}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline power_loss & real & 0. (fraction) \\
\hline loss_modek \((\mathrm{k}=2 . .5)\) & real & 0. fraction) \\
\hline sec_num & intg & {\([1]\)} \\
\hline
\end{tabular}

The statement couple_next is used to define the coupling between sections of a device in PICS3D.

\section*{Parameters}
- power_loss is the power loss fraction between sections.
- loss_modek, \(\mathrm{k}=\mathbf{2 . . 5}\) is the power loss fraction between sections for higher order lateral mode number k .
- sec_num is the section number. The coupling defined by this statement is between sections sec__num and sec_num +1 .

\section*{Examples}
couple_next power_loss=0.05 sec_num=1

\subsection*{22.180 cplot_xy}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & (see list) \\
\hline data_file & char & {\([\) vttek] } \\
\hline mater_boundary & char & {\([\) no \(]\) yes } \\
\hline point_ll & realx2 & \((\mu m)\) \\
\hline point_ur & realx2 & \((\mu m)\) \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline Z & realx2 & \\
\hline level & intg & {\([10]\)} \\
\hline grid_sizes & intgx2 & {\([20,20]\)} \\
\hline mode_index & intg & {\([1]\)} \\
\hline trap_index & intg & {\([1]\)} \\
\hline
\end{tabular}
cplot_xy is a post-processor statement used to plot structural data on a 2D plane. Unlike plot_2d, this command can only generate contour plots.
Other related commands exist and should be used depending on the 2D/3D nature of the original simulation results. The following rules apply:
- 2D simulations: use plot__2d
- 3D cylindrical simulations with one mesh plane: use plot__2d
- xy plane from a 3D simulation: use cplot_xy for contour plots of scalar variables, splot_xy for 3D surface plots of scalar variables or vplot_xy for vector variables.
- xyz plane from a 3D simulation: use cplot_xyz for contour plots of scalar variables, splot_xyz for 3D surface plots of scalar variables or vplot_xyz for vector variables.

\section*{Parameters}

With the exception of the z-position and vector plot-related parameters that do not apply, all parameters are the same as in plot__2d.
- \(\mathbf{z}\) is the position on the z -axis for the 2 D plot. If necessary, the variable data will be interpolated from neighboring mesh planes.

\section*{Examples}
```

cplot_xy variable=potential z=50.

```

\subsection*{22.181 cplot_xyz}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & (see list) \\
\hline data_file & char & \\
\hline wave_option & char & [right],total,left \\
\hline xy_from & realx2 & \\
\hline xy_to & realx2 & \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline z_min & real & {\([-1 . e 9]\)} \\
\hline Z_max & real & {\([1 . e 9]\)} \\
\hline mode_index & intg & {\([1]\)} \\
\hline grid_sizes & intgx2 & {\([20,20]\)} \\
\hline level & intg & {\([10]\)} \\
\hline trap_index & intg & {\([1]\)} \\
\hline
\end{tabular}
cplot__xyz is a post-processor statement used to plot structural data on a 2D plane. Unlike plot_2d, this command can only generate contour plots.

Other related commands exist and should be used depending on the 2D/3D nature of the original simulation results. The following rules apply:
- 2D simulations: use plot__2d
- 3D cylindrical simulations with one mesh plane: use plot__2d
- xy plane from a 3D simulation: use cplot__xy for contour plots of scalar variables, splot_xy for 3D surface plots of scalar variables or vplot_xy for vector variables.
- xyz plane from a 3D simulation: use cplot_xyz for contour plots of scalar variables, splot_xyz for 3D surface plots of scalar variables or vplot_xyz for vector variables.

\section*{Parameters}

This statement is similar to cplot_xy and varies only in the way it defines the plotting plane. As such, most of the parameters are also similar to those in plot__2d.
- \(x y \_f r o m ~ a n d ~ x y ~ \_t o ~ d e f i n e ~ t h e ~(~ x, y) ~ c o r n e r s ~ o f ~ t h e ~ p l o t t i n g ~ p l a n e . ~\)
- z__min and z_max define the z coordinates of the corners of the plotting plane.

\section*{Examples}
```

cplot_xyz variable=wave_intensity xy_from=(0.5, 0.0) xy_to=(0.5 3.0) \&\&
grid_sizes=(60, 20)

```

\subsection*{22.182 csuprem__mask}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline tag & char & {\([\) void \(]\)} \\
\hline
\end{tabular}
csuprem_mask is used in the .layer file pre-processing in conjunction with the export_layers_to_suprem command. It modifies the CSUPREM input files that are generated by that command and adds a comment line at the appropriate place. An optional used-defined label can also be added as part of the comment line to facilitate the identification of layers.

\section*{Parameters}
tag is a user-defined label that can be added to the comment line in CSUPREM

\subsection*{22.183 current__conc}
\begin{tabular}{||l|l|l||}
\hline \multicolumn{1}{|c|}{ parameter } & data type & values [defaults] \\
\hline \hline data_file & char & [void] \\
\hline use_macro & char & {\([\) no \(]\)} \\
\hline fit_outfile & char & {\([\) void \(]\)} \\
\hline auto_pn_ratio & char & {\([\) no \(]\)} \\
\hline conc_log_scale & char & {\([\) [no \(]\)} \\
\hline conc_range & realx2 & {\([(1 . \mathrm{e} 231 . \mathrm{e} 24)]\left(\mathrm{m}^{-3}\right)\)} \\
\hline pn_ratio & real & {\([1]\).} \\
\hline av_index & real & {\([3.3]\)} \\
\hline auger_n & real & {\([2 . \mathrm{e}-42]\left(\mathrm{m}^{6} / \mathrm{s}\right)\)} \\
\hline auger_p & real & {\([2 . \mathrm{e}-42]\left(\mathrm{m}^{6} / \mathrm{s}\right)\)} \\
\hline life_n & real & {\([1 . \mathrm{e}-6](\mathrm{sec})\).} \\
\hline life_p & real & {\([1 . \mathrm{e}-6](\mathrm{sec})\).} \\
\hline data_point & intg & {\([30]\)} \\
\hline well_num & intg & {\([1]\)} \\
\hline zseg_num & intg & {\([1]\)} \\
\hline
\end{tabular}

The statement current_conc is a gain preview statement which allows the user to find the relation between carrier concentration and the recombination current in the quantum well active region. The recombination rate is expressed as
\[
R=R_{\text {spon }}+R_{\text {auger }}+n / \text { tau }_{n}+p / \text { tau }_{p}
\]
where the spontaneous emission spectrum computed from the quantum well model is integrated over all emission wavelengths and the Auger recombination is given by auger__n and auger__p, defined below. The last two terms are due to traps, surface recombination, thermal leakage, etc.

\section*{Parameters}
- data_file is the file to which the graphic data is written in ASCII format.
- use_macro directs the program to use the material parameters such as Auger coefficients from the material macros instead from parameters in this statement. If this parameter is set to yes, parameters of auger__n, auger__p, life_n and life__p in this statement will not be used for the model fitting.
- fit__outfile if set to a valid file name, is used to direct the model fitting results to a file in the working directory.
- auto_pn_ratio is used to indicate if automatic setting of hole/electron density ratio is used in PICS3D simulation. If positive, averaged hole/electron density from the drift-diffusion solver is used. This parameter, if positive, will override pn_ratio.
- conc_range is the electron concentration range in the well.
- pn_ratio is the ratio of hole over electron concentrations. Note that this ratio can be set to an arbitrary number in the gain preview. In the main solver, however, this ratio is determined by the simulator automatically, according to the local Fermi levels.
- conc_log_scale would vary the concentration in log scale.
- av_index is the estimated average refractive index.
- auger_n is the Auger coefficient \(C_{n}\).
- auger__p is the Auger coefficient \(C_{p}\).
- life_n is the minority carrier life time for electrons.
- life__p is the minority carrier life time for holes .
- data_point is the number of data points to be used in the current versus concentration plot.
- well_num is the total number of active quantum wells involved.
- zseg_num is the z-segment number.

\subsection*{22.184 cylindrical}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline axis & char & \(\mathrm{x},[\mathrm{y}]\) \\
\hline cylindrical_origin & real & {\([0].(\mu \mathrm{m})\)} \\
\hline min_core & real & {\([0](\mu \mathrm{m})\)} \\
\hline
\end{tabular}

The cylindrical statement is used to define a cylindrical coordinate system. It has been implemented so that 3D devices with cylindrical symmetry can be modeled with a single mesh plane.

With this setting, the 2D cut of the device shown in the layer file corresponds to a radial cut. 3D results are obtained by integrating the 2 D results of the simulation
from 0 to \(2 \pi\). Note that in versions prior to 2012, the integration range was from 0 to \(\pi\) and a scaling factor had to be used during plotting. This scaling is no longer necessary.
Please refer to Sec. 6.2 for details.

\section*{Parameters}
- axis is the cartesian axis which is used as the rotation or \(z\)-axis of the cylindrical coordinate system. The other direction is automatically equivalent to \(r\).
- cylindrical_origin is used to offset \(r\) axis values during the conversion to the cylindrical coordinate system. A value larger than zero turns a rectangular 2D cut into a torus rather than a cylinder.
- core_min is a minimum \(r\) value used when converting the local mesh area into a volume for the FEM. This value is necessary to avoid division by zero errors since the gradient operator in cylindrical coordinates contains a term in \(\frac{1}{r} \frac{\partial}{\partial \theta}\)

\subsection*{22.185 dbr_truncate}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline dir & char & {\([\) left \(]\) right } \\
\hline kappa_l & real & {\([5]\).} \\
\hline sec_num & intg & {\([1]\)} \\
\hline
\end{tabular}
dbr_truncate is used to modify the DBR grating in edge type of lasers so that numerical stability may be achieved. When a DBR grating structure is used as a reflector for a laser diode, the propagating light can only penetrate a finite distance before fully reflected. Such a penetration length is usually in the order of several \(1 /\) kappa, where kappa is the coupling coefficient. The DBR gratings beyond this penetration length does not contribute to the laser diode operation but may cause numerical stability during Newton iterations. Thus, we artificially truncate the DBR portion beyond the penetration length by setting the kappa there to zero.

\section*{Parameters}
- dirdir is the direction towards which the DBR grating is used as a reflector. For example, dir=left means the DBR is used to reflect light coming from the
left.
- kappa_l is a real number of around five. It is used to measure the penetration length beyond which the DBR is to be truncated. The penetration length is given by kappa_l/kappa, where kappa is the coupling coefficient.
- sec_num is the index of the section where the DBR truncation is applicable.

\section*{Examples}
dbr_truncate sec_num=2 kappa_l=5

\subsection*{22.186 define_alias}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline alias & char & {\([\) void \(]\)} \\
\hline name & real & {\([\) void \(]\)} \\
\hline
\end{tabular}
define__alias is used to define an alias which may be used instead of the original variable in all input files. It acts in many ways like the \#define directive in \(\mathrm{C} / \mathrm{C}++\).

To associate an alias to a numerical value, use define__symbol instead.

\section*{Parameters}
- alias is the alias being used.
- name is the name the alias represents.

\section*{Examples}
define_alias alias=Vg name=voltage_2

This defines Vg (gate voltage) as being equivalent to voltage_2.

\subsection*{22.187 define_cavity}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline propagation_dir & char & y, \([\mathrm{z}]\) \\
\hline symmetric_x & char & {\([\) yes \(]\), no } \\
\hline import_xy_wave & char & \\
\hline eim_core_xrange & realx2 & \((\mu m)\) \\
\hline eim_core_zrange & realx2 & \((\mu m)\) \\
\hline eim_core_index & real & {\([3.5]\)} \\
\hline eim_clad_xindex & real & {\([1.5]\)} \\
\hline eim_clad_zindex & real & {\([1.5]\)} \\
\hline
\end{tabular}

The define_cavity command is exclusively used in PICS3D and is similar to vcsel__model. It is used to define the optical mode profile of a micro cavity/photonic crystal structure in the cartesian coordinate system. Unlike vcsel__model, define_cavity does not try to compute the standing wave overlap between the optical mode and the active region.

\section*{Parameters}
- propagation_dir is the overall direction of the wave vector in the laser cavity.
- symmetric_x is a flag indicating the left border of the cavity is a symmetry axis.
- import__xy_wave is the name of text file containing a mode profile that should be imported into the simulation. The format should be defined in 3 columns (x y intensity) with x changing the fastest and a line break between each set of \(y\) values. A uniform grid is assumed.
- eim_core_xrange is the waveguide core x-range for effective index method (EIM) when computing the wave profile. If propagation_dir=y, eim_core_zrange serves the same purpose and the defines the depth of the waveguide core. If propagation_dir \(=z\), it is assumed the \(y\)-range of the waveguide core is the same as the x-range.
- eim_core_index is the real part of the refractive index in the waveguide core. Similarly, eim_clad_xindex and eim_clad__zindex respectively define the real part of the refractive index in the cladding for the x and z directions. If propagation_dir \(=z\), it is assumed that the cladding along y is the same as along x .

\section*{Examples}
```

define_cavity propagation_dir=y \&\&
eim_core_xrange=(0 0.5) eim_core_zrange=(0. 1.035) \&\&
eim_core_index=3.5 eim_clad_xindex=1.5 eim_clad_zindex=1.

```

\subsection*{22.188 define_material}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}

This statement is used when a material number is re-used between z-segments. The first z-segment where this material occurrs must use load_macro to load the macro parameters. The other z-segments use define__material to indicate load__macro has already been used.

\section*{Parameters}
- mater is the number of the material being reused.

\section*{Examples}
define_material mater=8

\subsection*{22.189 define_symbol}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline symbol & char & {\([\) void \(]\)} \\
\hline value & real & \\
\hline
\end{tabular}
define__symbol is used to associate numerical values with symbols. It acts in many ways like the \#define directive in \(\mathrm{C} / \mathrm{C}++\).

This may be used to simplify input files or to represent repeated numerical values so that revisions are more convenient.

A few precautions should be taken when using this statement:
- 1) Avoid using it when the same symbol appears than once within a line;
- 2) The line containing the symbol must have enough line space so that the total length does not exceed 80 character after value substitution;
- 3) Please avoid using symbols that are already defined as parameters in crosslight.tab. For example, the following statement will cause problems:
define_symbol symbol=doping value=2.e24
Since "doping" is commonly used statement, the program will replace all occurrence of "doping" by "2.e24" and the input file will loss its original meaning. To avoid this problem, try
define_symbol symbol=john_smith_doping value=2.e24
To associate a symbol to a variable or a string input value, use define__alias instead.

\section*{Parameters}
- symbol is the symbol to be used to represent numerical value in the program.
- value is the numerical value to be used.

\section*{Examples}
define_symbol symbol=my_doping value=1.e24

\subsection*{22.190 define_vertical_position}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline label & char & [void] \\
\hline reference_to & char & [void] \\
\hline use_y_coord & real & (um) \\
\hline above_previous & real & (um) \\
\hline below__previous & real & (um) \\
\hline cut_at_x & real & (um) \\
\hline from_top & real & (um) \\
\hline from__bottom & real & (um) \\
\hline above_reference & real & (um) \\
\hline below_reference & real & (um) \\
\hline between_materials & intgx2 & \\
\hline
\end{tabular}
define__vertical_position is used in .sol file to label a vertical position for later reference. This can be done in one of the following ways:
- 1) Use absolute coordinates
- 2) Defined as first occurrence of material interface between two materials when searching from bottom to top
- 3) In reference to a previously defined position, i.e., using relative distance
- 4) Use relative distance with respect to the top or bottom of the \(x-y\) mesh.

\section*{Parameters}
- label is a position label at a specific y-coordinate.
- reference_to is used to define a reference point for approach number 3). It must be a predefined position label.
- use__y_coord is the y-coordinate for approach number 1).
- above_previous indicates the position is above a label in the preceeding statement for 3).
- below_previous indicates the position is below a label in the preceeding statement for 3).
- cut__at_x is used to define the x -position when using approach 2).
- from_top defines the distance from top of the mesh system in 4).
- from_bottom defines the distance from bottom of the mesh system in 4).
- above_reference is the distance above the reference point defined by parameter reference_to.
- below_reference is the distance below the reference point defined by parameter reference_to.
- between_materials defines the two materials used to identify the interface position in 2).

\section*{Examples}
```

define_vertical_position label=sio2/si \&\&
cut_at_x=0. between_materials=(2 3)

```

This example labels a y-position between materials 2 and 3 and label it as "sio2/si".

\subsection*{22.191 delta_real_index_caxis}
delta_real_index_caxis is a passive macro parameter describing the birefringence in wurtzite materials. This value describes the difference between the extraordinary index and the ordinary index with the latter value being defined in real_index.

To model the birefringence, optical__axis must also be used to configure the waveguide orientation with respect to the extraordinary axis.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.192 delta_so_bar}
delta__so_bar is an active macro parameter defining the spin-orbit coupling (in eV ) in a zincblende Hamiltonian. It applies to the barrier region of a quantum well.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.193 delta_so__well}
delta_so_well is an active macro parameter defining the spin-orbit coupling (in eV ) in a zincblende Hamiltonian. It applies to quantum wells and bulk active regions.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.194 delta1__bar}
deltaj_bar, \(\mathbf{j}=\mathbf{1 . . 3}\) are a set of active macro parameters defining valence band edges (in eV ) in the barrier of a wurtzite quantum well. They correspond to the \(\Delta_{j}\) values
appearing in the Hamiltonian[62].
- \(\Delta_{1}\) corresponds to the crystal field splitting \(\left(\Delta_{c r}\right)\)
- \(\Delta_{2}\) and \(\Delta_{3}\) correspond to the spin-orbit splitting. It is common to set \(\Delta_{2}=\) \(\Delta_{3}=\frac{\Delta_{\text {so }}}{3}\).

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.195 delta2_bar}

See delta1_bar.

\subsection*{22.196 delta3_bar}

See delta1__bar.

\subsection*{22.197 delta1_bulk}
deltaj_bulk, \(\mathbf{j}=1 . .3\) are a set of passive macro parameters defining valence band edges (in eV ) in wurtzite materials. They correspond to the \(\Delta_{j}\) values appearing in the Hamiltonian[62].
- \(\Delta_{1}\) corresponds to the crystal field splitting \(\left(\Delta_{c r}\right)\)
- \(\Delta_{2}\) and \(\Delta_{3}\) correspond to the spin-orbit splitting. It is common to set \(\Delta_{2}=\) \(\Delta_{3}=\frac{\Delta_{s o}}{3}\).

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.198 delta2_bulk}

See delta1__bulk.

\subsection*{22.199 delta3_bulk}

See delta1__bulk.

\subsection*{22.200 delta1_well}
deltaj_well, \(\mathbf{j}=1 . .3\) are a set of active macro parameters defining valence band edges (in eV ) for a wurtzite quantum well or bulk active region. They correspond to the \(\Delta_{j}\) values appearing in the Hamiltonian[62]:
- \(\Delta_{1}\) corresponds to the crystal field splitting \(\left(\Delta_{c r}\right)\)
- \(\Delta_{2}\) and \(\Delta_{3}\) correspond to the spin-orbit splitting. It is common to set \(\Delta_{2}=\) \(\Delta_{3}=\frac{\Delta_{s o}}{3}\).

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.201 delta2_well}

See delta1__well.

\subsection*{22.202 delta3_well}

See delta1__well.

\subsection*{22.203 d1_bar}
di__bar, \(\mathbf{i}=1 \ldots \mathbf{6}\) are a set of parameters used to define barrier properties in wurtzite quantum well active macros. They define the shear deformation potential \(\left(D_{i}\right)\) as defined in Ref [62].

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.204 d2_-bar}

See Sec. 22.203.

\subsection*{22.205 d3_bar}

See Sec. 22.203.

\subsection*{22.206 d4_bar}

See Sec. 22.203.
22.207 d5_bar

See Sec. 22.203.

\subsection*{22.208 d6_bar}

See Sec. 22.203.

\subsection*{22.209 d1_bulk}
di__bulk, \(\mathbf{i}=\mathbf{1} \ldots \mathbf{6}\) are a set of parameters used to define barrier properties in wurtzite passive macros. They define the shear deformation potential \(\left(D_{i}\right)\) as defined in Ref [62].

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.210 d2_bulk}

See Sec. 22.209.

\subsection*{22.211 d3_bulk}

See Sec. 22.209.

\subsection*{22.212 d4_bulk}

See Sec. 22.209.

\subsection*{22.213 d5_bulk}

See Sec. 22.209.

\subsection*{22.214 d6_bulk}

See Sec. 22.209.

\subsection*{22.215 d1_well}
di__well, \(\mathbf{i}=1 \ldots 6\) are a set of parameters used in the active macros for wurtzite quantum wells and bulk active regions. They define the shear deformation potential \(\left(D_{i}\right)\) as defined in Ref [62].

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.216 d2_well}

See Sec. 22.215.

\subsection*{22.217 d3_well}

See Sec. 22.215.

\subsection*{22.218 d4_well}

See Sec. 22.215.

\subsection*{22.219 d5_well}

See Sec. 22.215.

\subsection*{22.220 d6_well}

See Sec. 22.215.

\subsection*{22.221 diagonal_split}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline split_dir & char & [north-west], north-east \\
\hline right_mater_from & char & [east], west, north, south, original \\
\hline right_doping_from & char & [east], west, north, south, original \\
\hline
\end{tabular}

The diagonal__split command is used in the .layer file to split a rectangle into two: a line drawn between two corners splits the rectangle into two pieces which can have different material or doping properties from the original rectangle.

In this command, cardinal directions from a map are used instead of the usual up/down/left/right convention.

\section*{Parameters}
- split_dir gives the direction of the diagonal line splitting the rectangle.
- right__mater_from is used to initialize the material number of the new triangle created from the split. The triangle left of the split line is left unchanged and uses the material number of the original rectangle. The triangle to the right of the split line may borrow the material number from one of the neighbors of the original rectangle or keep its original number.
- right__doping_from is the same as right__mater_from but deals with the doping value used in the new triangle to the right of the split line.

\subsection*{22.222 dielectric__constant}

The material statement dielectric_constant defines the static dielectric constant which appears in the Poisson's equation. It does not affect the wave equation which is written for optical frequencies so this value is unrelated to the value of real_index.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.223 differential_gain}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline include_data & char & \\
\hline conc_log_scale & char & [no], yes \\
\hline wavel_range & realx2 & \((\mu m)\) \\
\hline conc_range & realx2 & {\([1 . \mathrm{e} 231 . \mathrm{e} 24]\left(\mathrm{m}^{-3}\right)\)} \\
\hline pn_ratio & real & {\([1]\)} \\
\hline av_index & real & {\([3.3]\)} \\
\hline data_point & intg & \\
\hline
\end{tabular}
differential_gain plots the differential material gain (at the peak of the gain curve) versus carrier density in the active region. This statement can be used in the gain preview module.

\section*{Parameters}
- data_file specifies a file name used to save a copy of the plot data.
- include_data includes data files from other gain calculations on the plot for comparison purposes.
- wavel__range is the wavelength range used to search for the gain peak.
- conc_range is the electron concentration range in the well used for the plot.
- pn_ratio is the ratio of hole over electron concentrations.

Note that this ratio is set to an arbitrary number in the gain preview in order to generate a 1-dimensional plot or a family of spectral curves which depend on a single parameter. In the main solver, this ratio is normally unused and
the gain calculations automatically make use of the local Fermi levels for both electrons and holes.
- av__index is the estimated average refractive index.
- data_point is the number of data points in the curve.
- conc_log_scale determines if the carrier density points are spaced linearly or on a logarithmic scale.

\section*{Examples}
differential_gain wavel_range=(1.0 1.4) \&\&
conc_range=(5.e23 5.e24) pn_ratio=1 data_point=20

\subsection*{22.224 direct_eigen}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline select_modes & char & {\([\mathrm{no}]\) yes } \\
\hline max_index & char & {\([\) yes \(]\) no } \\
\hline max_element & char & {\([\) no \(]\) yes } \\
\hline sigma_factor & real & {\([2]\).} \\
\hline select_index & real & \\
\hline arnoldi_base & intg & {\([10]\)} \\
\hline
\end{tabular}

The statement direct_eigen is used to activate the restarted Arnoldi algorithm for the optical mode solver.

This statement can be used in conjunction with multimode if multiple lateral modes are present.

\section*{Application Notes}
direct_eigen is not recommended for use in structures without lateral variation. If the mode shape has no variation along the \(x\) direction, then the eigensolver should expect to find one degenerate mode for each vertical \(x=x_{i}\) mesh line. In theory, picking any one of these degenerate modes is sufficient as they have the same shape.
In practice however, lack of numerical precision can result in nearly-degenerate modes which are identical in the \(y\) direction but differ along \(x\). Picking a single mode out
of these nearly-degenerate modes can therefore result in an artificial lateral variation in the mode intensity. Considering ALL of the degenerate modes for the simulation works around this issue as the sum of all modes respects the expected uniform lateral behavior; however, this approach slows down the simulation.
direct_eigen is also not recommended for broad-area devices. The situation here is similar to the above case but even inclusion of all degenerate modes is not sufficient to capture the physics of interest. For broad-area devices, the lateral standing wave pattern is often of interest but the mesh density in the \(x\) direction is seldom dense enough to capture this effect.
In these two cases, using the optical_field statement instead of direct__eigen is recommended. Note that these two commands should not be used together.

\section*{Parameters}
- select__modes, if positive, is used to select eigen modes based on an effective index value supplied through parameter select_index. The eigen modes found will have effective indices below select_index. If negative, the search of eigen value will start from effective index estimated from the highest local material index within the solution region.
- max__index turns on automatic mode search based on a maximum material index of the device structure.
- max_element , if positive, instructs the simulator to find eigen modes based on maximum value of matrix elements.
- sigma_factor is used in conjunction with max_element to obtain an estimate of the maximum eigen value. This factor is multiplied with the maximum matrix element to provide a starting point for eigen value search.
- arnoldi_base is used to control the number of Arnoldi eigen solutions we intend to work with. The total number of eigen vectors is this number plus the number of modes we specify in the multimode.

\section*{Examples}
direct_eigen sigma_factor=2.

\subsection*{22.225 disconnect_zmesh}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline plane & intg & {\([-9999]\)} \\
\hline zseg_num & intg & {\([-9999]\)} \\
\hline
\end{tabular}

This statement serves the same purpose as the \(\mathbf{z} \_\)connect \(=\)no option in the 3 d __solution__method statement: it forces all connecting elements between certain z planes to zero so that no current can flow between them. This statement offers a bit more control as it allows disconnection of individual planes and segments instead of turning off all connections at once.

\section*{Parameters}
- plane is a plane number. The connection will be cut between plane and plane+1.
- zseg_num is a segment number. The connection will be cut between the last plane of zseg_num and the first plane of zseg_num+1, thereby disconnecting the two segments.

\section*{Examples}
disconnect_zmesh zseg_num=2
22.226 do_raytrace_3d
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline 3d_emission_model & char & [plane] \\
\hline external_package & char & {\([\) void \(]\)} \\
\hline working_direction & char & {\([-\mathrm{y}]\)} \\
\hline device_kind & char & {\([\) led \(]\)} \\
\hline incident_light_side & char & {\([+\mathrm{y}]\)} \\
\hline surface_model & char & {\([\mathrm{void}]\)} \\
\hline surface_model_side & char & {\([+\mathrm{y}]\)} \\
\hline reject_edges & char & {\([\mathrm{no}]\)} \\
\hline extract_to_file & char & {\([\) void \(]\)} \\
\hline
\end{tabular}
\begin{tabular}{||l|l|l|}
\hline extract_data & char & {\([\) wavelength_absorption \(]\)} \\
\hline append_data & char & {\([\) no \(]\)} \\
\hline dome_bottom_mirror & char & {\([\) yes \(]\)} \\
\hline precision & real & {\([0.01](\) percentage \()\)} \\
\hline te_portion & real & {\([0.5]\)} \\
\hline tm_portion & real & {\([0.5]\)} \\
\hline plate_thickness & real & {\([100\).\(] (um)\)} \\
\hline plate_width & real & {\([1000\).\(] (um)\)} \\
\hline dome_cyl_height & real & {\([500\).\(] (um)\)} \\
\hline dome_cyl_radius & real & {\([400\).\(] (um)\)} \\
\hline dome_sph_radius & real & {\([400\).\(] (um)\)} \\
\hline dome_base_thickness & real & {\([10].(\mathrm{um})\)} \\
\hline scale_refl & real & {\([1]\).} \\
\hline scale_tran & real & {\([1]\).} \\
\hline thickness1 & real & {\([0.023]\)} \\
\hline thickness2 & real & {\([0.034]\)} \\
\hline package_refr_index & realx2 & {\([1.7,1 . \mathrm{e}-7]\)} \\
\hline effective_exit_index & realx2 & {\([1.0,0.0]\)} \\
\hline refr_index1 & realx2 & {\([1.3,0.0]\)} \\
\hline refr_index2 & realx2 & {\([1.7,0.0]\)} \\
\hline datafile_range & intgx2 & {\([11000]\)} \\
\hline initial_rays & intg & {\([5000]\)} \\
\hline max_secondary & intg & {\([100000]\)} \\
\hline 3d_angle_store & intg & {\([50]\)} \\
\hline emit_points_number & intg & {\([10]\)} \\
\hline max_primary & intg & {\([5000]\)} \\
\hline n_layer & intg & {\([1]\)} \\
\hline surface_power_grid & intg2 & {\([100,100]\)} \\
\hline TE_TM_mode & intg & {\([0]\)} \\
\hline
\end{tabular}
do__raytrace_3d is used to set parameters for and to activate the raytracing module for 3D simulation of light emitting diodes (LED).

It can also be used for 2 D simulations. In this case, the x -y modeling plane is extruded in the z direction with a thickness of \(1 \mu m\) to create a 3 D volume compatible with the 3D raytracing program. However, emitted rays are restricted to the original 2D plane.

\section*{Parameters}
- 3d_emission_model is the emission source model of an LED active region. It can take one of the following values:
- one_point: the spontaneous emission power is averaged to find the center of emission. All the rays emanate from this one point.
- xy_plane: the spontaneous emission power is averaged into a few "hot spots" of emission. Each of these spots is allowed to emit rays which carry the total integrated power of that spot. This is the recommended model when the quantum well plane normal is along the z-axis.
- xz_plane: same as xy_plane except for the plane of averaging for the "hot spots". This is the recommended model when the z-axis is in the plane of the quantum well.
- mesh_points and active_mesh: every mesh point assigned to an active region is allowed to emit rays. This model is very time-consuming but is the most accurate. The number of angular points should be reduced when using this model to get a reasonable computation time.
- box_emitting: every polygon of the .geo file becomes a 3D box for the raytracing program. The spontaneous emission source power from each box is averaged into a hot "spot" of emission and used to emit rays.
- random_points: Rays are emitted from a randomly-selected points in the device.
- external_package indicates the existence of an external package that encapsulate the LED. The value of this variable can be chosen as: void, medium, plate or dome. A value of void means the LED is not encapsulated.
- working_direction defines the working direction of all external packages. It can be chosen as: \(-x,+x,-y,+y,-z\) or \(+z\). Figure 22.3 shows how this parameter is defined.
- device__kind determines what kind of device (led or detector) is being modeled.
- incident_light_side determines which side of a detector is illuminated.
- surface_model determines which boundary conditions are applied to certain surfaces; this can be used to represent optical coatings. Note that in certain structures, the coating must be modeled inside the device with the set_3dray_internal_interface statement.
- surface_model_side determines which side of the device is affected by surface_model.


Figure 22.3: An explanation of the packages parameters
- reject_edges determines how the mesh points are used internally by the ray tracing program to average material properties. Choosing yes will cause the program to ignore mesh points too close to box edges which can lead to more a accurate refractive index near large discontinuities. However, it will cause an error if there are not enough mesh points.
- extract_to_file specifies which file the ray tracing code will export data to; this will be disabled when set to void. The extracted data will be appended to an existing file or will overwrite it, depending on the value of append_data.
- append_data would instruct the program to append data to an existing data file instead of creating a new one.
- dome__bottom__mirror would set a perfect mirror on the bottom of a dome external package.
- extract_data specifies which ray tracing result will be extracted to the file specified by extract_to_file.
- precision is the ray-tracing precision of the ray-tracing calculation. The raytracing procedure is terminated if the relative power of a ray decays to this value.
- te_portion, tm_portion are the fractions of TE and TM polarizations of propagating light. For non-polarized light te_portion and tm_portion are equal.
- plate_thickness, plate__width, dome_cyl_height, dome__cyl_radius,dome__sph_rad dome__base_thickness are geometrical dimensional parameters of the packages. Figure 22.3 illustrates the meaning of all these parameters. They are in units of \(\mu \mathrm{m}\). A given package is built around (or besides) the device. If one or more sizes of a package are set less than device sizes, the program corrects the sizes automatically to their possible minimum values.
- scale_refl, scale_tran are scaling factors to the Fresnel coefficients which are applied when surface__model=scale_fresnel_coef.
- thickness1, thickness2, refr_index1,refr_index2, n_layer are the parameters of the multi_layer option of surface__model.
- package_refr_index defines the complex optical refractive index for all packages.
- effective__exit_index is the effective index of the coating when surface__model is set to exit_index.
- datafile_range the range of data sets exported from APSYS/Optowizard used to do the raytracing simulation. Note that this may be different than the data sets used for normal plotting purposes.
- initial_rays is the number of initial rays launched from one emission source point. Equal angular distribution is forced upon these initial rays.
- max_secondary is an integer value parameter, that defines maximum secondary rays generated during multiple reflections and refractions. The raytracing procedure will terminate for a certain initial ray if the number of secondary rays exceeds this number. A ray is regarded as secondary if it is generated by transmission from its initial material box to one of its neighbors.
- 3d__angle_store is the resolution which is used to store the angular power distribution. It is equal to the number of angular divisions in theta angle and is equal to half of the number of divisions in phi angle.
- emit_points__number is a total given number of emitting points ("hot spots") for the plane emission models.
- max_primary is the maximum number of primary rays allowed. If the primary rays exceeds this number, the program will terminate the tracing of the primary rays. A ray is regarded as primary if it is directly produced from one of the emission points and not from transmission at a material box interface.
- surface__power_grid is the size of the grid used to record the location and power of rays exiting the device. Six such grids are located around the device to form a box. The resulting surface emission map can be plotted with 3drayplot_surfpower
- TE_TM_mode defines the behavior of the TE/TM emission model for LEDs. If equal to 0 , the mix of TE/TM emission from APSYS is used for the raytracing. For 1, the TE emission spectrum is used and for 2, the TM emission is used.

\section*{Examples}
```

rt3d_contact_reflector transp_contact=yes \&\&

```
contact1_compindex=(2.
    0.5) contact1_thick=0.05 \&\& contact2_compindex=(2. 0.5)
    contact2_thick=0.05
\$ No dome do_raytrace_3d precision=0.01 datafile_range=(2,6)
initial_rays=8000
```

\$ With dome external package \$do_raytrace_3d precision=0.01
datafile_range=(2,6) initial_rays=8000 \&\& \$ external_package=dome
working_direction=+y \&\& \$ dome_cyl_height=110
dome_base_thickness=10 \&\& \$ dome_cyl_radius=500
dome_sph_radius=500 \&\& \$ package_refr_index=(1.7,1.0e-6)

```

\subsection*{22.227 dopant_ionization_model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mott_trans_correction & char & [yes],no \\
\hline mater_label & char & \\
\hline scale_factor & real & {\([1]\).} \\
\hline max_activation_energy & real & {\([0.1](\mathrm{eV})\)} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}

This statement controls the heavy doping effects model for a given material. By default, the Mott transition model is always active for shallow dopants so this command does not need to be issued. See Sec. 5.1.5 for details.

\section*{Parameters}
- mott_trans_correction turns on or off the Mott transition model.
- scale_factor is a scaling factor for the transition.
- max_activation_energy defines the maximum ionization energy where the Mott transition is allowed. Deep dopants with ionization energies beyond this value will not be affected by the Mott transition.
- mater identifies the material affected by this statement. If a label has previously been defined for this material, mater_label may be used instead.

\section*{Examples}
\$ To specifically turn off the Mott transition for a material dopant_ionization_model mott_trans_correction=no mater=1
\$ To specifically turn on the Mott transition for a material
```

\$ with deep dopants
dopant_ionization_model max_activation_energy=1e99 mater=2

```

\subsection*{22.228 doping}
\begin{tabular}{|c|c|c|}
\hline parameter & data type & values [defaults] \\
\hline impurity & char & [shal_dopant] \\
\hline charge_type & char & [donor],acceptor \\
\hline shape & char & [gaussian],polygon \\
\hline pf_model & char & [no],yes \\
\hline x_datafile & char & [void] \\
\hline y_datafile & char & [void] \\
\hline direction & char & [positive],negative \\
\hline log_scale & char & [no] yes \\
\hline xy_datafile & char & [void] \\
\hline xy_linedata & char & [yes] \\
\hline traplevel_model & char & [void], gaussian, expo_tail, uniform \\
\hline traplevel_tail_side & char & [conduction] \\
\hline datafile_unit & char & [ \(1 / \mathrm{m}\) ^ 3\(], 1 / \mathrm{cm}\) ^ 3 \\
\hline sheet_density & char & [no] yes \\
\hline sheet_location & char & [void], bottom,top \\
\hline polygon_file & char & [void] \\
\hline all_segment & char & [no] \\
\hline polygon_z_datafile & char & [void] \\
\hline polygon_z__datafile_unit & char & [ \(1 / \mathrm{m}\) ^3], \(1 / \mathrm{cm}^{\text {^ }} 3\) \\
\hline polygon_z_datafile_log & char & [yes] \\
\hline decay_type & char & [gaussian],erfc \\
\hline use_position_label & char & [no], yes \\
\hline x1_label & char & [void] \\
\hline x2_label & char & [void] \\
\hline y1_label & char & [void] \\
\hline y2_label & char & [void] \\
\hline max_conc & real & \(1 . \mathrm{e} 10\left(\mathrm{~m}^{-3}\right)\) \\
\hline level & real & [0.01] (eV) \\
\hline x_prof & realx4 & x1,x2,dx1,dx2 ( \(\mu \mathrm{m}\) ) \\
\hline y_prof & realx4 & y1,y2,dy1,dy2 ( \(\mu \mathrm{m}\) ) \\
\hline edge1_prof & realx3 & x2,y2,dx2 \\
\hline edge2_prof & realx3 & x2,y2,dx2 \\
\hline edge3_prof & realx3 & x3,y3,dx3 \\
\hline edge4_prof & realx3 & x4,y4,dx4 \\
\hline
\end{tabular}
\begin{tabular}{||l|l|l|}
\hline pf_cont_shift & real & {\([0].(\mathrm{eV})\)} \\
\hline arc_height1 & real & {\([0].(\mu \mathrm{m})\)} \\
\hline arc_height2 & real & {\([0].(\mu \mathrm{m})\)} \\
\hline arc_height3 & real & {\([0].(\mu \mathrm{m})\)} \\
\hline arc_height4 & real & {\([0].(\mu \mathrm{m})\)} \\
\hline origin & real & {\([0].(\mu \mathrm{m})\)} \\
\hline grading_from & real & (fraction \()\) \\
\hline grading_angle & real & {\([90].(\) degrees \()\)} \\
\hline xy_data_factor & real & {\([1]\).} \\
\hline xy_x_transform & realx2 & {\([1.0]\).} \\
\hline xy_y_transform & realx2 & {\([1.0]\).} \\
\hline traplevel_stddev & real & {\([0.1](\mathrm{eV})\)} \\
\hline traplevel_tail & real & {\([0.05](\mathrm{eV})\)} \\
\hline label_tail & real & {\([0.01](\mu m)\)} \\
\hline polygon_file_stddev & real & {\([0.01](\mu m)\)} \\
\hline z_stddev & real & {\([0].(\mu m)\)} \\
\hline z_stddev2 & real & \((\mu m)\) \\
\hline pnt_num & intg & {\([4]\)} \\
\hline newdoping_index & intg & \\
\hline xy_skipline & intg & {\([1]\)} \\
\hline xy_data_column & intg & {\([3]\)} \\
\hline
\end{tabular}

The statement doping is a frequently used statement which describes the doping profile of impurities or impurity concentration distribution. This statement is often generated automatically when processing the layer file and should only be used by advanced users.

Multiple doping statements covering overlapping areas can be used to define codoping or create advanced shapes. Experimental or doping profiles simulated in an another program can also be defined using this statement.

For an even more accurate model, the user is encouraged to try our CSUPREM software which can model the entire growth process of semiconductor devices including etching, diffusion and implantation.

\section*{Parameters}
- The parameter impurity defines the type of impurity being modeled:
- shal_dopant or shal_dopanti,i=1..9 for shallow dopants; multiple species may be defined
- trap_i,i=1..9 for deep level traps of type i
- fix_charge for fixed space charges

When defining traps, the user should also define the statements trap_ncap_i and trap_pcap_i in the .sol file to specify the capture cross sections of the trap.
- charge_type is the charge state of the impurity. For shallow dopants and traps, it must be either donor or acceptor. For fixed space charges, it must be positive or negative.
- shape controls the shape of the doping region created by this statement:
- For gaussian or rectangle, the profile is uniform within a rectangle (see Fig. 22.4) and falls off from the sides using Gaussian tails. The corner points and standard deviations for the Gaussian tails are given by using \(\mathbf{x} \_\)prof and \(\mathbf{y} \_\)prof.
The 4 values in \(\mathbf{x} \_\)prof correspond to ( \(\mathrm{x} 1, \mathrm{x} 2, \mathrm{dx} 1, \mathrm{dx} 2\) ) (in \(\mu m\) ). y__prof similarly defines ( \(\mathrm{y} 1, \mathrm{y} 2, \mathrm{dy} 1, \mathrm{dy} 2\) ). Note that if \(\mathrm{x} 1=\mathrm{x} 2\) and \(\mathrm{y} 1=\mathrm{y} 2\), only the tails remain and the shape collapses into a standard Gaussian.
Alternatively, use_position_label allows the use of the position labels in \(\mathbf{x 1}\) _label, \(\mathbf{x} \mathbf{2} \_\)label, \(\mathbf{y} 1 \_\)label and \(\mathbf{y} \mathbf{2} \_\)label to define the corner points. In such a case, the tail value is set using label_tail.
- polygon extends the above behavior with uniform doping inside a more generic polygon with corner points defined through edgei_prof, \(\mathbf{i}=\mathbf{1 . . 4}\). These commands each define 3 values \((\mathrm{x}, \mathrm{y}, \mathrm{dx})\); ( \(\mathrm{x}, \mathrm{y}\) ) are the corner coordinates for point i and dx is the standard deviation of the Gaussian tail extending perpendicularly from the polygon edge connecting points i and \(\mathrm{i}+1\).
The number of corner points actually used to define the polygon is controlled with pnt_num (see Fig. 22.5).
- use_polygon file further extends the above behavior with a uniform doping with a polygon whose corners are defined inside a separate text file (polygon_file). As before, each edge of the polygon has a Gaussian tail extending perpendicular to it; the standard deviation of this tail is defined in polygon_file_stddev.

Note that when importing doping profiles (e.g. SIMS) from a data file, the shape parameter should be left to its default values.
- decay_type can be used to replace the standard Gaussian tails mentioned throughout this section with the complimentary error function (erfc).
- pf_model turns on/off the Poole-Frenkel model for field-induced thermionic emission of partially ionized dopants. Such a model is important when the ionization energy is high or when the operating temperature is low.
- x_datafile or y_datafile allows the user to import numerical doping data for the x or y direction. The file data must be stored in 2-column format:
```

relative_distance_in_microns doping_density
(no blank lines anywhere)

```

The doping density stored inside the file can be in linear or \(\log 10\) scale depending on the choice of log_scale. The units of the data can also be set by datafile__unit \(\left(1 / \mathrm{m}^{3}\right.\) or \(\left.1 / \mathrm{cm}^{3}\right)\).
The exact position of the doping when importing a profile is further controlled by two other parameters:
- direction is used to flip the sign of the coordinates for imported data files. If negative, the actual doping profile is in a direction opposite to the relative-distance given in the data file.
- origin is the origin used to calculate the absolute position for the data points of the imported doping profile.

The actual coordinates used in device simulation are therefore:
```

(origin) + (sign-of-direction)*(relative-distance)

```
- sheet_density instructs the program that the present command is used to describe a sheet density profile instead of the bulk default. The max_conc would be in unit of \(1 / m^{2}\) to define a sheet charge over the \(x-y\) plane.
- sheet_location is used in conjunction with sheet_density=yes for a 3D structure. It defines the location of the sheet charge either on the top or bottom of the present z-segment.
- max_conc defines the maximum concentration of the doping profile.
- level defines the relative energy level of the impurity. For shallow donors and deep level traps, the level is calculated from the conduction band. For shallow acceptors the level is measured from the valence band. For gaussian type of trap model, this parameter also refers to the maximum trap level position.
Note that this parameter is used to describe the energy level of the shallow or deep impurities over the whole device. If the properties of the impurity in each different material need to be defined, the user must override this value with one of the following statements:
- shal__dnr__level
- shal__dnr__level_i
- shal__acpt__level
- shal__acpt__level__i
- trap__level_i
- pf_cont__shift is the ionization energy level shift (due to the Poole-Frenkel effect) at the contact. Once it is specified by this parameter, the ionization energy is fixed during the simulation while the shift in the bulk material is varied as a function of the local electric field.
- arc_heighti, \(\mathbf{i}=\mathbf{1} . .4\) are parameters are used to bend the edge of the doping profile given in edgei_prof. The values of arc_height can take positive or negative numbers. The sign of the height is understood as follows:

Let the counter-clockwise direction of the vector defined by two adjacent points of the polygon be vector e and the vector pointing from the starting point of e to a point on the arc be vector \(a\). Then a positive height means that the cross product a cross e must point to positive z direction. On the other hand, if the height is negative, the cross product yields a vector in the negative \(z\) direction.
In other words, a positive height makes the edge curve outwards while a negative height makes the edge curve inwards. These parameters can be used together with the edge_curve statement.
- grading_from, if used, is the relative starting value of a linearly graded doping profile; its value is relative to the final doping value of max_conc. This linear grading is in the direction specified with grading_angle where the angle definition follows the usual convention ( 0 degrees \(=+\mathrm{x}\) direction).
- newdoping_index, if set to positive integer, is used to label a doping profile so that the doping concentration of this profile may be varied during a simulation. The variable key word in the scan statement to control this profile is new_doping.
- xy__datafile, \(x y \_\)_linedata, \(x y \_\)_data_factor, \(x y \_x \_\)transform, \(x y \_y \_\)transform, xy__skipline, xy_data_column.

All these parameters with the \(\mathbf{x y}\) _ prefix are used to import 2D doping profiles in ASCII format:
- xy__datafile is doping data file in a column-wise format:
x y doping-concentration
where x and y are in micons and doping-concentration is in \(1 / m^{3}\). To convert to a different unit, the parameter xy_data_factor may be used.
- xy_linedata indicates whether the doping profile is line-ordered data or randomly distributed. If yes, the data is ordered in multiple straight xlines, from left to right. The x-lines are ordered from bottom to top. Using random data generally yields a less accurate profile after interpolation.
- xy_data_factor is a multiplication factor applied to the doping concentration. It may also be used as a way of converting units.
- xy__x_transform consists two parameters (say a and b) which can be used to perform a linear transform of the x-coordinate in the doping profile so that the actual coordinate used by the simulator is \(\mathrm{a}^{*} \mathrm{x}+\mathrm{b}\).
- \(\mathbf{x y} \_\mathbf{y} \_\)transform is the same as \(\mathbf{x y}\) __x__transform except it is for y coordinate.
- xy__skipline is the number of header lines in the doping file that should be skipped.
- xy_data_column is the data column number where the doping-concentration can be found. In some data files, n- and p-doping are stored in different columns and this parameter can be used to specify which type of doping is to be used from the same file.

The following code is used internally to read the doping profile and may be helpful in understanding the required syntax:
```

! program skips lines of xy_skipline first. then, the following code
! is used
do jj=1,npnt
read(iu,*) (adata(kk),kk=1,jcolumn)
! this include unit change, direction flip, etc., and shift ref. point
! let me assume unit is um
xdata(jj)=adata(1)*xy_x_transform1+xy_x_transform2
ydata(jj)=adata(2)*xy_y_transform1+xy_y_transform2
! unit here is 1/m**3
if(log_flag.eq.0) then
ddata(jj)=adata(jcolumn)*xy_data_factor
else
ddata(jj)=10.d0**(adata(jcolumn))*xy_data_factor
endif
enddo

```
- traplevel_model may be used to define a continuous distribution of trap states. If this statement is omitted, then a single energy level is used.
- traplevel_stddev is the trap level standard deviation if the trap level model is gaussian.
- traplevel_tail is the characteristic decay constant \((L)\) of the exponential tail model \(e^{-E / L}\). The energy \(E\) is measured from either the conduction of valence band depending on the value of traplevel_tail_side.
- traplevel__width is the energy width for a uniform distribution of trap states.
- all_segment instructs the software to apply the 2D doping profile defined by this command to all mesh planes of all z-segments.
- polygon_z__datafile is used to extend the 2D doping profile across multiple mesh planes. The file specified in this command must contain 2 columns: the z-position and the maximum 2D doping concentration at that position. Units and \(\log\)-scaling for this file are controlled by polygon_z_datafile_unit and polygon_z__datafile__log; these parameters follow the same rules as datafile_unit and log_scale, respectively.
- z_stddev extends the 2D doping profile in the z-direction so that it straddles multiple mesh planes. It defines a Gaussian tail which is applied in both directions. For an asymmetric Gaussian profile in z, z__stddev2 may also be defined.

\section*{Examples}
```

doping impurity=shal_dopant charge_type=donor max_conc=1.e24 \&\&
x_prof=(0.0e0, 10.0e0, 0.01e0, 0.01e0) \&\&
y_prof= 0.e0, $1.4 \mathrm{e} 0,0.02 \mathrm{e} 0,0.02 \mathrm{e} 0$
doping impurity=trap_1 charge_type=acceptor max_conc=1.e22 \&\&
x_prof=(0.0e0, 10.0e0, 0.01e0, 0.01e0) \&\&
y_prof=(0.e0, 10.e0, 0.02e0, 0.02e0)
doping impurity=shal_dopant charge_type=donor max_conc=1.e24 \&\&
shape=polygon \&\&
edge1_prof= (0. 1.1 0.01) \&\&
edge2_prof= (0.429 1.1 0.01) \&\&
edge3_prof= (0.1461 .50 .01) \&\&
edge4_prof= (0. 1.5 0.01)

```
doping impurity=shal_dopant charge_type=acceptor max_conc=1.5e23 \&\&
    level=0.115 pf_model=yes pf_cont_shift=0.115 \&\&


Figure 22.4: Schematics for the Gaussian/Rectangle doping profile in the x direction.
\[
\begin{aligned}
& \text { x_prof }=(0.0 \mathrm{e} 0,10.0 \mathrm{e} 0,0.01 \mathrm{e} 0,0.01 \mathrm{e} 0) \quad \& \& \\
& \text { y_prof }=(0 . \mathrm{e} 0,1 . \mathrm{e} 0,0.02 \mathrm{e} 0,0.02 \mathrm{e} 0)
\end{aligned}
\]

\subsection*{22.229 double_mesh}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mesh_inf & char & \\
\hline mesh_outf & char & \\
\hline polygon & char & \\
\hline order & char & [yes],no \\
\hline direction & intg & 1,2 \\
\hline range_1 & realx2 & (um) \\
\hline range_2 & realx2 & (um) \\
\hline
\end{tabular}

The mesh generation statement double_mesh provides the basic mechanism to refine a rough mesh manually. It can be used to double the existing mesh density in a given region in the device. This statement is rarely needed because mesh can be automatically refined using the refine__mesh statement.

point 1 (x1 y1)

Figure 22.5: Schematics for the Polygon doping profile. Note the labeling of points and corresponding edges.

\section*{Parameters}
- mesh_inf is the mesh input file.
- mesh_outf is the mesh output file.
- polygon is the name of the polygon affected by this statement.
- order specifies the format of the mesh output. If the mesh output is to be used by the solver, yes should be used, i.e., ordering of the mesh is required to interface with the solver. If the mesh is to be further manipulated after this statement, no should be used.
- direction is the direction of the mesh lines to be doubled. Direction 1 corresponds to lines parallel to the first edge of the polygon; direction 2 refers to lines parallel to the second edge. See Fig. 22.6 for details.
- range_1 defines the range along direction 1 in which the mesh doubling will occur. This distance is measured on the first edge of the polygon.
- range \(\_\mathbf{2}\) is the same as range__1 excepts that it works along direction 2.

\section*{Examples}
```

double_mesh polygon=p1 direction=1 \&\&
range_1 =(0.1 0.5) range_2=(0.6 0.9) \&\&
mesh_inf=cas1.msh1 mesh_outf=cas1.msh2 order=yes

```


Figure 22.6: Schematics for the region to be manually refined.

\subsection*{22.230 dox_efield0_pf_elec}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement dox__efield0__pf_elec is a constant \(E 0_{p f}\) (in V/m) used to define the Poole-Frenkel-like E-field dependent electron mobility: \(\mu_{n}=\mu_{0} \exp \left[\sqrt{\left(E / E 0_{p f}\right)}\right]\) This parameter is used to describe a doped organic (thus the prefix dox) material. For more details, please see the following reference:
B. Ryhstaller and S.A. Carter, S. Barth, H. Riel, and W. Riess, "Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes," J. Appl. Phys., 15 April, 2001, Vol. 89, No. 8, pp. 4575-4586.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .
```

Example(s)
dox_efield0_pf_elec value=1.959e8 mater=1

```

\subsection*{22.231 dox_efield0_pf_hole}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline (see) material_par & & \\
\hline \hline
\end{tabular}

The material statement dox_efield0__pf_hole is a constant \(E 0_{p f}\) (in V/m) used to define the Poole-Frenkel-like E-field dependent hole mobility: \(\mu_{p}=\mu_{0} \exp \left[\sqrt{\left(E / E 0_{p f}\right)}\right.\) ] This parameter is used to describe a doped organic (thus the prefix dox) material. For more details, please see the following reference:
B. Ryhstaller and S.A. Carter, S. Barth, H. Riel, and W. Riess, "Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes," J. Appl. Phys., 15 April, 2001, Vol. 89, No. 8, pp. 4575-4586.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

Example(s)
dox_efield0_pf_hole value=1.959e8 mater=1

\subsection*{22.232 dox_el_weight}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement dox_el__weight is used to define the electroluminescent spectrum weight for the dopant material. This is useful when there is dopant in the system so that one has to define the relative contribution from host and the dopant.

For EL spectrum model when there is dopant, two approaches are used, depending on whether exciton diffusion equations are solved. If exciton transport is solved by organic_exciton_diff, dopant and host spectra at each mesh point are simply mixed by local exciton density, divided by their respective life times, and weighted by this factor. If exciton transport is not considered, their respective bimolecular recombination rates are used along with this factor to determine the relative contributions.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

Example(s)
dox_el_weight value=0.01 mater=1

\subsection*{22.233 dox__exciton__eg}

This statement is the same as ox_exciton_eg except it is for the dopant material.

\subsection*{22.234 dox_extern_spectrum}
\begin{tabular}{|l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement dox_extern_spectrum is used to define the electroluminescent (EL) spectrum of the dopant material imported from an external source. This may be based on experimental data or on a different type of model. If table format is used, the program expects a 2-column uniformly spaced data with first column being the wavelength in micron meters. The unit of the EL is arbitrary and the program will normalize it.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .
```

Example(s)
dox_extern_spectrum variation=table
table(wavelength)
0.488524E+00 0.309522E-01
0.499601E+00 0.421672E-01
end_table

```

\subsection*{22.235 dox_gaussian_divj}

This statement is the same as ox_exciton_eg except it is for the dopant material.

\subsection*{22.236 dox_gaussian_sdj}

This statement is the same as dox__gaussian__sdj except it is for the dopant material.

\subsection*{22.237 dox_hopping_energy}

This statement is the same as ox_hopping_energy except it is for the dopant material.

\subsection*{22.238 dox_peak_abs}

This statement is the same as dox__peak__abs except it is for the dopant material.

\subsection*{22.239 dox__vib_quanta}

This statement is the same as ox__vib__quanta except it is for the dopant material.

\subsection*{22.240 dox_xp_coupling}

This statement is the same as dox_xp_coupling except it is for the dopant material.

\subsection*{22.241 dox2_el__weight}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement dox2_el__weight is used to define the electroluminescent spectrum weight for the 2nd dopant in multiply doped materials. This is useful to define the relative contribution from host and the dopant.

For EL spectrum model when there is dopant, two approaches are used, depending on whether exciton diffusion equations are solved. If exciton transport is solved by organic_exciton_diff, dopant and host spectra at each mesh point are simply mixed by local exciton density, divided by their respective life times, and weighted by this factor. If exciton transport is not considered, their respective bimolecular recombination rates are used along with this factor to determine the relative contributions.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material__par in section 22.456 .

Example(s)
dox2_el_weight value=0.01 mater=1

\subsection*{22.242 dox2_extern_spectrum}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement dox2__extern_spectrum is used to define the electroluminescent (EL) spectrum of the 2nd dopant material imported from an external source. This may be based on experimental data or on a different type of model. If table format is used, the program expects a 2-column uniformly spaced data with first column being the wavelength in micron meters. The unit of the EL is arbitrary and the program will normalize it.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .
```

Example(s)
dox2_extern_spectrum variation=table
table(wavelength)
0.488524E+00 0.309522E-01

```
```

 0.499601E+00 0.421672E-01
 end_table

```

\subsection*{22.243 dox3_el__weight}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement dox3_el__weight is used to define the electroluminescent spectrum weight for the 3rd dopant in multiply doped materials. This is useful to define the relative contribution from the host and the dopant.

For EL spectrum model when there is dopant, two approaches are used, depending on whether exciton diffusion equations are solved. If exciton transport is solved by organic_exciton_diff, dopant and host spectra at each mesh point are simply mixed by local exciton density, divided by their respective life times, and weighted by this factor. If exciton transport is not considered, their respective bimolecular recombination rates are used along with this factor to determine the relative contributions.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

Example(s)
dox3_el_weight value=0.01 mater=1

\subsection*{22.244 dox3__extern__spectrum}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement dox3__extern_spectrum is used to define the electroluminescent (EL) spectrum of the 3rd dopant material imported from an external source.

This may be based on experimental data or on a different type of model. If table format is used, the program expects a 2-column uniformly spaced data with first column being the wavelength in micron meters. The unit of the EL is arbitrary and the program will normalize it.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material__par in section 22.456 .
```

Example(s)
dox3_extern_spectrum variation=table
table(wavelength)
0.488524E+00 0.309522E-01
0.499601E+00 0.421672E-01
end_table

```

\subsection*{22.245 dox4_el_weight}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement dox4_el__weight is used to define the electroluminescent spectrum weight for the 4th dopant in multiply doped materials. This is useful to define the relative contribution from host and the dopant.

For EL spectrum model when there is dopant, two approaches are used, depending on whether exciton diffusion equations are solved. If exciton transport is solved by organic_exciton_diff, dopant and host spectra at each mesh point are simply mixed by local exciton density, divided by their respective life times, and weighted by this factor. If exciton transport is not considered, their respective bimolecular recombination rates are used along with this factor to determine the relative contributions.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material__par in section 22.456 .
```

dox4_el_weight value=0.01 mater=1

```

\subsection*{22.246 dox4__extern__spectrum}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement dox4__extern_spectrum is used to define the electroluminescent (EL) spectrum of the 4th dopant material imported from an external source. This may be based on experimental data or on a different type of model. If table format is used, the program expects a 2-column uniformly spaced data with first column being the wavelength in micron meters. The unit of the EL is arbitrary and the program will normalize it.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material__par in section 22.456 .
```

Example(s)
dox4_extern_spectrum variation=table
table(wavelength)
0.488524E+00 0.309522E-01
0.499601E+00 0.421672E-01
end_table

```

\subsection*{22.247 dox5_el__weight}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement dox5 \(\qquad\) weight is used to define the electroluminescent spectrum weight for the 5th dopant in multiply doped materials. This is useful to define the relative contribution from host and the dopant.

For EL spectrum model when there is dopant, two approaches are used, depending on whether exciton diffusion equations are solved. If exciton transport is solved by organic_exciton_diff, dopant and host spectra at each mesh point are simply mixed by local exciton density, divided by their respective life times, and weighted by this factor. If exciton transport is not considered, their respective bimolecular recombination rates are used along with this factor to determine the relative contributions.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

Example(s)
dox5_el_weight value=0.01 mater=1

\subsection*{22.248 dox5_extern_spectrum}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement dox5__extern_spectrum is used to define the electroluminescent (EL) spectrum of the 5 th dopant material imported from an external source. This may be based on experimental data or on a different type of model. If table format is used, the program expects a 2-column uniformly spaced data with first column being the wavelength in micron meters. The unit of the EL is arbitrary and the program will normalize it.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material__par in section 22.456 .
```

Example(s)
dox5_extern_spectrum variation=table
table(wavelength)
0.488524E+00 0.309522E-01
0.499601E+00 0.421672E-01
end_table

```

\subsection*{22.249 edge_curve}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline edge & & \\
\hline shape & & {\([\operatorname{arc}]\)} \\
\hline height & & {\([\mu \mathrm{m}]\)} \\
\hline
\end{tabular}

The mesh generation statement edge_curve bends an edge of a polygon.
- edge contains the two points of the edge to be bent.
- shape is the shape into which the edge is to be bent.
- height is the height of the arc. The sign of the height is understood as follows: Let the counter-clockwise direction of the vector defined by two adjacent points of the polygon be vector e and the vector pointing from the starting point of e to a point on the arc be vector a. Then a positive height means that the cross product a cross e must point to positive z direction. On the other hand, if the height is negative, the cross product yields a vector in the negative \(z\) direction. In another word, positive height makes the edge curve outwards while a negative height makes the edge curve inwards.

\section*{Example(s)}
edge_curve edge=(a b) shape=arc height=-0.3

\subsection*{22.250 eeim_optic}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline gain_correction & char & {\([\) yes],no } \\
\hline sort_imag & char & {\([\) yes],no } \\
\hline pure_index_loss & char & {\([\) yes],no } \\
\hline export_eeimmsg & char & {\([\) no \(]\), yes } \\
\hline modal_base & intg & {\([3]\)} \\
\hline xsearch_real & intg & {\([2000]\)} \\
\hline xsearch_imag & intg & {\([40]\)} \\
\hline muller_maxit & intg & {\([80]\)} \\
\hline wi (i=1,2,3...19) & real & (um) \\
\hline xsearch_range & real & {\([5]\).} \\
\hline muller_vartol & real & {\([1 . \mathrm{e}-8]\)} \\
\hline muller_functol & real & {\([1 . e-5]\)} \\
\hline
\end{tabular}

The eeim_optic statement is used to invoke the enhanced effective index method (EEIM) for the optical mode computation. It can be used to treat device structure with leaky (radiative) modes.

The rectangle solution area is defined by point__ll and point__ur in the init__wave statement. It assumes that the modes in the y-direction is confined. The boundary on the right is such that it can support traveling wave to the right (which may be decaying as in the case of confined modes).
The boundary on the left can be confined as even or odd, or as radiative. The left boundary may be modified using the first number (we shall refer to as lx1) in boundary_type of the init_wave statement. If lx1 is 1 , the left boundary is to set the wave to zero (odd). If lx1 is 2 , the left boundary is to set the wave derivative to zero (even). If lx1 is 3 , the left boundary is to have traveling wave going out of the device (to the left).

To study device with radiation loss to the substrate, we suggest that the device be rotated by 90 degrees so that the substrate is towards the +x direction. The rotated device may be done within the .geo file or by using the GeoEditor.
- gain_correction may be used to enable the optical gain in the rate equation to be corrected for radiation loss. With this setting to "no", The simulator will calculate the modal gain by averaging the local material gain with weight of the wave intensity.
- sort_imag is used to decide if EEIM modes are sorted according to the imaginary parts of the optical dielectric constant. If positive, the modes will be
sorted according to modal gain with the highest first. If negative, the real part will be sorted with the highest real index first.
- pure_index_loss. There are two ways to estimate the modal radiative loss. The first is the pure index method. This is by setting all imaginary material indices to zero throughout the device. The imaginary part of the eigen value of the EEIM is the modal loss. The other method is to estimate the bias dependent radiative loss by comparing the EEIM solution with averaged material gain. The former is a convenient and definite way of characterizing the device. The latter is more realistic but less stable numerically. Please note that if pure_index_loss=yes, only the modal radiative loss for pure index structure is printed as run-time message. If pure_index_loss=no, both the radiative loss for pure index structure and the bias-dependent radiative loss at different bias will be printed
- export_eeimmsg is used to enable the export of EEIM column index data in .sol.msg files.
- modal_base is the number of \(y\)-modes within each column. In principle, there are infinite number of y-modes is the mode searching range is large enough. In practice, several of these will be sufficient.
- xsearch_real is the number of search points for the x-modes in the real part of \(\bar{\varepsilon}\), the eigen solution of the x -modes.
- xsearch_imag is the number of search points for the x-modes in the imaginary part of \(\bar{\varepsilon}\), the eigen solution of the x -modes.
- muller__maxit is the maximum number of the Muller solver that is used to find the complex root as the eigen solution of the lateral modes.
- wi \((\mathrm{i}=1,2,3, \ldots, 19)\) is the ith column width.
- xsearch_range is the search range for the real part of \(\bar{\varepsilon}\), the eigen solution of the x -modes.
- muller_vartol is the variable relative tolerance at convergence of the Muller solver.
- muller_functol is the function relative tolerance at convergence of the Muller solver.
```

eeim_optic modal_base=3 \&\&

```
    w1=2 w2=0.75 w3=1.25 \&\&
    xsearch_real=2000 xsearch_imag=5

The above statement uses three y-modes, sets the with for each column. The number search points are also specified.

\subsection*{22.251 effective_medium}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline materi \((\mathrm{i}=1 . .9)\) & intg & \\
\hline xrange & realx2 & (um) \\
\hline yrange & realx2 & (um) \\
\hline zrange & realx2 & (um) \\
\hline
\end{tabular}
effective__medium defines an effective "average" material out of multiple bulk materials. This is useful in regions like DBR layers where multiple thin layers are needed for optical modeling but the electrical modeling can be approximated by a single bulk materials. The software will compute the affinity, bandgap, DOS, etc... based on a weighed average of the materials present in the specified region.

For a similar model used in QWs, please see effective__miniband__model.

\section*{Parameters}
- materi(i=1..9) are the material numbers that are considered when constructing the effective medium.
- xrange, yrange and zrange are the extent of the effective medium.

\section*{Examples}
effective_medium mater1=1 mater2=2 yrange=(2.5 2.75)

\subsection*{22.252 effective_miniband_model}
\begin{tabular}{||l|l|l||}
\hline \multicolumn{1}{|c|}{ parameter } & data type & values [defaults] \\
\hline \hline materi \((\mathrm{i}=1 . .9)\) & intg & \\
\hline xrange & realx2 & \((\mathrm{um})\) \\
\hline yrange & realx2 & \((\mathrm{um})\) \\
\hline zrange & realx2 & \((\mathrm{um})\) \\
\hline set_cond_level & real & \((\mathrm{ev})\) \\
\hline set_val_level & real & \((\mathrm{ev})\) \\
\hline
\end{tabular}
effective__miniband__model defines an effective miniband model for coupled quantum wells/dots. For the specified materials, the solver creates an effective band structure with band edges defined by the miniband levels and density of states from the quantum mechanical modeling.

For bulk layers, please see effective__medium.

\section*{Parameters}
- materi(i=1..9) are the material numbers assigned to the miniband.
- xrange, yrange and zrange are the extent of the miniband.
- set_cond_level and set__val_level can be used to manually override the position of the miniband energy levels. The values are measured from the QW bottom.

\section*{Examples}
effective_miniband_model mater1=1 mater2=2 yrange=(2.5 2.75)

\subsection*{22.253 efield0_pf_elec}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement efield0__pf_elec is a constant \(E 0_{p f}(\) in \(\mathrm{V} / \mathrm{m})\) used to define the Poole-Frenkel-like E-field dependent electron mobility: \(\mu_{n}=\mu_{0} \exp \left[\sqrt{\left(E / E 0_{p f}\right)}\right]\) For more details, please see the following reference:
B. Ryhstaller and S.A. Carter, S. Barth, H. Riel, and W. Riess, "Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes," J. Appl. Phys., 15 April, 2001, Vol. 89, No. 8, pp. 4575-4586.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

Example(s)
efieldO_pf_elec value=1.959e8 mater=1

\subsection*{22.254 efield0__pf_hole}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement efield0__pf_hole is a constant \(E 0_{p f}\) (in V/m) used to define the Poole-Frenkel-like E-field dependent hole mobility: \(\left.\mu_{p}=\mu_{0} \exp \left[\sqrt{( } E / E 0_{p f}\right)\right]\) For more details, please see the following reference:
B. Ryhstaller and S.A. Carter, S. Barth, H. Riel, and W. Riess, "Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes," J. Appl. Phys., 15 April, 2001, Vol. 89, No. 8, pp. 4575-4586.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

Example(s)
efield0_pf_hole value=1.959e8 mater=1

\subsection*{22.255 eg0_bar}
eg0_bar is an active layer macro statement defining the unstrained bandgap (in eV) of a quantum barrier. This overrides bandgap values defined in the passive macro.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.256 eg0_bulk}
eg0__bulk is a passive macro material statement that defines the unstrained bandgap for a bulk wurtzite material. It is used instead of band__gap due to the more complex strain effects in this material system.

For quantum well barriers and active regions, this value will be overridden with the values of eg0__bar or eg0__well from the active macro.
The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.257 eg0_well}
eg0__well is an active layer macro statement defining the unstrained bandgap (in eV ) of a quantum well or bulk active region. This overrides bandgap values defined in the passive macro.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.258 e15_bulk}
e15_bulk and related commands are used in a passive macro (wurtzite only) to define piezoelectric tensor components[120]. This is used in conjunction with the spont_charge macro parameter and the polarization__charge__model command to define the total polarization vector and the interface charges that occur in GaN and ZnO -based materials.

See also piezo__d11 for related commands used in SAWAVE.
The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.259 e31__bulk}

See e15__bulk

\subsection*{22.260 e33_-bulk}

See e15_bulk

\subsection*{22.261 elec_ccarr_loss}
elec__carr_loss is a passive macro material statement defining the dependence of the optical loss coefficient on the electron density for a given material. It introduces a loss term equal to \(\alpha_{n}=\) elec_carr_loss \(\times\left(n-n_{0}\right)\) so that elec__carr_loss has units of \(m^{2}\).

Note that this term is only used for passive regions as active regions have their own mechanism for carrier-dependent losses; see passive_carr_loss for more information.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\section*{Examples}
elec_carr_loss value=2.e-21 mater=1

\subsection*{22.262 elec_dos_energy}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline energy_range & realx2 & \\
\hline data_point & intg & {\([50]\)} \\
\hline subband__valley & intg & {\([1]\)} \\
\hline
\end{tabular}
elec__dos_energy plots the electron density of states (DOS) versus energy. This statement is only used in the gain preview module.

\section*{Parameters}
- data_file is a user-specified text file containing a copy of the plot data.
- energy_range is the range of energy in eV.
- data_point is number of data points in the plot.
- subband__valley is the index labeling the subband valley.

\section*{Parameters}
```

elec_dos_energy energy_range=(1 1.7)

```

\subsection*{22.263 electron__mass}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement electron_mass defines the electron effective mass relative to the free electron mass.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

\subsection*{22.264 electron_mobility}

The statement electron_mobility is usually used as part of a passive material macro and provides a way for the user to define the low field mobility for electrons. The user may input a specific value or use a custom function to model the doping or trap dependence.
An alternative way to define the low field mobility is to use the following statements to implement Eq. 5.42 exactly:
- max_electron_mob defines \(\mu_{2 n}\)
- min__electron__mob defines \(\mu_{1 n}\)
- electron_ref_dens defines \(N_{r n}\)
- alpha_n defines \(\alpha_{n}\)

Note that using electron_mobility explicitly overrides this alternative method.
The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.265 electron_ref_dens}

See electron__mobility

\subsection*{22.266 electron_sat_vel}

The material statement electron_sat__vel is used to define the saturation electron velocity (in m/s). It is used in Eq. 5.37 to define the field-dependent mobility function.

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.267 eliminate mesh}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline line_dir & char & \(\mathrm{x},[\mathrm{y}]\) \\
\hline xrange & realx2 & \((\mu m)\) \\
\hline yrange & realx2 & \((\mu m)\) \\
\hline column_num & intg & 1 \\
\hline ntimes & intg & 1 \\
\hline
\end{tabular}
eliminate_mesh is used after the layer__mater statement in the .layer file to change the mesh inside the "box" defined by the intersecting layer and column. It removes mesh lines so that in this particular region, the mesh is sparser than what is specified by the layer and column statements.

See also the related low-level commands double__mesh and half__mesh.

\section*{Parameters}
- line_dir removes either horizontal or vertical mesh lines.
- xrange and yrange, when used, limit the effect of this command to a specific region. Coordinates are relative to the lower left corner of the "box" affected by this command.
- column__num is the column number; it matches the declaration in layer__mater and is used for the same reason.
- ntimes is the number of times is the mesh lines are eliminated; each elimination removes half of the mesh lines so that the total reduction is \(2^{-n}\).

\subsection*{22.268 embedded_material}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & \\
\hline position_from & real & \((\mu m)\) \\
\hline position_to & real & \((\mu m)\) \\
\hline grade_from & real & \\
\hline grade_to & real & \\
\hline mater & intg & \\
\hline grade_var & intg & {\([0]\)} \\
\hline grade_num & intg & {\([5]\)} \\
\hline
\end{tabular}
embedded_material is used to define a material occupying the same space as another material; the second material is "embedded" into the first. This command works in conjunction with get__active_layer to load material parameters related to the embedded material.

\section*{Parameters}
- position_from and position_to are the absolute starting and ending coordinates of the embedded region.
- grade_from and grade_to are the starting and ending compositions.
- mater is the material number inside which the new material is embedded. If a label alias has previously been defined, mater_label may be used instead.
- grade__var is the material macro variable number in which there is a composition grading (if \(>0\) ).
- grade__num is the number of composition evaluation points if there is a composition grading.

\section*{Examples}
embedded_material position_from=0.5 position_to=0.501 mater=6

\subsection*{22.269 end_bpmplot}

See begin__bpmplot.

\subsection*{22.270 end_cavity}

See begin_cavity.

\subsection*{22.271 end_complex}

See begin__complex.

\subsection*{22.272 end_loop}
end_loop terminates a loop initialized by start_loop.

\subsection*{22.273 end_qwire_complex}
end__qwire_complex is the closing tag for start__qwire_complex (in the .layer file) or begin__qwire__complex (in the .sol or .mater file).

\subsection*{22.274 end_same_complex}

See start__same_complex.

\subsection*{22.275 end_zdir_complex}
end_zdir_complex is the the closing bracket for begin_zdir__complex. This statement has no parameters.

See also zdir_cx for more information.
22.276 end_zmater

See begin__zmater.

\subsection*{22.277 endloopif}

Terminates a conditional execution block started by loopif.

\subsection*{22.278 equilibrium}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline print_output & char & {\([\) yes \(]\)} \\
\hline all_newdoping & char & {\([\mathrm{no}]\)} \\
\hline outfile_label & char & {\([\) void \(]\)} \\
\hline scan_label & char & {\([\) void \(]\)} \\
\hline impose_bg_field & char & {\([\mathrm{no}]\)} \\
\hline bandgap_reduction & real & {\([0]\).} \\
\hline mobility_order & real & {\([0]\).} \\
\hline surf_charge_expo & real & {\([0]\).} \\
\hline newdoping_order & real & {\([0]\).} \\
\hline impact_fermi_factor & real & {\([0]\).} \\
\hline scale_impact_cr_field & real & {\([1]\).} \\
\hline scale_polar_charge & real & {\([1]\).} \\
\hline bg_field_x & real & {\([0\).\(] (V/m)\)} \\
\hline bg_field_y & real & {\([0\).\(] (V/m)\)} \\
\hline bg_field_z & real & {\([0\).\(] (V/m)\)} \\
\hline bg_ref_potential & real & {\([0\).\(] (V)\)} \\
\hline scale_negative_stim & real & {\([1]\).} \\
\hline nstep & intg & {\([1]\)} \\
\hline index_newdoping & intg & \\
\hline num_newdoping & intg & {\([1]\)} \\
\hline n_index_newdoping & intgxn & \\
\hline
\end{tabular}
equilibrium solves the thermal equilibrium state of the device. All electrode voltages and currents are set to zero, as are all other forms of bias (e.g. optical pumping). The quasi-Fermi levels are flat \(\left(E_{f n}=E_{f p}=0\right)\) and the net current for electrons and holes has a trivial solution \((\vec{J}=0)\). Only the Poisson equation needs to be solved to find the position of the band edges.

The results of equilibrium are often used as the initial guess for a subsequent scan statement.

\section*{Parameters}
- print_output is used to decide whether or not to print detailed xy-data sets.
- all_newdoping decides if all doping profiles labeled as "newdoping" will be scaled by this statement.
- outfile_label labels the output file (.out) so that future scan statements can refer to it.
- scan_label labels the output file so it can be easily referred to by plotting tools such as CrosslightView.
- impose_bg_field can be used to impose a uniform background field to the Poisson equation. Note that this clearly violates the assumption of zero net current during thermal equilibrium so it should never be used on a real device.

It can however be useful when modeling a stand-alone GaN-based quantum dot where the external piezoelectric field must be considered for self-consistent quantum calculations. The results of such a microscopic-scale calculation are then imported into the full macroscopic device simulation.
The background field is defined through the parameters bg_field_x, bg_field_y and \(\mathbf{b g}\) _field_z.
- bandgap_reduction is used to set the overall initial bandgap reduction factor at equilibrium. The bandgap is multiplied by (1-bandgap_reduction).
- mobility__order is used to increase or reduce the overall mobility at equilibrium. A factor of \(10^{\text {m.o. }}\) is multiplied to the mobility where m.o. stands for mobility__order.
- surf_charge__expo is used to increase or reduce the equilibrium surface charge density as specified by the interface statement. A factor of \(10^{\text {s.c.e }}\) is multiplied to the surface charge density where s.c.e stands for surf_charge_expo.
- scale_polar_charge is a linear factor used to scale the fixed charges created as a result of the polarization__charge and polarization__charge__model commands.
- newdoping_order is used to specify an initial doping concentration reduction factor given by \(10^{\text {newdoping_order }}\) which is applied to doping profiles with a new-doping label. The labels where the reduction is applied must be specified using all_newdoping, index_newdoping or n_index_newdoping. If newdoping_order is zero (default), then no reduction of doping concentration is initially set.
The purpose of using this factor is to reduce the doping concentration at equilibrium so that numerical convergence is more easily achieved.
- nstep is used only when equilibrium is difficult to converge. In such case, several steps may be used.
- index_newdoping refers to a single doping profile that will be varied during the simulation. This index must corresponds to the new-doping labels attached to a doping statement.
- num__newdoping is the number of indices to be specified by \(\mathbf{n} \_\)index__newdoping.
- n__index__newdoping is the same as index_newdoping except it is used to specify multiple new-doping labels that will be simultaneously varied during the simulation.
- impact_fermi_factor is a coefficient used to scale between a completely field-driven impact ionization model (0.0) and a model driven by the gradient of the Fermi level (1.0). The latter model must be activated in the impact__model statement for it to be available here.
- scale_impact_cr_field can be used to artificially scale the critical field for the impact ionization model.
- scale_negative_stim can be used to artificially scale the stimulated recombination rate in areas where it is below zero.

\subsection*{22.279 evaluate__parameter}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline para_name & char & \\
\hline printout & char & [parametervalueout.txt] \\
\hline var_symboli \((\mathrm{i}=1 . .9)\) & char & \\
\hline var_values_from_file & char & \\
\hline mater_label & char & \\
\hline vari \((\mathrm{i}=1 . .9)\) & real & \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
evaluate__parameter can be used to manually evaluate a macro function; it is mainly used with the MacPlot GUI to automate the input.

\section*{Parameters}
- para_name is the macro function or parameter name to be evaluated.
- printout is a user-specified text file where the results are saved.
- var_symboli and vari define the input parameters to the macro. The syntax rules are the same as in layer__mater.
- var__values_from_file is a user-specified file that can be used to input a series of values that will be used to evaluate the macro parameter. Each line of the file corresponds to one call to the function.
- mater is the material number of the function being evaluated. It should match that of the previous load_macro statement.
- mater_label may be used instead of mater if a label has previously been defined as an alias.

\subsection*{22.280 exclude_from_electrical}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & \\
\hline x_on_left & real & \(-1 . \mathrm{e} 89(\mathrm{um})\) \\
\hline x_on_right & real & \(1 . \mathrm{e} 89(\mathrm{um})\) \\
\hline y_below & real & \(-1 . \mathrm{e} 89(\mathrm{um})\) \\
\hline y_above & real & \(1 . \mathrm{e} 89(\mathrm{um})\) \\
\hline mater & intg & \\
\hline
\end{tabular}
exclude_from_electrical is used to exclude a specific region of the mesh from the electrical solver.

\section*{Parameters}
- \(\mathbf{x} \_\)on_left excludes all mesh points to the left of this value.
- x__on_right excludes all mesh points to the right of this value.
- y__below excludes all mesh points below this value.
- y__above excludes all mesh points above this value.
- mater excludes all mesh points with the specified material number. If a label has been defined for this material, mater_label may be used instead.

\subsection*{22.281 export__3dgeo}
export_3dgeo is reversed for use in CSUPREM and PROCOM and is outside the scope of this manual.

\subsection*{22.282 export_fdtd_inputdata}
export_fdtd_inputdata forces the device simulator to stop just after generating the input data file (fdtd.aux) for the FDTD solver. It can be used in cases where the electrical calculations are not needed. It should not be needed in OptoWizard which does not include the electrical solver at all.

This statement has no parameters.

\subsection*{22.283 export_gain_data}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline file & lhar & {\([\) void \(]\)} \\
\hline pn_ratio_range & realx2 & {\([1.1]\).} \\
\hline temper_range & realx2 & {\([300.300].(\mathrm{K})\)} \\
\hline pn_ratio_points & intg & {\([1]\)} \\
\hline temper_points & intg & {\([1]\)} \\
\hline
\end{tabular}
export_gain_data exports the gain/index/PL data into an ASCII file for later use. It is a preview simulation statement (used in a .gain file).
- file the data file into which the gain data is to be exported. If not specified, a default file name gain_datafile.txt is to be used.
- pn_ratio_range is the range of hole/electron ratio changes for the data.
- temper_range is the temperature range in the data.
- pn_ratio__points is the number of data points for hole/electron ratio changes.
- temper_points the number of temperature points.

\section*{Example(s)}
```

export_gain_data pn_ratio_range=[0.5 1.5] pn_ratio_points=5 \&\&
temper_range=[$$
\begin{array}{lll}{250 350] temper_points=5}\end{array}
$$)

```

\subsection*{22.284 export_kp_data}
\begin{tabular}{|l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline file & char & {\([\) void \(]\)} \\
\hline
\end{tabular}
export_kp_data exports the k.p subbands and dipole moment data an ASCII file for later use. It is a preview simulation statement (used in a .gain file).
- file the data file into which the k.p data is to be exported. If not specified, a default file name kp_datafile.txt is to be used.

\section*{Example(s)}
export_kp_data
which will save the \(\mathrm{k} . \mathrm{p}\) data in kp_datafile.txt.

\subsection*{22.285 export_kp_para}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline file & char & {\([\) void \(]\)} \\
\hline
\end{tabular}
export_kp_data exports the k.p parameters, such as Luttinger numbers as an ASCII file for later use. It is a preview simulation statement (used in a .gain file).
- file the data file into which the k.p data is to be exported. If not specified, a default file name kp_parafile.txt is to be used.

\section*{Example(s)}
```

export_kp_para

```
which will save the k.p parameters in kp_parafile.txt.

\subsection*{22.286 export_layers_to_suprem}
\begin{tabular}{||l|l|l||}
\hline \multicolumn{1}{|c|}{ parameter } & data type & values [defaults] \\
\hline \hline column_num & intg & {\([1]\)} \\
\hline plane_num & intg & {\([2]\)} \\
\hline z_size & real & {\([1.0](\mu m)\)} \\
\hline
\end{tabular}
export_layers_to__suprem is a .layer pre-processing statement which emulates the functions of the MaskEditor GUI. When used, the layer.exe output is modified so that 3D CSUPREM input files are generated.

As in the normal .layer output, the plane of .layer file corresponds to the xy plane of the simulation. Multiple copies of this mesh plane are stacked in the \(z\) direction to form the 3D device. This convention is the same as that used in the z_structure statement.

Note that this behavior is different from that of layers_for__semicrafter which uses the SemiCrafer convention for the orientation of the mesh planes.

\section*{Parameters}
- column_num is the column number which is used in the CUSPREM output. The current version of the software supports the export of only one column to CSUPREM.
- plane__num is the number of mesh planes used in the z-direction.
- z_size is the length of the device in the z-direction, in microns.

\subsection*{22.287 export_raytrace}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline every_bias & char & {\([\) no \(]\)} \\
\hline ray3d_convert & char & {\([\mathrm{no}]\)} \\
\hline
\end{tabular}
export__raytrace is used to export control parameters for the ray-tracing model in the post-processing stage.
- every__bias indicates whether ray-tracing data are exported at every bias point. If "no", the export action will occur only at structure data printing point corresponding to .out and .std files.
- ray3d_convert should be used to convert 2 D electrical simulations to 3 D ray tracing structures: this is done by setting a fake z-length of \(1 \mu \mathrm{~m}\). Emitted rays will also be restricted to the 2 D plane since the z -direction has no real meaning: this must be taken into account during plotting the emission pattern.

As of the 2009 version of \(\mathrm{APSYS}, 2 \mathrm{D}\) ray tracing is no longer supported and the 3 D ray tracing program must be used. This options is mandatory to do ray tracing in 2 D APSYS simulations.

\subsection*{22.288 export_to_iccap_mdm_file}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline iccap_file_name & char & [iccap.mdm] \\
\hline input_vari \((\mathrm{i}=1 . .5)\) & char & voltage_1,current_1 \\
\hline input_namei \((\mathrm{i}=1 . .5)\) & char & v1,vs,vg \\
\hline output_vari \((\mathrm{i}=1 . .5)\) & char & voltage_1,current_1 \\
\hline output_namei \((\mathrm{i}=1 . .5)\) & char & v1,vs,vg \\
\hline point_num & intg & {\([51]\)} \\
\hline
\end{tabular}
export_to__iccap__mdm_file is a post-processing statement used to export I-V data to the .mdm file format for the parameter extraction program IC-CAP. This command acts like the plot_scan command except that only voltage and current are supported.

\section*{Parameters}
- iccap_file_name is the output file name.
- input__vari(i=1..5) is the input variable, similar to scan_var in plot_scan. A label may be assigned to this variable with input__namei(i=1..5).

Output variables are likewise defined using output__vari \((i=1 . .5)\) and output_namei(i=1..5).
- point_num is the number of data points used to sample the simulated IV curve and export the .mdm file.

\section*{Examples}

The following scan commands are used to generate (.sol) and plot (.plt) the IdVg curve:
scan var \(=\) voltage_3 value_to \(=15\) max_step \(=2\)
scan var=voltage_2 value_to=3 max_step= 0.5
scan var=voltage_2 value_to=-6 max_step= 0.5
```

...
get_data main_input=hemt.sol sol_inf=hemt.out \&\&
xy_data=(4 4) scan_data=(4 4)
export_to_iccap_mdm_file input_var1=voltage_2 input_var2=voltage_1 \&\&
input_var3=voltage_3 input_name1=vg input_name2=vs \&\&
input_name3=vd output_var1=current_3 output_var2=current_2 \&\&
output_name1=id output_name2=ig

```

The above command is similar to the usual Id-Vg plot:
```

plot_scan scan_var = voltage_2 variable = current_3 \&\&
user_xlabel = vg user_ylabel = id

```

The output iccap.mdm looks like the following:
```

BEGIN_HEADER

```

ICCAP_INPUTS
vg V 2 GROUND SMU1 0.1 LIN -1 \(2.99000-6.0000051-0.179800\)
vs V 1 GROUND GND 0.1 CON 0.00000
vd V 3 GROUND GND 0.1 CON 15.0000
ICCAP_OUTPUTS
id I 3 GROUND SMU1 B
ig I 2 GROUND SMU1 B
END_HEADER
BEGIN_DB
ICCAP_VAR vs 0.00000
ICCAP_VAR vd 15.0000
\begin{tabular}{lll} 
\# vg id ig & & \\
2.99000 & 711.714 & 0.00000 \\
2.81020 & 703.636 & 0.00000 \\
2.63040 & 695.340 & 0.00000 \\
2.45060 & 686.417 & 0.00000 \\
2.27080 & 677.368 & 0.00000 \\
2.09100 & 668.234 & 0.00000 \\
1.91120 & 657.506 & 0.00000 \\
1.73140 & 646.778 & 0.00000 \\
1.55160 & 635.566 & 0.00000 \\
1.37180 & 623.040 & 0.00000 \\
1.19200 & 610.514 & 0.00000 \\
1.01220 & 597.816 & 0.00000 \\
0.832400 & 584.936 & 0.00000 \\
0.652600 & 572.057 & 0.00000 \\
0.472800 & 558.599 & 0.00000 \\
0.293000 & 544.903 & 0.00000 \\
0.113200 & 531.206 & 0.00000 \\
\(-0.666000 \mathrm{E}-01\) & 513.744 & 0.00000 \\
-0.246400 & 495.984 & 0.00000 \\
-0.426200 & 477.230 & 0.00000 \\
-0.606000 & 452.650 & 0.00000 \\
-0.785800 & 428.070 & 0.00000 \\
-0.965600 & 402.283 & 0.00000 \\
-1.14540 & 374.394 & 0.00000 \\
-1.32520 & 346.504 & 0.00000 \\
-1.50500 & 318.346 & 0.00000 \\
-1.68480 & 289.997 & 0.00000 \\
-1.86460 & 261.648 & 0.00000 \\
-2.04440 & 232.944 & 0.00000 \\
-2.22420 & 204.152 & 0.00000 \\
-2.40400 & 175.349 & 0.00000 \\
-2.58380 & 146.058 & 0.00000 \\
-2.76360 & 116.767 & 0.00000 \\
-2.94340 & 88.8666 & 0.00000 \\
-3.12320 & 65.3389 & 0.00000 \\
-3.30300 & 41.8113 & 0.00000 \\
-3.48280 & 24.3041 & 0.00000 \\
-3.66260 & 13.8499 & 0.00000 \\
-3.84240 & 3.39561 & 0.00000 \\
-4.02220 & \(0.138864 \mathrm{E}-02\) & 0.00000 \\
-4.20200 & \(0.463291 \mathrm{E}-05\) & 0.00000 \\
-4.38180 & \(0.259545 \mathrm{E}-05\) & 0.00000 \\
& & \\
\hline
\end{tabular}
\begin{tabular}{rrr}
-4.56160 & \(0.557988 \mathrm{E}-06\) & 0.00000 \\
-4.74140 & \(0.375334 \mathrm{E}-09\) & 0.00000 \\
-4.92120 & \(0.674823 \mathrm{E}-09\) & 0.00000 \\
-5.10100 & \(0.974312 \mathrm{E}-09\) & 0.00000 \\
-5.28080 & \(0.134528 \mathrm{E}-08\) & 0.00000 \\
-5.46060 & \(0.143912 \mathrm{E}-08\) & 0.00000 \\
-5.64040 & \(0.798202 \mathrm{E}-09\) & 0.00000 \\
-5.82020 & \(0.157282 \mathrm{E}-09\) & 0.00000 \\
-6.00000 & \(-0.671439 \mathrm{E}-12\) & 0.00000 \\
END_DB & &
\end{tabular}

For detailed explanation of the mdm file format, the user is referred to the IC-CAP manual.

\subsection*{22.289 export__wave}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline backward & char & [no] \\
\hline data_file & char & [void] \\
\hline print__point & intg & \\
\hline
\end{tabular}
export_wave is used to export the wave solution of Beam Propagation Method to a designated output file.

\section*{Parameters}
- backward specifies which wave is being exported (forward or backward).
- data_file is the file name where the wave data will be exported
- print__point is the print point at which the data to be to exported.

\section*{Example(s)}
export_wave backward=no data_file=tmp.wave print_point=12

\subsection*{22.290 ext_funck \((\mathrm{k}=1 . .9)\)}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement ext_funci \((i=1,2, . ., 9)\) is an active layer macro statement used to define an external function to be used by other statements in the same macro.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

\subsection*{22.291 external_cir}
external__cir is outdated. It has been replaced with a full-fledged mixed-mode simulator using the minispice command.

\subsection*{22.292 external_heat_source}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & \\
\hline power_density & real & {\([0.0]\left(W / m^{3}\right)\)} \\
\hline power & real & \((W)\) for \(3 \mathrm{D},(W / m)\) for 2D \\
\hline mater & intg & 1 \\
\hline
\end{tabular}
external__heat_source is used to define an artificial heat source inside the device.

\section*{Parameters}
- power_density is the heat source density inside the specified material. Alternatively, power may be used to define the heat source using the same units as the overall simulation: see the \((W)\) for \(3 \mathrm{D},(W / m)\) for 2 D . If used, power overrides the power_density setting.
- mater is the material number where the heat source is defined; alternatively, a pre-existing material label may be set in mater_label.

\subsection*{22.293 external__spice__cir}
external__spice_cir is outdated. It has been replaced with the minispice command.

\subsection*{22.294 external_stress_band_model}
\begin{tabular}{||l|l|l||}
\hline \multicolumn{1}{|c|}{ parameter } & data type & values [defaults] \\
\hline \hline device_lattice_const & real & {\([3.189](\mathrm{A})\)} \\
\hline device_lattice_c_const & real & {\([3.189](\mathrm{A})\)} \\
\hline device_bulk_mater & intg & {[]} \\
\hline ref_elasticity_mater & intg & {[]} \\
\hline
\end{tabular}
external__stress__band__model works in conjunction with set__stress to define externally applied stress \((\sigma)\) on a device. This should be understood as the stress applied on the whole device rather than the internal, as-grown, strain ( \(\epsilon\) ). A good example of this is GaN-based devices grown on silicon substrates.
external__stress_band__model is used to define the reference lattice parameters and internal strain of the device so the software can correctly calculate the total displacement/strain caused by the external stress.

At the moment, this statement primarily applies to wurtzite materials.

\section*{Parameters}
- device_bulk_mater is used to indicate the buffer layer which controls the initial growth and internal strain in the device. When the external stress is applied, it is assumed that this layer is massive enough that its mechanical properties dominate the overall bending in the device.
- device_lattice_const and device_lattice_c__const are the reference \(a\) and \(c\) lattice constants of the device during the growth. These values are only used when the bulk reference material is not provided.
- ref_elasticity__mater is the reference material which provides the stiffness coefficients \(c_{i j}\). This value is only used when the bulk reference material is not provided.

\section*{Examples}
```

\$ no for 50:50 EBL offset
wurtzite_offset_model bulk_strain_exist = no
\$ material numbers
\$ 1 - n-GaN = ingan(0.001)
\$ 2 - MQW barrier = ingan(0)
\$ 3-7 quantum well = ingan(0.24)
\$ 8 - EBL = gaalinn(0.20)
\$ 9 - p-GaN = gaalinn(0)
set_stress xx=10. yy=10.
external_stress_band_model device_bulk_mater=1

```

\subsection*{22.295 extract_contour}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & (see list) \\
\hline data_file & char & \\
\hline flip_y & char & yes,[no] \\
\hline at_value & real & \\
\hline at_fraction & real & \\
\hline extend_y_fraction & real & 0. \\
\hline set_yrange & realx2 & \((\mu m)\) \\
\hline mode_index & intg & 1 \\
\hline trap_index & intg & 1 \\
\hline
\end{tabular}
extract_contour is a post-processor statement used to plot structural data on a 2D plane. It is similar to plot__2d in that it plots contour lines but this command only plots a single line at a specified value or fraction.

\section*{Parameters}
- variable is the variable to be plotted. See App. G for a full list of available variables.
- data_file is the name of a text file in which a copy of the plot data will be saved.
- flip_y flips the y axis of the display.
- at_cvalue is the absolute value of the contour cut line. It is mutually exclusive with at_fraction.
- at_fraction sets the value of the contour cut line to a fraction of the maximum. It is mutually exclusive with at__value.
- extend_y_fraction is used to zoom in on the y axis: a scaling factor of \(1+\) value is applied
- set_yrange limits the contour plot to the data points found within this range.
- mode_index is the index of the lateral mode in a multi-lateral mode simulation. If only the fundamental mode is concerned, the default value of one should be used.
- The parameter trap_index has been added for SRH recombination, so that the user can specify which trap center is being plotted.

\section*{Examples}
extract_contour variable=wave_intensity at_fraction=0.367879

This plots the contour of the wave intensity where the wave is \(1 / e\) of its maximum.

\subsection*{22.296 farfield}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline option & char & \begin{tabular}{l}
{\([\) contour], segment_x, segment_y, } \\
surface
\end{tabular} \\
\hline data_file & char & {\([\) void \(]\)} \\
\hline symmetric & char & {\([\) yes],no } \\
\hline add_all_modes & char & {\([\) yes \(]\), no } \\
\hline type & char & {\([\) intensity \(]\), real, imaginary } \\
\hline theta_x & real & {\([10]\) (degrees) } \\
\hline theta_y & real & {\([40]\) (degrees) } \\
\hline 2ndmode_phase & real & {\([0]\).} \\
\hline points & intg & {\([30]\)} \\
\hline mode_index & intg & {\([1]\)} \\
\hline level & intg & {\([9]\)} \\
\hline sum_2ndmode & intg & {\([0]\)} \\
\hline
\end{tabular}
farfield is a post-processing statement used to compute the far-field distribution of an optical mode. The near-field distribution is obtained by simply plotting the wave_intensity variable in statements such as plot__2d.

\section*{Parameters}
- option specifies the format of the far-field output:
- contour shows a 2D contour plot
- segment_x shows a 1D plot along the x direction
- segment_y shows a 1D plot along the y direction
- surface shows a 3D surface plot
- type instructs the software to plot either the intensity, the real part or the imaginary part of the far-field pattern.
- data_file can be used to save the data to a text file.
- symmetric specifies whether or not the device being simulated is symmetric. If set to yes, it is assumed that only the right half is simulated and the far-field is computed with the missing near-field on the left half. Otherwise, the far-field is computed as is.
- add__all_modes instructs the program to sum the intensities of all the farfield modes without considering any phase-interference effects. The sum is weighed by the power in each mode.
- theta_x and theta_y are the range of the far-field angle along the \(x\) and \(y\) directions, respectively.
- 2ndmode_phase is the phase factor of the higher order mode with respect to the main mode when sum_2ndmode is used. This factor corresponds to the phase difference between the two modes over a single cavity round-trip and is added as part of the summation for the far-field pattern.
- points is the number of points used to evaluate the far-field in each direction.
- mode_index is the index of the lateral mode in a multi-lateral mode simulation. If only the fundamental mode is concerned, the default value of 1 should be used.
- level is the number of contour lines when option=contour.
- sum_2ndmode is the index of the second mode added to the main mode for the far-field calculations; unlike add__all__modes phase effects are used for this sum, using the value of \(\mathbf{2}\) ndmode__phase. This parameter is ignored when using the default value of 0 .

\section*{Examples}
farfield option=contour points=30 \&\&
theta_x=15 theta_y=70

\subsection*{22.297 farfield_couple}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline symmetric & char & {\([\) yes \(]\), no } \\
\hline & theta & real \\
\hline 2ndmode_phase & real & {\([2]\) (degrees) } \\
\hline & scale_lit & real \\
\hline & scale_curr & real \\
\hline points & intg & {\([1]\).} \\
\hline mode_index & intg & {\([2]\).} \\
\hline & sum_2ndmode & intg \\
\hline electrode & intg & {\([1]\)} \\
\hline
\end{tabular}
farfield_couple used to integrate a certain farfield angle and modify the L-I curve to simulate a detector.
- symmetric specifies whether or not the device being simulated is symmetric. If the choice is "yes", it is assumed that only the right half is simulated and the far-field is computed with the missing near field on the left half. If the choice is "no", then the far field is computed using only the near field as it is.
- theta is the farfield angle of power detection.
- 2 ndmode_phase is the phase factor of the 2 nd order mode to be added to the farfield of the main mode.
- scale_lit is a scale factor to be multiplied to light power.
- scale_curr is a scale factor to be multiplied to current.
- points is the number of points in each direction for farfield integration.
- mode__index is the index of the lateral mode in a multi-lateral mode simulation. If only the fundamental mode is concerned, the default value of one should be used.
- sum_2ndmode is the mode number of the higher order mode to be added to the main mode for farfield computation. ( see also 2ndmode_phase parameter above).
- electrode is the electrode upon which the current of the L-I curve is based.
```

Example(s)
farfield_couple theta=5 sum_2ndmode=1

```

\subsection*{22.298 fdtd_background_mater}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater & intg & \\
\hline
\end{tabular}

The command fdtd__background__mater defines a material number that is to be used as a background material for the FDTD model. This material contains the FDTD current source and the FDTD model will always start by modeling light propagation in this isotropic material in order to set normalization constants (e.g. for power).

Usually, the FDTD current source is placed in an air or vacuum region. However, in special cases, the user may want to put the FDTD current source inside of the device which is where this command becomes useful.

\section*{Parameters}
- mater is a material number to be dealt as background material.

\section*{Examples}
fdtd_background_mater mater=1

\subsection*{22.299 fdtd_CLFDTD_control}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline operation & char & [append_xml] \\
\hline append_from & char & \\
\hline append_to & char & \\
\hline
\end{tabular}
fdtd_CLFDTD__control may be used to directly issue commands to the Crosslight FDTD solvers using XML input files; the syntax of these files is beyond the scope of this document.

Only append operations between two XML files are currently supported by this command.

\section*{Examples}

This example appends contents of QE_monitor.xml to fdtdinput_device.xml:
```

fdtd_CLFDTD_control operation=append_xml \&\&
append_from=QE_monitor.xml \&\&
append_to=fdtdinput_devicespace.xml

```

\subsection*{22.300 fdtd_data_analysis}
\begin{tabular}{|l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline tag & char & \\
\hline operation & char & \begin{tabular}{l} 
relative_energy_intensity, trans- \\
mittance, reflectance, poynting, \\
QE, OE
\end{tabular} \\
\hline operandA_tag & char & \\
\hline operandB_tag & char & \\
\hline data_file & char & \\
\hline scale & real & 1.0 \\
\hline
\end{tabular}

The command fdtd__data__analysis is used to define data analysis post-processing for FDTD simulations. This command only works for CLFDTD.

\section*{Parameters}
- tag is a user-defined name assigned to the results of this analysis and which may be referenced by other post-processing commands. The assigned tag must be unique and not reused by other fdtd__data__analysis commands.
- operandA_tag and operandB__tag define the quantities being analyzed. These user-defined labels are inherited from fdtd__field__monitor.
- operation is the kind of analysis performed by this command; the analysis operates on operandA__tag and operandB__tag as outlined in the examples below.
- data_file is the name of a data file where the data analysis results are recorded.
- scale is an artificial scaling factor that may be used to multiply the analysis results.

\section*{Examples}
operation=relative_energy_intensity calculates the spatial distribution of \(n \frac{\mid \text { operandA_tag }\left.\right|^{2}}{\left|{ }^{\text {operandB_tag }}\right|^{2}}\) where \(n\) is the refractive index:
```

fdtd_data_analysis \&\&
operation=relative_energy_intensity \&\&
operandA_tag = device_fields \&\&
operandB_tag = empty_fields \&\&
data_file=rei.txt

```
operation \(=\) transmittance calculates \(\frac{\int \text { operandA_tag } \cdot \overrightarrow{n d} \vec{r}}{\int \text { operandB_tag } \cdot \vec{n} d \vec{r}}\) :
fdtd_data_analysis \&\&
    operation=transmittance \&\&
    operandA_tag = trans_fields \&\&
    operandB_tag = injection_fields \&\&
    data_file=trans.txt
operation \(=\) reflectance calculates \(\frac{\int(\text { operandA_tag-operandB_tag) } \cdot \vec{n} d \vec{r}}{\int \text { operandB_tag } \cdot \vec{n} d \vec{r}}\) :
```

fdtd_data_analysis \&\&
operation=reflectance \&\&
operandA_tag = refl_fields \&\&
operandB_tag = injection_fields_refl \&\&
data_file=refl.txt

```
operation=poynting calculates the Poynting vector distribution of operandA_tag:
```

fdtd_data_analysis \&\&
operation=poynting \&\&
operandA_tag = trans_fields \&\&
data_file=poynting.txt

```
operation \(=Q E\) calculates the quantum efficiency:
```

fdtd_data_analysis \&\&
operation=QE \&\&
operandA_tag = QE_monitor_devicespace \&\&
operandB_tag = QE_monitor_emptyspace \&\&
scale=1e-6 \&\&
data_file=QE.txt

```
operation \(=O E\) calculates the optical efficiency.
fdtd_data_analysis \&\&
    operation=OE \&\&
    operandA_tag = flux_monitor_group \&\&
    operandB_tag = injection_monitor \&\&
    data_file=OE.txt

\subsection*{22.301 fdtd_define__region}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline tag & char & \\
\hline shape & char & line, plane, box \\
\hline flip_normalj \((\mathrm{j}=1 . .6)\) & char & \(-\mathrm{x},+\mathrm{x},-\mathrm{y},+\mathrm{y},-\mathrm{z},+\mathrm{z}\) \\
\hline point_ll & realx3 & (um) \\
\hline point_ur & realx3 & (um) \\
\hline normal & realx3 & \\
\hline
\end{tabular}
fdtd_define_region defines a geometric region in a FDTD simulation domain. This command only works for CLFDTD.

\section*{Parameters}
- tag is a user-defined name for this region which allows it to be referenced by other commands such as fdtd_field__monitor. The tag must be unique and not reused by other fdtd__define__region commands.
- shape specifies shape and dimensionality of the region.
- flip__normalj is used in the context of box regions; each facet/side of the box has its own surface normal vector. By default, surface normals point outwards from the box center; flipping the normal means that the normal now points towards the center of the box.

Multiple flips ( \(\mathrm{j}=1 . .6\) ) may be issued in the same command. For example, flip_normal1 \(=-y\) will flip the surface normal vector on the \(-y\) side of the box region as the first operation.

Issuing this command may be required depending on whether the user is interested the fields that are incoming or exiting from a specific region.
- point__ll is used to specify the lower-left corner of the region.
- point_ur is used to specify the upper-right corner of the region.
- normal is used to specify the normal vector of the region when shape=plane: it is necessary to compute the flux through a specific region. In the case of shape \(=b o x\), the normal vector for each facet is automatically assigned by the simulator as described in flip__normalj.

\section*{Examples}
```

fdtd_define_region \&\&
shape=plane \&\&
point_ll=(0.0 -1.2 0.0) \&\&
point_ur=(1.0 11.5 0.0) \&\&
normal=(0.0 0.0 1.0) \&\&
tag=planeXY

```

\subsection*{22.302 fdtd_dispersion}
\begin{tabular}{||l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline type & char & \begin{tabular}{l} 
[Lorentz],Drude,Drude-_ \\
Lorentz,Direct
\end{tabular} \\
\hline import & char & [no],yes \\
\hline file & char & void \\
\hline freq_convention & char & [omega],frequency \\
\hline input_unit & char & [MEEP],SI \\
\hline autofit_singlepole & char & [no],yes \\
\hline mater & intg & 1 \\
\hline order & intg & 0 \\
\hline order_drude & intg & 0 \\
\hline epsinf & real & 1.0 \\
\hline omegak(k=1..9) & real & \\
\hline gammak \((\mathrm{k}=1 . .9)\) & real & \\
\hline delta_epsk \((\mathrm{k}=1 . .9)\) & real & \\
\hline omega_drudek \(\mathrm{k}=1 . .9)\) & real & \\
\hline gamma_drudek(k=1..9) & real & \\
\hline a_directk \((\mathrm{k}=1 . .9)\) & real & \\
\hline b_directk \((\mathrm{k}=1 . .9)\) & real & \\
\hline c_directk \((\mathrm{k}=1 . .9)\) & real & \\
\hline d_directk \((\mathrm{k}=1 . .9)\) & real & \\
\hline scale_absorption & real & \\
\hline
\end{tabular}

The command fdtd_dispersion defines dispersion parameters for a particular material. These parameters are used in the FDTD model to account for dispersion and loss. Different models are available depending on the FDTD solver being used (interface in fdtd__model).

\section*{Theory}

Since the FDTD model works in the time domain, it is not possible to directly use spectral properties. Instead, spectral properties must be fitted to a set of simple basis functions which can be represented more easily in the time domain. This is analogous to the concept of "digital filters" used in modern digital signal processing algorithms.
The Lorentz dispersion model is supported by both MEEP and Acceleware FDTD (in \(\exp (-i \omega t)\) convention):
\[
\begin{equation*}
\epsilon(\omega, \mathbf{x})=\epsilon_{\infty}(\mathbf{x})+\sum_{n} \frac{\omega_{n}^{2} \Delta \epsilon_{n}}{\omega_{n}^{2}-\omega^{2}-i \omega \gamma_{n}} \tag{22.11}
\end{equation*}
\]

The Drude (in \(\exp (+i \omega t)\) convention):
\[
\begin{equation*}
\epsilon(\omega, \mathbf{x})=\epsilon_{\infty}(\mathbf{x})-\sum_{n} \frac{\omega_{n}^{2}}{\omega\left(\omega+i \gamma_{n}\right)} \tag{22.12}
\end{equation*}
\]
and Direct (in \(\exp (+i \omega t)\) convention):
\[
\begin{equation*}
\epsilon(\omega, \mathbf{x})=\sum_{n} \frac{A_{n}}{B_{n} \omega^{2}+C_{n} i \omega+D_{n}} \tag{22.13}
\end{equation*}
\]
dispersion models are only supported by Acceleware FDTD.

\section*{Important note on units and fitting of experimental data}

Most FDTD solvers use dimensionless and scale-invariant units internally to speed up computations. Because users of Crosslight deal mostly with photonic applications, the scale of the simulation is always set to be \(1 \mu \mathrm{~m}\) and the speed of light is set to \(c=1\) : this is consistent with the convention used by the MEEP FDTD solver.
Using this convention, the following relations hold in vacuum:
\[
\begin{align*}
\omega & =2 \pi f  \tag{22.14}\\
f & =\frac{1}{\lambda} \tag{22.15}
\end{align*}
\]
where \(\lambda\) is equal the wavelength value in \(\mu m\) but is otherwise without units.
However, not all FDTD solvers use the same convention when defining the dispersion relations. The Acceleware solver use the formulas shown above for all available dispersion models. On the other hand, MEEP's polarizability class expresses the Lorentz dispersion model using an alternate but equivalent form (in terms of \(f\) rather than \(\omega\) ):
\[
\begin{equation*}
\epsilon(f, \mathbf{x})=\epsilon_{\infty}(\mathbf{x})+\sum_{n} \frac{f_{n}^{2} \Delta \epsilon_{n}}{f_{n}^{2}-f^{2}-i f \frac{\gamma_{n}}{2 \pi}}, \tag{22.16}
\end{equation*}
\]

The parameters freq_convention and input_unit can be used to convert to the appropriate between frequency conventions and to specify the choice of units in the dispersion relations.

\section*{Parameters}
- mater is a material number in which dispersion parameters are to be assigned.
- type specifies type of dispersion function.
- import is a switch for the importation of dispersion function parameters. When import=yes, all the dispersion function parameters will be read from an external file.
- file is the name of a file containing dispersion function parameters.
- freq_convention tells simulator what kind of frequency was used in the fitting procedure of dispertion function. Augular frequency \(\omega\) is assumed by default. Since MEEP accepts \(\omega\), whereas Acceleware FDTD accepts frequency, adequate conversion of frequency type will take place in the Crosslight/FDTD interface according to the combination of FDTD program and freq_convention.
- input__unit tells simulator what kind of unit is used for the fitting parameters of dielectric function. Since MEEP accepts MEEP unit, whereas Acceleware FDTD accepts SI unit, adequate unit conversion will take place according to the combination of FDTD program and input_unit.
- autofit_singlepole is a switch for fitting real and imaginary part of complex index at single wavelength automatically. By activating this switch, user do not have to fit index spectrum to analytical functions like Lorentizian. This switch only works for single wavelength simulation.
- order is the number of dispersion terms ( \(n\) ) used in the Lorentz and Direct models.
- order_drude is the number of dispersion terms \((n)\) in the Drude model.
- epsinf is the instantaneous dielectric function: the real part of permittivity at infinite frequency. It corresponds to \(\epsilon_{\infty}\) appearing in the equations above.
- omega\# is the resonant frequency of the absorption peak in the Lorentz model. For the Acceleware solver, it corresponds to \(\omega_{n}\) in Eqn. (22.11). For the MEEP solver, it corresponds to \(f_{n}=\frac{\omega_{n}}{2 \pi}\) in Eqn. (22.16).
- gamma\# sets the width of the absorption peak in the Lorentz model. For the Acceleware solver, it corresponds to \(\gamma_{n}\) in Eqn. (22.11). For the MEEP solver, it corresponds to \(\frac{\gamma_{n}}{2 \pi}\) in Eqn. (22.16).
- delta_eps\# sets the amplitude of the resonance peak in the Lorentz model. It corresponds to \(\Delta \epsilon_{n}\) for both the Acceleware and MEEP solvers.
- omega_drude\# corresponds to \(\omega_{n}\) appearing in Eq. (22.12).


Figure 22.7: Fitted dielectric function for Silicon
- gamma_drude\# corresponds to \(\gamma_{n}\) appearing in Eq. (22.12).
- a_direct\# corresponds to \(A_{n}\) appearing in Eq. (22.13).
- b__direct\# corresponds to \(B_{n}\) appearing in Eq. (22.13).
- c_direct\# corresponds to \(C_{n}\) appearing in Eq. (22.13).
- d__direct\# corresponds to \(D_{n}\) appearing in Eq. (22.13).
- scale__absorption scales strength of absorption of dispersion function. This scaling only works for single wavelength case.

\section*{Examples}

Figure 22.7 shows an example of how the dielectric function of crystalline silicon is fitted with a sum of harmonic oscillators (Lorentzian model); nine oscillator terms were used in this fitting.

The horizontal axis corresponds to frequency \(f=1 / \lambda\) using the MEEP convention which means that \(\lambda\) is the wavelength value in \(\mu m\). The absorption peaks between \(f=2\) and \(f=4\) on Figure 22.7 correspond to a wavelength range of \(250-500 \mathrm{~nm}\).

The fitting was done by using non-linear least square fitting procedure. In this fitting, different weight was used at lower and higher frequency region. Especially, large weight value was assigned to lower frequency region \((f \leq 2.5)\) of the imaginary part, since fitting errors in this region cause large errors in the resulting optical absorption. Note that no automated fitting procedure is included in APSYS: it is the responsibility of the user to provide the correct fit.
The corresponding fdtd_dispersion command reads as follows:
```

fdtd_dispersion mater=1 order=9 \&\&
type=Lorentz \&\&
freq_convention=frequency \&\&
input_unit=MEEP \&\&
epsinf=2.05727379912 \&\&
omega1=2.70630963121 gamma1=0.0792498919692 delta_eps1=0.622486271034 \&\&
omega2=2.78980009035 gamma2=0.0698148765121 delta_eps2=0.735692163881 \&\&
omega3=2.88533425743 gamma3=0.0877692173939 delta_eps3=0.764330138351 \&\&
omega4=3.00784243943 gamma4=0.1224552227370 delta_eps4=0.914575597926 \&\&
omega5=3.14120289007 gamma5=0.1277355532670 delta_eps5=0.911707698778 \&\&
omega6=3.43582761159 gamma6=0.1694383912360 delta_eps6=1.719650817200 \&\&
omega7=3.27736546304 gamma7=0.1298284642990 delta_eps7=1.043230189780 \&\&
omega8=3.63115274113 gamma8=0.2545018091260 delta_eps8=1.386792385230 \&\&
omega9=4.09954249395 gamma9=0.3634196648580 delta_eps9=0.778171989294

```

Here, freq_convention=frequency and input_unit=MEEP mean that horizontal axis used in our parameter fitting is frequency, and units follow the MEEP covention.

The interface program will convert fitting parameters automatically depending on the combination of freq_convention, input_unit and the FDTD solver chosent. The user is only responsible for fitting the experimental data using consistent freq_convention and input_unit settings.

If the experimental data was using a horizontal axis of angular frequency \(\omega\) and SI units the equivalent fdtd_dispersion command would read as follows:
```

fdtd_dispersion mater=1 order=9 \&\&
type=Lorentz \&\&
freq_convention=omega \&\&
input_unit=SI \&\&
epsinf=2.05727379912 \&\&
omega1=5.09774437845e+015 gamma1=1.49279183217e+014 delta_eps1=0.622486271034 \&\&
omega2=5.25501131267e+015 gamma2=1.31506901563e+014 delta_eps2=0.735692163881 \&\&
omega3=5.43496439623e+015 gamma3=1.65326623905e+014 delta_eps3=0.764330138351 \&\&
omega4=5.66572712525e+015 gamma4=2.30662972233e+014 delta_eps4=0.914575597926 \&\&
omega5=5.91693174711e+015 gamma5=2.40609275112e+014 delta_eps5=0.911707698778 \&\&
omega6=6.47190206558e+015 gamma6=3.19162891213e+014 delta_eps6=1.719650817200 \&\&
omega7=6.17341459110e+015 gamma7=2.44551590258e+014 delta_eps7=1.043230189780 \&\&
omega8=6.83982655196e+015 gamma8=4.79392731643e+014 delta_eps8=1.386792385230 \&\&
omega9=7.72210964398e+015 gamma9=6.84556021301e+014 delta_eps9=0.778171989294

```

Note the use of freq_convention=omega and input_unit=SI in this case.

\subsection*{22.303 fdtd_far_field}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline do_ffp_only & char & [no] yes \\
\hline plane & char & [void] -y +y -x \(+\mathrm{x} \mathrm{-z} \mathrm{+z}\) \\
\hline data_file & char & [void] far_field.dat \\
\hline subtract_source & char & [no] yes \\
\hline boxlabel_normalize & char & [void] Box1 \\
\hline box_point_ll & realx2 & \\
\hline box_point_ur & realx2 & \\
\hline distance & real & {\([100.0]\)} \\
\hline range_theta & realx2 & {\([0180]\) (degrees) } \\
\hline range_phi & realx2 & {\([0360]\) (degrees) } \\
\hline plane_offset & char & (um) \\
\hline ngrid_surfint & intgx3 & \\
\hline ngrid_theta_phi & intgx2 & {\([1020]\)} \\
\hline
\end{tabular}
fdtd_far_field is used to calculate the far-field distribution of light scattered from a device in a FDTD simulation.

\section*{Parameters}
- do_ffp_only directs the FDTD program to only calculate the far-field pattern (FFP). With this setting, the FDTD program will just read temporary data generated by a previous FDTD run and calculate the FFP.
- plane is used to specify the direction of the FFP plane axis. For example, plane \(=+y\) means that FFP will be calculated on a plane perpendicular to \(y\) axis and the sign specifies the direction of the plane normal. The position of the plane should be specified by the plane_offset parameter. Note that plane cannot be specified at the same time as box__point__ll and box__point__ur.
- data_file is the name of a file where FFP information will be stored.
- subtract__source is used to instruct the simulator to substract the contribution of the incident wave from the FFP result. This directive is useful when calculating reflectance spectrum from FFP.
- boxlabel_normalize is a user-defined label specifying a monitoring box. This box is used to record the radiation power or the current source(s) in ordert to normalize the FFP result. The label must match the one used in the box declaration in fdtd__monitor__box.
- box__point_ll and box_point__ur are the lower-left and upper-right corner points (in APSYS coordinates) of an integration box used in the calculation of the FFP. The integration box should be large enough to contain the whole device but must exclude the absorbing boundary.
- distance is the distance between far-field point and the device. In principle, FFP does not depend on the distance parameter, so users do not have to care about this parameter.
- range_theta specifies the range of \(\theta\), which is the angle measured from Z-axis.
- range__phi specifies the range of \(\phi\), which is the angle measured from X-axis.
- plane_offset is an offset value of FFP plane from origin of cartesian coordinate. For example, plane \(=+y\) and plane_offset \(=5.0\) means that XZ plane with +y normal direction will be located at \(\mathrm{y}=5.0\) (um). In case of \(2-\mathrm{D}, \mathrm{Z}\) dimension is zero.
- ngrid_surfint is the grid size used to discretize the integration box. Since simulator automatically assigns this parameter by counting FDTD cells over FFP box/plane, users do not have to set this parameter.
- ngrid_theta__phi is the number of divisions for the \(\theta\) and \(\phi\) angles.

\section*{Examples}
```

fdtd_far_field \&\&
box_point_1l=(0.0 -0.5 0.0) \&\&
box_point_ur=(5.0 5.5 0.0) \&\&
range_phi = (0.0 180.0) \&\&
ngrid_theta_phi = (1 51)

```

\subsection*{22.304 fdtd_field_monitor}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline tag & char & \\
\hline target_region_tag & char & \\
\hline simulation_space & char & emptyspace, devicespace \\
\hline monitor_comp & char & \begin{tabular}{l} 
Ex, Ey, Ez, Efields, Hx, Hy, Hz, \\
Hfields, all
\end{tabular} \\
\hline surface_only & char & yes,[no] \\
\hline FFT & char & [yes], no \\
\hline interval & intg & 10 \\
\hline step_start & intg & 0 \\
\hline step_end & intg & -9999 \\
\hline resolution & realx3 & \((0.5,0.5,0.5)\) \\
\hline
\end{tabular}

The command fdtd_field_monitor instructs the FDTD solver to monitor and record certain field components for later use. This command only works for CLFDTD.

\section*{Parameters}
- tag is user-defined name which allows the recorded fields to be referenced in other commands. This name must be unique and not reused by other fdtd_field__monitor commands.
- target__region_tag is a region tag from fdtd__define_region which defines the simulation region being monitored.
- simulation_space specifies which simulation is being monitored: all FDTD simulations model field propagation in an empty region and in a region where the device exists.
- monitor_comp specifies which field components are being monitored.
- surface_only directs the program to monitor only the surface of the specified region.
- FFT directs the program to apply a FFT at each of the monitor points.
- interval is the interval time step used for monitoring.
- step_start controls the start time of the monitoring: \(t_{0}=\) step_start \(* d t\).
- step_end controls the stop time of the monitoring: \(t_{f}=\) step_end \(* d t\).
- resolution specifies the resolution of the monitoring on each axis. This defines a subset of the FDTD grid points used in the simulation so this parameter scales between 0.0 and 1.0: for example, resolution=(1.0 1.0 1.0) means that all the FDTD grid points are being monitored.
```

Examples
fdtd_fieldmonitor \&\&
target_region_tag=planeXY \&\&
simulation_space=devicespace \&\&
monitor_comp=Ez \&\&
FFT=no \&\&
step_start=0 \&\&
step_end=2000 \&\&
interval=100 \&\&
resolution=(0.5 0.5 0.5) \&\&
tag=field

```

\subsection*{22.305 fdtd_fourier}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline input_file_empty_space & char & \\
\hline input_file_device_space & char & \\
\hline output_file & char & fdtd_fourier.dat \\
\hline windowing & char & [no],yes \\
\hline field_comp & char & [Ex],Ey,Ez \\
\hline time_start & real & \\
\hline time_end & real & \\
\hline window_center & real & \\
\hline window_FWHM & real & \\
\hline read_interval & intg & {\([0], 1,2,3\)} \\
\hline num_freq & intg & {\([100], 200,300\)} \\
\hline
\end{tabular}

The command fdtd_fourier is used to set parameters for the Fourier transform of E-fields. Amongst other things, this can be used to estimate the resonance frequency of a high-Q cavity.

All time positions/durations should be specified in the same unit as the MEEP simulation if it was used to generate the original data. Otherwise, a multiple of the simulation time step is used in the Acceleware and Crosslight FDTD solvers.

\section*{Parameters}
- input_file_empty_space is the name of the file which contains the time evolution of E-fields for the "empty space" FDTD simulation.
- input_file_device_space is the name of the file which contains the time evolution of E-fields for the "device space" FDTD simulation.
- output_file is the name of file where the Fourier transformed results will be stored.
- windowing tells the simulator to apply a Gaussian window to the transform. This may be useful in limiting aliasing.
- time__start is the start time of the Fourier analysis; this may be set to avoid the initial transient response.
- time_end is the end time of the Fourier analysis.
- window_center is the center time of Gaussian windowing function.
- window__FWHM is the FWHM of the Gaussian windowing function.
- read_interval is used to specify read interval. This parameter is useful when user wants to avoid oversampling of the data.
- num_freq is the number of frequency points in the spectrum.

\section*{Examples}
```

fdtd_fourier input_file_empty_space=efields_empty.dat \&\&
input_file_device_space=efields_device.dat \&\&
num_freq=300

```

\subsection*{22.306 fdtd_glass_coating}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline spectrum_file & char & \\
\hline fdtd_refl_file & char & \\
\hline position & char & [top]bottom \\
\hline do_precalc & char & [no]yes \\
\hline thickness & real & \(0(\mu m)\) \\
\hline real_index & real & 3.2 \\
\hline imag_index & real & 0.0 \\
\hline
\end{tabular}


Figure 22.8: First step of simulation with fdtd_glass_coating
fdtd_glass_coating sets parameters for the FDTD simulation with a thick glass coating. Currently, this command only works for MEEP.

Under normal circumstances, a thick layer would require too much memory and computational layer for a FDTD simulation since it uses such a small grid size. We thus use a hybrid approach combining plane wave transfer matrix formalism with FDTD and split the simulation into two steps.

In the first step, the glass layer is embedded in the FDTD's PML layer to isolate the reflection coefficient of the cell (Fig. 22.8). In the second step, this is used to compute the effective plane wave transfer matrix of the glass layer and create a transfer function. The glass layer is then removed from the FDTD simulation and a filtered light spectrum is used to represent its effects (Fig. 22.9).
- spectrum_file is the name of a file which contains complex refractive index spectrum of the glass. If not specified, constant refractive index given by real_index and imag_index will be used.
- fdtd_refl_file is the name of the file where the reflection spectrum is recorded in the precalculation (first step). During the second step, the reflection spectrum is read from this file and used to calculate the filtered light spectrum.
- position is the location of the glass layer.

M=D_air • P_glass • D_glass
\(\binom{\mathbf{E}_{\mathrm{AM} 15}}{R_{\text {tot }} \mathbf{E}_{\mathrm{AM} 15}}=\mathbf{M}\binom{\mathbf{E}_{\text {glass }}}{\mathrm{R}_{\text {cell }} \mathbf{E}_{\text {glass }}}\)
TMM equation
\[
\begin{gathered}
\text { Filter function }=\frac{n_{\text {glass }}}{M_{11}+M_{12} R_{\text {cell }}} \\
\operatorname{P}^{\prime}{ }_{\text {AM15 }}(\lambda)=\text { Filter function }(\lambda) \times \operatorname{PAM15}(\lambda)
\end{gathered}
\]

Figure 22.9: Second step of simulation with fdtd_glass_coating
- do__precalc determines if this simulation will be the first or second step as outlined above.
- thickness is thickness of the glass layer in \(\mu m\).

\section*{Examples}

The example below shows the pre-calculation of reflection spectrum: this is the first step discussed above. The reflection spectrum is defined by using the fdtd__plane__refl to define a monitoring plane.
```

fdtd_glass_coating \&\&
do_precalc = yes \&\&
fdtd_refl_file=reflection_precalc.dat \&\&
real_index=1.57 imag_index=0.0e0 \&\&
position=bottom thickness=0.5
fdtd_plane_refl center=(0.05 0.05 -0.1) size=(0.1 0.1 0.0)

```

\subsection*{22.307 fdtd_group_monitors}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline tag & char & \\
\hline monitor_tagj \((\mathrm{j}=1 . .9)\) & char & \\
\hline
\end{tabular}

The command fdtd_group_monitors is used to group together FDTD field monitors. This command only works for CLFDTD.

\section*{Parameters}
- tag is a user-defined name for this group of FDTD field monitors and which allows it to be referenced by post-processing command such as fdtd__data__analysis. The tag must be unique and not be reused by either the fdtd__group__monitors or fdtd_field__monitor commands.
- monitor__tagj \((\mathbf{j}=\mathbf{1 . . 9})\) is the label of the jth field monitor that is being grouped together under the same label. This value is inherited from fdtd_field__monitor.

\section*{Examples}
```

fdtd_group_monitors \&\&
monitor_tag1=influx_monitor \&\&
monitor_tag2=outflux_monitor \&\&
tag=flux_monitor_group

```

\subsection*{22.308 fdtd_model}

\begin{tabular}{|c|c|c|}
\hline parallel & char & [no],yes \\
\hline interface & char & [MEEP], Ax, CLFDTD \\
\hline subpixel_averaging & char & [no],yes \\
\hline use_gpu & char & [no],yes \\
\hline wavel_range & realx2 & (um) \\
\hline PML_thickness & real & (um) \\
\hline fixed_time & real & [20.0] (unit depends on FDTD interface) \\
\hline buffer_x & realx2 & [0.0 0.0] (um) \\
\hline buffer_y & realx2 & [0.0 0.0] (um) \\
\hline buffer_z & realx2 & [0.0 0.0] (um) \\
\hline auto_dt & real & [10.0] \\
\hline auto_dt2 & real & \\
\hline auto_until_ratio & real & [0.01] \\
\hline watch_pointk (k=1..9) & realx3 & (um) \\
\hline hdf5out_dt & real & [2.0] (unit depends on FDTD interface) \\
\hline cell_size & realx3 & (um) \\
\hline fdtd_meshdensity & real & (um) \\
\hline adjust_xdim & real & (um) \\
\hline adjust_ydim & real & (um) \\
\hline adjust_zdim & real & (um) \\
\hline courant_factor & real & \\
\hline nb_wavel & intg & [100] \\
\hline nb_mesh & intgx3 & [20 2000 \\
\hline boundary_type & intgx3 & \\
\hline num_zero_optgen_mater & intg & [0] \\
\hline n__zero_optgen_mater & intgxn & \\
\hline npe_para & intg & [1] \\
\hline iauto_dt_step & intg & \\
\hline iauto_dt2_step & intg & \\
\hline
\end{tabular}
fdtd__model sets all the parameters for a FDTD (Finite-Difference Time Domain) simulation using APSYS device data. The FDTD algorithm uses a regular grid (Yee lattice) so there is a mapping of the device structure and the irregular finite element data to/from APSYS as shown in Fig. 22.10.


Figure 22.10: Schematic of the interface between the FDTD program and APSYS


Figure 22.11: Schematic of auto-finish criterion used in FDTD.

\section*{Parameters}
- export__var is the variable to export from FDTD calculation to be used by device simulator. For standard device simulation, only export__var=density is acceptable since the photon density \(S\) must be used in the optical generation and stimulated recombination terms. The other settings define flux values which are only useful for debugging purposes.
- export_grid defines the type of grid data used to export FDTD simulation results. Since the goal of FDTD simulations is usually to import back the photon density into APSYS, only the FEM should be used; the other setings are used for debugging purposes.
- export_data is the file name that the FDTD program outputs for use in the device simulator. This file name may be used in subsequent APSYS simulations in the import__fdtd__data statement.
- auto_finish directs the FDTD program to automatically judge if the FDTD simulation has run long enough to reach a steady state. This situation is detected using the parameters auto_dt, auto__dt2, auto_until_ratio and watch_pointk ( \(\mathrm{k}=1 . .9\) ).
To determine if the simulation should end, the FDTD simulation monitors the magnitude of the electric field at each watch point. The first monitoring period begins from \(t=0\) and ends at \(t=\) auto_dt. The maximum value of the field magnitude in the first monitoring period is defined as \(E_{\text {max }}^{1}\).
After the first period, a second monitoring will take place for \(\Delta t=\) auto_dt2, and we obtain \(E_{\text {max }}^{2}\). Successive monitoring periods with the same length continue until \(E_{\max }^{n}\) becomes smaller than \(E_{\max }^{1} \times\) auto_until_ratio. A schematic of this criterion is shown in Fig. 22.11.
Note that auto_finish can only be used in simulations where the fields can decay properly so if the FDTD simulation uses a single wavelength, then the time-domain source is a sine wave which goes on forever and auto_finish may not be used. PML boundaries are also recommended when using auto_finish as it prevents outgoing waves from traveling back into the simulation domain.
- hdf5out_field is a switch to turn on/off field output in the MEEP solver and is ignored in the Ax and CLFDTD solvers. The component of the field that is output is specified by hdf5out_comp parameter. The output is done at specific time intervals controlled by hdf5out_dt.
- hdf5tovtk is used to convert HDF5 files generated by the MEEP solver to the VTK format; file conversion will take place at the end of FDTD simulation. VTK files can be opened by several free programs such as MayaVi, ParaView
and VisIt. This parameter is ignored when using the Ax and CLFDTD solver since they natively use the VTK format and do not require conversion.
- parallel is used to enable parallel execution of the FDTD simulation; the number of parallel jobs is defined by the npe__para parameter. This parameter is ignored when interface \(=A x\).
Note that unlike the multi-threaded sparse solver used in the main APSYS simulation, parallel FDTD relies on the Message Passing Interface (MPI). The Intel \({ }^{\circledR}\) MPI run-time libraries should be installed on the end-user's computer to add the necessary DLL support and the mpiexec launcher: only the free run-time is needed for end-users, not the paid developer version.

As mpiexec also requires user credentials to launch the parallel FDTD jobs, default user credentials should also be added to the system prior to running the .sol file; otherwise, the mpiexec launcher will ask for user credentials before starting the FDTD simulation. Defining default credentials allows the software to run unattended from batch files and also avoids incompatibilities with the display-only view of the output that is used in the SimuAPSYS GUI.

The default user credentials may be encrypted into the Windows registry using the following syntax, using either a command shell or from "Run" input box in the Windows start menu:
```

mpiexec -register

```

The above step only needs to be run a single time for each computer and should only be re-run as needed to replace these user credentials; the -remove option may be also used to delete existing credentials from the registry. We also wish to warn users that the wmpiconfig program from the start menu WILL NOT store the user credentials needed for mpiexec: it instead stores the credentials for the other MPI launcher (wmpiexec) which is not used by APSYS.

Note that MPI-based acceleration is currently incompatible with GPU acceleration.
- subpixel_averaging is used to turn on/off the sub-pixel averaging feature of MEEP. This parameter is ignored in the Ax and CLFDTD solvers.
- wavel_range is the wavelength range the FDTD simulation should cover. It is related to the FDTD time step by the Nyquist sampling criterion. This range should be big enough to cover the entire spectrum defined in the light__power statement.
- PML_thickness is the thickness of the PML layer inside the air buffer. This should be thick enough to absorb electromagnetic waves completely and so
should be at least equal to the maximum value of wavel_range. The axes on which the PML boundary are defined by the boundary_type parameter.

Note that this parameter is ignored when interface \(=A x\), since the interface program for the Acceleware FDTD solver automatically applies a five layer CPML model.
- fixed_time should be specified in case of auto__finish=no, in which case the FDTD simulation runs for a predetermined number of time steps.
The units of fixed_time depend on the solver being used. In MEEP, internal scaling of variables generates a simulation time reference unit of 3.3333333 fs ; this is based on a reference unit length of \(1 \mu m\) and is a distinct value from the time step \(\Delta t\). As a result, the total simulation time for the FDTD simulation is fixed_time \(\times 3.3333333 \times 10^{-15}\) seconds.

In the Ax and CLFDTD solvers, fixed__time acts a multiplier to the \(\Delta t\) time step. This value is determined automatically by the cell size and refractive index and is recorded in the simulation \(\log\) file.
- buffer_x, buffer_y, buffer_z are used to denote empty space added to negative (first value) and positive (second value) sides of the simulated device in the \(\mathrm{x}, \mathrm{y}\) and z directions, respectively (e.g. left/right, bottom/top, etc...). This sets the effective size of the FDTD simulation so the user must be careful is choosing a value that is not too big to save on computation time. However, the PML layer is also contained in this empty space so the buffer must be large enough to encompass both the PML layer and sufficient empty space to position monitor points and other reference positions where the outside field is needed.
- auto_dt and auto_dt2 are the lengths of the averaging periods used in the auto_finish criterion in MEEP and use the same time reference as the fixed_time setting. They are shown in Fig. 22.11 as \(\Delta t_{1}\) and \(\Delta t_{2}\), respectively.

For the Acceleware and Crosslight FDTD interfaces, please use iauto__dt__step and iauto_dt2_step instead. These values are integer multipliers of the \(\Delta t\) time step which are used to define \(\Delta t_{1}\) and \(\Delta t_{2}\).
- auto__until_ratio is a ratio used to judge if the electric field has decayed to a sufficiently small value that the FDTD simulation can be terminated. For example, when auto_until_ratio \(=0.01\), the simulation will finish if the magnitude of electric field is 100 times smaller than that of first averaging period.
- watch_point1-9 are the coordinates of "watch points" that are used to monitor the magnitude of electric field for auto finish feature. The coordinates of these watch points use the same reference as the original FEM mesh so that
watch points set in the air buffer outside the device may have values which go out of bounds.
- cell_size is the size of the FDTD simulation cell. The FDTD space(=APSYS device + empty buffer space) is discretized by a large number of rectangular cuboid cells (Yee lattice); this array defines the edge length of each cell along the \(\mathrm{x}, \mathrm{y}\) and z directions. Once the cell size is set, the number of grid points is determined based on the total size of the FDTD simulation space: if this space cannot be filled by an integer multiple of cells, the simulator will adjust the buffer size to fit.

Note that instead of setting the cell size directly fdtd_meshdensity (in \(1 / \mu m\) ) may be used to sample the original APSYS data and set the cell size; this setting does not use the total size of the FDTD space to set the cell size. The total number of grid points on each axis can also be set manually using nb__mesh, which has the effect of setting the cell size (=total size/nb_mesh); users are reminded that some of these points will be used for the air buffer around the device.
All three methods of defining the FDTD grid size are mutually incompatible: users should only define one of the above parameters in the .sol file.
- interface is used to switch between the different FDTD solvers available. In many cases, Crosslight only provides an interface to an existing FDTD solver library which may be licensed under different terms than APSYS. The options currently available are:
- MEEP: A free FDTD library that supports MPI acceleration and which is licensed under the GPL. The source code of the interface program between APSYS and the MEEP FDTD solver library available on request to comply with GPL requirements.
http://ab-initio.mit.edu/wiki/index.php/Meep
- Ax: A proprietary FDTD solver library from Acceleware \({ }^{\circledR}\). The library must be purchased separately from the vendor, with Crosslight providing an interface program; supports GPU hardware acceleration.
http://www.acceleware.com/
- CLFDTD: Crosslight's own FDTD implementation, new to the 2012 version of the software. Supports both MPI and GPU acceleration.

Please contact your local Crosslight sales agent to learn more about the difference between the various solvers and the optional modules required to access the various FDTD interfaces available through this statement.
- adjust_xdim,adjust__ydim and adjust__zdim are used to adjust the dimension of \(\mathrm{X}, \mathrm{Y}\) or Z coordinates of the device structure. Such adjustment is
useful when the APSYS mesh is imported from another source (e.g. CSUPREM) and there are tiny errors in the mesh.
- courant_factor specifies the Courant factor of the FDTD simulation. The default value is 0.5 .
- nb__wavel is the number of wavelength points for data export. In FDTD simulation, the wavelength range wavel_range is converted to frequency range, then divided by nb_wavel. Therefore, data points are distributed uniformly in frequency space.
- boundary_type represents boundary type along each axis. The only supported boundaries for FDTD are 0 (PML) and 1 (periodic).
PML boundaries are used to represent an outgoing wave propagating towards infinity. This Perfectly Matched Layer absorbs the outgoing wave so that it reaches zero on the edges of the simulation domain but unlike a traditional absorbing region, there is no refractive index step which would cause a reflection of the wave back into the simulation domain.
Periodic boundaries are used to sample infinite periodic variations of the dielectric constant; the outgoing wave on one side becomes an incoming wave on the opposite side.
- num_zero_optgen_mater is a number of the materials of whose optical carrier generation rate is forced to zero. The optical energy density in those materials is also forced to zero. The actual list of material numbers where this setting is active is given by \(\mathbf{n} \_z e r o \quad\) _optgen_mater parameter.
This option may prove necessary when defining dispersion curves with fdtd__dispersion. A poor quality fit may introduce an imaginary component to the refractive index which would be unphysical. Note that by default, FDTD simulations use only a single dielectric constant/refractive index so this option is not usually required.
- use_gpu turns on GPU acceleration of FDTD solvers that support this feature. This normally requires Nvidia \({ }^{\circledR}\) cards as the solvers are written using the CUDA \({ }^{\text {TM }}\) library. This setting is incompatible with MPI-based acceleration.

\section*{Application Notes}

FDTD is an algorithm which parallelizes very naturally so using MPI or GPU accelerations is strongly recommended. However, the choice of the acceleration method depends on the situation.
GPUs are known for their large number of cores compared to CPUs, which more than make up for the slower speed of the individual cores. The downside is that GPU cards
often have a limited amount of on-board memory compared to the system memory; this introduces performance penalties (swapping between system RAM and GPU RAM) if the FDTD grid cannot be stored entirely within GPU memory. Multiple GPU cards may be used to partially offset this limitation but most workstations cases and motherboards do not have sufficient space to expand and meet the needs of larger 3D problems.
MPI parallelism tends to be slower the GPU for smaller problems due to the limited number of processing cores than can be brought to bear on the problem. However, regular CPUs can access the entire RAM on the system which makes it more suitable for larger problems which cannot fit into the GPU memory. MPI technology is also a base building block for modern supercomputer clusters which allows the FDTD workload to be split between several computers, thereby expanding the available memory and the number of processing cores.

Users are therefore advised to estimate the amount of memory required for their FDTD problem and pick the best parallel solution. Since each grid point stores 6 variables ( \(E\) and \(H\) field components) in IEEE754 double precision, the memory usage can be approximated based on the total grid size:
\[
N_{x} \times N_{y} \times N_{z} * 48 \text { bytes }
\]

Total computation time can be harder to estimate since it depends on the number of time step as well as the number of grid points. The total number of operations can be approximated by:
\[
N_{o p}=N_{x} \times N_{y} \times N_{z} \times \frac{\text { fixed_time }}{\Delta t}
\]

Comparing the run time and number of operations of a small FDTD simulation to the number of operations in a larger problem can help estimate the run time of this larger problem.

\section*{Examples}

The fdtd__model statement below is an example for 2-dimensional FDTD simulation using the MEEP interface. A periodic boundary condition is applied only to the x -axis.
```

fdtd_model export_var = density wavel_range = [0.3,2.5] \&\&
PML_thickness = 1.0 boundary_type = [1,0,0] \&\&
buffer_y = [2.0,2.0] nb_wavel = 20 nb_mesh = [50,300,0] \&\&
auto_finish = yes auto_dt = 40 auto_dt2 = 5 \&\&

```
watch_point1 \(=[2.5,3.0,0]\) auto_until_ratio=0.1 \&\& hdf5out_field=yes hdf5out_comp=Ex hdf5out_dt=5.0 \&\& parallel=yes npe_para=4

\subsection*{22.309 fdtd_modify}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline efields_monitor_file_prefix & char & \\
\hline remove_FEM & char & [yes],no \\
\hline iauto_dt_step_emptyspace & int & \\
\hline iauto_dt2_step_emptyspace & int & \\
\hline auto_dt_emptyspace & real & \\
\hline auto_dt2_emptyspace & real & \\
\hline fixed_time_emptyspace & real & \\
\hline
\end{tabular}

The command fdtd_modify provides a way to modify some FDTD control parameters.

\section*{Parameters}
- efields_monitor_file__prefix modifies the prefix string of E-field monitor file.
- remove_FEM is a switch to direct simulator to disable FFT of E-fields on APSYS FEM mesh points. This switch is useful to reduce computation time only when user wants to obtain results other than relative energy intensity distribution, e.g. resonance frequency analysis.
- iauto_dt__step_emptyspace will override iauto__dt__step for empty space FDTD simulation (for Acceleware FDTD only)
- iauto_dt2_step_emptyspace will override iauto__dt2_step for empty space FDTD simulation (for Acceleware FDTD only)
- auto__dt_emptyspace will override auto_dt for empty space FDTD simulation (for MEEP only)
- auto__dt2_emptyspace will override auto__dt2 for empty space FDTD simulation (for MEEP only)
- fixed__time__emptyspace will override fixed__time for empty space FDTD simulation.

\section*{Examples}
fdtd_modify fixed_time_emptyspace=100.0

Example above modifies fixed_time parameter of fdtd__model only for empty space FDTD simulation. It is useful to reduce computation time of empty space simulation, since convergence and propagation in empty space is much faster than that in device space.

\subsection*{22.310 fdtd_monitor_box}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline data_file & char & [void] \\
\hline label & char & [void] \\
\hline monitor_space & char & [vacuum] device \\
\hline center & realx3 & (um) \\
\hline size & realx3 & (um) \\
\hline box_point_ll & realx2 & (um) \\
\hline box_point_ur & realx2 & (um) \\
\hline
\end{tabular}
fdtd__monitor__box is used to calculate radiation power of current source by integrating the flux on each side of a monitoring box. This command is useful when normalizing FFP by source power.

\section*{Parameters}
- data_file is the name of a file where the integrated source power will be stored.
- label is used to assign a label to the monitoring box. This label can be refered by the boxlabel__normalize parameter of the fdtd_far_field command.
- monitor_space specifies which FDTD simulation, i.e. vacuum or device, is to be used as the source power.
- center and size are the center position and the size of the monitoring box.
- box__point_ll and box__point__ur are the lower-left and upper-right corners (in APSYS coordinates) of the monitoring box.

Note that center,size and box_point_ll,box_point__ur are mutually exclusive.

\section*{Examples}
fdtd_monitor_box \&\&
center \(=(3.256 .050 .0)\) size \(=(0.20 .20 .0)\) \&\&
label=Box1

\subsection*{22.311 fdtd_output_structure}
\begin{tabular}{||l|l|ll||}
\hline parameter & data type & values [defaults] & \\
\hline \hline variable & char & \begin{tabular}{l} 
material_num, \\
imag_epsilon,
\end{tabular} & \begin{tabular}{l} 
real_epsilon, \\
real_index, \\
imag_index
\end{tabular} \\
\hline data_file & char & & \\
\hline wavelength & real & 10.0 \\
\hline resolution & realx3 & \((1.01 .01 .0)\) \\
\hline
\end{tabular}

The command fdtd__output_data is used to output structural data from the FDTD simulation to a file in the VTK format. This command only works for CLFDTD.

\section*{Parameters}
- variable controls the structural data being saved.
- data_file is the name of the VTK file.
- wavelength is used to evaluate wavelength-dependent variables before export.
- resolution specifies the resolution of the structural data on each axis. This defines a subset of the FDTD grid points used in the simulation so this parameter scales between 0.0 and 1.0: for example, resolution=(1.0 1.0 1.0 \()\) means that all the structural data on the FDTD grid points will be output to the data file.

\section*{Examples}
```

fdtd_output_structure \&\&
variable=material_num \&\&
resolution=(1.0 1.0 1.0) \&\&
data_file=materID

```

\subsection*{22.312 fdtd_plane_refl}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline center & realx3 & (um) \\
\hline size & realx3 & (um) \\
\hline
\end{tabular}

The command fdtd__plane_refl defines a plane which monitors the flux of electromagnetic waves reflected back to this plane. Results are be stored in a data file as a reflection spectrum.
Currently, this command only works for MEEP.

\section*{Parameters}
- data_file is the name of the output data file. If not specified, a file name "reflection.dat" will be used as default.
- center is the center position of the monitoring plane in APSYS coordinates. It may take negative values to mean being placed below the device (for ydirection): the FDTD simulation space must be large enough to accommodate this.
- size is the size of monitoring plane.

\section*{Examples}
fdtd_plane_refl center=(2.5 5.5 0.0) size=(5.0 0.0 0.0)

\subsection*{22.313 fdtd_plane_trans}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline center & realx3 & (um) \\
\hline size & realx3 & (um) \\
\hline
\end{tabular}

The command fdtd__plane__trans defines a plane which monitors the flux of electromagnetic waves transmitted through this plane. Result are be stored in a data file as a transmission spectrum.

Currently, this command only works for MEEP.

\section*{Parameters}
- data_file is the name of the output data file. If not specified, a file name "transmission.dat" will be used as default.
- center is the center position of the monitoring plane in APSYS coordinates. It may take negative values to mean being placed below the device (for ydirection): the FDTD simulation space must be large enough to accommodate this.
- size is the size of monitoring plane.

\section*{Examples}
fdtd_plane_trans center=(2.5-0.5 0.0) size=(5.0 0.0 0.0)

\subsection*{22.314 fdtd_push_job}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline job_id & char & \\
\hline
\end{tabular}

The command fdtd_push_job is used to schedule an immediate call to the FDTD solver. Multiple calls to the FDTD solver can be used in the same .sol file by issuing this command to separate the parameters for each simulation.

\section*{Parameters}
- job_id is the label of the FDTD job.

\section*{Examples}
\$ FDTD simulation parameters for job \#1 go here
\$ .....
fdtd_push_job job_id=job1
\$ FDTD simulation parameters for job \#2 go here
\$ .....
fdtd_push_job job_id=job2

\subsection*{22.315 fdtd_replace_FDTDgrid}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline file & char & \\
\hline
\end{tabular}

The command fdtd_replace__FDTDgrid will replace the FDTD grid data (which is normally imported from APSYS) by the user-specified data file. Number of grid points and data ordering should be consistent with other FDTD settings.

\section*{Parameters}
- data_file is the name of a user-supplied data file.

\section*{Examples}
fdtd_replace_FDTDgrid file=MyGridData.txt

\subsection*{22.316 fdtd_replace_mater}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline op1 & intgx2 & \\
\hline op2 & intgx2 & \\
\hline op3 & intgx2 & \\
\hline op4 & intgx2 & \\
\hline op5 & intgx2 & \\
\hline op6 & intgx2 & \\
\hline op7 & intgx2 & \\
\hline op8 & intgx2 & \\
\hline op9 & intgx2 & \\
\hline x_range & realx2 & \\
\hline y_range & realx2 & \\
\hline z_range & realx2 & \\
\hline
\end{tabular}

The command fdtd_replace__mater will substitute one material number for another within the specified spatial range.

\section*{Parameters}
- op1-9 are used to specify replace operation.
- \(x \_\)range specifies spacial range along x -axis.
- y__range specifies spacial range along y-axis.
- \(\mathbf{z} \_\)range specifies spacial range along z -axis.

\section*{Examples}
fdtd_replace_mater command shown below will replace material number 2 with 1 in y-coordinate ranging from 0.0 to 2.0 .
```

fdtd_replace_mater op1=(2 1) y_range=(0.0 2.0)

```

\subsection*{22.317 fdtd_source}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline component & char & [void],Ex,Ey,_Ez,Hx,Hy,Hz \\
\hline auto__positioning & char & [no] yes \\
\hline auto_side & char & [above] below \\
\hline source_type & char & [dipole],planewave,_GaussianBeam \\
\hline polarization & char & [void] TM, TE \\
\hline wavel & real & \\
\hline spectral_width & real & \\
\hline amplitude & realx2 & \begin{tabular}{l}
{\([1.0 ~ 0.0] ~(u n i t l e s s ~ f o r ~ M E E P, ~ A / m ² ~\)} \\
for the others)
\end{tabular} \\
\hline center & realx3 & (um) \\
\hline size & realx3 & (um) \\
\hline auto_rel_pos & real & {\([0.5]\)} \\
\hline limit_x & realx2 & (um) \\
\hline limit_y & realx2 & (um) \\
\hline limit_z & realx2 & (um) \\
\hline dir_planewave & realx3 & (um) \\
\hline theta_planewave & real & (deg.) \\
\hline phi_planewave & real & (deg.) \\
\hline beam_waist & real & (um) \\
\hline beam_size & real & (um) \\
\hline theta_beam & real & (deg) \\
\hline phi_beam & real & (deg) \\
\hline beam__points & int & \\
\hline
\end{tabular}

The command fdtd_source defines current sources for FDTD simulations. The FDTD program decides reasonable pulse width/duration based on the spectrum width, which is specified by the wavel__range parameter of the fdtd__model statement.

Note that multiple sources add up coherently.

\section*{Parameters}
- component is a component of the current source. Electromagnetic fields induced by this current source depend on the device geometry.
- auto_positioning turns on/off auto-positioning feature of source plane. If auto_positioning=yes, simulator will put the source plane between device
and the PML boundary.
- auto__side specifies the side of auto-positioning location. If auto__side=above(below), source plane will be located above(below) the device. This parameter is effective only when auto_positioning=yes.
- source_type is the type of current source.
- polarization will set the polarization direction of the plane wave model automatically. This parameter is effective only when auto__positioning=yes.
- wavel is the center wavelength of FDTD current source. If not specified, center wavelength is automatically calculated from the wavel_range parameter of fdtd__model.
- amplitude is a complex number specifying amplitude of current source pulse. It is advised that this is not altered except by FDTD experts.
- center is the center position of current the source in the original FEM coordinates used by APSYS. It may take negative values to mean being placed below the device (for y-direction). The FDTD simulation space will need to be large enough to encompass the source region.
- size is the size of current source. User can set various type of current source (e.g. point, linear shape, planar shape and 3D-box source) by changing the size parameter. To model a plane wave, we can flatten a 3D box source by setting one of its dimensions to zero.
- auto_rel_pos is used to specify the relative position of source plane. For example, auto_rel_pos= 0.5 will put source plane at middle position between device and PML. auto_rel_pos=0.0 and 1.0 correspond to boundary of device and PML, respectively.
- limit_x is useful when user wants to restrict the x -range of source plane.
- limit_y is useful when user wants to restrict the y-range of source plane.
- limit_z is useful when user wants to restrict the z-range of source plane.
- dir_planewave is a direction vector(k-vector) of for the plane wave model. User SHOULD NOT specify theta_planewave nor phi__planewave along with this parameter.
- theta_planewave is an angle \(\theta\), i.e. angle measured from \(z\)-axis. User SHOULD NOT specify dir_planewave along with this parameter.
- phi__planewave is an angle \(\phi\), i.e. angle measured from x-axis within xyplane. User SHOULD NOT specify dir_planewave along with this parameter.
- beam_waist is the waist size of a Gaussian beam. Amplitude and intensity of Gaussian beam drop to \(1 / e\) and \(\frac{1}{e}\) at beam_waist, respectively.
- beam__size is the size of Gaussian beam source.
- theta_beam is the angle \(\theta\), which corresponds to the angle between the Gaussian source plane and z -axis.
- phi_beam is the angle \(\phi\), which corresponds to the angle between the Gaussian source plane and x -axis.
- beam_points is the number of source points distributed along the Gaussian source plane.

\section*{Examples}
```

fdtd_source component=Ez \&\&
center=(5.0 2.0 0.0) size = (10.0 0.0 0.0)

```

The above is a linear current source of width \(10 \mu m\) with center located at \(\mathrm{x}=5\), \(\mathrm{y}=2\).

\subsection*{22.318 fit_gain_wavel}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline fit_data_file & char & {\([\) fitgain.txt] } \\
\hline fit_density & real & {\([2 . \mathrm{e} 24]\left(\mathrm{m}^{-3}\right)\)} \\
\hline fit_density_p & real & {\([-9999]\).} \\
\hline wavel_range & realx2 & {\([-9999 .-9999].(\mu \mathrm{m})\)} \\
\hline av_index & real & {\([3.3]\)} \\
\hline density_vary & real & {\([0.2 \mathrm{e} 24]\left(\mathrm{m}^{-3}\right)\)} \\
\hline data_point & intg & {\([100]\)} \\
\hline
\end{tabular}

This command is used in the .gain preview and fits a series of gain curves to the analytical model shown in Sec. 22.65.

\section*{Parameters}
- fit__data_file is the output data file for the fitted parameters.
- fit_density is the electron density at which the fit is made.
- fit_density__p is the hole density at which the fit is made. By default, this is the same as the electron density.
- wavel_range is the wavelength range of the fit.
- av__index is an average index value used in the gain calculation.
- density__vary is the change in carrier density used evaluate derivatives in the analytical model.
- data__point is the number of wavelength points used in the fit.

\section*{Examples}
fit_gain_wavel fit_density=1.5e24

\subsection*{22.319 force_last_barrier_offset}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline all_complex & char & {\([\) yes \(]\), no } \\
\hline value & real & {\([0.0](\mathrm{eV})\)} \\
\hline complex & intg & \\
\hline
\end{tabular}
force_last__barrier__offset forces the conduction band in the last region of a complex MQW to be at a specific position, relative to the first region. This overrides the normal band alignment rules defined in Sec. 10.1; it also instructs the software to use other aspects of the quantum well model for that region, such as the carrier masses.

This statement is only used for the simplified complex library system (c.f. Sec. 3.5.1).

\section*{Parameters}
- all_complex applies the same correction term to all complex MQWs in the simulation. It this is set to no, complex must be set to identify the MQW region affected by this statement.
- value defines the offset of the last barrier, relative to the leftmost barrier.

\subsection*{22.320 fourier_power}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline data_file & char & {\([\) void \(]\)} \\
\hline input_var & char & \\
\hline output_var & char & \\
\hline facet & char & {\([\) void \(]\) front/back } \\
\hline log_freq & char & {\([\) no] } \\
\hline freq_start & real & {\([3\).\(] (decade)\)} \\
\hline freq_end & real & {\([10\).\(] (decade)\)} \\
\hline scale_lit & real & {\([2]\).} \\
\hline scale_curr & real & {\([2]\).} \\
\hline scale_horizontal & real & {\([1]\).} \\
\hline scale_vertical & real & {\([1]\).} \\
\hline mode_index & intg & {\([1]\)} \\
\hline
\end{tabular}

The statement fourier_power is used in the post-processing step to obtain the system frequency response function from transient simulation data. The program takes the time-dependent input and output variables, makes a Fourier transform of each and divides their magnitude to obtain the response function.
For example, given \(\operatorname{Vin}(\mathrm{t})\) and \(\operatorname{Vout}(\mathrm{t})\) and their respective Fourier transforms, \(U_{\text {in }}\) and \(U_{\text {out }}\), the program computes \(20 \log _{10}\left|\frac{U_{\text {out }}}{U_{\text {in }}}\right|\).

\section*{Parameters}
- data_file is the data file name to which ASCII is exported.
- input__var and output__var are the input and output variable names, respectively. Any scan variable defined in Appd. G. 1 may be used.
- facet, if defined, indicates which facet power is plotted.
- log_freq indicates whether a logarithmic frequency scale is used in the plot.
- freq_start and freq_end are the starting and ending point of the frequency axis for the Fourier analysis.
- scale_lit scales the laser light output for L-I plot. This is useful when scaling to take into account device symmetry.
- scale_curr scales the current in L-I plot in a laser simulation. This is useful when scaling to take into account device symmetry.
- scale_horizontal scales the horizontal axis for non-L-I plots.
- scale_vertical scales the vertical axis for non-L-I plots.
- mode__index is lateral mode number.

\section*{Examples}
fourier_power input_var=current_1 output_var=laser_power \&\&
freq_start=6. freq_end=10.

\subsection*{22.321 flux_plot}
flux_plot is used to plot the light energy flux density distribution within the raytracing device. This statement is used at the post-processing stage after ray-tracing program is run.

This statement has no parameters.

\subsection*{22.322 freq_control}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_points & intg & {\([601]\)} \\
\hline
\end{tabular}

The statement freq_control is used in PICS3D to define the number of points in certain curves such as the longitudinal mode spectrum, the ASE and the noise analysis (e.g. RIN).

\section*{Parameters}
- data_points is the number of points in spectrum

\subsection*{22.323 front_index}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline real_index & real & {\([1]\).} \\
\hline imag_index & real & {\([0]\).} \\
\hline
\end{tabular}
front_index is an outside index value used as a boundary condition for optical pumping. The default value assumes air/vacuum. This command has no practical effect if front_reflection is used.

See the theory section in front_reflection for more details.

\subsection*{22.324 front_reflection}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline spectrum_file & char & void \\
\hline power_transmission & real & {\([1]\).} \\
\hline reflection_phase & real & {\([0\).\(] (degrees)\)} \\
\hline
\end{tabular}
front_reflection is used to specify the reflection of light power at the front of a semiconductor device. It should not be used if the coating layers are defined with optic_coating or are explicitly included in the layer file.

\section*{Theory}

Optical pumping defined with light__power defines a series of cut lines across the mesh defined for the device in order to get the local index profile. For each of these 1D cuts, a plane wave transfer matrix method is used to calculate the internal reflections and the light distribution in the device. Regions with a similar index are grouped together to save computation time and interfaces are defined when there is a significant change in index values.

The very first interface along the cut lines is defined by front reflection. If this is not defined, the index value from front_index will be used as the outside boundary condition for a Fresnel reflection. If that statement is not used either, the outside index is assumed to be air \(\left(n_{r}=1\right)\). Coating layers defined with optic__coating will be included between this outside index and the first mesh point of the cut line.

Conversely, the last interface along the cut line is defined by back_reflection. If this is not defined, the value of back__index will be used as the outside boundary condition for a Fresnel reflection. If that statement is not used either, the outside index is assumed to be the same as that of the last layer so that no reflection takes place at the interface.

\section*{Parameters}
- spectrum_file reads the power transmission coefficient from an input file. The data must be arranged in columns with the first column being the wavelength in \(\mu m\) and the second the transmission coefficient.
- power_transmission is the power transmission coefficient.
- reflection_phase is the phase of the field reflection coefficient. The field transmission coefficient is always assumed to be real.

\section*{Examples}
front_reflection power_tranmission=0.99

The above statement is used to model an effective broadband AR coating. It should not be combined with any actual coating definitions.

\subsection*{22.325 full_ionization}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & \\
\hline dopant & char & \begin{tabular}{l}
{\([\) void], donor, acceptor, donorj } \\
\((\mathrm{j}=1 . .9)\), acceptorj \((\mathrm{j}=1 . .9)\)
\end{tabular} \\
\hline mater & intg & \\
\hline
\end{tabular}

The statement full_ionization may be used to force all shallow dopants of a material to be fully ionized. By default, the incomplete ionization model based on Fermi statistics is used in all materials.

\section*{Parmaters}
- mater is the material where the dopants are to be fully ionized. If a label has previously been defined for this material, mater_label may be used instead. As of the 2016 version of the software, this parameter is now optional: if no material is specified, then this command applies to all materials in the device.
- dopant may be used to restrict the effects of the command to one specific kind of dopant. If this parameter is omitted, all dopants are fully ionized; we may otherwise study the effects of ionizing either the donors or acceptors. If multiple species of dopants are used in the simulation, a number may be appended to the dopant name to identify the species which we want to fully ionize; all other dopants present in the simulation will be unaffected.

\subsection*{22.326 gain_density}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline include_data & char & \\
\hline conc_log_scale & char & [no], yes \\
\hline wavel_range & realx2 & \((\mu m)\) \\
\hline conc_range & realx2 & {\([1 . \mathrm{e} 231 . \mathrm{e} 25]\left(\mathrm{m}^{-3}\right)\)} \\
\hline pn_ratio & real & {\([1]\)} \\
\hline av_index & real & {\([3.3]\)} \\
\hline temper_range & realx2 & {\([300.400].(\mathrm{K})\)} \\
\hline data_point & intg & \\
\hline temper_points & intg & {[]} \\
\hline
\end{tabular}
gain_density plots the peak material gain versus carrier density in the active region. This statement can be used in the gain preview module.

\section*{Parameters}
- data_file specifies a file name used to save a copy of the plot data.
- include_data includes data files from other gain calculations on the plot for comparison purposes.
- wavel_range is the wavelength range used to search for the gain peak.
- conc_range is the electron concentration range in the well used for the plot.
- pn_ratio is the ratio of hole over electron concentrations.

Note that this ratio is set to an arbitrary number in the gain preview in order to generate a 1-dimensional plot or a family of spectral curves which depend on a single parameter. In the main solver, this ratio is normally unused and the gain calculations automatically make use of the local Fermi levels for both electrons and holes.
- av__index is the estimated average refractive index.
- data_point is the number of data points in the curve.
- conc__log_scale determines if the carrier density points are spaced linearly or on a logarithmic scale.
- temper_points, if used, instructs the software to plot a family of curves at various temperatures. This parameter controls how many temperature points are used; these points will cover a temperature range defined in temper_range.

\section*{Examples}
```

gain_density wavel_range=(1.0 1.4) \&\&
conc_range=(5.e23 5.e24) pn_ratio=1 data_point=20

```

\subsection*{22.327 gain__module}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline use_sheet_density & char & {\([\mathrm{no}]\)} \\
\hline tilt_imref & char & {\([\mathrm{no}]\)} \\
\hline apply_e_field & real & {\([0]\).} \\
\hline complex_number & intg & {\([1]\).} \\
\hline complex_well_number & intg & {\([1]\).} \\
\hline
\end{tabular}
gain__module is used to modify some conditions in a .gain preview simulation.

\section*{Parameters}
- use__sheet_density instructs the program to use sheet density in .gain preview simulation. See also band__distance which defines its own sheet density setting.
- tilt_imref indicates whether the IMREF (inverse of the Fermi level) is to be tilted in accordance with the applied field.
- apply_e_field is the applied electrical field in V/m.
- complex_number describes which active region or complex MQW is used for the material gain calculations in the gain preview. By default, gain uses the first active region defined in the input or in the included .mater file.

We note that the gain preview only shows the material gain for a single quantum-confined region. Gain curves are calculated using the energy separation and wavefunction overlap of quantum-confined states so even in the case of a complex MQW, all wells from that complex are included in the material gain curve.
However, in a full device a MQW region may consist of several simple/complex wells, not all of which are coupled quantum-mechanically for the purposes of solving the Schrödinger equation. The material gain preview may thus differ from the modal gain in a number of significant ways.
To view the total modal gain spectrum, it is therefore recommended to run the full simulation in the .sol file and use gain_spectrum in the post-processing stage.
- complex_well_number describes which well inside a quantum-confined MQW region is used as the reference for the carrier density vs. Fermi level relationship. As of v.2016, this is the well with the smallest bandgap by default; earlier versions of the software defaulted to the first well inside the complex.
Why is this parameter necessary ? Basic laser theory tells us that the integral used for the material gain depends on the Fermi level separation. In the full .sol simulation, this separation is obtained at each mesh point using the transport models but for .gain, no transport is solved: this value is instead obtained by defining an input carrier density.
Since no transport is solved in .gain, we assume a single flat Fermi level for the whole MQW but due to the band profile, even this simple model may lead to different carrier densities in each well. A reference well number is thus needed to consistently invert the carrier density vs. Fermi level relationship: we do not need to know the density in each well to define the Fermi level separation, we only need to know one.

\section*{Examples}
gain_module apply_e_field=1.e6

\subsection*{22.328 gain_spectrum}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline variable & char & [gain] \\
\hline units & char & [void] \\
\hline user_xlabel & char & [void] \\
\hline user_ylabel & char & [void] \\
\hline scale & real & {\([1]\).} \\
\hline wavelength_range & realx2 & (um) \\
\hline asespec_latmd & intg & {\([1]\)} \\
\hline
\end{tabular}
gain_spectrum is a post-processing statement used to plot the net modal gain spectrum at different current/voltage bias points corresponding to data sets previously defined in the \(\mathbf{x y}\) _data parameter of get_data.

Since this original use, the command has also been re-purposed to plot additional spectral properties. In PICS3D, this also include variables from the coupled roundtrip gain method (RTG) and the older analytical AC model described in Sec. 18.6.

\section*{Parameters}
- data_file is a file name that can be used to export the curve spectrum.
- variable is the variable being plotted:
- gain is the combined net TE/TM gain.
- gain_te is the net TE gain.
- gain_tm is the net TM gain.
- sp.rate is the combined TE/TM spontaneous emission (maximum).
- sp.rate_te is the TE spontaneous emission (maximum).
- sp.rate_tm is the TM spontaneous emission (maximum).
- index_change is the index change away from equilibrium.
- total_sp.rate is the combined TE/TM spontaneous emission (total).
- total_sp.rate_te is the TE spontaneous emission (total).
- total_sp.rate_tm is the TM spontaneous emission (total).
- cavity_rtg_amplitude is the amplitude of the round-trip gain. It is similar to the round-trip gain preview data generated by the rtgain__phase statement except that the photon coupling and imaginary frequency/spontaneous emission contribution is included. (PICS3D)
- cavity_rtg_phase; as above but displays the phase information instead of the amplitude. (PICS3D)
- rtg_spectrum is the power spectrum (as defined in Appendix E) in the PICS3D round-trip gain method. See the appendix for application notes on the definition on side mode suppression ratio.
- rtg_spectrum_left is similar to rtg_spectrum but is weighed by the field profile to give the power spectrum on the left side of the cavity.
- rtg_spectrum_right is similar to rtg_spectrum but is weighed by the field profile to give the power spectrum on the right side of the cavity.
- rtg_asespec is the amplified spontaneous emission in the the PICS3D round-trip gain method.
- rtg_asespec_left is the amplified spontaneous emission on the left side of the cavity in the PICS3D round-trip gain method.
- rtg_asespec_left_latmd is the amplified spontaneous emission on the left side of the cavity in the PICS3D round-trip gain method for a given lateral mode.
- rtg_asespec_right is the amplified spontaneous emission on the right side of the cavity in the PICS3D round-trip gain method.
- rtg_asespec_right_latmd is the amplified spontaneous emission on the right side of the cavity in the PICS3D round-trip gain method for a given lateral mode.
- rtg_signal_asespec_left is the combined amplified spontaneous emission + signal on the left side of the cavity in the PICS3D round-trip gain method.
- rtg_signal_asespec_right is the combined amplified spontaneous emission + signal on the right side of the cavity in the PICS3D round-trip gain method.
- noise_rin is the relative intensity noise derived from the analytical AC model in PICS3D.
- noise fm is the frequency noise derived from the analytical AC model in PICS3D.
- analytic_am and analytic_amphase are the magnitude and phase (respectively) of the analytical AM response (PICS3D).
- analytic_fm and analytic_fmphase are the magnitude and phase (respectively) of the analytical FM response (PICS3D).

When plotting a "maximum" value, the software will locate the position with the maximum light emission in each quantum well ("bright spot"). The spectrum is then calculated for each bright spot giving the emission per mesh-local unit area or volume around that spot. The spectrum is then averaged over all quantum wells or active regions before plotting.
For the "total" method, the shape of the spectrum is the same as that of the "maximum" method above. The only difference is that the spectrum is normalized according to the integrated radiative recombination rate which appears in the drift-diffusion equation. Since the rate is integrated over the whole device, the units of such a spectrum should be the emission per total simulation area/volume.
- units may be used to change the way the spectrum data is presented (to dBm/Åunits)
- user_xlabel and user_ylabel allow the user to change the labeling of the plot axes.
- scale can be used to artificially scale the spectrum data.
- wavelength_range is the plotting range for the spectrum data.
- asespec_latmd is the lateral mode number used when plotting rtg_asespec_left_latmd and rtg_asespec_right_latmd.

\section*{Examples}
```

gain_spectrum variable=gain

```

\subsection*{22.329 gain__spon}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline include_data & char & \\
\hline wavel_range & realx2 & \((\mu m)\) \\
\hline conc_range & realx2 & {\([1 . \mathrm{e} 231 . \mathrm{e} 24]\left(\mathrm{m}^{-3}\right)\)} \\
\hline pn_ratio & real & {\([1]\)} \\
\hline av_index & real & {\([3.3]\)} \\
\hline data_point & intg & \\
\hline
\end{tabular}
gain_spon plots the peak material gain versus the spontaneous recombination current density in the active region. The recombination current is defined as the spontaneous combination rate, which is the integration of the spontaneous emission spectrum over all wavelengths, times the thickness of the active region. This statement is only used in the gain preview module.
- data_file is the file to which the graphic data is written in ASCII format.
- include_data includes data files from other gain calculations for the purpose of comparison.
- wavel_range is the wavelength range within which the peak material gain is searched.
- conc_range is the electron concentration range in the well.
- pn_ratio is the ratio of hole over electron concentrations. Note that this ratio can be set to an arbitrary number in the gain preview. In the main solver, this ratio is automatically determined by the simulator according to the local Fermi levels.
- av__index is the estimated average refractive index.
- data __point is the number of data points in the curve.

\section*{Example(s)}
gain_spon wavel_range=(1.0 1.4) \&\&
conc_range=(5.e23 5.e24) pn_ratio=1 data_point=20

\subsection*{22.330 gain_wavel}
\(\left.\begin{array}{|l|l|l||}\hline \text { parameter } & \text { data type } & \text { values [defaults] } \\
\hline \hline \text { data_file } & \text { char } & \\
\hline \text { include_data } & \text { char } & \\
\hline \text { auto_pn_ratio } & \text { char } & {[\mathrm{no}]} \\
\hline \text { conc_log_scale } & \text { char } & {[\mathrm{no}]} \\
\hline \text { plot_as_abs } & \text { char } & {[\mathrm{no}]} \\
\hline \text { versus_energy } & \text { char } & {[\mathrm{no}]} \\
\hline \text { add_n_and_k__data } & \text { char } & \\
\hline \text { wavel_range } & \text { realx2 } & (\mu m) \\
\hline \text { conc_range } & \text { realx2 } & \left(\mathrm{m}^{-3}\right) \\
\hline \text { pn_ratio } & \text { real } & {[1.0]} \\
\hline \text { av_index } & \text { real } & {[3.3]} \\
\hline \begin{array}{l}\text { scale_gain } \\
\text { hline background_loss }\end{array} & \text { real } & \text { real }\end{array}\right][1\).\(] \begin{tabular}{ll||}
\) \\
\hline curve_number & intg \\
\hline data_point & intg \\
\hline zseg_num & intg \\
\hline kp8x8_angle_points & intg \\
\hline
\end{tabular}
gain__wavel is a statement used in the gain preview module (.gain) to plot material gain curves at various carrier concentrations. It is also used in the initial stages of a PICS3D simulation (after equilibrium) to estimate the gain and provide the data required in rtgain__phase.

\section*{Parameters}
- data_file is the file to which the graphic data is written in ASCII format.
- include__data includes data files from other gain calculations for comparison purposes.
- auto_pn_ratio is used only in the initial stages of a full PICS3D device simulation. It indicates if an averaged hole/electron density ratio from the full drift-diffusion solver is used to compute the gain curves. This parameter, if enabled, will override pn_ratio.
- conc_log_scale spaces the gain curves so they correspond to concentration values that are evenly spaced on a log rather than linear scale.
- plot_as__abs instructs the program to plot the absolute value of the gain.
- versus_energy plots the gain curve as a function of the photon energy rather than the wavelength.
- add_n__and__k_data allows the user to input a file containing complex refractive index data ( \(n, k\) ) and plot it alongside the computed gain curve.
- wavel_range is the wavelength range.
- conc_range is the electron concentration range. The gain curves correspond to concentration values that are evenly spaced within this range.
- pn_ratio is the ratio of hole over electron concentration. The gain curve depends on both the electron and hole concentrations.
- av__index is the estimated average refractive index and is used to compute the gain integral.
- scale_gain can used to artificially scale the computed gain curve.
- background_loss can be used to add a fixed background loss term to the computed gain curve.
- curve_number is the number of gain curves.
- data__point is the number of wavelength data points in each gain curve.
- \(k p 8 x 8\) _angle_points applies to plotting optical gain based on the \(8 \mathrm{x} 8 \mathrm{k} . \mathrm{p}\) theory. It defines the number of angular values that are used for the in-plane wave vector direction. For each direction, the subband dispersion is calculated and the optical gain is numerically integrated. The final curve shows the averaged result.

\section*{Examples}
gain_wavel wavel_range=(1.0 1.4) \&\&
conc_range=(5.e23 5.e24) curve_number=5 data_point=100

\subsection*{22.331 gammak_bar}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement gammak_bar \((\mathrm{k}=1,2,3)\) is an active layer macro statement used to define the Luttinger numbers in the quantum barrier.
The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material__par in section 22.456 .

\subsection*{22.332 gammak_well}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement gammak_well \((\mathrm{k}=1,2,3)\) is an active layer macro statement used to define the Luttinger numbers in the quantum well.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

\subsection*{22.333 generation_rate}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & void \\
\hline use_light_profile & char & {\([\) yes \(]\), no } \\
\hline use_total_charge & char & yes,[no] \\
\hline carrier & char & {\([\mathrm{both}]\), electron,hole } \\
\hline rate & real & {\([0].\left(\mathrm{m}^{-3} / \mathrm{s}\right)\) or \((\mathrm{C} / \mathrm{s})\)} \\
\hline xrange & realx2 & \((\mu m)\) \\
\hline yrange & realx2 & \((\mu m)\) \\
\hline mater & intg & {\([1]\)} \\
\hline light_number & intg & {\([1]\)} \\
\hline
\end{tabular}
generation_rate may be used to directly define a carrier generation rate in a given material region: this may be used to model generation through heavy ion impacts
or simply to inject carriers without using a contact. Note that a similar effect can be achieved using the import_gen__rate parameter of light__power.

A more advanced model for heavy ion hits can be found in radiation__heavy_ion.

\section*{Parameters}
- rate is the generation rate applied to this region. The units of this value are in \(m^{-3} / s\) unless use_total_charge is used. In that case, the units are \(C / s\) and the size of the affected area controls the generation rate density.
- use_light__profile must be used in conjunction with light__power. This parameter scales the rate value according the relative shape of the light profile. When multiple light sources are present, light__number identifies the profile to use.
- xrange and yrange give the area in which the generation rate occurs.
- mater is the material number in which the generation occurs. If a label has been defined for this material, mater_label may be used instead.
- carrier determines whether the generation will produce electron-hole pairs or only a single kind of carrier. In the vast majority of applications, the default setting should be used.

\section*{Examples}
```

generation_rate mater_label=poly use_light_profile=no \&\&
carrier=electron rate=5.e14 use_total_charge=yes \&\&
xrange=(0.65 0.7) yrange=(0 0.1) light_number=1

```

\subsection*{22.334 get_active_layer}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline name & char & AlGaAs/AlGaAs, etc. \\
\hline var_name1-9 & char & void \\
\hline var_symbol1-9 & char & \\
\hline var1-9 & real & \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}

Similar to the load__macro statement, get__active_layer is used to simultaneously assign several material parameters (e.g. bandgap, band offet, etc...) to all mesh points sharing a material number. Material properties are then evaluated based on the supplied parameters and certain reserved keywords. Note that this statement is usually automatically generated by processing the .layer file.

Note that unlike load__macro statement, get__active_layer defines parameters relating to the optical gain calculations and can also be used without defining the mesh during the gain preview (.gain file). Because gain calculations can depend on both well and barrier material parameters, the active macro may override certain parameters from passive macros of the QW and barrier regions. It is strongly recommended that users check the consistency of the passive and active macros to avoid this; when in doubt, statements such as use__bulk__property may be used to avoid this override.

For more information about macros, consult Appendix B and the comments in the crosslight.mac and more.mac files. See also use_macrofile to use custom userdefined macros.

\section*{Parameters}
- name specifies the name of the macro to be used. The convention for active macros is to use mixed-case names such as InGaAs/AlGaAs, AlGaAs, cx-AlGaAs, InGaAsP/InP, etc... Also by convention, names without a slash refer to bulk active regions unless prefixed with "cx-" in which case they refer to a complex MQW macro (multiple layers coupled together quantum mechanically). Macro names with a slash refer to simpler QW macros (symmetric barrier/well/barrier) with the second name referring to either the barrier or substrate material.
It is strongly recommended that users review the comments included in text of each macro to ensure they are using the right material and composition convention. Failure to do so can result in significantly de-tuned gain curves or mismatched strain.
- The parameters var_symbol1-9 are the symbolic variable names used as function arguments in the macro. If defined, they must exactly match the symbols used in the macro function definitions. If not defined, then the simulator will assume an older macro style is being used: in this case, the order of the parameters must be the same as in the macro function definitions.
Note that certain variables used in functions are reserved keywords and do not need to be defined in this manner.
- The parameters var1-9 are the values of the variables appearing in the functions within the macro definition. They are most commonly used to represent
material composition in ternary/quaternary compounds.
- The parameters var_name1-9 replaces var1-9 when a grading of the macro parameters is used. It is used in conjunction with the grade__active__mater statement which describes the spatial variation of the parameters.
- The parameter mater is the material number being linked with this macro. This number is the same as the material number assigned to polygons in the .geo file and is inherited by the mesh.

\section*{Examples}
```

get_active_layer name=InGaAsP/InP var1=0.467 var2=1. \&\&
var3=0.202 var4=0.440 mater=3 \&\&
var_symbol1=xw var_symbol2=yw var_symbol3=xb var_symbol4=yb

```

A simple active layer declaration defining the composition of both the QW and barrier
```

grade_active_mater var_name=a2 variation=function
\$ rdist=relative-distance is a reserved internal variable
function(rdist)
0.71+rdist*(0.33-0.71)
end_function
get_active_layer name=cx-AlGaAs mater= 2 \&\&
var_symbol1=xw \&\&
var_name1=a2

```

A more complex graded well profile

\subsection*{22.335 get__data}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline main_input & char & \\
\hline sol_inf & char & \\
\hline xy_data & intgx2 & \\
\hline scan__data & intgx2 & \\
\hline
\end{tabular}

The statement get__data is used in the post processor, i.e. it is used only after the main solution is complete. It is used to get the output data from the main solver.
- main_input is the main input file that was used to drive the main simulation.
- sol_inf is the main simulation output data file which contains the current data, carrier distribution data, etc. It is produced by the input file main_input.
- xy_data specifies the structural data (i.e., data as a function of position x and y) to be used by graphic statements to display position dependent data (e.g., by plot_1d). The starting data set and the ending data set numbers are defined by this statement. If one would like to plot data set 1 to 3 on the same plot, one can set \(\mathbf{x y}\) _data \(=(1,3)\).

This parameter is used by any subsequent plot statement that displays structural data such as electron concentration distribution. Note that each data set corresponds to one print__step in the scan statement. Not all the bias points have the full structural data. Also see the scan statement for more detail on bias points and data sets. The bias voltage or current for each data set can be found in the message file with extension "*.sol.msg".
- scan_data defines the beginning and the ending data_set used by any subsequent plot_scan statement. For bias data they allow the user to plot the specified variable within this range of data sets.

\section*{Example(s)}
get_data main_input=bulk1d.sol sol_inf=bulk1d.out \&\&
xy_data= \((7,7)\) scan_data \(=(1,7)\)

This causes the position dependent data set number 7 to be plotted while the bias data (such as I-V data) ranging from data set 1 to set 7 are displayed.

\subsection*{22.336 get_raytrace_data}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline filebase & char & \\
\hline xy_data & intgx2 & \\
\hline scan_data & intgx2 & \\
\hline
\end{tabular}
get_raytrace_data is a post-processing statement which serves the same purpose as get_data. However, it is exclusively used to load ray tracing simulation results in the Optowizard program.

\section*{Parameters}
- filebase is the root filename of the original simulation data, minus the extension (such as .sol or .out).
- xy__data is the range of data sets available for plotting structural data.
- scan_data is the range of data sets available for plotting bias-dependent scan data.

\section*{Examples}
get_raytrace_data filebase=tip xy_data=(2 3) scan_data=(2 3)

\subsection*{22.337 global__model__setting}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline auger_qw_abrupt_prof & char & {\([\mathrm{no}]\)} \\
\hline classical_conc_profile & char & {\([\mathrm{no}]\)} \\
\hline range_n & real & {\([1 . \mathrm{e}-3](\mathrm{Vt})\)} \\
\hline range_p & real & {\([1 . \mathrm{e}-3](\mathrm{Vt})\)} \\
\hline
\end{tabular}

This statement replaces adjust_current as of the 2016 version. It is used to control some overall current flow characteristics; it only needs to be issued when the user wants to override the default settings. There are two major models which are affected by this command.
The first model deals with the switching between the drift-diffusion (DD) current flow and thermionic emission (TIE) models. In the limit of a heterojunction with high energy barrier, a full thermionic emission model is used but when the barrier is low, there is a mixture of DD current and TIE current. This parameter affects heterojunctions in the whole device.

The second and more common application of this command is to deal with certain inconsistencies between the classical and quantum treatment of carriers in quantum wells. It is rather clean that when using a self-consistent model to compute the confined carrier states, the envelope of the confined carrier wave function should be used to account for the charge distribution. However, it is not clear how this same charge distribution is related to the classical charge distribution in the DD/TIE transport model.

If we directly use the envelope function for transport (meaning classical__conc__profile=no), that means some part of carriers under the envelop may spill over the barriers and become free carriers, just like other unbound carriers: this contradicts with our assumption that they are "confined". On the other hand, one may argue that there is good reason to convert the spill-over carriers into free carriers because of the quantum tunneling effect. After all, tunneling transport occurs when a wave function penetrates a potential barrier and overlaps with the wave function of a free-carrier state. Such an overlap will certainly happen if an applied field lowers one of the barriers to near the confined energy level. However, the numerical accuracy of such a less rigorous quantum tunneling treatment should be the subject of further studies.

The other approach is to force all confined carriers to be within the well (meaning classical_conc__profile=yes) and let TIE takes care of all the transport. This approach completely ignores any quantum tunneling effects. Another problem is the violation of current continuity as far as carrier dynamics is concerned. One can show that if the Poisson's equation and the current continuity equations take different carrier distributions (i.e., \(n\) and \(p\) are different), the gradient of the total current (carrier current plus displacement current) will not be zero, thus violating current continuity in the semiconductor device in a transient or AC simulation.
At this point, we find using the same envelope function carrier distribution in all equations yields reasonable results if tunneling model is not activated for the potential barrier involved. On the other hand, if the tunneling model is activated, use of the same envelope function carrier distribution for transport definitely produces an overestimation of the transport current. Thus we recommend the following:
- If no tunneling region is defined, use classical__conc__profile=no
- If tunneling through the QW barrier is enabled, use classical__conc__profile=yes

\section*{Parameters}

- auger__qw__abrupt__prof may be used to force the software to use the classical concentration profile to compute the Auger recombination rate
- classical_conc__profile is used to indicate whether the classical concentration profile or the envelope of the confined carrier wave function should be used
for the transport.
- range__n (range __p) is the electron (hole) barrier height (normalized to thermal voltage \(\left.V_{t}=k_{b} T / q\right)\) below which a mixture of DD and TIE takes place.

\section*{Examples}
global_model_setting range_n=0.01 range_p=0.01

\subsection*{22.338 grating_compos}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline hi_macro_name & char & [void] \\
\hline hi_active_macro & char & [void] \\
\hline lo_macro_name & char & [void] \\
\hline lo_active_macro & char & [void] \\
\hline hi__var_symbol1-5 & char & [void] \\
\hline hi_avar_symbol1-5 & char & [void] \\
\hline lo__var__symbol1-5 & char & [void] \\
\hline lo_avar_symbol1-5 & char & [void] \\
\hline hi__mater_lib & char & [void] \\
\hline lo_mater_lib & char & [void] \\
\hline d__high & real & {\([0.1]\) (um) } \\
\hline d_fall & real & {\([0\).\(] (um)\)} \\
\hline d__low & real & {\([0.1]\) (um) } \\
\hline d_rise & real & {\([0\).\(] (um)\)} \\
\hline hi__var1-5 & real & \\
\hline hi_avar1-5 & real & \\
\hline lo_var1-5 & real & \\
\hline lo_avar1-5 & real & \\
\hline grating_order & intg & {\([1]\)} \\
\hline column_num & intg & {\([1]\)} \\
\hline
\end{tabular}
grating_compos is used in the .layer file to generate a grating_model statement which, combined with the mode profile, is eventually used to define the longitudinal coupling coefficient \(\kappa\) in DFB/DBR lasers. Please refer to grating_model for help on most parameters of this statement.

The main difference between this statement and grating_model is that here, the index profile is defined using the material macro system and composition parameters instead of directly defining the index profile. Parameters prefixed by "lo" define the values for the low-index part of the grating while those that start with "hi" define values for the high-index part of the grating.

For both regions, both a passive an active macro are defined. Even if there is so significant loss/gain in the grating, doing so allows the software to compute the index change away from equilibrium due to injection. The parameters used to define material macro parameters (and the column number) are similar to those of layer__mater.

Please note that as of the 2014 version, the "library" material system of Sec. 3.5 may also be used instead of macros. This will automatically enable gain/loss calculations and result in a complex coupling coefficient.

\subsection*{22.339 grating_model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline real_index_high & real & \\
\hline imag_index_high & real & {\([0]\).} \\
\hline real_index_low & real & \\
\hline imag_index_low & real & {\([0]\).} \\
\hline d_high & real & {\([0.1](\mu m)\)} \\
\hline d_fall & real & {\([0].(\mu \mathrm{m})\)} \\
\hline d_low & real & {\([0.1](\mu \mathrm{m})\)} \\
\hline d_rise & real & {\([0].(\mu \mathrm{m})\)} \\
\hline grating_xrange & realx2 & {\([0.5].(\mu \mathrm{m})\)} \\
\hline grating_yrange & realx2 & {\([2.2 .1](\mu m)\)} \\
\hline grating_order & intg & {\([1]\)} \\
\hline mode_index & intg & {\([1]\)} \\
\hline use_active_mater & intg & {\([0]\)} \\
\hline
\end{tabular}
grating_model is used to calculate the longitudinal coupling coefficient \(\kappa\) using the longitudinal index profile defined in this command and the optical field profile from the main solver.
grating_compos can also be used to define the longitudinal index profile through material macros and composition parameters rather than index values.

\section*{Parameters}
- real_index_high, real_index_high, imag_index_high, real__index_low, imag_index_low, d__high, d_fall, d_low and d_rise are used to describe the variation of effective index along the longitudinal direction (z-direction). They are illustrated in Fig. 22.12.


Figure 22.12: Schematics of the index variation in the longitudinal direction for the grating_model statement.

IMPORTANT NOTE: The distances specified in this command are only used to compute the strength of the coupling constant \(\kappa\) using Fourier analysis[121]. These distances should therefore be seen as the relative distances of the high/low index regions and do not determine the pitch of the grating.

The actual pitch of the grating is normally set using the longitudinal statement. The grating pitch can either be set directly or a reference wavelength can be used to automatically compute the pitch based on the effective index at equilibrium. In cases requiring more flexibility, the section statements can also be used to fix the local grating pitch in different regions of the device.
- grating_xrange and grating_yrange are used to specify the rectangular cross section on the xy-plane (lateral) of the grating layer. They can be omitted if this statement is used in the layer file and the range can be inferred from the previous layer__mater declaration.
- grating_order is the grating order.
- mode_index is the lateral mode index used to calculate the coupling coefficient. Mode 1 is the fundamental mode; mode 2 is the 2 nd order mode, etc..
- use__active__mater is used to decide if the index profile is calculated using an active macro. If zero, the index values should be specified explicitly. Otherwise, this parameter should be defined as the material number of the active region used for the calculation.

\section*{Examples}
```

grating_model real_index_high=3.31 \&\&
imag_index_high=-3.27 real_index_low=0.1 \&\&
imag_index_low=-6.54 d_high=0.18 d_fall=0. \&\&
d_low=0.12 d_rise=0. \&\&
grating_xrange=(0. 1.5) \&\&
grating_yrange=(1.962 2.012) \&\&
grating_order=2

```

\subsection*{22.340 grade__active__mater}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline var_name & char & \\
\hline variation & char & {\([\) linear \(]\)} \\
\hline grade_from & real & \\
\hline grade__to & real & \\
\hline grade_points & intg & {\([3]\)} \\
\hline
\end{tabular}
grade__active__mater describes the spatial variation of a material parameter (usually composition) in a complex MQW macro. The local value of this parameter is passed as an argument to the various functions inside the macro to define material parameters.

In many ways, this statement duplicates some of the functionality common to all material parameter statements (c.f. Sec. 22.456). However, it operates at a higher level and is usually automatically generated by Crosslight helper tools like the layer.exe program.

\section*{Parameters}
- var_name specifies the rule describing the spatial variation of a material parameter: it must be the same name as in get__active__layer.
- variation defines the shape of the spatial variation: linear, table or function. All of these options work in the same way as the macro variations in material__par.
- grade_from is the starting composition of the grading: from bottom to top for a horizontal layer and from left to right for a vertically oriented layer. grade_to is the matching ending composition.
- grade_points is the number of mesh points used to sample the grading and is mostly used in the mesh-less gain preview mode. This number must be greater than 1 and a larger number often helps with quantities such as bandgap with a non-linear composition variation. However, the program slows down significantly when a large number of grading mesh points is used.

\section*{Examples}
```

grade_active_mater var_name=c1 grade_from=0.1 grade_to=0.2 grade_points=5

```

The above statement linearly grades (by default) the composition c 1 from 0.1 to 0.2 . The following statement defines the variation of composition a2 using an analytical function:
```

get_active_layer name=cx-AlGaAs mater= 2 \&\&
var_symbol1=xw \&\&
var_name1=a2
grade_active_mater var_name=a2 variation=function
\$ rdist=relative-distance is a reserved internal variable
function(rdist)
0.71+rdist*(0.33-0.71)
end_function

```

\subsection*{22.341 graphene_index_model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & \\
\hline fermi_velocity & real & {\([5 . \mathrm{e} 5] \mathrm{m} / \mathrm{s}\)} \\
\hline internal_bias & real & {\([1] V\).} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}

This statement implements a complex refractive index model[122] for a graphene layer. Please note that this model is for optical properties only and should be used with insulator macros as we do not currently model carrier transport in graphene.
The model implements the following formulas:
\[
\begin{equation*}
E_{f}(V)=h v_{f} \sqrt{\frac{\pi}{q} \frac{\epsilon}{d}\left|V-V_{0}\right|} \tag{22.17}
\end{equation*}
\]
where \(E_{f}(V)\) is the estimate of the Fermi level in the layer, \(v_{f}\) is the Fermi velocity and \(\epsilon=11 \epsilon_{0}\) is the permittivity of aluminium oxide.

Using this value, the optical conductivity of the layer is given by:
\[
\begin{equation*}
\sigma(V, \omega)=\frac{q^{2}}{4 \hbar} \times \frac{\sinh \left(\frac{\hbar \omega}{2 k_{B} T}\right)}{\cosh \left(\frac{E_{f}(V)}{k_{B} T}\right)+\cosh \left(\frac{\hbar \omega}{2 k_{B} T}\right)} \tag{22.18}
\end{equation*}
\]
and the relative complex permittivity is finally given by:
\[
\begin{equation*}
\epsilon_{r}(V, \omega)=5.5+i \frac{\sigma(V, \omega)}{\omega \epsilon_{0} \times 3.8 \times 10^{-10}} \tag{22.19}
\end{equation*}
\]

\subsection*{22.342 group1}
group1 is not a statement but a dummy name to group all material parameter statements that use a common set of parameters. See material_par in section 22.456 for examples and further details.

\subsection*{22.343 half_mesh}

This statement works the same as double__mesh except that it reduces the mesh density by one half.

\subsection*{22.344 heat_flow}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline joule & char & {\([\mathrm{yes}]\)} \\
\hline opt_absorption & char & {\([\mathrm{yes}]\)} \\
\hline recombination & char & {\([\mathrm{yes}]\)} \\
\hline thomson & char & {\([\mathrm{yes}]\)} \\
\hline peltier & char & {\([\mathrm{yes}]\)} \\
\hline update_dd_eq_temper & char & {\([\mathrm{yes}]\)} \\
\hline j.e_model & char & {\([\mathrm{no}]\)} \\
\hline linear_source & char & {\([\mathrm{no}]\)} \\
\hline thm_transient & char & {\([\mathrm{no}]\)} \\
\hline jtotal_model & char & {\([\mathrm{no}]\)} \\
\hline radiation_source & char & {\([\mathrm{yes}]\)} \\
\hline rescale_heat_source & char & {\([\mathrm{yes}]\)} \\
\hline original_joule_term & char & {\([\mathrm{no}]\)} \\
\hline linear_method & char & {\([\mathrm{yes}]\)} \\
\hline smooth_temperature & char & {\([\mathrm{no}]\)} \\
\hline set_dd_eq_with_average & char & {\([\mathrm{no}]\)} \\
\hline peltier_separate_junc & char & {\([\mathrm{yes}]\), no } \\
\hline damping_step & real & {\([2\).\(] (K)\)} \\
\hline var_tol & real & {\([1 . \mathrm{e}-5]\)} \\
\hline res_tol & real & {\([1 . \mathrm{e}-5]\)} \\
\hline max_temp_incr & real & {\([80\).\(] (K)\)} \\
\hline set_low_temperature & char & \\
\hline fit_range & real & {\([300].(\mathrm{K})\)} \\
\hline temperature_limit & real & {\([800].(\mathrm{K})\)} \\
\hline set_low_temperature & real & \\
\hline heat_source_factor & real & {\([1]\).} \\
\hline smooth_distance & real & {\([1\).\(] (um)\)} \\
\hline rescale_range & realx2 & {\([0.52]\).} \\
\hline max_iter & intg & {\([150]\)} \\
\hline print_flag & intg & {\([2]\)} \\
\hline joule_mobil_flag & intg & {\([1]\)} \\
\hline mf2_flag & intg & {\([1] 0\)} \\
\hline & & \\
\hline & \\
\hline
\end{tabular}
heat_flow is used to control the solver for the self-heating (non-isothermal) model. Various heat sources are controlled by this statement. For detailed explanation of the physical origins of various heat source terms, the user is referred to Chap. 11 and Ref. [73].

Since many heating source terms rigorously derived from semiconductor theory are difficult to compute accurately on a sparse mesh, the heat sources are automatically re-scaled to match the power supplied by the DC bias. If this scaling strays too far from unity, the user is advised to check their mesh and other model parameters relating to the heat flow.

Please note temperature dependence of material parameters is implemented via functions in the macro system and the reserved temper keyword (the local mesh point temperature). Not all default macros implement this dependence but users may override these functions and define their own as they see fit.

\section*{Parameters}
- joule turns on/off the Joule heating term.
- opt_absorption turns on / off the heating term due to optical absorption.
- recombination turns on/off the recombination heating source.
- thomson turns on/off the Thomson heat.
- peltier turns on/off the Peltier heat.
- thm_transient turns on/off the thermal transient simulation.
- update_dd__eq_temper turns on/off the update of the temperature used in the Drift-Diffusion equations.
- set_dd_eq_with__average uses the average temperature of the device (rather than the local value) in the Drift-Diffusion equations.
- peltier_separate_junc uses the classical concentration profile to compute the Peltier heat source, even if the self-consistent wave is used elsewhere in the model. See global__model_setting.
- jtotal_model switches the numerical model used in the Joule heating source. The standard Joule heating source term is written as \(q\left|j_{n}\right|^{2} /\left(\mu_{n} n\right)+q\left|j_{p}\right|^{2} /\left(\mu_{p} p\right)\) which may be unstable in regions of carrier depletion or minority carrier region with strong diffusion because a small amount of \(n\) or \(p\) may blow up the numerical expression. This flag turns on a more stable alternative: \(q\left|\mathbf{j}_{\mathbf{n}}+\mathbf{j}_{\mathbf{p}}\right|^{2} /\left(\mu_{n} n+\right.\) \(\left.\mu_{p} p\right)\). One can show that under the assumption of isotropic conductivity and small diffusion assumption, this expression is equivalent to the \(\mathbf{j} . \mathbf{e} \_\)model.
- original_joule_term would instruct the simulator to use the original form of Joule term of the form: \(\frac{J_{n}^{2}}{q \mu n}\) for electron current, where \(\mu\) is low field mobility and \(n\) is electron concentration. Such a form as disadvantage of being numerical
unstable if electron is highly depleted. Setting this parameter to "no" would allow the use of a modified form to avoid such a problem.
- radiation_source is a cooling term associated with the loss of energy with emission of photons or it can be a heating term associated with the interband absorption of incident light. It is written as the photon energy times the negative of the recombination rate associated with the photon emission/absorption.
- damping_step (in units of degree K) is the step limit used to damp (or reduce) the correction vector in the Newton solver for the temperature distribution.
- var_tol (in degree K) is the variable (temperature) tolerance for the thermal equation. If the temperature error is smaller than this tolerance, the thermal equation solver is considered converged.
- res_tol is the relative error of the residual of the thermal equation. It is an indication how well the thermal equation is satisfied. If the res_tol is zero, the equation is perfectly satisfied.
- max_temp_incr is the maximum temperature increase allowed when bias is changed. If the temperature increase exceeds this limit, the program regards the solution a failure and will restart the solution procedure with a smaller bias.
- fit__range is used to determine the range of temperature values at which macro parameters are to be tabulated. The tabulation is further controlled by the temperature_dep_macro_table statement.
- max_iter is the maximum number of iteration used in the Newton's method.
- print_flag is used to flag the printing of the variable and residual errors during the Newton iteration.
- j.e_model is to indicate the use of an alternative expression of Joule heat in the form of \(\mathbf{J} \cdot \mathbf{E}\) where \(\mathbf{J}\) and \(\mathbf{E}\) are the vectorial forms of current density and electrical fields. Since this term does not involve division of small numbers, it is more stable numerically. If non-convergence related to thermal simulation is encountered, one may wish to use this form of Joule heating source. For VCSEL simulation or 3D simulation involving rough mesh points, one may consider this choice. If Joule heating is the dominant heating source, this term is likely to yield reasonable results since by definition, it should equal to a simple ohmic resistor heating model.
- linear_source is to indicate the use of a heating source term proportional to the current. Please also see the statement linear__heat.
- thm_transient may be used to turn on the thermal transient model.
- joule__mobil_flag indicates which mobility model will be used in computing the Joule heating source term. If a value of 1 is used, the field dependent mobility model is used. For a value of 2 , the low field mobility is used. The former is more accurate and the latter is compatible with older versions of the thermal model (version 2002 and older).
- mf2_flag turns on the multi-frontal linear solver for the thermal equations. Use of this flag should result in better convergence of the thermal equations and improves the speed.
- set_low__temperature is related to the fit__range parameter. These two parameters determine the lower and upper range use to tabulate temperaturedependent macros.
- temperature_limit is an upper limit beyond which the simulator would terminate the present scan statement.
- rescale_heat_source is used to automatically rescale the heat source to match the input power. This helps correct inaccuracies in the Joule heat term due to the sparse mesh. As of the 2012 version, this is scaling turned on by default. If this is disabled, a manual scaling of the heat sources can be defined with heat__source_factor.

As of version 2017, rescale_range may be used to put limits on the automatic scaling factor.
- linear_method completely turns off the non-linear Newton solver for the heat equation: a single iteration of the underlying linear solver is used instead. This lowers the accuracy of the thermal results but often improves the convergence of the overall simulation. As of the 2012 version, this is turned on by default.
- smooth_temperature can be used to artificially smooth the temperature distribution with a Gaussian and eliminate hot spots which can adversely affect the simulation convergence. While the heat should diffuse naturally while solving the heat equation, this method provides a way to "fix" an insufficiently dense thermal mesh without increasing the workload on the drift-diffusion solver.
- smooth_distance is the smoothing distance applied when smooth_temperature=yes.

\section*{Examples}
```

heat_flow opt_absorption=no damping_step=2.

```

\subsection*{22.345 heat_flow_simple}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline model & char & circuit, [manual] \\
\hline thm_transient & char & {\([\) yes \(]\)} \\
\hline cir_thermal_cond & real & {\([10].(3 \mathrm{D}: \mathrm{W} / \mathrm{K}, 2 \mathrm{D}:(\mathrm{W} / \mathrm{m}) / \mathrm{K})\)} \\
\hline cir_extern_temp & real & {\([300].(\mathrm{K})\)} \\
\hline ref_current & real & {\([10].(3 \mathrm{D}: \mathrm{A}, 2 \mathrm{D}: \mathrm{A} / \mathrm{m})\)} \\
\hline cir_device_zdim & real & {\([100\).\(] (um)\)} \\
\hline ref_contact & intg & {\([1]\)} \\
\hline
\end{tabular}
heat__flow_simple is a simplified self-heating model, recently updated for the 2015 version. For more accurate results, the full heat_flow model is preferred.

\section*{Parameters}
- model is used to describe the heat source model:
- manual means the heat source is defined as ref_htsrc \(\times\left(\frac{I}{I_{r e f}}\right)^{2}\). The reference current is defined in ref_current.
- circuit means the heat source is defined as \(I \times V\)-output_power. The DC input power is defined using the bias on ref_contact.
- thm_transient enables a transient term to the heat flow equation.
- cir_thermal_cond and cir_extern_temp are identical to the type 3 thermal boundary parameters defined in contact.
- cir_device_zdim is used to scale 2D current values to 3D as necessary.

\subsection*{22.346 heteroj_capture}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline all_interface & char & {\([\) no \(]\)} \\
\hline elec_capture & real & {\([1]\).} \\
\hline hole_capture & real & {\([1]\).} \\
\hline interface__mater & intgx2 & \\
\hline
\end{tabular}

This statement is used to modify the thermal velocity in the thermionic emission model governing the current transport across heterojunction interfaces.

The following current transport model across the heterojunction is used for all abrupt heterojuntions and Schottky metal-semiconductor interfaces.
\[
\begin{align*}
J_{s n} & =\gamma_{n} \bar{v}_{n}^{\text {therm }}\left(n_{s}-n_{e q}\right)  \tag{22.20}\\
J_{s p} & =\gamma_{p} \bar{v}_{p}^{\text {therm }}\left(p_{s}-p_{e q}\right) \tag{22.21}
\end{align*}
\]

A quantum well may be regarded as consisting of two heterostructure interfaces as far as current transport is concerned.

From the view point of quantum capture and emission, the thermionic model is equivalent to capture/emission into/out-of the quantum well at thermal velocity which is a very fast process. The actual process may be slower since for a carrier in the barrier to loss energy to be thermalized with the confined states in the well, carrier-phonon/carrier scattering is involved. Phenomenologically, the slower energy relaxation may be represented by a less than unity coefficient multiplied to the thermal velocity. This statement is used to define such coefficients.
velocity
- all_interface indicates whether or not the thermionic emission model is to be modified for all heterostructure interfaces.
- elec_capture is the electron capture coefficient ( \(\gamma_{n}\) above) multiplied to the electron thermal velocity.
- hole_capture is the hole capture coefficient ( \(\gamma_{p}\) above) multiplied to the hole thermal velocity.
- interface__mater defines the material numbers (or labels) of the two materials consisting the interface.

\section*{Example(s)}
```

heteroj_capture all_interface=yes
elec_capture=0.1 hole_capture=0.1

```

This statement reduces the thermal velocities of electrons and holes for all interfaces to ten percent of the thermal veclosity.
```

heteroj_capture elec_capture=0.2 hole_capture=0.4 interface_mater=[5 6]

```

The above statement only modifies the thermal velocity for the interface between materials 5 and 6 .

\subsection*{22.347 hole_carr_loss}
hole_carr_loss is a passive macro material statement defining the dependence of the optical loss coefficient on the hole density for a given material. It introduces a loss term equal to \(\alpha_{n}=\) hole_carr_loss \(\times\left(p-p_{0}\right)\) so that hole_carr_loss has units of \(m^{2}\).

Note that this term is only used for passive regions as active regions have their own mechanism for carrier-dependent losses; see passive__carr_loss for more information.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\section*{Examples}
hole_carr_loss value=2.e-21 mater=1

\subsection*{22.348 hole_dos_energy}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline energy_range & realx2 & \\
\hline data_point & intg & {\([50]\)} \\
\hline subband_valley & intg & {\([1]\)} \\
\hline
\end{tabular}
hole_dos_energy plots the hole density of states (DOS) versus energy. This statement is only used in the gain preview module.

\section*{Parameters}
- data_file is a user-specified text file containing a copy of the plot data.
- energy__range is the range of energy in eV .
- data__point is number of data points in the plot.
- subband__valley is the index labeling the subband valley.

\section*{Parameters}
hole_dos_energy energy_range=( \(\left.\begin{array}{ll}1 & 1.7\end{array}\right)\)

\subsection*{22.349 hole mass}
hole_mass is a passive macro material statement that defines the hole effective mass relative to the free electron mass. Note that this mass is the result of average of density of states (DOS) of light hole and heavy hole masses since only one band is used for the transport in bulk regions.

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.350 hole_mobility}

The statement hole__mobility is usually used as part of a passive material macro and provides a way for the user to define the low field mobility for holes. The user may input a specific value or use a custom function to model the doping or trap dependence.

An alternative way to define the low field mobility is to use the following statements to implement Eq. 5.42 exactly:
- max__hole__mob defines \(\mu_{2 p}\)
- min__hole__mob defines \(\mu_{1 p}\)
- hole_ref_dens defines \(N_{r p}\)
- alpha__p defines \(\alpha_{p}\)

Note that using hole_mobility explicitly overrides this alternative method.
The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.351 hole_ref_dens}

See hole__mobility.

\subsection*{22.352 hole__sat_vel}

The material statement hole__sat__vel is used to define the saturation hole velocity (in \(\mathrm{m} / \mathrm{s}\) ). It is used in Eq. 5.38 to define the field-dependent mobility function.
The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.353 ignore_local_current}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
ignore_local_current forces a material to behave like a perfect insulator: the current continuity equations will not be solved for this material and the software will simply set \(J=0\) for this region.

\section*{Parameters}
- mater is the material number where the impact ionization is defined. If a label has previously been defined for this material, mater_label may be used instead.

\subsection*{22.354 impact_baraff}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline turn_on_zener & char & {\([\mathrm{no}]\)} \\
\hline mater_label & char & \\
\hline elec_phonon & real & {\([0.063](\mathrm{eV})\)} \\
\hline hole_phonon & real & {\([0.063](\mathrm{eV})\)} \\
\hline elec_lambda0 & real & {\([76](\AA)\)} \\
\hline hole_lambda0 & real & {\([58](\AA)\)} \\
\hline elec_eifactor & real & {\([1.5]\)} \\
\hline hole_eifactor & real & {\([1.5]\)} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
impact__baraff activates the Baraff impact ionization model described in Sec. 9.1.

\section*{Parameters}
- turn_on_zener, if active, is the same as using the zener statement.
- elec_phonon are the hole__phonon are the electron and hole phonon energies ( \(E_{p}\) ).
- elec_lambda0and hole_lambda0 are the zero temperature electron and hole optical phonon mean free paths \(\left(\lambda_{0}\right)\).
- elec_eifactor, hole_eifactor is the coefficient (for electrons and holes) used to calculate the ionization energy \(\left(E_{I}\right)\) as a function of the bandgap.
- mater is the material number where the impact ionization is defined. If a label has previously been defined for this material, mater_label may be used instead.

\section*{Examples}

The following example will take the default impact ionization parameters for mater number 4:
```

impact_baraff mater=4

```

\subsection*{22.355 impact_chynoweth}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline turn_on_zener & char & {\([\) no] } \\
\hline mater_label & char & \\
\hline elec_setj(j=1..3) & realx3 & {\([7.03 \mathrm{e} 71.231 \mathrm{e} 81]\)} \\
\hline fld_range_nj \((\mathrm{j}=1 . .2)\) & real & {\([6 . \mathrm{e} 7]\)} \\
\hline hole_seti(j \(\mathbf{j}=1 . .3)\) & realx3 & {\([7.03 \mathrm{e} 71.231 \mathrm{e} 81]\)} \\
\hline fld_range_pi \((\mathrm{j}=1 . .2)\) & real & {\([6 . \mathrm{e} 7]\)} \\
\hline elec_setnum & intg & {\([1]\)} \\
\hline hole_setnum & intg & {\([2]\)} \\
\hline optical_phonon & real & {\([0.063](\mathrm{eV})\)} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
impact_chynoweth implements Selberherr's generalization of the Chynoweth [46] impact ionization model described in Sec. 9.1.

Usually, the above formula is fitted to a specific field range; multiple sets of parameters are often needed to cover the field range of interest in a particular simulation.

\section*{Parameters}
- turn_on_zener, if active, is the same as using the zener statement.
- elec__setj is a set of 3 parameters \(\left(\alpha_{n}^{\infty}, F_{c n}, \kappa_{n}\right)\) for the jth field range. It applies to the electron impact ionization rate. hole_setj serves the same purpose for holes.
- \(\mathbf{f l d} \_\)range _nj is the upper limit of the of field range \(j+1\) for the electrons. If we divide the problem in \(N\) field ranges, there will be \(N-1\) field values which serve as boundaries between these regions. No upper value needs to be defined when only one field range is used since it is \(\infty\) by default. fld_range__pj serves the same purpose for holes.
- optical_phonon is the optical phonon energy; it is used to account for the temperature dependence of the parameters via the \(\gamma\) scaling factor described in Sec. 9.1.
- elec__setnum is the number of parameter sets (or field ranges) for electrons. If it is one set of fitted data available, there is no need to use any field range dividers. hole__setnum serves the same purpose for holes.
- mater is the material number where the impact ionization is defined. If a label has previously been defined for this material, mater_label may be used instead.

\section*{Examples}


The following example will take the default impact ionization parameters for mater number 4:
```

impact_chynoweth mater=4

```

\subsection*{22.356 impact_dopant_dependent}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline turn_on_zener & char & {\([\mathrm{no}]\)} \\
\hline model & char & baliga, \([\mathrm{sze}]\) \\
\hline mater_label & char & \\
\hline elec_a_coef & real & {\([1.316 \mathrm{e} 8](1 / \mathrm{m})\)} \\
\hline baliga_cfield_factor & real & {\([4101].(\mathrm{V} / \mathrm{cm})\)} \\
\hline baliga_cfield_expo & real & {\([0.125]\)} \\
\hline hole_a_coef & real & {\([1.818 \mathrm{e} 8](1 / \mathrm{m})\)} \\
\hline hole_critical_field & real & {\([2.036 \mathrm{e} 8](\mathrm{V} / \mathrm{m})\)} \\
\hline optical_phonon & real & {\([0.063](\mathrm{eV})\)} \\
\hline doping_range & realx2 & {\([1 . \mathrm{e} 211 . \mathrm{e} 24]\left(\mathrm{m}^{-3}\right)\)} \\
\hline sze_cfield_factor & real & {\([4 . \mathrm{e} 7](\mathrm{V} / \mathrm{m})\)} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
impact_dopant_dependent activates the empirical dopant-dependent impact ionization model described in Sec. 9.1. This is a variation of the Chynoweth model so some parameters are similar.

\section*{Parameters}
- turn_on_zener, if active, is the same as using the zener statement.
- model activates either the Baliga or Sze models for the doping dependence of the critical field.
- elec__a_coef is equal to \(\alpha_{n}^{\infty}\) in the underlying Chynoweth model. hole__a_coef serves the same role for holes.
- hole_critical_field is the critical field for holes. It is not affected by doping in this model.
- baliga__cfield_factor and baliga_cfield__expo are the prefactor and exponent used in the Baliga model for the doping dependence of the electron critical field. Please note the units which deviate from our usual convention and follow Baliga: any changes in the exponent will also likely require a change in the prefactor.
- sze_cfield_factor is the numerator in Sze's expression for the doping dependence of the electron critical field. It corresponds to a reference value for \(N_{D}=10^{16} \mathrm{~cm}^{-3}\).
- optical_phonon is the optical phonon energy; it is used to account for the temperature dependence of the parameters via the \(\gamma\) scaling factor described in Sec. 9.1.
- doping_range is the range of doping values where the model is used. The software will not extrapolate but will simply use the extremum values when doping is outside of this range.
- mater is the material number where the impact ionization is defined. If a label has previously been defined for this material, mater_label may be used instead.

\section*{Examples}

The following example will take the default impact ionization parameters for mater number 4:
```

impact_dopant_dependent mater=4

```

\subsection*{22.357 impact_lackner}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline turn_on_zener & char & {\([\) no \(]\)} \\
\hline mater_label & char & \\
\hline elec_a_coef & real & {\([1.316 \mathrm{e} 8](1 / \mathrm{m})\)} \\
\hline elec_critical_field & real & {\([1.474 \mathrm{e} 8](\mathrm{V} / \mathrm{m})\)} \\
\hline hole_a_coef & real & {\([1.818 \mathrm{e} 8](1 / \mathrm{m})\)} \\
\hline hole_critical_field & real & {\([2.036 \mathrm{e} 8](\mathrm{V} / \mathrm{m})\)} \\
\hline optical_phonon & real & {\([0.063](\mathrm{eV})\)} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
impact_lackner activates the Lackner impact ionization model described in Sec. 9.1. This is a variation of the Chynoweth model so some parameters are similar.

\section*{Parameters}
- turn_on_zener, if active, is the same as using the zener statement.
- elec__a_coef is equal to \(\alpha_{n}^{\infty}\) in the underlying Chynoweth model. hole__a_coef serves the same role for holes.
- elec_critical_field is the critical field \(F_{c n}\); hole_critical_field is the equivalent term for holes.
- optical_phonon is the optical phonon energy; it is used to account for the temperature dependence of the parameters via the \(\gamma\) scaling factor described in Sec. 9.1.
- mater is the material number where the impact ionization is defined. If a label has previously been defined for this material, mater_label may be used instead.

\section*{Examples}

The following example will take the default impact ionization parameters for mater number 4:
```

impact_lackner mater=4

```

\subsection*{22.358 impact_lackner}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline turn_on__zener & char & {\([\mathrm{no}]\)} \\
\hline mater_label & char & \\
\hline elec_a_coef & real & {\([1.316 \mathrm{e} 8](1 / \mathrm{m})\)} \\
\hline elec_lamda0 & real & {\([1.474 \mathrm{e} 8](\mathrm{V} / \mathrm{m})\)} \\
\hline hole_a_coef & real & {\([1.818 \mathrm{e} 8](1 / \mathrm{m})\)} \\
\hline hole_lamda0 & real & {\([2.036 \mathrm{e} 8](\mathrm{V} / \mathrm{m})\)} \\
\hline optical_phonon & real & {\([0.063](\mathrm{eV})\)} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
impact__mean_free__path activates the simplified mean free path impact ionization model described in Sec. 9.1. This is a variation of the Chynoweth model so some parameters are similar.

\section*{Parameters}
- turn_on_zener, if active, is the same as using the zener statement.
- elec__a_coef is equal to \(\alpha_{n}^{\infty}\) in the underlying Chynoweth model. hole__a_coef serves the same role for holes.
- elec_lamda0 is the mean free path used to calculate the critical field \(F_{c n}\); hole__lamda0 is the equivalent term for holes.
- optical_phonon is the optical phonon energy; it is used to account for the temperature dependence of the parameters via the \(\gamma\) scaling factor described in Sec. 9.1.
- mater is the material number where the impact ionization is defined. If a label has previously been defined for this material, mater_label may be used instead.

\section*{Examples}

The following example will take the default impact ionization parameters for mater number 4:
```

impact_mean_free_path mater=4

```

\subsection*{22.359 impact_model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline use_fermi_level & char & {\([\mathrm{no}]\)} \\
\hline balance_zero_bias & char & {\([\mathrm{yes}]\)} \\
\hline subtract_backg_rate & char & {\([\mathrm{no}]\)} \\
\hline post_process_only & char & {\([\mathrm{no}]\)} \\
\hline elec_vel_factor & real & {\([0.7]\)} \\
\hline hole_vel_factor & real & {\([0.7]\)} \\
\hline
\end{tabular}

The statement impact__model is used to control certain aspects of the impact ionization model in Crosslight such as the driving force behind the model (electric field, hot carrier gradient, etc...) and how to balance out the impact ionization rate at equilibrium so the net generation rate is zero.

\section*{Parameters}
- use_fermi_level is used to indicate that the gradient of the Fermi level rather than the electric field is used to drive the impact ionization (i.e. \(G=f\left(\nabla E_{f n}\right)\) ). Since the Fermi level is flat at equilibrium, this guarantees a net zero generation rate but can cause convergence problems later on where the Fermi level is not smooth. A mixture of field-driven and Fermi-level-driven impact ionization can be used based on impact_fermi_factor in the equilibrium statement.
- balance_zero__bias is used to balance out the generation rate at equilibrium so that the net generation rate is zero. This is the default behavior starting with the 2011 version and a setting of no recovers the previous model. Crosslight strongly suggests that the new default model be used.

The exact method used to accomplish this zeroing out of the net generation rate depends on the subtract__backg_rate setting:
- yes: the background rate at equilibrium (due to the built-in potential) is calculated and subtracted from the generation rate at other bias values \(\left(G=f(F)-f\left(F_{0}\right)\right)\). This model is new to the 2012 version.
- no: the background generation rate is suppressed by subtracting the builtin field at equilibrium from the driving force of the impact ionization models \(\left(G=f\left(F-F_{0}\right)\right)\).
- post__process__only is used to simply make the impact ionization rate available for post-processing printing without actually using it the solver. This may simplify the convergence in the avalanche region but it obviously leaves out important physics.
- elec__vel_factor and hole__vel_factor are used in the hot carrier (hydrodynamic) model to translate the carrier temperature (or energy) into an effective field which drives the impact ionization (i.e. \(G=f\left(T_{e}\right)\) ). This is the default model when the hot carrier model is turned on but the actual impact ionization rate formula must still be activated by using commands such as impact__baraff.

The conversion between the carrier temperature gradient and the effective field is given by:
\[
\begin{equation*}
\frac{3}{2} k_{B}\left(T_{e}-T_{l}\right)=\tau_{e n g} f_{w 2 f} v_{s a t} F \tag{22.22}
\end{equation*}
\]
which states that when a hot carrier travels with an average velocity of \(f_{w 2 f} v_{s a t}\) for a duration of \(\tau_{\text {eng }}\) under the electrical field \(F\), it gains extra energy which raises the carrier temperature \(T_{e}\) above the lattice temperature \(T_{l}\). Here, \(k_{B}\) is
the Boltzman constant and \(\tau_{\text {eng }}\) is the energy relaxation time specified in the hydrodynamic model.
elec__vel_factor and hole__vel_factor correspond to the \(f_{w 2 f}\) parameter above for electrons and holes, respectively. They should always be between 0 and 1 as they define the average carrier velocity as a fraction of the saturation velocity.

\section*{Examples}
impact_model elec_vel_factor=0.7

\subsection*{22.360 impact_okuto_crowell}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline turn_on__zener & char & {\([\mathrm{no}]\)} \\
\hline mater_label & char & \\
\hline elec_a_coef & real & {\([1.316 \mathrm{e} 8](1 / \mathrm{m})\)} \\
\hline elec_critical_field & real & {\([1.474 \mathrm{e} 8](\mathrm{V} / \mathrm{m})\)} \\
\hline elec_a_temper_coef & real & {\([3.05 \mathrm{e}-4](1 / \mathrm{K})\)} \\
\hline elec_cfield_temper_coef & real & {\([6.86 \mathrm{e}-4](1 / \mathrm{K})\)} \\
\hline elec_a_coef_field_expo & real & {\([1]\).} \\
\hline elec_a_cfield_expo & real & {\([2]\).} \\
\hline hole_a_coef & real & {\([1.818 \mathrm{e} 8](1 / \mathrm{m})\)} \\
\hline hole_critical_field & real & {\([2.036 \mathrm{e} 8](\mathrm{V} / \mathrm{m})\)} \\
\hline hole_a_temper_coef & real & {\([3.05 \mathrm{e}-4](1 / \mathrm{K})\)} \\
\hline hole_cfield_temper_coef & real & {\([6.86 \mathrm{e}-4](1 / \mathrm{K})\)} \\
\hline hole_a_coef_field_expo & real & {\([1]\).} \\
\hline hole_a_cfield_expo & real & {\([2]\).} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
impact_okuto_crowell activates the Okuto-Crowell impact ionization model described in Sec. 9.1.

\section*{Parameters}
- turn_on_zener, if active, is the same as using the zener statement.
- elec__a_coef and elec_a_temper_coef express the temperature dependence of the prefactor in Eq. 9.15:
\[
\begin{equation*}
a(T)=a_{0}\left(1+\delta_{a}\left(T-T_{0}\right)\right) \tag{22.23}
\end{equation*}
\]

A similar expression for the holes can be written using hole__a_coef and hole__a_temper_coef.
- elec_critical_field and elec__cfield_temper_coef express the temperature dependence of the critical field in Eq. 9.15:
\[
\begin{equation*}
F_{c n}(T)=F_{c n 0}\left(1+\delta_{F}\left(T-T_{0}\right)\right) \tag{22.24}
\end{equation*}
\]

A similar expression for the holes can be written using hole_critical_field and hole_ccfield_temper_coef.
- elec_a_coef_field_expo is the exponent term on the field in the prefactor of Eq. 9.15. hole__a_coef_field_expo is the equivalent term for the holes.
- elec__a_cfield_expo is the exponent term applied to the critical field in Eq. 9.15. hole__a_cfield__expo is the equivalent term for the holes.
- mater is the material number where the impact ionization is defined. If a label has previously been defined for this material, mater_label may be used instead.

\section*{Examples}

The following example will take the default impact ionization parameters for mater number 4:
```

impact_okuto_crowell mater=4

```

\subsection*{22.361 import_basic}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline name & char & \\
\hline \hline
\end{tabular}
import_basic imports the underlying passive macro into a material library.
See material_lib and basic__var__symbol for further information.

\section*{Examples}
```

begin_library AlGaAs
import_basic name=algaas
import_complex name=cx-AlGaAs
complex_var_symbol var_lib=x var_complex=xw
end_library

```

This set of commands defines the "AlGaAs" library as being composed of the "algaas" passive macro and the "cx-AlGaAs" active macro. The material parameter \(x\) used when invoking the library is translated into the \(x w\) parameter of the active macros and used "as-is" in the passive macro.

\subsection*{22.362 import_complex}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline name & char & \\
\hline
\end{tabular}
import_complex imports the underlying passive macro into a material library.
See material__lib and complex__var_symbol for further information.

\section*{Examples}
```

begin_library AlGaAs
import_basic name=algaas
import_complex name=cx-AlGaAs
complex_var_symbol var_lib=x var_complex=xw
end_library

```

This set of commands defines the "AlGaAs" library as being composed of the "algaas" passive macro and the "cx-AlGaAs" active macro. The material parameter \(x\) used when invoking the library is translated into the \(x w\) parameter of the active macros and used "as-is" in the passive macro.

\subsection*{22.363 import_gain_data}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline file & char & [void] \\
\hline extrap_energy & char & {\([\) yes \(]\)} \\
\hline extrap_conc & char & {\([\) yes \(]\)} \\
\hline extrap_pn_ratio & char & {\([\) no \(]\)} \\
\hline extrap_temper & char & {\([\) yes \(]\)} \\
\hline all_active_mater & char & {\([\) yes \(]\)} \\
\hline active_macro & char & {\([\) void \(]\)} \\
\hline extrap_field & char & {\([\) no \(]\)} \\
\hline read_auger & char & {\([\) no \(]\)} \\
\hline read_density & char & {\([\) no \(]\)} \\
\hline set_constant & real & \\
\hline mater_active & intg & \\
\hline active_and_embedded & intg & \\
\hline
\end{tabular}
import__gain_data imports the gain/index/PL data from an ASCII file generated by the export__gain__data statement. It can also import gain tables from another source provided they follow the same structure.

\section*{Parameters}
- file the data file from which the gain data is to be imported. If not specified, a default file name gain_datafile.txt will be used.
- all__active__mater allows all active layers to use parameters in this statement, unless a specific material number is defined by active__macro or mater_active.
- active__macro indicates that this statement affects all active layers with the above active macro name.
- extrap_energy indicates if extrapolation is used when photon energy is outside of the range of imported data.
- extrap_conc indicates if extrapolation is used when concentration is outside of the range of imported data.
- extrap_pn_ratio indicates if extrapolation is used when hole/electron ratio is outside of the range of imported data.
- extrap_temper indicates if extrapolation is used when temperature is outside of the range of imported data.
- extrap_field indicates if extrapolation is used when field is outside of the range of imported data.
- mater_active if used, will use the imported gain for one particular material. Otherwise, all active material layers will use the imported data.
- active__and_embedded is the number of active and embedded regions sharing parameters in this statement. If not specified, all active and embedded regions will use this command.
- set_constant set the imported gain to fixed value rather than importing the full gain spectrum from a data file.
- read__auger will read computed Auger parameters from the data file. This can be used in cases where an external gain model also computes Auger recombination rates.
- read_density reads carrier density data from a separate file so that external calculations giving the relationship between carrier density, Fermi level, temperature and external field can be used in the simulation.

\section*{Example(s)}
import_gain_data
will import data from gain_datafile.txt.

\section*{Code Sample}

The following Fortran code shows the import procedure. It can be used to generate compatible tables from another source.
```

open(61,file=impg(imp)%gainfile_imp)
if(impg(imp)%jdense_loaded.eq.1) then
densfile='_ds_'//trim(impg(imp)%gainfile_imp)
open(361,file=densfile)
endif

```
read(61,'(a)') line80 ! skip a header line
! three 0/1 numbers to indicate gain/index/PL data used.
```

 read(61,*) impg(imp) \%ixg_use_gain
 *,impg(imp)\%ixg_use_index
*,impg(imp) \%ixg_use_spon
*,impg(imp) \%ixg_use_auger
read(61,'(a)') line80 ! skip an info. line
! range of energy (eV) and number of point in energy (uniform)
read (61,*) ev_wvl11, ev_wvl22,npnt
read(61,'(a)') line80 ! skip an info. line
! range of well concent. in $1 / \mathrm{m}^{\wedge} 3$ (bulk value) and number of points (uniform)
$\operatorname{read}(61, *)$ an1, an2, ncur
read(61,'(a)') line80 ! skip an info. line
! range of hole/elec conc. in well and number of points.
! this can be sent to 1. 1. 1 if you always assum hole=electron
read (61,*) impg(imp) \%gxi_pn_ratio_range (1)
* ,impg(imp)\%gxi_pn_ratio_range(2),impg(imp) \%num_pn_ratio_points
read(61,'(a)') line80 ! skip an info. line
! range of field and number of points (uniform)
! if only one field is available, it is OK. for example:
! 1.e7 1.e7 (V/m) 1 is OK.
read (61,*) impg(imp) \%gxi_field_range (1)
* ,impg(imp)\%gxi_field_range(2),impg(imp)\%num_field_points
if(impg(imp) \%num_field_points.gt.1) then
impg_field_dep=1
endif
read(61,'(a)') line80 ! skip an info. line
! range of temperature and number of points (uniform)
! if only one temperature is available, it is OK. for example:
! 300. 300. 1 is OK.
read (61,*) impg(imp) \%gxi_temper_range(1)
* ,impg(imp) $\%$ gxi_temper_range(2), impg(imp) $\%$ num_temper_points

```
    allocate(impg(imp)\%gxi_ev1d(npnt))
    allocate(impg(imp)\%gxi_conc1d(ncur))
    allocate(impg(imp)\%gxi_pn_ratio1d(
```

* impg(imp)%num_pn_ratio_points))
allocate(impg(imp)%gxi_field(impg(imp)%num_field_points))
allocate(impg(imp)%gxi_temper1d(impg(imp)%num_temper_points))
if(impg(imp)%ixg_use_gain.eq.1) then
allocate(impg(imp)%gxi_gain(npnt,ncur
*,impg(imp)%num_pn_ratio_points
*,impg(imp)%num_field_points
*,impg(imp)%num_temper_points))
endif
if(jread_dense.gt.0) then
allocate(impg(imp)%gxi_elec(
* impg(imp)%num_dense_points
*,impg(imp)%num_field_points
*,impg(imp)%num_temper_points))
allocate(impg(imp)%gxi_hole(
* impg(imp)%num_dense_points
*,impg(imp)%num_field_points
*,impg(imp)%num_temper_points))
endif
if(impg(imp)%ixg_use_spon.eq.1) then
allocate(impg(imp)%gxi_spon(npnt,ncur
*,impg(imp)%num_pn_ratio_points
*,impg(imp)%num_field_points
*,impg(imp)%num_temper_points))
allocate(impg(imp)%gxi_spint(ncur
*,impg(imp)%num_pn_ratio_points
*,impg(imp)%num_field_points
*,impg(imp)%num_temper_points))
endif
if(impg(imp)%ixg_use_index.eq.1) then
allocate(impg(imp)%gxi_index(npnt,ncur
*,impg(imp)%num_pn_ratio_points
*,impg(imp)%num_field_points
*,impg(imp)%num_temper_points))
endif

```
```

if(impg(imp)%ixg_use_auger.eq.1) then
allocate(impg(imp)%gxi_auger(ncur
*,impg(imp)%num_pn_ratio_points
*,impg(imp)%num_field_points
*,impg(imp)%num_temper_points))
endif
impg(imp)%ncur_ixg=ncur
impg(imp)%npnt_ixg=npnt
do ix=1,npnt
impg(imp)%gxi_ev1d(ix)=f_incr(ix,ev_wvl11,ev_wvl22,npnt)
enddo
do ix=1,ncur
impg(imp)%gxi_conc1d(ix)=f_incr(ix, an1, an2,ncur)
enddo
do ix=1,impg(imp)%num_pn_ratio_points
impg(imp)%gxi_pn_ratio1d(ix)=f_incr(ix
*,impg(imp)%gxi_pn_ratio_range(1)
*,impg(imp)%gxi_pn_ratio_range(2)
*,impg(imp)%num_pn_ratio_points)
enddo
do ix=1,impg(imp)%num_field_points
impg(imp)%gxi_field(ix)=f_incr(ix
*,impg(imp)%gxi_field_range(1)
*,impg(imp)%gxi_field_range(2)
*,impg(imp)%num_field_points)
enddo
do ix=1,impg(imp)%num_temper_points
impg(imp)%gxi_temper1d(ix)=f_incr(ix

* ,impg(imp)%gxi_temper_range(1)
* ,impg(imp)%gxi_temper_range(2),impg(imp)%num_temper_points)
enddo

```
numprn=0
if(impg(imp) \%ixg_use_gain.eq.1) then
    numprn=numprn+1
endif
if (impg(imp) \%ixg_use_index.eq.1) then
    numprn=numprn+1
```

 endif
 if(impg(imp)%ixg_use_spon.eq.1) then
 numprn=numprn+1
 endif
 if(impg(imp)%ixg_use_auger.eq.1) then
numprn=numprn+1
endif
! starting read in the data
read(61,'(a)') line80 ! skip an info line
do ix5=1,impg(imp)%num_temper_points ! number of temperature points
do ix4=1,impg(imp)%num_field_points ! number of field points
do ix3=1,impg(imp)%num_pn_ratio_points ! number of p/n ratio points
do ix2=1,ncur ! number of conc. points
do ix1=1,npnt ! number of energy points
! 1st column is list of energy (eV),
! 2nd column is gain in 1/m^3
! 3rd column is change of real refractive index with respect to
! equilibrium concentration, or index(n)-index(n0) where
! n0=equilibrium well concentration.
! 3rd column is PL data in 1/m^3/s/eV (also in bulk value)
! read(61,'(4e21.12e3)') xdum,(tmpprn(kk),kk=1,numprn)
read(61,*) xdum,(tmpprn(kk),kk=1,numprn)
numprn=0
if(impg(imp)%ixg_use_gain.eq.1) then
numprn=numprn+1
impg(imp)%gxi_gain(ix1,ix2,ix3,ix4,ix5)=tmpprn(numprn)
endif
if(impg(imp)%ixg_use_index.eq.1) then
numprn=numprn+1
impg(imp)%gxi_index(ix1,ix2,ix3,ix4,ix5)=tmpprn(numprn)
endif
if(impg(imp)%ixg_use_spon.eq.1) then
numprn=numprn+1
impg(imp)%gxi_spon(ix1,ix2,ix3,ix4,ix5)=tmpprn(numprn)
endif
if(impg(imp)%ixg_use_auger.eq.1) then
numprn=numprn+1

```
impg(imp) \%gxi_auger(ix2,ix3,ix4,ix5)=tmpprn(numprn) endif
enddo
! there must be a blank line here so that the file is GNUPLOT friendly.
! for example, you can plot the gain in GNUPLOT using command:
! plot "mygainfile.txt" using 1:2
! for index change:
! plot "mygainfile.txt" using 1:3
! etc.
read(61, '(a)', end=8126) line80
! integral
```

 if(impg(imp)%ixg_use_spon.eq.1) then
 impg(imp)%gxi_spint(ix2,ix3,ix4,ix5)=
 * f_integr(impg(imp)%gxi_ev1d
 * ,impg(imp)%gxi_spon(1,ix2,ix3,ix4,ix5),npnt)
 endif
    ```
enddo
enddo
enddo
enddo

8126 continue
```

 if(impg(imp)%jdense_loaded.eq.1) then
 do ix5=1,impg(imp)%num_temper_points
 do ix4=1,impg(imp)%num_field_points
 do ix1=1,impg(imp)%num_dense_points
 read(361,'(5e21.12e3)')
 * impg(imp)%gxi_qfln(ix1),impg(imp)%gxi_elec(ix1,ix4,ix5)
enddo
read(361,'(a)') line80
do ix1=1,impg(imp)%num_dense_points
read(361,'(5e21.12e3)')

```
```

* impg(imp)%gxi_qflp(ix1),impg(imp)%gxi_hole(ix1,ix4,ix5)
enddo
read(361,'(a)') line80
enddo
enddo
close(361)
endif ! jdense_loaded
close(61)

```

\subsection*{22.364 import_kp_data}
import__kp__data is the reverse of export__kp__data. For other parameters, please see import__gain_data.

\subsection*{22.365 import_fdtd_data}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline
\end{tabular}

The command import_fdtd__data is used to import FDTD result from a data file. Since FDTD simulations can be quite lengthy, it can be useful to reimport an existing simulation and concentrate on the APSYS electrical modeling only.

Also, single wavelength calculation(e.g. IQE spectrum calculation) can be done by using this command: the FDTD transfer function is reused but the optical pumping is monochromatic.

\section*{Parameters}
- data_file is a name of FDTD data file to be imported. If not specified, a file name "meep_density.dat" will be used as default.

\section*{Examples}
```

import_fdtd_data data_file=meep_density.dat

```

\subsection*{22.366 import_qcl_gain_para}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline directory & char & \\
\hline file & char & \\
\hline escape_fraction & real & {\([0.5]\)} \\
\hline total_active_qw_thick & real & {\([0.016](\mathrm{um})\)} \\
\hline adjust_resonant_field & real & {\([0].(\mathrm{V} / \mathrm{m})\)} \\
\hline sp.rate_2d_integral & real & {\([1 . \mathrm{e} 19](1 / \mathrm{m} / \mathrm{s})\)} \\
\hline
\end{tabular}
import__qcl_gain__para is used during the full simulation of a QCL laser. When using this approach, the first step is to do a microscopic gain calculations using the gain preview mode (.gain file) and a single period of the QCL superlattice. These results are then imported in the larger macroscopic project (.sol) using this statement; the larger projects includes all the QCL layers and turns on the full Drift-Diffusion model and other important effects.

This statement requires the use of qc__laser_preview to generate the QCL properties that will be imported. The full simulation done in the macroscopic project is similar to the LI curve generated by this preview statement but is more accurate.

\section*{Parameters}
- directory is the location of the microscopic project which computes the optical gain.
- file is the file containing the QCL gain parameters.
- escape_fraction is the fraction of the current which escapes the QW region; this determines the overflow leakage.
- total__active_qw_thick is the total thickness of the QWs belonging to the active region in one period of the QCL superlattice.
- adjust_resonant_field can be used to manually shift the broadening curve for the resonant tunneling. This can account for inaccurate values of the field in the microscopic gain project.
- sp.rate_2d_integral is the total integrated spontaneous emission rate \(\left(\int r_{s p}(E)\right)\). Unlike typical active regions, this value is not computed alongside the optical gain in the QCL model.

\section*{Examples}
```

import_qcl_gain_para directory=micro file=qcl_para.txt \&\&
escape_fraction=0.0002 total_active_qw_thick=0.0163 \&\&
adjust_resonant_field=0.1e7

```

\subsection*{22.367 import_raytrace}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline device_type & char & {\([\) led \(], \mathrm{pd}\)} \\
\hline mater_label & char & \\
\hline mater & intg & {\([1]\)} \\
\hline data_set & intg & {\([1]\)} \\
\hline
\end{tabular}
import_raytrace is used to import the post-processing ray tracing results of a previous simulation into a new device simulation. This provides increased selfconsistency by importing the photon density into the simulation.

\section*{Parameters}
- device_type is the type of device, led for a light emitting diode or \(p d\) for a photodetector or solar cell.
- mater is the material number into which the imported photon density is introduced. If a label has previously been defined for this material, mater_label may be used instead.
- data__set selects which photon density profile is loaded into the simulation. Since the original data is only available at a few select data sets at which the post-processing ray tracing was previously performed.

\section*{Examples}
```

import_raytrace mater=3 data_set=6

```

\subsection*{22.368 include}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline file & char & {\([\) void \(]\)} \\
\hline ignorej \((\mathrm{j}=1 . .9)\) & char & {\([\) void \(]\)} \\
\hline
\end{tabular}
include is used to include another file as part of the present input file. It is similar to
\#include

\section*{Parameters}
- file is the name of the file being included.
- ignorej \((\mathbf{j}=1 . .9)\) are statements in the included file that are to be ignored and not included in the merged input file.

\section*{Examples}
include file=laser1.doping

\subsection*{22.369 independent__mqw}
independent__mqw is used in .layer file to override the default behavior and assign different material numbers for active layers with the same composition. The default simplification is done to speed up the calculations since it allows the Schrödinger solver to be called only once for each material. Using independent__mqw will thus increase the computation time.

Overriding the default behavior is nevertheless recommended for self-consistent quantum well calculations. In this case, the shape of the confining potential also depends on the local field for each well.

\subsection*{22.370 independent_zdir_mqw}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline zseg_range & intgx2 & {\(\left[\begin{array}{l}199999] \\
\hline\end{array}||\right.\).}
\end{tabular}
independent__zdir_mqw is equivalent to the independent__mqw statement. However, it applies to quantum wells defined by stacking mesh planes in the z direction rather than those defined in the .layer file.

\section*{Parameters}
seg_range can be used to restrict the range of application of this command.

\section*{Examples}
independent_zdir_mqw zseg_range=(4 6)

\subsection*{22.371 index_field_dependence}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & \\
\hline linear_term & real & {\([0].(\mathrm{m} / \mathrm{V})\)} \\
\hline square_term & real & {\([0].\left(\mathrm{m}^{2} / \mathrm{V}^{2}\right)\)} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
index \(\qquad\) dependence is used to describe a field-dependent refractive index.

\section*{Parameters}
- linear__term is the linear term of the field dependence. It is related to the Pockels constant.
- square_term is the square term of the field dependence. It is related to the Kerr effect.
- mater is the number assigned to the material affected by this statement. If a label has previous been defined as an alias, mater_label may be used instead.

\section*{Examples}
```

index_field_dependence linear_term=1.e-12 square_term=1.e-19 mater=2

```

\subsection*{22.372 index_model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline sample__mesh & char & [no]yes \\
\hline use_l.w.e.factor & char & [no]yes \\
\hline free-carrier & char & [yes] no \\
\hline interband & char & [yes] no \\
\hline linear_active & char & [no] yes \\
\hline linear__passive & char & [no] yes \\
\hline free_carr_passive & char & yes [no] \\
\hline force_update & char & yes [no] \\
\hline eg_fac1 & real & {\([10]\).} \\
\hline eg_fac2 & real & {\([2]\).} \\
\hline l.w.e.factor & real & {\([1.0]\)} \\
\hline an_active & real & {\([0.0]\left(\mathrm{m}^{3}\right)\)} \\
\hline bn_active & real & {\([0.0]\left(\mathrm{m}^{3} / \mathrm{K}\right)\)} \\
\hline ap_active & real & {\([0.0]\left(\mathrm{m}^{3}\right)\)} \\
\hline bp_active & real & {\([0.0]\left(\mathrm{m}^{3} / \mathrm{K}\right)\)} \\
\hline an_passive & real & {\([0.0]\left(\mathrm{m}^{3}\right)\)} \\
\hline bn_passive & real & {\([0.0]\left(\mathrm{m}^{3} / \mathrm{K}\right)\)} \\
\hline ap_passive & real & {\([0.0]\left(\mathrm{m}^{3}\right)\)} \\
\hline bp_passive & real & {\([0.0]\left(\mathrm{m}^{3} / \mathrm{K}\right)\)} \\
\hline p_expo & real & {\([1.0]\)} \\
\hline sample_point & intg & {\([200]\)} \\
\hline
\end{tabular}
index_model is used to calculate the index change with respect to equilibrium. In effect, the actual index of a material during the simulation is given by the sum of the value defined by real_index and this index change.

If this statement is not used, the default settings shown above will be used to turn on most important index change models. This statement should be used to alter this default selection; for example, to enable free-carrier index change in passive regions.

There are various independent contributions to the index change; these models are outlined in Sec. 8.4. Some terms can be turned on/off for passive and/or active regions according to the parameters of this statement.

To enable models which are for active regions only, it is possible to simply modify the input file so that a region which does not contribute significant gain is still treated as a bulk active region. This causes the program to perform additional work which is not useful in terms of the gain but as a result, the index change terms will become available.
- sample_mesh is used to compute the index change due to interband transitions (Kramers-Kronig). If turned on, the index change is computed for all mesh points. Otherwise only one calculation is used, based on the average carrier density in the active region.
- use_l.w.e.factor indicates whether or not the user-defined line with enhancement factor (given by the l.w.e.factor parameter) is used to compute the index change.
- free_carrier and free_carrier_passive indicate whether index change induced by free carrier absorption is included for the active and passive layers, respectively.
- interband turns on the index change due to interband transitions (KramersKronig).
- linear__active and linear_passive turn on the linear index change model for active and passive layers, respectively.

Note that the linear model is not exactly linear as it supports exponent control on the hole density. The formula is more properly written as:
\[
\begin{equation*}
a_{n} *\left(n-n_{0}\right)+b_{n} *\left(p-p_{0}\right)^{p_{\operatorname{expo}}} \tag{22.25}
\end{equation*}
\]
where \(n, n 0, p, p 0\) are the electron and hole carrier densities under bias and at equilibrium. The \(a\) and \(b\) coefficients can be defined separately for active and passive layers.
- force__update is used to force the update of the index change with bias. To save on computation time, by default only laser simulators like LASTIP and PICS3D will compute the index change. To force APSYS to have the same behavior, turn on this option.
- eg_fac1 and eg_fac2 are used to define the energy bounds of the KramersKronig integral. These upper and lower limits \(\left(E_{01}, E_{02}\right)\) are defined by:
\[
\begin{align*}
E_{01} & =M A X\left[M I N\left(E \_g, E\right)-e g \_f a c 1 E_{\text {scat }}, 0\right]  \tag{22.26}\\
E_{02} & =e g_{\_} f a c 2 E_{g}  \tag{22.27}\\
E_{\text {scat }} & =\hbar / \tau_{\text {scat }} \tag{22.28}
\end{align*}
\]
where the \(E_{g}\) is the bandgap and \(E\) is the photon energy of interest.
- sample__point is the number of sample points in spectrum used to evaluate the integrand in the K-K relation. The size of this parameter directly influences the speed of the integration and therefore the speed of the simulator. Please note that the K-K relation used to compute the index change due to carrier injection into the active region involves an integral over the energy range and is rather time consuming. Turning on this model slows down the simulator substantially.

\section*{Examples}
index_model use_l.w.e.factor=yes l.w.e.factor=2

\subsection*{22.373 index_spectrum}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline spectrum_file & char & {\([\) void] } \\
\hline mater_label & char & {\([\) void \(]\)} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
index_spectrum is used to assign experimental complex refractive index data \((n, k)\) to a material. This is used in combination with light__power to obtain wavelength-dependent optical generation rate. The primary application of this statement is solar cells.

\section*{Parameters}
- spectrum_file is the file name containing the refractive index data. The first number on each line must be the wavelength in \(\mu m\), while the second and the third numbers must be the corresponding real and imaginary indices.
- mater is the material number to which the index data is assigned. If the material has previous been assigned a label, mater_label may be used instead.

\section*{Examples}
```

index_spectrum spectrum_file=solar.silicon mater=1

```

The first few lines of the file referenced above are shown below:
\begin{tabular}{lll}
\(0.250000 \mathrm{E}+00\) & \(0.137933 \mathrm{E}+01\) & \(0.366056 \mathrm{E}+01\) \\
\(0.260000 \mathrm{E}+00\) & \(0.172880 \mathrm{E}+01\) & \(0.407596 \mathrm{E}+01\) \\
\(0.270000 \mathrm{E}+00\) & \(0.207826 \mathrm{E}+01\) & \(0.468393 \mathrm{E}+01\) \\
\(0.280000 \mathrm{E}+00\) & \(0.295235 \mathrm{E}+01\) & \(0.525848 \mathrm{E}+01\) \\
\(0.290000 \mathrm{E}+00\) & \(0.416276 \mathrm{E}+01\) & \(0.516935 \mathrm{E}+01\) \\
\(0.300000 \mathrm{E}+00\) & \(0.452816 \mathrm{E}+01\) & \(0.413007 \mathrm{E}+01\) \\
\(0.310000 \mathrm{E}+00\) & \(0.489356 \mathrm{E}+01\) & \(0.355234 \mathrm{E}+01\) \\
\(0.320000 \mathrm{E}+00\) & \(0.495612 \mathrm{E}+01\) & \(0.325949 \mathrm{E}+01\) \\
\(0.330000 \mathrm{E}+00\) & \(0.502415 \mathrm{E}+01\) & \(0.307249 \mathrm{E}+01\)
\end{tabular}

To avoid any issues with data extrapolation, the user is strongly encouraged to provide index data for the entire wavelength range used in the simulation.

\subsection*{22.374 index_wavel}
index \(\qquad\) wavel is the same as gain wavel except it plots the index change.

\subsection*{22.375 init_wave}
\begin{tabular}{|c|c|c|}
\hline parameter & data type & values [defaults] \\
\hline steady_state_photon & char & [no] \\
\hline sidemode_enh_model & char & [no] \\
\hline power_dep_facet & char & [],left,right,both \\
\hline photon_bal_model & char & [no] \\
\hline lateral_mode_bal_model & char & [no] \\
\hline frozen_gain_thm_model & char & [no] \\
\hline point_ll & realx2 & ( \(\mu \mathrm{m}\) ) \\
\hline point_ur & realx2 & ( \(\mu \mathrm{m}\) ) \\
\hline fld_center & realx2 & ( \(\mu \mathrm{m}\) ) \\
\hline init_wavel & real & ( \(\mu \mathrm{m}\) ) \\
\hline spon_mode & real & [1.e-3] \\
\hline length & real & [300.0] ( \(\mu \mathrm{m}\) ) \\
\hline backg_loss & real & [0.0] (1/m) \\
\hline wavel_range & realx2 & [0.5 1.8] ( \(\mu \mathrm{m}\) ) \\
\hline mirror_ref & real & [0.3] \\
\hline prn.gain_range & real & [-9999. -9999.] ( \(\mu \mathrm{m}\) ) \\
\hline gain.sat & real & [0] \(\mathrm{m}^{3}\) ) \\
\hline photon_fac & real & [1.e7] \\
\hline front__back & realx2 & [-9999. -9999.] \\
\hline delta_index & real & [0.3] \\
\hline n_ubdata & realxn & \\
\hline n_lbdata & realxn & \\
\hline rtg_omega_scale & real & [1.e13] \\
\hline power_dep_coef1 & real & [0.] \(\left(W^{-1}\right)\) \\
\hline power_dep_coef2 & real & [0.] \(\left(W^{-2}\right)\) \\
\hline power_dep_coef3 & real & [0.] \(\left(W^{-3}\right)\) \\
\hline ase_mode_deg_factor & real & [1.] \\
\hline boundary_type & intgx4 & \(\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]\) \\
\hline ubdata_num & intg & [0] \\
\hline lbdata_num & intg & [0] \\
\hline prn.gain_num & intg & [50] \\
\hline
\end{tabular}

The statement init__wave initializes several parameters needed to solve the wave equation. Note that geometric dependent parameters such as point__ll and point__ur can be overridden by corresponding parameters in the wave__boundary statement.


Figure 22.13: Schematics of the boundary condition for the wave equation.

\section*{Parameters}
- steady__state_photon forces the photon density to stay fixed in transient simulations \(\left(\frac{d S}{d t}=0\right)\).
- point_ll and point_ur are lower-left and upper-right points of the window within which the wave equation is solved (see also Fig. 22.13). This window must be less than or equal to the full device size defined in the .geo input file.

This window must be reduced in certain cases to prevent the mode solver from finding certain non-lasing optical modes. For example, many designs (such as gain-guided devices) support modes with a high effective index but with poor overlap with the active region. These modes will be picked ahead of the actual lasing mode by the solver since they are sorted in order of decreasing effective index.

The user should carefully set the window size in these structures to capture the right lasing modes without perturbing their boundary conditions too much.
- fld_center is the estimated optical mode center. Note that this information is only used to initialize the wave function and may or may not coincide with the optical field center in the final solution.
- init__wavel is the initial (or guess) emission wavelength corresponding to the peak modal gain. After finding the wave distribution using this wavelength, the software calculates the modal gain spectrum within wavel_range and determines the peak gain wavelength. Therefore, init_wavel is used only once.
- length is the optical cavity length. This is needed to compute the mirror loss or emission loss in LASTIP. This term is not used in PICS3D and the section statements are used instead.
- backg_loss is the minimum background loss coefficient assigned by default to all regions outside the active region. When the absorption statement is used in a material macro or as an override, the larger of the two values will take precedence. By default, most Crosslight macros are set up to define zero absorption so that backg_loss is used for all the cladding layers of a laser.
Additional carrier-dependent loss terms can also be added by the appropriate statements: this is often important in thermal simulations.
- wavel_range is the search range used to determine the peak lasing gain in LASTIP.
- mirror_ref is the mirror reflectivity needed to calculate the mirror loss at a given cavity length in LASTIP. When using asymmetric mirrors, front__back may be used instead.

When LASTIP is used to model a DFB laser, mirror_ref should be set to an effective value that will approximate the grating loss. However, it is preferable to use PICS3D to model these devices.

In PICS3D, this parameter is not used. Mirror boundary conditions are set using the longitudinal statement.
- prn.gain_range is the wavelength range within which the gain spectral data are computed and printed at each set of structural data. The default settings force this parameter to be the same as wavel_range.
- gain.sat is the gain saturation (or gain suppression) coefficient \(\varepsilon\) given by the following two-level system formula:
\[
\begin{equation*}
g=\frac{g_{0}}{1+\varepsilon \sum_{i} S_{i}} \tag{22.29}
\end{equation*}
\]
where \(g\) and \(g_{0}\) are the optical gain with and without gain saturation, respectively, and \(S_{i}\) is the photon density of mode \(i\).

Cross-saturation between optical modes is only supported in PICS3D through the sidemode_enh_model setting. This enables a special gain saturation formula that mimics the effects of the standing wave pattern: this is omitted in
the normal coupled-wave formalism currently used for edge-emitting devices. When the model is turned on, the gain saturation for mode \(j\) is expressed as:
\[
\begin{equation*}
g_{j}=g_{0} \frac{1+\varepsilon \sum_{i \neq j} S_{i}}{1+\varepsilon \sum_{i} S_{i}} \tag{22.30}
\end{equation*}
\]

With this model turned on, the mode which carries the most photons (i.e. main mode) is subject to the gain suppression to a larger extent than the side modes. This is expected to degrade the side mode suppression ratio as the bias increases which may help to explain mode hopping behavior in certain devices.
- photon_fac is the factor used to divide the photon number in the rate equation so that the order of magnitude is the same as for the other equations. In PICS3D, the round-trip gain equation is also affected by this parameter.
If the device is very large, the photon number in the laser cavity may also be very large. In that case, the residue of even a well-converged rate equation may show a large error in output \(\log\) (5th column in printout). which can prevent the solver from converging. Increasing this value gives less weight to the photon rate equation in the Newton solver and can help fix these convergence issues at the cost of less precision in the solution for the photon number.
- spon_mode is the fraction of the isotropic spontaneous emission that couples into the lasing mode inside the laser cavity. It appears in the photon rate equation and determines how much spontaneous emission couples into the lasing mode. The coefficient \(\beta\) is often used in textbooks to represent this fraction.
- front__back is used to specify the front and the back facet power reflectivity. This will override the value in mirror_ref. If only mirror_ref is used, both the front and back facets are assumed to be the same.
- n__ubdata and n_lbdata are window specifications used to override the default rectangular window defined by point_ll and point__ur. The format is ( \(\mathrm{x} 1 \mathrm{y} 1 \mathrm{x} 2 \mathrm{y} 2 \ldots . \mathrm{xn} \mathrm{yn}\) ) where x and y are point coordinates and n is the total number of points in the boundary. The value defined in ubdata_num and lbdata_num must be equal to \(2^{*}\) n.
- rtg_omega_scale is used to scale the laser frequency variable in the coupledRTG method. The laser frequency is converted into a unitless number of the order of unity via this parameter.
- delta_index is used to describe a boundary where the wave function decays exponentially by a function:
\[
W(x)=W_{0} \exp \left(-k_{0} * d e l t a \_i n d e x * x\right)
\]
where \(k_{0}\) is the wave number and delta_index is estimated from the effective index (which may be unknown before the simulation):
\[
\text { delta } \_i n d e x^{2}=e f f e c t i v e \_i n d e x^{2}-l o c a l \_i n d e x^{2}
\]
- boundary_type is the boundary types on the sides of the window. The boundary type is represented by four integers in the order (lx1,lx2,ly1,ly2). The corresponding boundary is indicated in Fig. 22.13. The integers can only take on values of \(1,2,3\) or 5 :
- Type 1 is a Dirichlet boundary condition where the wave intensity must
be zero at the boundary. This type is used when the boundary is far enough away from the optical mode. In the case where the boundary is a symmetry axis (lx1 in Fig. 22.13), a zero intensity boundary condition produces an optical mode with odd symmetry.
- Type 2 is a Neumann boundary condition where the slope of the wave function must be zero at the boundary. This boundary produces modes with even symmetry so the wave function at point A is the same as at point B in Fig. 22.13.
In a one-dimensional simulation with semiconductor layers parallel to the x -direction, the optical mode has translational symmetry in the x direction. Therefore, both lx1 and lx2 boundaries should be type 2 while ly1 and ly2 should be type 1 .
- Type 3 is used to represent a truncated wave function that decays exponentially. This type of boundary may be useful in cases where the user wishes to save some mesh points by cutting a large portion of the device area out of the wave solution window. In such case, we may assume the wave decays exponentially at the boundary. This choice works together with the parameter delta_index.
- Type 5 represents a boundary of perfectly matched layer (PML). Refer to Sec. 12.6 for details.
- ubdata_num and lbdata__num specify the number of variables used in n__ubdata and n_lbdata. It must always be equal to twice the number of points in the matching boundary declaration.
- prn.gain_num is the number of wavelength data points used to compute the gain and spontaneous emission spectra at each data set.
- power_dep_facet turns on a power-dependent mirror reflectivity model. The mirror reflectivity is adjusted by \(\Delta R=a P+b P^{2}+c P^{3}\) where the \(a, b, c\) coefficients are given by power_dep_coefi, \(\mathbf{i}=1 . .3\).
- photon__bal__model enables an alternate model for the photon rate equation PICS3D; this makes the model closer to LASTIP and guarantees energy conservation.

By default, PICS3D uses the cavity round-trip gain and solves a complex equation for unity gain and phase matching: \(R T G=1+0 i\). When the photon balance model is turned on, the wavelength of the mode is taken from solution of the imaginary part of the RTG; the magnitude of the RTG is then used to compute the effective mirror loss and the photon rate equation compares this loss term to the integrated stimulated recombination and internal loss rates.
As of version 2017 of the software, this model should be considered experimental.
- lateral__mode_bal__model serves a similar function to the ignore_phase parameter of the longitudinal statement but only applies when photon__bal__model=yes. With this model enabled, the wavelength of the mode is taken from the peak gain instead of the solution of the RTG equation.
As of version 2017 of the software, this model should also be considered experimental.
- frozen_gain_thm_model is a model intended to improve convergence of high-power lasers in the thermal roll-over region. When this model is enabled, the solver will disable the solution of the full drift-diffusion equation at high temperatures if it detects that the convergence is stalling. When those equations are disabled using this model, the software will switch to using a simplified linear equation to model all layers as simple ohmic resistors.
- ase__mode_deg_factor is used to scale the photon density of states for the amplified spontaneous emission (ASE) propagation model in PICS3D. This model is mostly used for superluminescent diodes and optical amplifiers.
For cases where only half the structure is modeled, this value should be set of \(\frac{1}{2}\) to correctly count \(D(E)\); if the full width of the device is modeled, this value should be set to 1 . A default of value of 1 is used for pre-v2017 backwards compatibility purposes.

\section*{Examples}

\section*{For a 1-D structure:}
```

init_wave point_ll=(0., 0.0) point_ur=(1.5, 3.08) \&\&
fld_center=(0.5, 1.5) length=300 backg_loss=1000. \&\&
boundary_type=(2 2 1 1) init_wavel=1.3 mirror_ref=0.32 \&\&
wavel_range=(1.2, 1.4)

```

For a 2-D structure with \(1 x 1\) boundary as the symmetry axis:
```

init_wave point_ll=(0., 0.0) point_ur=(3.5, 3.0) \&\&
fld_center=(0.5, 1.5) length=300 backg_loss=1000. \&\&
boundary_type=(2 1 1 1 1) init_wavel=1.3 mirror_ref=0.32 \&\&
wavel_range=(1.2, 1.4)

```
For a 2-D structure without any symmetry axis:
init_wave point_ll=(0., 0.0) point_ur=(7.0, 3.0) \&\&
    fld_center=(3.5, 1.5) length=300 backg_loss=1000. \&\&
    boundary_type=( \(\left.\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)\) init_wavel=1.3 mirror_ref=0. 32 \&\&
    wavel_range=(1.2, 1.4)
For a generic boundary with 4 corner points:
init_wave ... \&\&
    ubdata_num=8 8_ubdata \(=\left(\begin{array}{lllllll}0.3 .16 & 0.773 & 3.16 & 1.5 & 2.16 & 6.2\end{array}\right)\)

\subsection*{22.376 inner_bar_gain}

The statement inner_bar_gain is used to specify that inner barriers of a complex MQW region are to be treated like any other quantum-coupled region.
This statement was originally created for historical reasons: the original design of our MQW model assumed that barrier and well layers alternated in the following pattern: b/w/b/w/.../b. As such, the optical gain was only calculated in the even-numbered parts of the complex region which corresponded to the quantum wells.

When this statement is turned on, the pattern may be regarded as being \(b / w / w / w / \ldots / w / b\) : the exact shape, thickness and profile of the outer barriers is still ignored by the Schrödinger solver as those regions only serve as boundary conditions for the solver. See Sec. 8.2 and Fig. 8.4 for more details.

Please note that this statement is obsolete when using the "library" (Sec. 3.5) method of declaring quantum regions: the equivalent of inner_bar_gain is automatically assumed when declaring a quantum region in this manner.

This statement has no parameters.

\subsection*{22.377 insert_mesh_order}
\begin{tabular}{|l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline layer_index & intg & {\([1]\)} \\
\hline
\end{tabular}
insert__mesh__order is used by the geo3d mesh connection tool to decide the order of connection for the inserted mesh planes, respective to the order to the mask layers in the GDS files.

This statement is usually created automatically by the MaskEditor GUI program and loaded into the main simulation via a .zst file.

\section*{Parameters}
- layer_index is the GDS mask layer number at which additional mesh planes are added.

\section*{Examples}
insert_mesh_order layer_index=2

\subsection*{22.378 insert_mesh_plane}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline xz_data & char & \\
\hline loop & char & yes,[no] \\
\hline xy_mesh & char & \\
\hline side & intg & \\
\hline
\end{tabular}
insert__mesh_plane is used to insert additional mesh planes with the geo3d mesh connection tool and increase the mesh density in a specific region of a z-segment. This is most often used to added "bent" mesh planes that conform to rounded device shapes: this is a more economical solution compared to adding traditional mesh planes.

This statement is usually created automatically by the MaskEditor GUI program and loaded into the main simulation via a .zst file.

\section*{Parameters}
- xz_data is the mesh plane profile in the xz plane. The file name follows a specific pattern which indicates the mask layer after which the plane is inserted.
- loop specifies that the plane profile in the xz plane forms a closed loop.
- xy__mesh is the mesh triangle information in the xy plane.
- side is a parameter automatically added by the MaskEditor GUI and CSUPREM; it describes a group of lines corresponding to the same set of inserted mesh planes.

\section*{Examples}
```

insert_mesh_plane xz_data=layer2_ixz33.txt loop=yes \&\&
xy_mesh=layer2_ixy33.msh

```

\subsection*{22.379 insert_mesh_range}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline xrange & realx2 & \\
\hline \hline
\end{tabular}
insert _mesh _range defines the range of x coordinates where additional mesh planes are present. This statement is used by the geo3d mesh connection tool.

\subsection*{22.380 integer_func}

The command is identical to loop__integer.

\subsection*{22.381 interface}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline model & char & [recomb], charge, trap \\
\hline trap_type & char & [donor], acceptor \\
\hline x_label & char & [void] \\
\hline y_label & char & [void] \\
\hline within_x1_label & char & [void] \\
\hline within_x2_label & char & [void] \\
\hline within_y1_label & char & [void] \\
\hline within_y2_label & char & [void] \\
\hline zplane_label & char & [void] \\
\hline upper_lower_cosine & char & yes,[no] \\
\hline left_right_sine & char & yes,[no] \\
\hline outer_recomb_only & char & yes,[no] \\
\hline traplevel_model & char & [void], gaussian, expo__tail, uniform \\
\hline traplevel_tail_side & char & [conduction], valence \\
\hline within_x & realx2 & {\([-1 . \mathrm{e} 51 . \mathrm{e} 5](\mathrm{um})\)} \\
\hline within_y & realx2 & {\([-1 . \mathrm{e} 51 . \mathrm{e} 5](\mathrm{um})\)} \\
\hline velocity_n & real & {\([1 . \mathrm{e} 6](\mathrm{m} / \mathrm{s})\)} \\
\hline velocity_p & real & {\([1 . \mathrm{e} 6](\mathrm{m} / \mathrm{s})\)} \\
\hline fix_charge & real & {\([1 . \mathrm{e} 14]\left(1 / m^{2}\right)\)} \\
\hline trap__density & real & {\([1 . \mathrm{e} 16]\left(1 / m^{2}\right)\)} \\
\hline trap_level & real & {\([0.5](\mathrm{eV})\)} \\
\hline trap_life_n & real & {\([1 . \mathrm{e}-7][\mathrm{s})\)} \\
\hline trap_life_p & real & {\([1 . \mathrm{e}-7](\mathrm{eV})\)} \\
\hline x & real & (um) \\
\hline y & real & (um) \\
\hline traplevel_stddev & real & {\([0.1](\mathrm{eV})\)} \\
\hline traplevel_tail & real & {\([0.05](\mathrm{eV})\)} \\
\hline traplevel_width & real & {\([0.5](\mathrm{eV})\)} \\
\hline surftrap_num & intg & {\([1]\)} \\
\hline upper_lower_mater & intgx2 & \\
\hline left_right_mater & intgx2 & \\
\hline zplane_num & intg & \\
\hline & & \\
\hline
\end{tabular}

The interface statement is used to specify semiconductor interface states and the physical models used by the simulation software. The interface may be between semiconductor and vacuum or between different types of semiconductors. This statement may be used multiple times to define different interfaces.

Note that the solver internally deals with 3D quantities while this statement uses 2 D sheet quantities as inputs. All values are there converted internally by software by using the local mesh area \(A\) and the equivalent interface length \(d\) :
\[
\rho_{3 D}=\frac{\sigma_{2 D} * d}{A}
\]

Note that for historical reasons (modeling of silicon devices), the default interface length is obtained by the adding up the triangle edge lengths at the boundaries between different materials: as per the usual finite volume method, half of the connecting triangle edge lengths is assigned to each mesh point. Unless special care is taken, this convention may lead to corner effects as seen in Fig. 22.14.


Figure 22.14: Schematic interface representation of the interface length around a mesh point: the equivalent interface length is outlined in red. Note that the outside of the mesh is on the right of the figure: this exposed area automatically counts as a different material. a) interface between two points sharing the same material b) interface at the corner between two materials

\section*{Parameters}
- model indicates the type of model to be used to describe the physics of the interface. The available options are:
- recomb defines surface recombination velocities.
- charge defines fixed interface charge densities.
- trap defines surface traps.
- trap_type is the charge type of the deep surface traps (donor or acceptor).
- within_x, within_y defines the extent of the interface in the x and y directions, respectively. Usually, only one of these is used and the other coordinate is given with a fixed value.
- velocity__n and velocity__p are the surface recombination velocities for electrons and holes, respectively.
- fix_charge is the fixed charge surface density. It can be negative or positive.
- trap_density is the surface trap density.
- trap_level is the trap energy level measured from the conduction band.
- trap_life__n and trap_life__p is the trap life time of minority electrons and minority holes, respectively.
- traplevel_model may be used to define a continuous distribution of trap states. If this statement is omitted, then a single energy level is used.
- traplevel_stddev is the trap level standard deviation if the trap level model is gaussian.
- traplevel_tail is the characteristic decay constant \((L)\) of the exponential tail model \(e^{-E / L}\). The energy \(E\) is measured from either the conduction of valence band depending on the value of traplevel_tail_side.
- traplevel__width is the energy width for a uniform distribution of trap states.
- \(\mathbf{x}\) and \(\mathbf{y}\) are fixed coordinate values that define the position of the interface. Usually only one of these is used and the other coordinate is specified using a range.
- surftrap__num is a numeric label used to identify a specific kind of trap for later use. Multiple traps with different identifiers can coexist in the same region.
- x_label and y_label are pre-defined labels that can be used instead of the fixed values in \(\mathbf{x}\) and \(\mathbf{y}\). These labels must be defined using the \(\mathbf{x} \_\)position and \(\mathbf{y}\) __position statements. See the help for these statements for details on how they can be automatically generated.
- within_x1_label, within_x2_label, within_y1_label and within_y2__label are predefined labels similar to \(\mathbf{x} \_l a b e l\). They control the ranges defined in within_x and within_y, respectively.
- zplane__num applies the interface settings from this command to entire mesh plane specified. If a label has previously been defined, zplane_label may be used instead.
- upper_lower__mater restricts the interface to the region where these 2 material numbers touch. Note that this kind of interface is meant to be used between horizontal layers, such as in the textures surfaces of a solar cell. Since there can be different interfaces at the top and bottom of a given layer, the order of the numbers is important: for example, (2 4) and (4) 2) represent different interfaces.
left_right__mater is similar to the above but may be used for materials that are in separate columns (e.g. at a regrowth region or at the edges of an etched mesa). Here again, the order of the materials is important, with the first number representing the material on the left side of the interface.
- upper_lower_cosine is used to apply a \(\cos ()\) scaling to surface charges/traps based on the shape of the interface. It can only be used in conjunction with upper_lower_mater.
left_right__sine is similar but applies a \(\sin ()\) scaling when used in conjunction with left_right__mater.
- outer_recomb__only modifies the calculation method for the equivalent interface length in Fig. 22.14 so that only the triangle edges exposed to the outer surface count. This correction eliminates the corner effects mentioned in the introduction to this command.

\section*{Examples}
```

\$ For a surface between 0.5 to 2 um, we define a Fermi level
\$ pinning acceptor mid-gap trap
interface model=trap trap_type=acceptor \&\&
within_x=(0.5 2.) within_y=(0.4 0.6) \&\&
trap_density=1.e16 trap_level=0.8 \&\&
trap_life_n=1.e-7 trap_life_p=1.e-7 surftrap_num=1
\$
\$ We can use a surface recombination model here:
interface model=recomb \&\&
within_x=(0.5 2.) within_y=(0.4 0.6) \&\&
velocity_n=1.e6 velocity_p=1.e6

```

\subsection*{22.382 interface_leakage}
\begin{tabular}{||l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline add_hopping & char & yes, \([\mathrm{no}]\) \\
\hline conductance & real & {\([1].(\mho / m(2 \mathrm{D}), \mho(3 \mathrm{D}))\)} \\
\hline conductance_hopping & real & {\([0].(\mho / m(2 \mathrm{D}), \mho(3 \mathrm{D}))\)} \\
\hline trap_level_depth & real & {\([1.2](\mathrm{eV})\)} \\
\hline hopping_distance & real & {\([1].\left(\mu m,(\mu m)^{2}\right)\)} \\
\hline trap_size_hopping & real & {\([1 . \mathrm{e}-3](\mu m)\)} \\
\hline trap_level_ref & real & {\([1.2](\mathrm{eV})\)} \\
\hline between_contacts & intgx2 & {\([1,2]\)} \\
\hline
\end{tabular}
interface_leakage defines an additional current term which bypasses the normal mesh and is added directly to the contacts. This current term may be used to represent ad hoc leakage effects from interface traps.

\section*{Parameters}
- add_hopping turns on a trap hopping model for the leakage current, with a conductance defined by conductance_hopping.
The trap parameters for the hopping model have the same definition as in trap__assisted__tunneling: trap__level_depth, hopping_distance, trap_size__hopping, trap_level_ref.
- conductance determines the magnitude of the leakage current.
- between_contacts is a pair of contact numbers where the additional current term is added.

\subsection*{22.383 interface_mesh}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline accuracy & real & {\([1 \mathrm{e}-4](\mathrm{um})\)} \\
\hline
\end{tabular}
interface_mesh determines the accuracy of statements which define an interface at a particular location. Some fuzziness is required since the mesh points may not lie at exactly the desired location.

\section*{Examples}
```

interface_mesh accuracy=1e-3
interface model=recomb y=1.0 \&\&
velocity_n=1.e6 velocity_p=1.e6

```

With the default accuracy setting, the software will look for an interface at \(\mathrm{y}=1.0\) \(\mu m, \pm 1 \mathrm{e}-3 \mu m\).

\subsection*{22.384 interface_trap_capacitor}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline surf_trap_density & real & {\([1 . \mathrm{e} 16] \mathrm{m}^{-2}\)} \\
\hline effective_range & real & {\([1].\left(\mu m(2 \mathrm{D}), \mu m^{2}(3 \mathrm{D})\right)\)} \\
\hline dft_dv & real & {\([1 . \mathrm{e}-3]\left(V^{-1}\right)\)} \\
\hline between_contacts & intgx2 & {\([1,2]\)} \\
\hline
\end{tabular}
interface_trap_capacitor defines an additional current term which bypasses the normal mesh and is added directly to the contacts. This current term may be used to represent ad hoc capacitance effects from interface traps.

\section*{Parameters}
- surf_trap_density is the density of surface trap states.
- effective_range defines the size of the virtual capacitor plates in this model.
- dft_dv describes the shift in trap occupancy due to the applied voltage.
- between_contacts is a pair of contact numbers used to determine the applied voltage on the virtual capacitor and on which the additional current term is added.

\subsection*{22.385 internal_z_xpoint}

This statement is similar to internal__xpoint in that it specifies the position of extra mesh points at heterojunctions. The difference is that it applies to stacked mesh planes in a 3D simulation rather than to the interface between layers and columns.

\subsection*{22.386 integer_func}

The command is identical to loop__integer.

\subsection*{22.387 internal_xpoint}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline all_interfaces & char & [yes],no \\
\hline material_label1 & char & \\
\hline material_label2 & char & \\
\hline auto_mater_priority & char & [no],yes \\
\hline turn_off_xp & char & [no],yes \\
\hline xp_size & real & [0.0001] \((\mu \mathrm{m})\) \\
\hline
\end{tabular}

The internal_xpoint statement is used to control the internal extra point spacing which defines the sharpness of the heterojunctions. The default behavior of the software is to always add an extra point slightly offset from the interface at polygon and contact boundaries. This extra point is necessary because mesh points in the Crosslight system can only be assigned a single material number so the actual boundary between two materials (and the accompanying change in the material properties) is mid-way between two neighboring mesh points. Without an extra point at interfaces, the position of the boundary and the thickness of certain layers may depend on the regular mesh spacing and affect the results of the simulation.
See also the put__mesh statement which defines the regular mesh point spacing for a given polygon edge. If the regular mesh spacing in certain regions is smaller than the internal point spacing given in this command, the software may decide to omit the superfluous extra point.

This statement may be used in both the .geo and .layer input files; it may be issued more than once to define different extra point spacings for various interfaces inside the device.
- all_interfaces flags whether all material interfaces are affected by this statement.
- material_label1 and material_label2 are used by .layer only. If used, it indicates that this statement is valid for the interface between these two materials. The labels used here must have been previously defined in a layer_mater declaration.
- auto__mater_priority decides which material the extra interface point is assigned to. If this parameter is set to no, the material with the lowest material number will be assigned the extra point. If this parameter is set to yes, the extra point will be assigned to the semiconductor region whenever a semiconductor/oxide interface is located.
- turn_off_xp may be use to deliberately turn off the creation of the extra mesh point. This is not usually recommended unless the mesh spacing near the interface is sufficiently small.
- xp__size is the extra point spacing described above.

\subsection*{22.388 isolate_complex}

This statement is used in the .layer file to break a complex MQW region (cx-macro) into smaller pieces. When used after a layer or column statement, the complex region will immediately end and a new complex region will begin. This can be used to add some localization to a thick complex MQW region, much like the independent__mqw statement.

However, there is a significant difference:
- independent__mqw will assign a different active region number to each well in a complex MQW region. The confined level search is done in each well but the wave function is solved for the entire complex MQW region.
- st:isolate_complex will break up a complex MQW region into smaller pieces with different active region numbers. The Schrödinger equation and confined energy levels will be solved separately in each new complex region.

This statement has no parameters.

\subsection*{22.389 isolate_mesh_segment}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline add_z_space & real & (um) \\
\hline
\end{tabular}

This statement is used between z_structure statements to insert a void (unmeshed) region between these z-segments. This offset also has the effect of cutting
off mesh connections between these segments, much like the z_connect parameter of 3 d __solution__method.

The primary use of this statement is to treat multiple 2D devices within the same TCAD simulation. For example, a external circuit simulation using minispice might have more than one mixed-mode device. Since those devices are not necessarily monolithically integrated on-chip, adding a spacer region is necessary to prevent their mutual interaction at the FEM level. The spacer also helps clarify plots of the various quantities by separating the devices, an added benefit compared to using z_connect \(=\) no.

\subsection*{22.390 jdos_energy}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline energy_range & realx2 & \\
\hline data_point & intg & {\([50]\)} \\
\hline
\end{tabular}
jdos_energy plots the joint density of states (JDOS) versus energy. This statement is only used in the gain preview module. It is otherwise identical to elec__dos_energy.

\subsection*{22.391 kane_para_f_bar}
kane_para_f_well is an active layer macro parameter which defines Kane's parameter \(F\) [61, Eq. 2.5] in a barrier region.

This parameter is only used in basic QW macros that contain parameters for both the well and barrier regions; it is otherwise identical to kane__para_f__well

\subsection*{22.392 kane_para_f_well}
kane__para_f__well is an active layer macro parameter which defines Kane's parameter \(F\) [61, Eq. 2.5] in a quantum well region. This parameter defines the strength of the interaction between the conduction band and valence band in the zincblende \(k \cdot p\) method; it is also included as a second-order correction to the dipole moments when calculating the interband transition strength.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material__par
in section 22.456 .

\subsection*{22.393 kp_model_setting}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline correction_for_8x8 & char & [no], yes \\
\hline optical_matrix_para_ep & real & (eV) \\
\hline all_material & char & {\([\mathrm{yes}]\)} \\
\hline mater_label & char & \\
\hline mater & intg & \\
\hline
\end{tabular}
kp__model__setting is used to control some of the internal model settings in the zincblende \(k \cdot p\) model.

Note that this command should only be used if the user desires more control over internal values used inside the Hamiltonian: the default settings should be correct but depend on correct calibration of macro parameters.

\section*{Parameters}
- correction_for_8x8 determines whether a correction term is applied to carrier mass and the Luttinger parameters when solving an 8 x 8 or blockdiagonalized 4 x 4 Hamiltonian. If kp__model_setting is not used or if this parameter is equal to yes, a correction term is applied to account for the fact that the conduction band states are explicitly solved. In terms of Löwdin perturbation theory, the correction occurs because we remove the perturbative effects of the conduction band by moving it away from class B and into class A: the existing perturbation term thus needs to be removed from the coupling coefficients in the Hamiltonian.

When this correction is applied, the following modified parameters are used to solve the Hamiltonian[66]:
\[
\begin{gather*}
\left.\frac{m_{0}}{m_{c}}\right|_{\text {modified }}=\frac{m_{0}}{m_{c}}-E_{p} \frac{E_{g}+2 \frac{\Delta}{3}}{E_{g}+\Delta}  \tag{22.31}\\
\left.\gamma_{1}\right|_{\text {modified }}=\gamma_{1}-\frac{E_{p}}{3 E_{g}+\Delta}  \tag{22.32}\\
\left.\gamma_{2}\right|_{\text {modified }}=\gamma_{2}-\frac{1}{2}\left(\frac{E_{p}}{3 E_{g}+\Delta}\right)  \tag{22.33}\\
\left.\gamma_{3}\right|_{\text {modified }}=\gamma_{3}-\frac{1}{2}\left(\frac{E_{p}}{3 E_{g}+\Delta}\right) \tag{22.34}
\end{gather*}
\]
where \(m_{c}\) is the electron mass, \(\gamma_{1,2,3}\) are the Luttinger parameters, \(E_{g}\) is the bandgap, \(\Delta\) is the spin-orbit coupling coefficient and \(E_{p}\) is the optical matrix parameter.

Under this correction approach, the parameters defined in material macros always refer to the experimental values that appear on the right-hand side of the above equation. These parameters are also appropriate to use as-is for lower-order \(k \cdot p\) models which only take into account the coupling between valence bands and where conduction band perturbation effects remain in class B.

If \(\mathrm{kp} \_\)model__setting is used but correction_for__ \(8 \mathrm{x} 8=\) no, then no modification of the parameters occurs inside the software and the parameters from the macro are used as-is to solve the Hamiltonian. Note that since these parameters are used as-is for simulations that include conduction band coupling, their values would not be appropriate to use in lower-order \(k \cdot p\) models.
We note that other authors[61] give a different correction term for the Luttinger parameters:
\[
\begin{align*}
& \left.\gamma_{1}\right|_{\text {modified }}=\gamma_{1}-\frac{E_{p}}{3 E_{g}}  \tag{22.35}\\
& \left.\gamma_{2}\right|_{\text {modified }}=\gamma_{2}-\frac{E_{p}}{6 E_{g}}  \tag{22.36}\\
& \left.\gamma_{3}\right|_{\text {modified }}=\gamma_{3}-\frac{E_{p}}{6 E_{g}} \tag{22.37}
\end{align*}
\]

Therefore, disabling the automatic correction in the software and using the macro parameters as-is enables users to experiment with these different correction methods.
- optical__matrix_para_ep, if used, manually defines the value of the optical matrix parameter ( \(E_{p}\) ) in the correction formulas above. To explain the
importance of this parameter, let us recall the definition of Kane's parameter \((F)\) from perturbation theory \([61,66]\) :
\[
\begin{equation*}
F=\frac{1}{m_{0}} \sum_{j}^{\Gamma_{5}} \frac{|<S| p_{x}|X>|^{2}}{E_{c}-E_{v}} \tag{22.38}
\end{equation*}
\]
so that the experimentally-measured conduction band mass is given by:
\[
\begin{equation*}
\frac{m_{0}}{m_{c}}=1+2 F+E_{p} \frac{E_{g}+2 \frac{\Delta}{3}}{E_{g}+\Delta} \tag{22.39}
\end{equation*}
\]

When applying the usual correction term for the \(8 \times 8\) Hamiltonian, the perturbation from the conduction band must be removed and the modified mass used in the Hamiltonian is thus given by:
\[
\begin{equation*}
\left.\frac{m_{0}}{m_{c}}\right|_{\text {modified }}=1+2 F \tag{22.40}
\end{equation*}
\]

As we can see from the above, \(F\) and \(E_{p}\) are not independent fitting coefficients: this value is used to define the influence from both class A and class B states when solving the \(8 x 8\) Hamiltonian. While tabulated data may provide both values[61], for the sake of consistency only one of these parameters should be used for the entire model.
If optical__matrix__para__ep is not defined or if kp__model_setting is not used at all, the electron mass defined in the macro is assumed to be the experimentally-measured mass and the value of \(F\) is taken from kane__para_f_ well and kane__para_f__bar. \(E_{p}\) is then obtained by inverting Eq.22.39.
If optical__matrix_para_ep is defined then this value is used for \(E_{p}\) and both kane__para_f__well and kane__para_f__bar will be ignored.
We note that defining this value has no influence on whether or not the 8 x 8 correction is applied in the first place: it merely controls what value of \(E_{p}\) is used for this correction.
- all_material instructs the software to use the same model settings for all materials in the simulation: this should not be used if this command is used to define the value of \(E_{p}\).
- mater applies this command to a single material number; if labels have been defined for this material, mater_label may be used instead.

\section*{Examples}
kp_model_setting correction_for_8x8=no optical_matrix_para_ep=22.4 \&\& mater=1 all_material=no

\subsection*{22.394 lastip_compact_model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline file & char & {\([\) crosslight_compact.txt] } \\
\hline polarization & char & {\([\) te], tm } \\
\hline active_region_width & real & {\([10](\mu \mathrm{m})\)} \\
\hline
\end{tabular}
lastip_compact_model is used to export device-scale simulation results from LASTIP as a simplified compact model which may be used in other software tools. This approach is often used to represent a Fabry-Perot laser diode in system-scale simulations which contain multiple photonic devices.
The format of the compact model may be obtained by simply running this command and examining the output file (text format). This file contains basic information about the laser cavity (length, mirror reflectivity, etc...), important simulation inputs (non-linear gain coefficient, active region width, etc...) and tabulated values for other key variables (material gain and spontaneous emission spectra, confinement factor, etc...).

The LASTIP compact model was developed for use in tools by Lumerical. Other software vendors interested in collaborating on this topic are invited to contact Crosslight.

\section*{Parameters}
- file is the output filename used for exporting the compact model.
- polarization determines whether TE or TM data is exported in the compact model.
- active_region__width is the ridge width of the waveguide.

\subsection*{22.395 lateral_mode3d}
\begin{tabular}{|l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline sort_modes & char & yes,[no] \\
\hline mode_num & intg & {\([1]\)} \\
\hline
\end{tabular}
lateral_mode3d is used to enable the multi-lateral mode capability in PICS3D: each lateral mode is propagated so that it has its own set of longitudinal modes. Note that the mode solver itself must also be configured to find multiple lateral modes.

\section*{Parameters}

- sort_modes determines the order in which lateral modes are used for PICS3D. If yes, the lateral mode with highest emission power will always be assigned as mode number one; otherwise, the lateral mode order in the 3D model will be the same as that in 2D wave equation solutions.
- mode_num is the total number of lateral modes to be simulated in PICS3D.

\section*{Examples}
lateral_mode3d sort_modes=no mode_num=2

\subsection*{22.396 lattice_bar}

This statement is used to define the unstrained lattice constant \(a\) (in \(\AA\) ) in the barrier region of a wurtzite active structure. See also lattice_cc_bar.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material__par in section 22.456 .

\subsection*{22.397 lattice base}

This statement defines the lattice constant \(a\) (in \(\AA\) ) on which a bulk (passive) wurtzite region is grown (e.g. strained to match a GaN buffer layer). It is used by the software as a reference lattice with which to compute the as-grown strain in the layer. See also lattice__c_base.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material__par in section 22.456.

\subsection*{22.398 lattice_bulk}

This statement is used to define the unstrained lattice constant \(a\) (in \(\AA\) ) in bulk (passive) wurtzite regions. See also lattice_c__bulk.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

\subsection*{22.399 lattice_c_base}

This statement defines the lattice constant \(c\) (in \(\AA\) ) on which a bulk (passive) wurtzite region is grown (e.g. strained to match a GaN buffer layer). It is used by the software as a reference lattice with which to compute the as-grown strain in the layer. See also lattice__base.
The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

\subsection*{22.400 lattice_c__bar}

This statement is used to define the unstrained lattice constant \(c\) (in \(\AA\) ) in the barrier region of a wurtzite active structure. See also lattice_bar.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456.

\subsection*{22.401 lattice_c_bulk}

This statement is used to define the unstrained lattice constant \(c\) (in \(\AA\) ) of a bulk (passive) wurtzite region. See also lattice__bulk.
The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material__par in section 22.456 .

\subsection*{22.402 lattice_c_constant}

This statement defines the lattice constant \(c(\) in \(\AA\) ) on which a wurtzite active region is grown (e.g. strained to match a GaN buffer layer). It is used by the software as a reference lattice with which to compute the as-grown strain in the layer. See also lattice_constant.
The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

\subsection*{22.403 lattice_c_well}

This statement is used to define the unstrained lattice constant \(c\) (in \(\AA\) ) in the well region of a wurtzite active structure. See also lattice__well.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

\subsection*{22.404 lattice_constant}

This statement defines the reference lattice constant \(a\) (in \(\AA\) ) on which an active region is grown. It also serves as a reference lattice constant to fix the size of the Brillouin zone for all calculations done in momentum ( \(k\) ) space.
For wurtzite materials, this value is often set to the lattice constant of a GaN buffer layer; this value is then used by the software to compute the as-grown strain in the layer. See also lattice_c__constant which defines the lattice constant along the \(c\) axis.

Note that materials grown on AlN for UV applications should not use the value of GaN as this will not produce the correct strain.

For zinclende materials, the strain is explicitly defined using the strain_well and strain__bar. This statement therefore does not determine the strain but must still be specified for other reasons.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

\subsection*{22.405 lattice_well}

This statement is used to define the unstrained lattice constant \(a\) (in \(\AA\) ) in the well region of a wurtzite active structure. See also lattice_cc_well.
The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material__par in section 22.456 .

\subsection*{22.406 lax_mass_bar}
lax__mass__bar is similar to tax__mass__bar but defines the longitudinal mass parallel to the symmetry axis rather than the transverse mass.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.407 lax_mass_well}
lax__mass__well is identical to lax__mass__bar but defines the longitudinal/parallel mass in the well region rather than in the barrier.
The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.408 layer}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline vcsel_type & char & void \\
\hline section_tag & char & void \\
\hline add_leftmesh & char & void \\
\hline d & real & {\([0.5]\)} \\
\hline r & real & {\([1]\).} \\
\hline angle & real & {\([0]\).} \\
\hline wj (j=1,2,...,30) & real & \\
\hline lower_wj & real & \\
\hline upper_wj & real & \\
\hline n__dopingj & real & \\
\hline p_dopingj & real & \\
\hline gaussian_tail & real & {\([0.001](\mu \mathrm{m})\)} \\
\hline shift_center & real & {\([0].(\) fraction \()\)} \\
\hline grading_fromj & real & \\
\hline grading_anglej & real & {\([90].(\) degree \()\)} \\
\hline z_gaussian_tail & real & {\([0.0](\mu \mathrm{m})\)} \\
\hline n & intg & {\([5]\)} \\
\hline mj & intg & {\([1]\)} \\
\hline use_dbr_period & intg & {\([0]\)} \\
\hline
\end{tabular}
layer defines the dimensions and mesh parameters of a material layer in the .layer file.

Please note that this statement can only be used to define a material with either n-type or p-type of doping, not both. To define a material with both types (that is, compensating doping), the statement layer__mater should be used. Unlike layer, layer__mater can define both types of doping at the same time.

\section*{Parameters}
- vcsel_type is used to label the present layer as part of a VCSEL longitudinal section. Please note that this is only a label to be defined by the user. It works together with the same parameter in the vcsel_section statement. section_tag also serves the same purpose.
- add_leftmesh is used to add mesh-generating commands to the left side of polygons when generating the .geo file. This may be necessary in cases where there is a gap in the structure and mesh lines do not propagate as they should.
- \(\mathbf{d}\) is the thickness of the layer.
- \(\mathbf{r}\) is the ratio which determines mesh spacing characteristics. See Fig. 22.22 for details.
shift_center is a related parameter which applies for negative mesh ratios and symmetric mesh distributions. This parameter is used to adjust the center of the distribution.
- angle is used in conjunction with upper__w\# and lower__w\# to specify the shape of the polygon formed by a column and layer.
- angle is defined as the angle between the y-axis (left side of the column) and the edge of the material (left side of the polygon), in degrees.
- lower__w\# gives the width of the lower edge of a polygon in this layer, where \# is the column number.
- upper_w\# gives the width of the upper edge of a polygon in this layer, where \# is the identification number of its column.
- n_doping\# and p_doping\# define the n-type or p-type doping, respectively, in column \#. This will generate a doping profile in the .doping file which can later be included in the main simulation file (.sol).
Note that only one type of dopant can be used in a given layer: use layer__mater when both types of dopant need to be defined. Another important note is that the doping must be specified in SI units \(\left(1 / m^{3}\right)\) rather than the frequently used \(1 / \mathrm{cm}^{3}\).
- gaussian_tail is the Gaussian tail (standard deviation) of the doping profile defined by \(n \_d o p i n g \#\) or \(\mathbf{p} \_\)doping \#.
- grading_fromj and grading__anglej are used to define linear grading profiles in column \(j\). The maximum value of the doping in this layer is given by n_doping\# or \(\mathbf{p}\) _doping\#.
grading_fromj is the relative starting value (e.g. 0.01) of the doping profile. grading_anglej is the direction of variation of the doping: its value is in degrees and the reference direction (angle \(=0\) ) is the +x direction.
- \(\mathbf{n}\) is the number of mesh lines to be placed in this layer.
- \(\mathbf{m} \#\) can be used to assign a certain material number to the polygon formed by this layer and column \#. This parameter is there for historical reasons only. For any new simulations, it is recommended to let the software assign material numbers automatically based on the macro name and composition parameters in layer__mater.
- use_dbr_period overrides the thickness parameter d and instead ensures that the layer thickness is equal to an integer multiple (the value of which is given in this parameter) of the previously-defined optical DBR period thickness. This parameter must be used in conjunction with the vertical__dbr__layer__mater statement to define the individual components of the DBR embedded in this layer.
For DBRs that consist of a fractional number of pairs (e.g. 30.5 pairs of AlAs/GaAs), the layer should be split with the leftover fraction of the DBR as a separate layer with its own single-layer optical section.
- z_gaussian__tail is used to extend the xy doping defined in this layer along the \(\mathbf{z}\)-direction. The value defined here corresponds to the \(\mathbf{z} \_\)stddev setting of the doping statement once the layer file is processed.

\section*{Examples}
layer \(\mathrm{d}=0.29 \mathrm{n}=5 \mathrm{r}=1\).

\subsection*{22.409 layer_conf}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline layer_xrange & realx2 & {\([0.5].(\mu \mathrm{m})\)} \\
\hline layer_yrange & realx2 & {\([2.2 .1](\mu \mathrm{m})\)} \\
\hline mode_index & intg & {\([1]\)} \\
\hline
\end{tabular}
layer_conf is used as a post-processing statement to calculate the optical confinement factor for a rectangular region (not necessarily the active region).
- layer_xrange and layer_yrange are used to specify the rectangular cross section on the xy-plane (lateral) for which the optical confinement factor is to be calculated.
- mode_index is the lateral mode index. Mode 1 is the fundamental mode; mode 2 is the 2 nd order mode, etc..

\section*{Example:}

\subsection*{22.410 layer_height_ref}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline location & char & [left], middle, right \\
\hline delta_x_from_left & real & (um) \\
\hline delta_x_from_right & real & (um) \\
\hline
\end{tabular}
layer__height__ref is used in conjunction with modify__layer__height to define a reference position on the x-axis where the height is not modified.

This command's parameters are identical to those of column__position and positions are defined relative to the last column command that was issued.

\subsection*{22.411 layer_input_convention}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline layer_unit & char & [absolute], relative \\
\hline ignore_active_thickness & char & yes,[no] \\
\hline ref_wavelength & real & {\([1].(\mu \mathrm{m})\)} \\
\hline ref_temperature & real & {\([300].(\mathrm{K})\)} \\
\hline set_active_thickness & real & \((\mu m)\) \\
\hline absolute_scale & real & 1. \\
\hline
\end{tabular}

This parameter is used in the .layer file to change default behaviors during processing.

\section*{Parameters}
- layer__unit switches between absolute units for the layer thicknesses and a value relative to the wavelength.
- ref__wavelength is the reference wavelength when using relative values.
- ref_temperature is the temperature at which relative values are calculated.
- ignore__active_thickness instructs layer.exe not to use the layer thickness as an input to active region declarations; the thickness defined in set__active_thickness is used instead. This may be used in devices such as nanowires where quantum confinement occurs laterally rather than vertically.
- absolute_scale scales all thicknesses uniformly when processing the layer file. Unlike the layer__unit setting, the refractive index of the material in the layer is ignored when scaling the thickness.

\section*{Examples}

\$ DBR average index=3.2 emission wavelength=0.834
\$ For convenience, define reference wavelength=0.834/3.2=0.26
layer_input_convention layer_unit=relative ref_wavelength=0. 26

\subsection*{22.412 layer_mater}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline macro_name & char & [void] \\
\hline active_macro & char & [void] \\
\hline solve__wave & char & {\([\) yes \(]\) no) } \\
\hline material_label & char & [void] \\
\hline contact_type & char & [ohmic] \\
\hline n__impurity & char & [void] \\
\hline p_impurity & char & [void] \\
\hline zdir_grading & char & [no] \\
\hline mater_lib & char & \\
\hline var_symbolk(k=1..9) & char & \\
\hline avar_symbolk(k=1..9) & char & \\
\hline vari(i=1..9) & real & \\
\hline grade_from & real & \\
\hline grade_to & real & \\
\hline avari(i=1..9) & real & \\
\hline n_doping & real & \\
\hline p__doping & real & \\
\hline agrade_from & real & \\
\hline agrade_to & real & \\
\hline barrier & real & \\
\hline work_function & real & \\
\hline n_level & real & (eV) \\
\hline p_level & real & (eV) \\
\hline thick_zdir_grading & real & (um) \\
\hline column__num & intg & {\([1]\)} \\
\hline grade_var & intg & {\([0]\)} \\
\hline n_newdoping_index & intg & \\
\hline p_newdoping_index & intg & \\
\hline agrade_var & intg & {\([0]\)} \\
\hline contact_num & intg & {\([0]\)} \\
\hline
\end{tabular}
layer_mater is used in the .layer pre-processing to define the material in a particular layer and column. It can also be used to define the doping in that region, a capability which is partially shared with the layer statement. However, geometric and mesh properties for a given layer are solely the purview of the layer statement.

When used, layer_mater allows the layer.exe program to detect changes in material composition and automatically assign material numbers to the various polygons. It
also generates a .mater file with material macro loading statements that can be used in the full .sol simulation or the .gain preview.

\section*{Parameters}
- macro_name is the name of the bulk/passive macro for this material. This macro contains all information related to the electrical transport properties of the material and any other useful information which is not related to optical gain calculations.

The online help or Wizard can list available macro names in the default macros in the installation but custom macro names can be used provided the corresponding macro is later defined and included in the simulation with use_macrofile.

A few special macro names deserve a bit more explanation:
- void defines a region without any mesh and can be used to create columns with different numbers of layers. This should not be confused with air or vacuum macros which define dielectric materials and where mesh points will be assigned. This can have a strong effect on optical mode solutions as it changes the position of the wave boundary conditions.
- contact defines the polygon as an equipotential boundary region. This can be used in place of top_contact and other similar commands in atypical situations where the contact is not located at the outer edge of the mesh. It is also used in 3D situations when stacking mesh planes and the contact area can be defined as an in-plane polygon.
As with all contact declaration, it is also necessary to define the contact_type (ohmic or Schottky) and contact number (contact_num). For Schottky contacts, the electron barrier height (barrier) or work function (work_function) must also be defined. It is also recommended to define large doping concentrations in contact layers to align the quasiFermi levels with neighboring polygons more easily.
- active__macro is the same as macro__name but refers to the active macros that define the parameters for optical gain calculations. Active macros are therefore designed so that they can used in the .gain preview mode and are thus completely independent from the passive macros. This also means that quantum well active macros define parameters for both the quantum well and the barrier layers.
Also note that by default, active macro settings will almost always override passive macro settings for the same parameter (e.g. bandgap). This means that a quantum well active macro will likely override parameters from the bulk macro in both the quantum well and barrier layers.
- mater_lib is the same as macro__name and active__macro but it assigns material properties to this layer using the combined "library" method of Sec. 3.5. Using this parameter will generate a material_lib statement when the .layer file is processed.
- solve_wave is used to exclude a particular region from the optical mode calculations. This will affect the settings of the wave__boundary statement that is automatically generated by layer.exe.
- material_label is a user-defined label that can be used to refer to this material in other statements.
- var_symbolk, \(\mathrm{k}=1, \ldots, 9\) are the symbolic variable names used as function arguments in the bulk material macro. With the exception of a few reserved keywords such as temper, the symbols defined here must exactly match those in the macro declaration.

Note that all default macros now use the free-from style and thus depend on the symbol declarations to function properly. However, the older fixed-form style can still be used with older macros. In this case, the symbol declarations may be omitted and the software will assume that the order of the variables in layer_mater matches exactly that of the macro declaration.
A similar set of parameters, avar__symbolk, define the symbols for the active macro. The same rules for free-form and fixed-form macros apply.
- vari, \((\mathrm{i}=1,2, \ldots 9)\) defines a fixed value for the ith symbol (free-form style) or function parameter (fixed-form style) in the passive macro. A similar set of parameters, avari, define the values for the active macro.
- grade_from and grade_to are the compositions values at the bottom and top of the layer, respectively, for a linearly graded region. These parameters only affect the passive macro parameter or symbol number specified in grade__var. Since the composition varies, the corresponding vari declaration should be omitted.

Note that it is not currently possible to vary two or more parameters at the same time. However, users may rewrite macros so that all composition parameters change according to a single control variable (e.g. \(z=1-x-y\) ).
A similar set of parameters are used to grade active regions: agrade_from, agrade_to and agrade__var.
- n_doping and \(\mathbf{p} \_\)doping are the doping concentration in this layer/column polygon. This setting may conflict with the doping definition in the layer statement so doping should be define in either one statement or the other but not both. Note that unlike layer, both \(n\) and p doping can be defined in the same polygon.

Additional doping parameters can also be set here:
- n__impurity and p_impurity define the type of dopant.
- n__level and p__level define the activation energy of the dopant.
- n__newdoping_index and \(\mathbf{p} \_\)_newdoping_index are used to identify a particular set of doping regions so that the doping concentration can be during the simulation.

All these settings are explained in greater detail in the doping statement, which is generated automatically by layer.exe.
- column__num is the column number on which the present statement operates.
- zdir_grading is used to indicate that the grading defined in this layer is along the z direction. This is mostly used when the layer file serves as an input to 3D mesh generation GUI tools. The thickness of the layer should be indicated by thick_zdir_grading in this case since size information from layer does not carry over easily.

\section*{Examples}
layer_mater macro_name=algaas var1=0.71 column_num=1
layer \(\mathrm{d}=1.35 \mathrm{n}=9 \quad \mathrm{r}=0.8 \mathrm{n}\) _doping1=1.e24
The above two statements are used to define a layer of \(\mathrm{AlGaAs}(\mathrm{Al}=0.71)\) in column 1 with thickness \(1.35 \mu \mathrm{~m}\) and n-type doping of \(1 \times 10^{24} 1 / \mathrm{m}^{3}\).
layer_mater macro_name=algaas grade_var=1 \&\&
grade_from=0.71 grade_to=0.33 column_num=1
layer d=0. \(1462 \mathrm{n}=6 \mathrm{r}=0.8\)

The above two statements are used to define a graded AlGaAs with Al varying from 0.71 to 0.33 over a thickness of \(0.1462 \mu \mathrm{~m}\).

\subsection*{22.413 layer_position}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline label & char & \\
hline location & char & {\([\) top] } \\
hline delta_y_from_bottom & real & {\([-9999].(\mu \mathrm{m})\)} \\
\hline delta_y_from_top & real & {\([-9999].(\mu m)\)} \\
\hline
\end{tabular}

This statement is used to mark a specific y coordinate for later use. This is useful to automatically track changes to a device structure without having to redefine coordinates in other commands.

All positions defined by this command are relative to the preceding layer statement.

\section*{Parameters}
- label defines a variable name that can be reused in other commands to refer to this position.
- location specifies a specific part of the layer at which the label is to applied (bottom, top or middle). More control is available by using the "delta" parameters below.
- delta_y_from__bottom specifies a point measured from the bottom of the layer. Positive values point towards the middle of the layer.
- delta_y_from_top specifies a point measured from the top of the layer. Positive values point towards the middle of the layer.

\section*{Examples}
```

layer_mater macro_name=gan column_num=1 n_doping=1.e+24

```
layer \(\mathrm{d}=0.06 \mathrm{n}=5 \mathrm{r}=1\).
\$ n-GaN 1 um
layer_mater macro_name=gan column_num=1 n_doping=1.e+24
layer d=1. \(\mathrm{n}=10 \mathrm{r}=0.8\)
\$ GaN/AlGaN SL, effective medium
layer_mater macro_name=algan column_num=1 var_symbol1=x var1=0.08 \&\&
    n_doping=1.e+24
layer \(\mathrm{d}=0.28875 \mathrm{n}=7 \mathrm{r}=1\).
layer_position label=nsl_start location=bottom

This defines a position named "nsl_start" at \(y=1.06\) when the .layer file is processed.

\subsection*{22.414 layer_type}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline type & char & (see list) \\
\hline doped_organic & char & {\([\) no \(]\)} \\
\hline ox_use_extern_spec & char & {\([\) yes \(]\)} \\
\hline ox_use_exciton_diff & char & {\([\mathrm{yes}]\)} \\
\hline dox_triplet & char & {\([\mathrm{no}]\)} \\
\hline doxk(k>=2)_triplet & char & {\([\mathrm{no}]\)} \\
\hline valley_gamma & intg & {\([1]\)} \\
\hline valley_l & intg & {\([4]\)} \\
\hline valley_hh & intg & {\([1]\)} \\
\hline valley_lh & intg & {\([1]\)} \\
\hline valley_ch & intg & {\([1]\)} \\
\hline mater & intg & {\([1]\)} \\
\hline ox_max_phonon & intg & {\([5]\)} \\
\hline ox_phonon_cloud & intg & {\([4]\)} \\
\hline ox_level_req & intg & {\([80]\)} \\
\hline dox_max_phonon & intg & {\([5]\)} \\
\hline dox_phonon_cloud & intg & {\([4]\)} \\
\hline dox_level_req & intg & {\([80]\)} \\
\hline
\end{tabular}
layer_type is used in active layer macros to denote some general properties. In general, this statement should only be used by the end-user to design new material macros.

\section*{Parameters}
- type activates certain physical models depending on the kind of active region being modeled in the active macro. It takes one of the following values:
- bulk: thick active region with no confining potential.
- unstrained_well: single QW with symmetric barriers and no strain effects.
- strained_well: single QW with symmetric barriers and possibility of strain effects depending on composition.
- complex: complex MQW region without strain effects.
- strained_complex: complex MQW region with strain effects.
- wurtzite_well: single QW with strain effects in the wurtzite material system.
- wurtzite_complex: complex MQW region with strain effects in the wurtzite material system.
- mos_complex: complex MQW region used in Quantum-MOS applications.
- general_cx_strain: general-purpose complex MQW region with strain effects. Used when more flexibility in the parameters is required.
- general_bulk: general-purpose bulk active region. Used when more flexibility in the parameters is required.
- bulk_organic: bulk organic semiconductor such as those used in OLEDs.

Refer to Sec. 8.1 for a comparison for the various QW models in Crosslight.
- doped_organic is to an organic material doped with another polymer that also contributes to the optical properties.
- ox__use_extern_spec indicates whether an experimental or measured EL spectrum is used instead of Crosslight's internal EL model for organic lightemitting regions.
- ox__use_exciton_diff indicates whether exciton diffusion model parameters are used in the present macro.
- dox_triplet defines whether a triplet-harvesting dopant is present.
- doxk_triplet, \(\mathrm{k}=\mathbf{2 . . 5}\) defines the presence of additional triple-harvesting dopants
- valley_gamma is the number of band valley of the Gamma conduction band.
- valley_l is the number of band valleys of the L conduction band.
- valley_hh is the number of band valleys of the HH valence band.
- valley__lh is the number of band valleys of the LH valence band.
- valley_ch is the number of band valleys of the CH valence band.
- mater is the internal material number. This should be omitted when defining a macro but must be used when overriding macro parameters in the .sol file.
- ox_max__phonon is the maximum phonon occupation number at a lattice site in the organic crystal. It is part of the internal EL model for organic semiconductors.
- ox__phonon_cloud is the number of neighboring lattice sites to be considered for the construction of a phonon cloud. It is part of the internal EL model for organic semiconductors.
A phonon cloud is defined as a set of localized excited lattice vibration states to interact with an exciton state. In the Frenkel exciton theory, a larger phonon cloud tends to give more accurate description of a realistic exciton state.
- ox_level_req is the number of energy levels requested when solving the exciton-phonon Hamiltonian. It is part of the internal EL model for organic semiconductors.
- dox_max__phonon is the maximum phonon occupation number at a dopant lattice site in the organic crystal. It is part of the internal EL model for organic semiconductors.
- dox_phonon_cloud is similar to ox_phonon_cloud except it is for the dopant material.
- dox_level_req is similar to dox_level_req except it is for the dopant material.

\section*{Examples}
layer_type type=strained_well valley_gamma=1 valley_l=4 \&\& valley_hh=1 valley_lh=1

\subsection*{22.415 layers_for_semicrafter}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline plane_size_x & real & {\([2.0]\) (um) } \\
\hline plane_size_y & real & {\([2.0]\) (um) } \\
\hline plane_start_x & real & {\([0.0]\) (um) } \\
\hline plane_start_y & real & {\([.0]\) (um) } \\
\hline plane_mesh_x & intg & {\([30]\)} \\
\hline plane_mesh_y & intg & {\([30]\)} \\
\hline column_num & intg & {\([1]\)} \\
\hline
\end{tabular}
layers_for_semicrafter is a .layer pre-processing statement used to generate a set of CSUPREM mesh generation commands. It is meant to be used as quick alternative to the SemiCrafter GUI for simple rectangular shapes.

When used, this statement changes the normal operation of the .layer file. Instead of defining the structure of an xy mesh plane, the layers now define the vertical stacking in the \(z\) direction with each layer corresponding to a z -segment. The shape of the structure in the xy plane (i.e. the top view) is a rectangle defined by using this statement.

See also sym__polygon_for__semicrafter for a more complex version of this command which allows symmetric polygons in the xy plane.

\section*{Parameters}
- plane__start__x and plane_start_y determine the position of the lower left corner of the plane/polygon in the xy plane.
- plane_size_x and plane__size_y determine the extent of the plane/polygon in the xy plane.
- plane__mesh__x and plane__mesh_y determine the number of mesh points in the xy plane.
- column_num is the column number of the .layer file which is used to determine the z -segments.

\section*{Examples}
layers_for_semicrafter plane_size_x=300 plane_size_y=300 \&\& plane_mesh_x=10 plane_mesh_y=10

\subsection*{22.416 lband_bar}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement lband__bar is an active layer macro statement used to define the L-band energy with respect to the Gamma band (eV) in the quantum barrier.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

\subsection*{22.417 lband_well}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement lband__well is an active layer macro statement used to define the L-band energy with respect to the Gamma band (eV) in the quantum well.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material__par in section 22.456 .

\subsection*{22.418 led_control}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline efficiency_model & char & [void] xy, y uniform \\
\hline spectrum_all_bias & char & yes [no] \\
\hline spon_all_points & char & {\([\) no] } \\
\hline use_intern_refl & char & {\([\) no] } \\
\hline photon_recycle & char & {\([\) no], yes } \\
\hline efficiency & real & {\([0.1]\)} \\
\hline wavelength & real & \((\mu m)\) \\
\hline delta_wavel & real & {\([0.1]\)} \\
\hline refl_x1 & real & {\([0.3]\)} \\
\hline refl_x2 & real & {\([0.3]\)} \\
\hline ref_y1 & real & {\([0.3]\)} \\
\hline refl_y2 & real & {\([0.3]\)} \\
\hline group_index & real & {\([3.8]\)} \\
\hline led_xrange & realx2 & \((\mu m)\) \\
\hline led_yrange & realx2 & \((\mu m)\) \\
\hline spectrum_num & intg & {\([35]\)} \\
\hline x_segment & intg & {\([30]\)} \\
\hline
\end{tabular}

The statement led_control is used to control the light emitting diode modeling with the assumption of simple cubic waveguide structure. Such a simple structure will allow some reasonable estimate of light power emission given the basic material and current injection conditions. Please note that this statement works with init__wave to defined a Fabry-Perot cavity.

For a more realistic power extraction model for devices different than the idea cubic waveguide structure, the ray tracing model in combination with the led_simple should be preferred over led_control.

\section*{Parameters}
- efficiency__model is used to compute power extraction efficiency. As we have described in Sec. 14.2, the power emission depends on the available optical mode density distribution in the directions perpendicular to the direction of emission. Thus, the power emission depends on if the device is designed to confine optical modes in a certain direction.
If this parameter takes void, the external emission efficiency is not computed and is set to the value of the efficiency parameter of this statement.

If efficiency__model \(=x y\), the software assumes a waveguide structure with well confined lateral / transverse modes as if we are treating an edge type of semconductor laser. For emission in the z-direction, the lateral modes are computed in the same way as for a semiconducor laser (i.e., in combination with multimode statement). For emission in the x-direction we assume 1D mode confinement in y-direction. For emission in the y-direction, no mode confinement is assumed.

If efficiency__model \(=y\), the software assumes that there is 1 D single mode confinement in y-direction for emission in both z- and z-directions. Again, no mode confinement is assume for emission in y-direction.
Finally, if the LED device is not designed to confine modes in any direction, we set efficiency__model=uniform. Only plane waves are considered when extraction efficiency is computed for this model.
- spon__all_points indicates whether all mesh points are used to evaluate the spontaneous emission spectrum. Computation time is longer if all points are used.
- use_intern_refl is used to turn on the internal reflection model for the 1dimensional (or broad-area) emission calculation. Using this model results in an extraction efficiency lower than realistic values while not using it tends to overestimate the power extraction. Due to advanced power extraction geometrical design for modern LED's, the measured power extraction is closer to the broad-area emission model without internal reflection. Versions of APSYS before to Sept. 2004 used the internal reflection model as default.
- photon_recycle is used to enable the generation term due to the internal photon density. In thermal simulations, this setting allows heat to be generated
by optical absorption. However, please note that APSYS does not posses a photon rate equation: it is expected that LEDs operate below transparency.
- spectrum__all__bias indicates whether spontaneous emission spectrum is computed at all biases or only at data set print points.
- wavelength is the estimated peak emission wavelength in microns.
- delta__wavel is the wavelength range to cover the whole emission spectrum. The total emission power is the integration of the spectrum over this wavelength range.
- refl_x1 is the power reflectivity of the LED cavity on the left side in the x -direction.
- refl_x2 is the power reflectivity of the LED cavity on the right side in the x -direction.
- refl_y1 is the power reflectivity of the LED cavity on the bottom side in the y -direction.
- refl_y2 is the power reflectivity of the LED cavity on the top side in the y -direction.
- group_index is the group index of the traveling waves of the LED.
- led_xrange is the range in the x-direction that we consider to be a FabryPerot cavity. If not specified, the program will search the device geometry and decide the range.
- led_yrange is the range in the y-direction that we consider to be a FabryPerot cavity. If not specified, the program will search the device geometry and decide the range.
- spectrum_num is the number of points used to evaluate the spontaneous emission spectrum.
- x_segment is the number of segments in the x-direction that the program is to sample the material properties and carrier densities for emission in the x and y directions.

\section*{Examples}
```

led_control wavelength=0.437 efficiency_model=uniform \&\&
refl_y1=0.8 refl_y2=0.4 delta_wavel=0.03 \&\&
led_xrange=(0 400) group_index=2.9

```

\subsection*{22.419 led_eff_distr}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline side & char & [top]bottom \\
\hline
\end{tabular}
led__eff__distr plots the LED external efficiency distribution along the x-direction.
- data_file is the file to which the graphic data is written in ASCII format.
- side indicates top or bottom side the efficiency is to be plotted.

\section*{Example(s)}
led_eff_distr side=top

\subsection*{22.420 led_farfield}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline side & char & {\([\) top]bottom } \\
\hline
\end{tabular}
led__eff__distr plots the relative far field intensity distribution.
- data_file is the file to which the graphic data is written in ASCII format.
- side indicates top or bottom side the efficiency is to be plotted.

\section*{Example(s)}
led_farfield side=top

\subsection*{22.421 led__simple}

The statement led__simple is a simplified version of led_control which provides the bare minimum parameters needed to compute the internal quantum efficiency (IQE) of a LED. All its parameters are explained in the latter statement.

Despite its simplicity, this model is recommended over led__control because it can be combined with the ray tracing post-processing to obtain a better estimate of the power extraction from the device.

\subsection*{22.422 led_spectrum}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline total_amount & char & {\([\) yes \(]\) no } \\
\hline mode & char & {\([\mathrm{mix}]\), te,tm } \\
\hline scale & real & {\([1]\).} \\
\hline scale_wavelength & real & {\([1]\).} \\
\hline
\end{tabular}
led_spectrum is a post-processing statement that plots the LED spontaneous emission spectrum.

\section*{Parameters}
- data_file can be used to export the spectrum data to a text file
- total__amount indicates whether the total amount (integrated amount) be plotted.
- mode determines whether the TE, TM or a combined (default) emission spectrum is being plotted.
- scale is the scale of the vertical axis.
- scale_wavelength is the scale of the horizontal axis.

\subsection*{22.423 led_top_coating}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline number_of_layers & intg & {\([1]\)} \\
\hline real_index_led & real & {\([3.5]\)} \\
\hline real_index_out & real & {\([1.5]\)} \\
\hline thicknessj \((\mathrm{j}=1 \ldots 9)\) & real & {\([0.1](\mu m)\)} \\
\hline real_indexj \((\mathrm{j}=1 \ldots 9)\) & real & {\([2.2]\)} \\
\hline imag_indexj \((\mathrm{j}=1 \ldots 9)\) & real & {\([0]\).} \\
\hline
\end{tabular}
led__top_coating is used as part of the led__control model and specifies an optical coating on the top of LED. Such a coating is usually applied to improve the extraction efficiency in the device.

Note that use of this statement overrides the reflection coefficient reff_y2 in led__control. Instead, a thin-film transfer matrix method (TMM) is used to compute the reflectivity coefficient.

\section*{Parameters}
- number_of_layers is an actual number of layers in the coating. The coating can contain up to 9 different layers.
- real_index_led is the real-valued refractive index of the LED material for the purposes of the TMM.
- real_index_out is the real-valued refractive index of the outer medium. for the purposes of the TMM.
- thicknessj is the thickness of the \(j\)-th layer from optical coating.
- real_indexj is the real part of the refractive index of the \(j\)-th layer in the optical coating.
- imag_indexj is the imaginary part of the refractive index of the \(j\)-th layer in the optical coating.

\section*{Examples}
led_top_coating number_of_layers=2 real_index_led=3.5 real_index_out=1.5 \&\& thickness1=0.15 real_index1=2.05 imag_index1=0. thickness2=0.14 \&\& real_index2=2.25 imag_index2=0.002

\subsection*{22.424 left_contact}
left_contact is the same as top_contact except that the contact is placed on the left side.

One other difference is that the column number is irrelevant. The location of the contact is given by the last layer statement before the contact definition.

\subsection*{22.425 lifetime_model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline dependence & char & {\([\) current], field } \\
\hline mater_label & char & \\
\hline ref_elec_current & real & {\([1 . \mathrm{e} 5]\left(A / m^{2}\right)\)} \\
\hline ref_hole_current & real & {\([1 . \mathrm{e} 5]\left(A / \mathrm{m}^{2}\right)\)} \\
\hline ref_tunnel_field & real & {\([1 . \mathrm{e} 7](\mathrm{V} / \mathrm{m})\)} \\
\hline mater & intg & \\
\hline
\end{tabular}
lifetime__model modifies the SRH lifetime of the carriers based on the applied bias.

\section*{Parameters}
- dependence switches between current and field control of the SRH lifetime.
- If current, the capture cross-section is modified as \(1+\frac{I}{I_{r e f}}\) : more current increases the capture coefficient and reduces the SRH lifetime.
- If voltage, the capture cross-section is modified as \(e^{\frac{F-F_{0}}{F_{r e f}}}\) where \(F_{0}\) is the local field value at equilibrium. Therefore a larger applied field reduces the SRH lifetime.
- ref_elec_current and ref_hole__current are the values of \(I_{r e f}\) for the electrons and holes, respectively.
- ref_tunnel_field is the value of \(F_{r e f}\).
- mater is the number of the material affected by this command. If a label has previously been defined as an alias, mater_label may be used instead.

\section*{Examples}
lifetime_model ref_elec_current=1.e5 ref_hole_current=1.e5 \&\&
dependence=current mater=5
would define a current dependent lifetime for both electrons and holes.

\subsection*{22.426 lifetime_n}

The material statements lifetime__n and lifetime__p define the minority life time (in seconds) for carriers ( _n for electrons and _ p for holes) in the SRH recombination model. The basic mechanism is electron or hole capture by deep level traps. This statement is therefore related to other trap statements. The relation between lifetime and other trap quantities are written as:
\[
\begin{equation*}
\frac{1}{\text { lifetime }}=\text { trap density } \times \text { thermal velocity } \times \text { capture cross section } \tag{22.41}
\end{equation*}
\]

If the user does not specify a trap distribution but only gives a minority carrier lifetime, then a uniform distribution of donor mid-gap traps with density of \(10^{10}\) \(m^{-3}\) is assumed. The carrier capture cross section is given by the above formula. However, if the user specifies the capture cross section explicitly with trap__ncap__i or trap_pcap_i, then the minority carrier lifetime is overridden.
The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.427 lifetime_p}

See lifetime__n.

\subsection*{22.428 light_current}
\begin{tabular}{||l|l|l||}
\hline \multicolumn{1}{|c|}{ parameter } & data type & values [defaults] \\
\hline \hline data_file & char & {\([\) void \(]\)} \\
\hline use_macro & char & {\([\) no \(]\)} \\
\hline wavel_range & realx2 & \\
\hline conc_range & realx2 & {\([(1 . e 231 . e 24)]\left(\mathrm{m}^{-3}\right)\)} \\
\hline
\end{tabular}
\begin{tabular}{||l|l|l|}
\hline pn_ratio & real & {\([1]\).} \\
\hline conc_log_scale & char & {\([\) no \(]\)} \\
\hline init_wavel & real & {\([0.83](\mu \mathrm{m})\)} \\
\hline length & real & {\([300].(\mu \mathrm{m})\)} \\
\hline mirror_ref & real & {\([0.3]\)} \\
\hline clad_bot & realx3 & {\([1.3 .0500]\).} \\
\hline guide_bot & realx3 & {\([.13 .2500]\).} \\
\hline active_layer & realx3 & {\([.0073 .33500]\).} \\
\hline guide_top & realx3 & {\([.13 .2500]\).} \\
\hline clad_top & realx3 & {\([1.3 .0500]\).} \\
\hline front_back & realx2 & \\
\hline delta_index & real & {\([0.3]\)} \\
\hline av_index & real & {\([3.3]\)} \\
\hline auger_n & real & {\([2 . \mathrm{e}-42]\left(\mathrm{m}^{6} / \mathrm{s}\right)\)} \\
\hline auger_p & real & {\([2 . \mathrm{e}-42]\left(\mathrm{m}^{6} / \mathrm{s}\right)\)} \\
\hline life_n & real & {\([1 . \mathrm{e}-6](\mathrm{s})\)} \\
\hline life_p & real & {\([1 . \mathrm{e}-6](\mathrm{s})\)} \\
\hline spon_out & real & {\([1 . \mathrm{e}-4]\)} \\
\hline width & real & {\([5].(\mu m)\)} \\
\hline scale_lit & real & {\([1]\).} \\
\hline scale_curr & real & {\([1]\).} \\
\hline max_curr & real & \(0.5(\mathrm{~A})\) \\
\hline boundary_type & intgx4 & {\([1111]\)} \\
\hline well_num & intg & {\([1]\)} \\
\hline data_point & intg & {\([30]\)} \\
\hline mesh_point & intg & {\([80]\)} \\
\hline
\end{tabular}

The statement light_current is a gain preview (.gain) command which allows the user to solve a simplified laser diode model and obtain the light-current characteristics. The basic recombination model is expressed as:
\[
R=R \_ \text {spon }+R \_ \text {auger }+n / t a u \_n+p / t a u \_p
\]
where the spontaneous emission term is given by the quantum well model.

\section*{Parameters}
- data_file is a text file use to save the output data
- use_macro instructs the software to look for model parameters inside available material macros files.
- wavel_range is a wavelength search range used to find the gain peak for laser operation. For a device which locks the emission wavelength (e.g. a DFB/DBR laser or VCSEL), this range should be fixed to a single fixed wavelength.
- conc_range is the electron density range in the well. The hole density is given by this range and the \(\frac{p}{n}\) ratio defined in pn_ratio.
- conc_log_scale spaces the electron density of conc_range on a logarithmic rather than linear scale.
- init__wavel is an initial guess of the emission wavelength for the optical eigenmode solver.
- length is the laser cavity length.
- mirror_ref is the mirror reflectivity in a Fabry-Perot cavity. For a DFB/DBR laser or for a VCSEL, this value should be set as an equivalent value that represents the feedback strength from the distributed mirror.
For asymmetric facets (e.g. HR/AR configurations), front_back should be used to override mirror_ref.
- clad_bot is a triplet pair that defines the thickness \((\mu m)\), refractive index and material loss \(\left(\mathrm{m}^{-1}\right)\) of the bottom cladding layer.
Similar triplets are defined for other layers in the simplified structure solved by this command:
- guide_bot is used for the bottom guiding layer (SCH).
- active_layer is used for the active layer (MQW region). In this simplified model, the entire MQW region is considered as a block for the optical mode solver.
- guide_top is used for the top guiding layer (SCH).
- clad_top is used for the top cladding layer.
- delta__index and boundary_type are used to set up the optical solver. Please refer to the definition of these terms inside the main init__wave statement.
- av__index is the estimated average refractive index.
- auger_n and auger_p are the Auger coefficients \(C \_n\) and \(C \_p\), respectively.
-
- life_n and life__p are the minority carrier lifetimes for the electrons and holes, respectively.
- spon_out is the fraction of the isotropic spontaneous emission that couples into the optical propagating mode; it is often written as \(\beta\).
- width is the width of the cavity.
- scale_lit and scale_curr are scaling factors for the light and current, respectively; they can be used when modeling half of a laser device to exploit left/right symmetry.
- max_curr is the maximum injection current.
- well_num is the total number of quantum wells in the active region.
- data__point is the number of data points to be used in the current versus concentration plot.
- mesh_point is the number of mesh points used in this simplified laser model.

\subsection*{22.429 light_power}
\begin{tabular}{|c|c|c|}
\hline parameter & data type & values [defaults] \\
\hline spectrum_file & char & [void] \\
\hline light_dir & char & [top] left right bottom \\
\hline waveguide_mode & char & [no] yes \\
\hline gen_datafile & char & [void] \\
\hline gen_datatype & char & [sorted] random \\
\hline const_index & char & [no] \\
\hline fresnel_reflections & char & [yes] no \\
\hline slit_diffr & char & [no] \\
\hline ox__pump_only & char & [no] yes \\
\hline std__wave & char & [yes] no \\
\hline old_tmm & char & [no] yes \\
\hline spectrum_field_file & char & [void] myfile \\
\hline force_update & char & [no] \\
\hline import_gen_rate & char & [no] \\
\hline optical_generation & real & [0.] \(\left(m^{-} 3\right) / \mathrm{s}\) \\
\hline penetration_depth & real & [1.] \((\mu \mathrm{m})\) \\
\hline incident_power & real & [0.] \(\left(W / m^{2}\right)\) or \(W\) \\
\hline wavelength & real & [1.] ( \(\mu \mathrm{m}\) ) \\
\hline profile & realx4 & [-1.e8 1.e8 1. 1.] ( \(\mu \mathrm{m}\) ) \\
\hline fraction_mode2 & real & [0.] \\
\hline fraction_mode3 & real & [0.] \\
\hline fraction_mode4 & real & [0.] \\
\hline fraction_mode5 & real & [0.] \\
\hline angle & real & [0.] \\
\hline fraction_TE & real & [0.5] \\
\hline
\end{tabular}

The statement light__power is used to specify the incident light power in a photosensitive device like a solar cell or an optically pumped laser. The model is based on thin film multi-layer propagation of plane waves. Based on the structure of the device, the software will create one or more 1D cut lines across the device in the direction of the light propagation; these are used to compute transfer matrices and get the local photon density.

Note that when using light__power, a scan statement must be used to ramp up the effective light power in the device since the equilibrium calculations assume no light input. Using
```

scan var=light value_to=1.0

```
will slowly ramp up the relative light input to the value defined in incident__power or spectrum_file. This can be combined with other scan variables such as time (for transient pumping) or electrode bias.

Using this model triggers the requirement for the Advanced Optics optional module which contains and the associated thin film model. A more basic model with simple exponential decay can still be used for users who do not have this module by explicitly turning off the Fresnel reflections and standing wave effects.

\section*{Parameters}
- spectrum_file is used to specify the file name of the data file describing the incident light power spectrum (e.g. input solar spectrum). The data must be in a text format with at least 2 columns: the wavelength in \(\mu m\) in the first column and the power spectral density in \(W /\left(m^{2} \mu m\right)\) in the second column. Other columns will be ignored.
For single-wavelength light input (e.g. a laser), the power and wavelength of the light input are defined by incident__power and wavelength, respectively.
- light__dir specifies the direction of the incident light.
- waveguide_mode is used to indicate that the incident light is directly coupled to one of the optical modes instead of using the thin film transfer matrix. In that case, mode solver statements such as init__wave must be used. For multimode simulations, fraction_modek \(\mathrm{k}=2, \ldots, 5\) are used to describe the fraction of the input power which is coupled into the higher-order modes.
Note that this is only used for 2D simulations. For light injection into a photoabsorbing waveguide or optical amplifier, see waveguide_input to take longitudinal effects into account.
- gen_datafile, is the name of a text file which contains the incident optical wave intensity profile. In general, it is preferable to use GnuPlot-compatible data files. For 2D simulation, the optical intensity profile on \(x-y\) plane should be given in three columns as follows
x y optical\_profile
with x varying the fastest. Please leave a blank line to separate data lines between different y-coordinates.
For 3D simulation, the data should be arranged in the form
x y z optical\_profile
with x varying the fastest and y the second fastest. Again, blank lines are used to separate data lines between different y coordinates.

Note that "optical_profile" should be considered as a relative value: the actual power used in the simulation will be the local profile value multiplied by incident_power. For waveguide input problems, it is convenient to set incident__power to the total input power in \(W\) while the profile defines a normalized intensity distribution in \(m^{-2}\). The local value of the incident power will therefore be in \(W / m^{2}\) and the integrated value will be in \(W\).

Please note that we use the optical profile here to compute the local energy/photon density and automatically scale by the group velocity to get units of \(W / m^{2}\). This value includes standing wave effects and should not be confused with the power flux density, which does not.
- gen_datatype controls the format of gen_datafile. If set to sorted, the data order is arranged in a form compatible with GnuPlot with left most column varies the fastest and with a blank line space separating different drawing line data. For unsorted data, a simple listing without blank space line is required.
- const_index is used to force the simulator to average the complex refractive index along the cut line before the transfer matrix is computed. This will automatically suppress all internal Fresnel reflections and force a uniform exponential decay of the light. Since this model is highly unphysical, the user is warned against using this option.
- fresnel_reflections may be used to artificially turn off the internal reflections between layers of the device. This forces all material interfaces to have \(100 \%\) power transmission but unlike const_index, the absorption coefficient is not averaged and the result will be a piecewise exponential decay of the light.

Since this is unphysical, the user is warned against turning off this effect. However, it may be necessary to do so for users without access to the Advanced Optics optional module. It can still provide a reasonable model for devices with a single material such as silicon solar cells.

Fresnel reflections at the front and back facets may also be artificially defined using the front_reflection and back_reflection statements. However, optic__coating statements will be useless unless this effect is turned on.
- slit_diffr would enable the single slit diffraction model be used to compute the optical intensity profile. The single slit would be defined by the first two numbers of the profile.
- ox_pump_only forces the optical generation to create bound excitons instead of free carriers. This is the expected behavior in organic semiconductors.
- std_wave determines whether the standing wave component of the transfer matrix is computed. This term is generated by over-sampling the optical mesh and averaging fast oscillations over the local mesh point to ensure smoothness and ensure convergence. Users without the Advanced Optics module will have to turn this effect off to use light__power.
Note also that for optically pumped VCSELs in PICS3D, this term refers only to the standing wave of the optical pump: the round-trip gain calculations automatically include this effect for the laser light.
- old_tmm is used to activate an older transfer matrix model. This parameter is not recommended.
- spectrum_field_file is used to specify the optical field intensity profile for different wavelengths when the light source is continuous. The data format and units are the same as that defined for gen_datafile above, except that a header line "spectrum_field_file" followed by a line containing the wavelength (in micron meters) is used to start a field profile for each wavelengths.
- force_update is used to force the update of the optical transfer matrix at each bias step. This is rarely needed since other conditions in the code often make this decision on behalf of the user based on self-consistency requirements.
- import_gen_rate tells the software to import the local generation rate instead of the optical wave profile in gen_datafile. This is different from optical_generation defined below which uses the penetration depth to get the local generation rate profile.
- optical_generation may be used to directly specify the carrier generation rate at the starting point of the light absorption path. This parameter is used only when no optical input power is defined: when both incident__power=0 and spectrum_file=void. When used, the actual distribution of the optical generation rate is calculated by this number multiplied by a attenuation factor due to the absorption of the semiconductor material.
- penetration_depth is used together with optical_generation only. It is used to describe the exponential decay of the incident light along the absorption path.
- profile is the cross section profile of the incident light: (x1, x2, dx1, dx2). This profile is flat between x 1 and x 2 and has Gaussian tails on each side (dx1 and dx 2 ) to ensure smoothness.
- angle is the angle of incidence of the light with respect to the surface. It is used to consider the case of off-normal illumination. To model angled and textured surfaces, users should use ray tracing or FDTD simulations.
- fraction__TE is the fraction of TE polarized light; the remainder is assumed to be TM. Appropriate boundary conditions are used for the plane waves in the thin film model. The default value of 0.5 was chosen to represent unpolarized light common in most solar cell applications.

\section*{Examples}
light_power incident_power=3.29e7 wavelength=0.82 \&\&
profile \(=(0.5,2.0,0.01,0.01)\)

The above statement is used to define an incident light of single wavelength at 0.82 \(\mu m\) with power density of \(3.29 \mathrm{e} 7 \mathrm{~W} / \mathrm{m}^{2}\). The incident light direction is from the top (default) and the cross section profile is uniform from 0.5 to \(2 \mu \mathrm{~m}\) with a Gaussian tail of \(0.01 \mu \mathrm{~m}\) width on each side.

\subsection*{22.430 light__power_qwip}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline abs_spectrum_file & char & [qwip_specfile.txt] \\
\hline light_dir & char & [top],bottom \\
\hline uniform_extraction & char & [no],yes \\
\hline gen_datafile & char & [void] \\
\hline gen_datatype & char & [sorted],random \\
\hline incident_power & real & {\([1 . \mathrm{e} 4]\left[\mathrm{W} / \mathrm{m}^{2}\right)\)} \\
\hline wavelength & real & {\([5].(\mathrm{um})\)} \\
\hline profile & realx4 & {\([-9000.9000 .1 .1] \quad.(\mathrm{um})\)} \\
\hline power_couple & real & {\([0.6]\)} \\
\hline absorption_coef & real & {\([1 . \mathrm{e}-12](\mathrm{m})\)} \\
\hline active_layer_depth & real & {\([0].(\mathrm{um})\)} \\
\hline average_index & real & {\([3.2]\)} \\
\hline surf_elec_dens & real & {\([2 . \mathrm{e} 15]\left(1 / \mathrm{m}^{2}\right)\)} \\
\hline qwip_period & real & {\([0.04](\mathrm{um})\)} \\
\hline scale_abs_spec & real & {\([1].(\mathrm{um})\)} \\
\hline
\end{tabular}

The statement light__power_qwip is used to specify the incident light power and other related parameter for a quantum well infrared photodetector (QWIP).
- abs_spectrum_file is the absorption spectrum file to be imported. Its format is 3-column with first column being the wavelength in meters, 2nd
column being the absorption in \(1 / \mathrm{m}\), and the 3 rd column being the absorption divided by the surface electron density.
- light__dir is the direction of light.
- uniform_extraction is used to indicate whether uniform or global field is used to extract the photo-carriers. One possible explanation for uniform field model is that photo-carriers with higher energies are not well localized and thus tend to transport with an averaged field instead of the inhomogeneous local field.
- gen_datafile, if specified, will provide the external input data of incident optical power flux profile. The format of the data is compatible with the public domain program GNUPLOT. For 2D simulation, the optical intensity profile on \(x-y\) plane is given in three columns as follows
```

x y optical_profile

```

For 3D simulation, the data are arrange in the form

\section*{x y z optical\_profile}

The unit of "optical_profile" here depends on the unit used in incident__power. The program multiplies the "optical_profile" in the data file with incident__power to provide the actual optical power flux density (in units of \(W a t t / m^{2}\) ). If it is a problem of 2 D waveguide power problem, it is convenient to set incident_power to the total waveguide power (in Watt) while the data file provides a normalized intensity distribution (in units of \(1 / m^{2}\) so that the profile integrates to unity). For problem of incident light, it may be convenient to let incident_power to represent incident power in units of \(W a t t / m^{2}\) while "optical_profile" being the distribution of power transmission coefficient. In any kind of arrangements, it is necessary to remember that incident__power and the figure in data file must multiplied to obtain light intensity in units of \(W a t t / m^{2}\).
- gen_datatype If it is set to "sorted", the data order is arranged in a form compatible with GNUPLOT with left most column varies the fastest and with a blank line space separating different drawing line data. For unsorted data, a simple listing without blank space line is required.
- incident__power is the incident power density.
- wavelength is the wavelength of the QWIP.
- profile is the cross section profile of the incident light. It is in the format of ( \(\mathrm{x} 1, \mathrm{x} 2, \mathrm{dx} 1, \mathrm{dx} 2\) ) for light traveling in the \(\pm y\) direction, where the light intensity is assumed to be uniform between x 1 and x 2 and decay in the left and right sides with standard deviations of dx1 and dx2, respectively. Similar explanation applies to light traveling in \(\pm x\) direction with a format of ( \(\mathrm{y} 1, \mathrm{y} 2\), dy1, dy2).
- power_couple is a power coupling coefficient of the incident light into the device
- absorption_coef is the absorption divided by the surface density. It is not used if abs__spectrum_file is used.
- active_layer_depth is the depth of the MQW from the exposed surface of QWIP. This is used to locate the starting point of the MQW layers so that optical field profile can be established.
- average__index is the average index of the QWIP.
- surf_elec_dens is the estimated density so that the absorption can be calculated to produce the incident light intensity profile. The absorption is calculated by multiplying this parameter with the absorption_coef above.
- qwip_period is the QWIP period.
- scale__abs_spec is used to scale the abspectrum spectrum.

\section*{Example(s)}
\$ power-coupling into absorption mode is treated as fitting parameter for now.
light_power_qwip abs_spectrum_file=qwip_specfile.txt light_dir=top \&\& incident_power=1.e4 wavelength=8 surf_elec_dens=1.5e15 \&\& qwip_period=0.0376 power_couple=0.1 uniform_extraction=yes

The surface electron density is used to multiply to the 3rd column in spectrum-file to obtain the absorption which is used to estimate the optical field intensity profile.

\subsection*{22.431 linear_heat}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement linear__heat is used to define a heating source term proportional to the current density. The unit is \(W a t t /(m s A m p)\). It may also take a negative value to represent cooling effect.
The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

\subsection*{22.432 load_macro}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline name & char & \\
\hline var_namej \((\mathrm{j}=1 \ldots 9)\) & char & \\
\hline var_symbolj \((\mathrm{j}=1 \ldots 9)\) & char & \\
\hline varj \((\mathrm{j}=1 \ldots 9)\) & real & \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}

As in many other FEM-based software, the device layout in Crosslight is discretized so that every mesh node is assigned a material number: the load_macro statement is used to simultaneously assign several material properties (e.g. bandgap, mobility, etc...) to a given material number. Material properties are then evaluated based on the supplied parameters and certain reserved keywords. Note that this statement is usually automatically generated by processing the .layer file.

For more information about macros, consult Appendix B and the comments in the crosslight.mac and more.mac files. See also use_macrofile to use custom userdefined macros and get__active__layer which is a similar statement used to load active macros.

\section*{Parameters}
- The parameter name is the name of the macro being activated. The usual convention for passive macro is to use lower-case names.
- The parameters var_symbol1-9 are the symbolic variable names used as function arguments in the macro. If defined, they must exactly match the symbols used in the macro function definitions. If not defined, then the simulator will assume an older macro style is being used: in this case, the order of the parameters must be the same as in the macro function definitions.

Note that certain variables used in functions are reserved keywords and do not need to be defined in this manner.
- The parameters var1-9 are the values of the variables appearing in the functions within the macro definition. They are most commonly used to represent material composition in ternary/quaternary compounds.
- The parameters var_name1-9 replaces var1-9 when a grading of the macro parameters is used. It is used in conjunction with the mater__var statement which describes the spatial variation of the parameters.
- The parameter mater is the material number being linked with this macro. This number is the same as the material number assigned to polygons in the .geo file and is inherited by the mesh.

\section*{Examples}
```

load_macro name=ingaas mater=2 var1=0.32 var_symbol1=x

```

This statement activates a material macro named ingaas (for \(\operatorname{In}_{x} \mathrm{Ga}_{1-x} \mathrm{As}\) ) for material number 2 with material variable \(x=0.32\).
```

mater_var name=c2 variation=linear_y data_num= 4 \&\&
4_values=[\&\&
0.135000000000E+001 0.710000000000E+000 \&\&
0.149620000000E+001 0.330000000000E+000]
load_macro name=algaas mater= 2 \&\&
var_symbol1=x var_name1=c2

```

This statement activates the macro named algaas (for \(\mathrm{Al}_{x} \mathrm{Ga}_{1-x} \mathrm{As}\) ) for material number 3. The composition \((x)\) is graded according to the rule " \(c 2\) " which is further described in the accompanying mater__var statement.

\subsection*{22.433 load_mesh}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mesh_inf & char & \\
\hline version2002 & char & {\([\mathrm{no}]\)} \\
\hline suprem_import & char & {\([\mathrm{no}]\)} \\
\hline stl_import & char & {\([\mathrm{no}]\)} \\
\hline suprem_cpl_import & char & {\([\mathrm{no}]\)} \\
\hline zseg_num & intg & 1 \\
\hline
\end{tabular}
load mesh loads a previously generated mesh file into the device simulation.

\section*{Parameters}
- mesh_inf is the data file containing the mesh. In practice, this file is generated by statements such as mesh_output that are automatically added to the .geo file when the .layer file is processed.
- version2002 is used to accept mesh files generated by versions older than 2002. The older mesh format can also be generated with newer versions of the simulator with special settings of the internal_xpoint statement in the .geo file.
- suprem_import is used to import a mesh structure from CSUPREM. If suprem_cpl_import is used in a 3D simulation, the device simulator will also load the inter-plane ( z ) mesh coupling coefficients which can greatly speed up the simulation time.
- stl_import is used to import a mesh using Standard Tessellation Language (STL format).
- zseg_num defines the z-segment where the mesh is used. In 3D simulations, each z-segment can have its own material numbers, geometry and mesh

\section*{Examples}
```

load_mesh mesh_inf=bulk1d.msh2

```

\subsection*{22.434 longitudinal}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline fphase_input & char & {\([\) yes],no } \\
\hline layer_exit_model & char & {\([\) refractive_index],reflectivity } \\
\hline ring_mode & char & {\([\) void \(], \mathrm{cc}, \mathrm{cw}\)} \\
\hline length_seg_match & char & {\([\mathrm{no}]\)} \\
\hline use_eff_index & char & {\([\mathrm{no}]\)} \\
\hline ignore_rtg_phase & char & {\([\) no \(]\)} \\
\hline left_phase & real & {\([0].(\pi)\)} \\
\hline right_phase & real & {\([0].(\pi)\)} \\
\hline left_f_ref & real & {\([0]\).} \\
\hline right_f_refl & real & {\([0]\).} \\
\hline ref_wavel & real & \((\mathrm{m})\) \\
\hline ref_pitch & real & \((\mathrm{m})\) \\
\hline add_overlap & real & {\([100]\).} \\
\hline bot_real_ind & real & {\([1]\).} \\
\hline bot_imag_ind & real & {\([0]\).} \\
\hline top_real_ind & real & {\([1]\).} \\
\hline top_imag_ind & real & {\([0]\).} \\
\hline ring_power_exit & real & {\([0.1]\)} \\
\hline round_trip_time_factor & real & {\([1]\).} \\
\hline ref_active_point & real & \((u m)\) \\
\hline more_mesh & intg & {\([5]\)} \\
\hline cavity_num & intg & {\([1]\)} \\
\hline
\end{tabular}

The longitudinal statement is used to specify some boundary conditions and control settings relating to the longitudinal model in PICS3D. For vertical cavities, left/right should be understood as bottom/top.

\section*{Parameters}
- fphase_input determines how the residual facet phase is computed. If yes, the values of left__phase and right__phase are used. Otherwise, the facet phase is obtained from the length of the laser and the grating period and then split equally between the left and right facets.
- left_ff_refl and right_f__refl are the left and right facet reflectivity (on a power basis) used as cavity boundary conditions for edge-emitting devices.
- layer_exit_model determines the cavity boundary conditions for surfaceemitting devices.
- If set to reflectivity, the left and right facet reflectivity defined above are used for the bottom and top, respectively.
- If set to refractive_index (the default), the refractive index is used to compute the Fresnel reflection coefficient. bot_real_ind and bot_imag_ind define the outside index for the bottom layer while top_real_ind and top_imag_ind define the outside index for the top layer.
- ring_mode determines the main injection/propagation direction in a ring laser cavity. \(c w\) means clockwise and \(c c\) means counter-clockwise.
- ring_power_exit defines the fraction of power that is extracted at each loop of a ring laser: this is used instead of the left/right facet reflectivity in this kind of device since no facets can be clearly defined.
- length_seg_match will force an error message to be printed if the optical (section) length of the cavity does not match the electrical (z-segment) length.
- use_eff_index is used to determine how the effective index of the propagation constant \(\beta\) is calculated. If this is turned on, the exact value from the eigenmode solver is used which improves the numerical accuracy when the wave function is discontinuous and derivative terms become large (e.g. E-field in vectorial TM mode).
- ignore_rtg_phase is an experimental model added in v. 2015. It is used to make PICS3D approximate the behavior of LASTIP.
One of the main differences in LASTIP vs. PICS3D is the longitudinal treatment. LASTIP is a 2 D model and ignores the phase matching condition; it assumes that a single longitudinal mode exists and that lasing occurs on the modal gain peak. This approach is reasonable for Fabry-Perot lasers in which a large number of closely-spaced longitudinal modes exist near the gain peak. Some inaccuracies in the 2D model creep up for longer-cavity lasers though, especially for high-power applications: in that case, longitudinal spatial hole burning is a real effect which limits device performance.

On the other hand, PICS3D includes modeling of LSHB automatically: using multiple mesh planes (for edge-emitters), it explicitly calculates the longitudinal propagation and solves for both unity and phase matching conditions. This means PICS3D will find multiple longitudinal modes and lase at wavelengths where the cavity round-trip gain peaks rather than on the peak of the modal gain curve. This approach works well in DFB/DBR lasers and VCSELs
but is problematic for Fabry-Perot lasers: without a wavelength-selecting feedback mechanism, there are too many longitudinal modes to consider and the numerical requirements/solver stability often become unmanageable.
Setting ignore_rtg_phase=yes bridges this gap in capability. Instead of solving for multiple longitudinal modes, PICS3D will search for a single wavelength which maximises the round-trip gain value: this ignores the phasematching condition while still including the effects of LSHB. This hybrid approach is expected to be especially useful in modeling long-cavity high-power FP lasers.
- ref_wavel is the reference wavelength which is used to fix the search range for the longitudinal modes. This is fixed once the coupling of the round-trip gain equations is turned on so it is important to capture the right set of longitudinal modes for the simulation. In most laser cavities with a grating, the lasing mode will be close to the Bragg wavelength so the latter should be used as the reference wavelength.
ref_pitch may be used instead of the above to directly specify the reference pitch of the Bragg grating.
- round__trip_time_factor can be used to artificially scale the cavity roundtrip time in transient simulations.
- ref_active_point defines a reference point in the cavity which is used to compute the round-trip gain. While in theory, this value should be equal everywhere in the device, numerical evaluation of this quantity can be sensitive. In general, a point near the middle of the active region or where the photon density is expected to peak should be used to represent the round-trip of an "average" photon.
This value is automatically chosen by the software by default; users may choose to override it if convergence problems occur or if anomalies in the round-trip gain spectrum are observed. Also note that this parameter replaces ref_midpoint from older versions of the software and unlike the old method, absolute coordinates must be used instead of a fraction of the optical cavity.
- add_overlap is used to add a small term (a multiple of \(2 j / v_{g}\) ) to the expression \(\frac{d W}{d \omega}\) which appears in the complex pole expansion of Sec. 18.2. This term seems to improve the stability of the longitudinal mode solver by preventing divide by zero errors. It may slightly affect the amount of spontaneous emission power in ASE simulations such as superluminescent diodes (SLED) and optical amplifiers (SOA).
- more_mesh is a multiplication factor used to oversample the longitudinal mesh in order to get more details on the fast oscillations of the standing wave pattern in VCSELs.
- cavity_num can be used to specify different longitudinal settings when working with multiple optical cavities. See also begin_cavity.

\section*{Examples}
longitudinal ref_wavel=1.55d-6 left_f_refl=0. right_f_refl=0.

\subsection*{22.435 loop_integer}
loop_integer serves the same function as loop_real but defines an integer loop variable. Both statements share the same set of parameters.

\section*{Examples}
start_loop symbol=\%i value_from=1 value_to=5 step=2
loop_integer symbol=\%j value_from=2 value_to=6
plot_scan scan_var=voltage_2 variable=total_curr_3 scanline=\%i
plot_scan scan_var=voltage_3 variable=total_curr_3 scanline= \(\% j\)

In the above example, symbol \(\% \mathrm{j}\) is a linear function of the loop variable \(\% \mathrm{i} . \%_{\mathrm{i}}\) would vary as 1,3 , and 5 while \(\%\) j would go as 2,4 and 6 . The equivalent commands without the loop are as follows:
```

plot_scan scan_var=voltage_2 variable=total_curr_3 scanline=1
plot_scan scan_var=voltage_3 variable=total_curr_3 scanline=2
plot_scan scan_var=voltage_2 variable=total_curr_3 scanline=3
plot_scan scan_var=voltage_3 variable=total_curr_3 scanline=4
plot_scan scan_var=voltage_2 variable=total_curr_3 scanline=5
plot_scan scan_var=voltage_3 variable=total_curr_3 scanline=6

```

\subsection*{22.436 loop_real}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline symbol & char & {\([\) void \(]\)} \\
\hline value_from & real & {\([1]\)} \\
\hline value_to & real & {\([2]\)} \\
\hline
\end{tabular}
loop_real works together with the start__loop statement. It is used to define a new real-valued variable which has a linear dependence on the iteration number.

\section*{Parameters}
- symbol is the symbol used by the new loop variable.
- value_from and value_to are the starting and ending values, respectively, of the loop variable.

\section*{Examples}
```

start_loop symbol=%i value_from=1 value_to=5
loop_real symbol=%vg value_from=0.2 value_to=1.0
scan var=voltage_2 value_to=%vg
end_loop

```

This means \(\%\) vg linearly varies with \(\%\) i. \%i would take values of \(1,2,3,4\) and 5 while \(\% \mathrm{vg}\) would vary as \(0.2,0.4,0.6,0.8\) and 1.0 . The equivalent commands without the loop are as follows:
```

scan var=voltage_2 value_to=0.2
scan var=voltage_2 value_to=0.4
scan var=voltage_2 value_to=0.6
scan var=voltage_2 value_to=0.8
scan var=voltage_2 value_to=1.0

```

\subsection*{22.437 loopif}
loopif is a conditional execution statement used in conjunction with symbolic loop variables and start_loop.
The end of the conditional block is indicated by endloopif.

\section*{Parameters}

This statement does not take any formal parameters but expects a logical expression based on common Fortran syntax:
\begin{tabular}{|c|c|}
\hline .lt. & less than \\
.le. & lesser or equal than \\
.gt. & greater than \\
.ge. & greater or equal than \\
.eq. & equal to \\
\hline
\end{tabular}

The logical expression should be kept as simple as possible: parentheses and other logical expressions such as .and., .or. and not. are not supported.

\section*{Examples}
```

define_symbol symbol=%mob value=1.
define_symbol symbol=%mfp value=0.1
start_loop symbol=%i value_from=1 value_to=25
integer_func symbol=%k value_from=0 value_to=24
integer_func symbol=%j1 value_from=2 value_to=26
integer_func symbol=%j2 value_from=3 value_to=27
integer_func symbol=%j3 value_from=4 value_to=28
loopif %j1 .le. 25
nonlocal_path y_start_label=active%i_end y_end_label=active%j1_start \&\&
mobility=%mob mean_free_path=%mfp field_dep_model_id=1
endloopif

```

\subsection*{22.438 low_field_mobility_model}
\begin{tabular}{|c|c|c|}
\hline parameter & data type & values [defaults] \\
\hline el_doping_dependence_model & char & [void], masetti, arora, uni_bologna \\
\hline el_carrier_carrier_model & char & [void], conwell_weisskopf, brooks herring \\
\hline el_degradation_model & char & [void], enhanced_lombardi,
uni_bologna_inversion \\
\hline el_philips_unified_model & char & yes,[no] \\
\hline hole_doping_dependence_model & char & [void], masetti, arora, uni_bologna \\
\hline hole_carrier_carrier_model & char & [void], conwell_weisskopf, brooks_herring \\
\hline hole_degradation_model & char & [void], enhanced_lombardi, uni_bologna_inversion \\
\hline hole_philips_unified_model & char & yes,[no] \\
\hline channel_interface_dir & char & [void], horizontal, vertical \\
\hline channel_interface_label & char & \\
\hline mater & intg & [1] \\
\hline
\end{tabular}

This statement is used to implement various contributions to the low-field carrier mobility model. The mobility is then further enhanced by the field depending on the velocity models defined in material.

When different contributions are turned on, the total mobility is given by:
\[
\begin{equation*}
\frac{1}{\mu}=\frac{1}{\mu_{\text {dop }}}+\frac{1}{\mu_{\text {carr }}}+\frac{1}{\mu_{\text {surf }}} \tag{22.42}
\end{equation*}
\]
where \(\mu_{d o p}\) represents bulk impurity scattering, \(\mu_{\text {carr }}\) is the contribution from carriercarrier scattering and \(\mu_{\text {surf }}\) defines the mobility reduction from surface effects.

The relationship between the different models can be seen in Fig. 22.15.
Full equations for each of these models will be given below ; in all of these models, we note that \(N_{i}=N_{A}+N_{D}\) is the total dopant concentration, \(T\) is the local mesh point temperature and \(T_{0}\) is a reference temperature of 300 K .

\section*{Main Parameters}

Since this statement handles a very large number of parameters, only those related to model selection are described here: see sub-sections below for other model-specific parameters. Please note that the default values for model-specific parameters are taken from the literature and apply only for silicon: these models should be recalibrated if used for other materials.


Figure 22.15: Relationship between the different low-field mobility models.
- el_doping_dependence__model and el_doping_dependence__model specify the doping/trap scattering model for electrons and holes, respectively. If this parameter is void and the unified Philips model is also disabled, the software will default back to the standard model of Eq. 5.42.
- el_ccarrier_carrier__model and hole__carrier__carrier__model define the carrier-carrier scattering model for electrons and holes, respectively.
- el_degradation_model and hole_degradation__model describe the surface degradation model for electrons and holes, respectively.

If a surface degradation model is enabled, then the direction of the interface must be specified with channel_interface_dir. The position of the interface must also be set through a position label given in channel_interface_label. See layer_position and other related commands for details on position labels.
- el__philips__unified__model and hole__philips__unified__model turn on the unified Philips model for electrons and holes, respectively. If this model is turned on, the doping dependence and carrier-carrier models will automatically be disabled in favor of this unified model.

\section*{Parameters For Doping Dependence Models}

\section*{Masetti}

This model implements the following relationship[123]:
\[
\begin{equation*}
\mu_{d o p}=\mu_{\min 1} e^{-\frac{P_{c}}{N_{i}}}+\frac{\mu_{\max }\left(\frac{T}{T_{0}}\right)^{-\zeta}-\mu_{\min 2}}{1+\left(\frac{N_{i}}{C_{r}}\right)^{\alpha}}-\frac{\mu_{1}}{1+\left(\frac{C_{s}}{N_{i}}\right)^{\beta}} \tag{22.43}
\end{equation*}
\]

The other parameters of this model (along with their default values) are defined in the table below:
\begin{tabular}{||l|l|l|l|l||}
\hline symbol & parameter name & electron value & hole value & units \\
\hline \hline \hline\(\mu_{\max }\) & umax & 0.1417 & 0.04705 & \(\mathrm{~m}^{2} /(V s)\) \\
\hline\(\zeta\) & exponent & 2.5 & 2.2 & \\
\hline\(\mu_{\min 1}\) & umin1 & 0.00522 & 0.00449 & \(\mathrm{~m}^{2} /(V s)\) \\
\hline\(\mu_{\min 2}\) & umin2 & 0.00522 & 0 & \(\mathrm{~m}^{2} /(V s)\) \\
\hline\(\mu_{1}\) & u 1 & 0.00434 & 0.0029 & \(\mathrm{~m}^{2} /(V s)\) \\
\hline\(P_{c}\) & pc & 0 & 9.3 E 22 & \(\mathrm{~m}^{-3}\) \\
\hline\(C_{r}\) & cr & 9.68 E 22 & 2.23 E 23 & \(\mathrm{~m}^{-3}\) \\
\hline\(C_{s}\) & cs & 3.34 E 26 & 6.1 E 26 & \(\mathrm{~m}^{-3}\) \\
\hline\(\alpha\) & alpha & 0.68 & 0.719 & \\
\hline\(\beta\) & beta & 2.0 & 2.0 & \\
\hline
\end{tabular}

Note that the parameter names are abbreviated here for the sake of convenience. When the Masetti model is activated, an el_mase_(for electrons) or hole_mase_ (for holes) prefix must be added to the name shown in the table.

\section*{Arora}

This model implements the following relationship[124]:
\[
\begin{equation*}
\mu_{\text {dop }}=\mu_{\min }+\frac{\mu_{d}}{1+\left(\frac{N_{i}}{N_{0}}\right)^{A^{*}}} \tag{22.44}
\end{equation*}
\]

The other parameters for this model (along with their default values) are defined in the following equations and table:
\[
\begin{align*}
\mu_{\text {min }} & =A_{\min }\left(\frac{T}{T_{0}}\right)^{\alpha_{m}}  \tag{22.45}\\
\mu_{d} & =A_{d}\left(\frac{T}{T_{0}}\right)^{\alpha_{d}}  \tag{22.46}\\
N_{0} & =A_{N}\left(\frac{T}{T_{0}}\right)^{\alpha_{N}}  \tag{22.47}\\
A^{*} & =A_{a}\left(\frac{T}{T_{0}}\right)^{\alpha_{a}} \tag{22.48}
\end{align*}
\]
\begin{tabular}{||l|l|l|l|l||}
\hline symbol & parameter name & electron value & hole value & units \\
\hline \hline \hline\(A_{\text {min }}\) & umin & 0.0088 & 0.00543 & \(\mathrm{~m}^{2} /(V s)\) \\
\hline\(\alpha_{m}\) & alpha_m & -0.57 & -0.57 & \\
\hline\(A_{d}\) & d & 0.1252 & 0.0407 & \(\mathrm{~m}^{2} /(V s)\) \\
\hline\(\alpha_{d}\) & alpha_d & -2.33 & -2.23 & \\
\hline\(A_{N}\) & n & 1.25 E 33 & 2.35 E 23 & \(\mathrm{~m}^{3}\) \\
\hline\(\alpha_{N}\) & alpha_n & 2.4 & 2.4 & \\
\hline\(A_{a}\) & a & 0.88 & 0.88 & \\
\hline\(\alpha_{a}\) & alpha_a & -0.146 & -0.146 & \\
\hline
\end{tabular}

Note that the parameter names are abbreviated here for the sake of convenience. When the Arora model is activated, an el_ar__ (for electrons) or hole_ar_ (for holes) prefix must be added to the name shown in the table.

\section*{University of Bologna}

This model implements the following relationship[125]:
\[
\begin{equation*}
\mu_{d o p}=\mu_{0}+\frac{\mu_{L}-\mu_{0}}{1+\left(\frac{N_{D}}{C_{r 1} T_{n}^{\gamma 1}}\right)^{\alpha}+\left(\frac{N_{A}}{C_{r 2} T_{n}^{\gamma r 2}}\right)^{\beta}}-\frac{\mu_{1}}{1+\left(\frac{N_{D}}{C_{s 1} T_{n}^{\gamma s 1}}+\frac{N_{A}}{C_{s 2}}\right)^{-2}} \tag{22.49}
\end{equation*}
\]
where \(T_{n}=\frac{T}{T_{0}}\) and:
\[
\begin{gather*}
\mu_{L}=\mu_{\max } T_{n}^{-\gamma+c T_{n}}  \tag{22.50}\\
\mu_{0}=\frac{\mu_{0 d} T_{n}^{-\gamma_{0 d}} N_{D}+\mu_{0 a} T_{n}^{-\gamma_{0 a}} N_{A}}{N_{A}+N_{D}}  \tag{22.51}\\
\mu_{1}=\frac{\mu_{1 d} T_{n}^{-\gamma_{1 d}} N_{D}+\mu_{1 a} T_{n}^{-\gamma_{1 a}} N_{A}}{N_{A}+N_{D}} \tag{22.52}
\end{gather*}
\]

The other parameters for this model (along with their default values) are defined in the following table:
\begin{tabular}{||l|l|l|l|l||}
\hline symbol & parameter name & electron value & hole value & units \\
\hline \hline\(\mu_{\max }\) & umax & 0.1441 & 0.04705 & \(m^{2} /(V s)\) \\
\hline\(c\) & c & 0.07 & 0.0 & \\
\hline\(\gamma\) & gama & 2.45 & 2.16 & \\
\hline\(\gamma_{0 d}\) & gama_0d & 0.6 & 1.3 & \\
\hline\(\mu_{0 d}\) & u_0d & 0.0055 & 0.009 & \(m^{2} /(V s)\) \\
\hline\(\gamma_{0 a}\) & gama_0a & 1.3 & 0.7 & \\
\hline\(\mu_{0 a}\) & u_0a & 0.0132 & 0.0044 & \(m^{2} /(V s)\) \\
\hline\(\gamma_{1 d}\) & gama_1d & 0.5 & 2.0 & \\
\hline\(\mu_{1 d}\) & u_1d & 0.00424 & 0.00282 & \(m^{2} /(V s)\) \\
\hline\(\gamma_{1 a}\) & gama_1a & 1.25 & 0.8 & \\
\hline\(\mu_{1 a}\) & u_1a & 0.00735 & 0.00282 & \(m^{2} /(V s)\) \\
\hline\(\gamma_{r 1}\) & gama_r1 & 3.65 & 2.2 & \\
\hline\(C_{r 1}\) & C_r1 & 8.9 E 22 & 1.3 E 24 & \(m^{-3}\) \\
\hline\(\gamma_{r 2}\) & gama_r2 & 2.65 & 3.1 & \\
\hline\(C_{r 2}\) & C_r2 & 1.22 E 23 & 2.45 E 23 & \(m^{-3}\) \\
\hline\(\gamma_{s 1}\) & gama_s1 & 0.0 & 6.2 & \\
\hline\(C_{s 1}\) & C_s1 & 2.9 E 26 & 1.1 E 24 & \(m^{-3}\) \\
\hline\(C_{s 2}\) & C_s2 & 7 E 26 & 6.1 E 26 & \(m^{-3}\) \\
\hline\(\alpha\) & alpha & 0.68 & 0.77 & \\
\hline\(\beta\) & beta & 0.72 & 0.719 & \\
\hline
\end{tabular}

Note that the parameter names are abbreviated here for the sake of convenience. When the University of Bologna model is activated, an el_uni_bolo_ (for electrons) or hole_uni_bolo_ (for holes) prefix must be added to the name shown in the table.

\section*{Parameters For Carrier-Carrier Scattering Models}

In this section, \(n\) and \(p\) are the carrier densities.

\section*{Conwell-Weisskopf}

This model implements the following relationship[126]:
\[
\begin{equation*}
\mu_{c a r r}=\frac{D\left(\frac{T}{T_{0}}\right)^{\frac{3}{2}}}{\sqrt{n p}}\left[\ln \left(1+\frac{F}{\sqrt[3]{n p}}\left(\frac{T}{T_{0}}\right)^{2}\right)\right]^{-1} \tag{22.53}
\end{equation*}
\]

The other parameters for this model (along with their default values) are defined in the following table:
\begin{tabular}{||l|l|l|l|l||}
\hline symbol & parameter name & electron value & hole value & units \\
\hline \hline\(D\) & D & 1.04 E 16 & 1.04 E 16 & \(m^{-1} V^{-1} s^{-1}\) \\
\hline\(F\) & F & 7.452 E 17 & 7.452 E 17 & \(m^{-2}\) \\
\hline
\end{tabular}

Note that the parameter names are abbreviated here for the sake of convenience. When the Conwell-Weisskopf model is activated, an el_con_wei_(for electrons) or hole_con_wei_ (for holes) prefix must be added to the name shown in the table.

\section*{Brooks-Herring}

This model implements the following relationship[127]:
\[
\begin{gather*}
\mu_{c a r r}=\frac{c_{1}\left(\frac{T}{T_{0}}\right)^{\frac{3}{2}}}{\phi\left(\eta_{0}\right) \sqrt{n p}}  \tag{22.54}\\
\phi\left(\eta_{0}\right)=\ln \left(1+\eta_{0}\right)-\frac{\eta_{0}}{1+\eta_{0}}  \tag{22.55}\\
\eta_{0}=\frac{c_{2}}{N_{c} F_{-\frac{1}{2}}\left(\frac{n}{N_{c}}\right)+N_{v} F_{-\frac{1}{2}}\left(\frac{p}{N_{v}}\right)}\left(\frac{T}{T_{0}}\right)^{2} \tag{22.56}
\end{gather*}
\]
where \(N_{c}, N_{v}\) are the densities of state for the electrons and holes, respectively, and \(F_{-\frac{1}{2}}\) is the derivative of the usual Fermi-Dirac integral of order \(1 / 2\). The other parameters for this model (along with their default values) are defined in the following table:
\begin{tabular}{|l|l|l|l|l||}
\hline symbol & parameter name & electron value & hole value & units \\
\hline \hline \hline\(c_{1}\) & c 1 & 1.56 E 15 & 1.56 E 15 & \(m^{-1} V^{-1} s^{-1}\) \\
\hline\(c_{2}\) & c 2 & 7.63 E 25 & 7.63 E 25 & \(\mathrm{~m}^{-3}\) \\
\hline
\end{tabular}

Note that the parameter names are abbreviated here for the sake of convenience. When the Brooks-Herring model is activated, an el_bro_her_ (for electrons) or hole_bro_her_( for holes) prefix must be added to the name shown in the table.

\section*{Parameters For Philips Unified Model}

This model combines dopant and carrier scattering effects using the following relationship[128]:
\[
\begin{equation*}
\frac{1}{\mu}=\frac{1}{\mu_{L}}+\frac{1}{\mu_{D A e h}} \tag{22.57}
\end{equation*}
\]
where \(\mu_{L}=\mu_{\max }\left(\frac{T}{T_{0}}\right)^{-\theta}\) describes the effects from phonon scattering and \(\mu_{D A e h}\) includes all other bulk mechanisms (free carriers, ionized dopants, etc...):
\[
\begin{equation*}
\mu_{D A e h}=\mu_{N}\left(\frac{N_{s c}}{N_{s c, e f f}}\right)\left(\frac{N_{r e f}}{N_{s c}}\right)^{\alpha}+\mu_{c}\left(\frac{n+p}{N_{s c, e f f}}\right) \tag{22.58}
\end{equation*}
\]
with:
\[
\begin{align*}
\mu_{N} & =\frac{\mu_{\max }^{2}}{\mu_{\max }-\mu_{\min }}\left(\frac{T}{T_{0}}\right)^{3 \alpha-1.5}  \tag{22.59}\\
\mu_{c} & =\frac{\mu_{\max } \mu_{\min }}{\mu_{\max }-\mu_{\min }}\left(\frac{T}{T_{0}}\right)^{0.5} \tag{22.60}
\end{align*}
\]

The scattering center density is given by:
\[
N_{s c}= \begin{cases}N_{D}^{*}+N_{A}^{*}+p & \text { for electrons }  \tag{22.61}\\ N_{D}^{*}+N_{A}^{*}+n & \text { for holes }\end{cases}
\]
while the effective scattering center density follows:
\[
N_{s c, e f f}= \begin{cases}N_{D}^{*}+G\left(P_{e}\right) N_{A}^{*}+\frac{p}{F\left(P_{e}\right)} & \text { for electrons }  \tag{22.62}\\ N_{D}^{*}+G\left(P_{h}\right) N_{A}^{*}+\frac{n}{F\left(P_{h}\right)} & \text { for holes }\end{cases}
\]

In the above equations, \(N_{A}^{*}\) and \(N_{D}^{*}\) are modified dopant concentrations which account for clustering effects at very high concentrations \({ }^{1}\) :
\[
\begin{equation*}
N_{X}^{*}=N_{X}\left[1+\frac{1}{c_{X}}\left(\frac{N_{X}}{N_{X, r e f}}\right)^{2}\right] \text { for } \mathrm{X}=\mathrm{A}, \mathrm{D} \tag{22.63}
\end{equation*}
\]
while screening effects are represented by the analytic functions \(F\) and \(G\) :

\footnotetext{
\({ }^{1}\) The original reference indicates that the ionized dopant concentration should be used here; for the sake of simplicity, Crosslight uses the total dopant concentration as of the 2014 version. This approximation should hold for shallow dopants at room temperature.
}
\[
\begin{gather*}
F\left(P_{i}\right)=\frac{0.764 P_{i}^{0.6478}+2.2999+6.5505 \frac{m_{i}^{*}}{m_{j}^{*}}}{P_{i}^{0.6478}+2.3670-0.8552 \frac{m_{i}^{*}}{m_{j}^{*}}}  \tag{22.64}\\
G\left(P_{i}\right)=1-\frac{a_{g}}{\left[b_{g}+P_{i}\left(\frac{m_{0}}{m_{i}^{*}} \frac{T}{T_{0}}\right)^{\alpha_{g}}\right]^{\beta_{g}}+\frac{c_{g}}{\left[P_{i}\left(\frac{m_{0}}{m_{i}^{*}} \frac{T}{T_{0}}\right)^{\alpha_{g}^{\prime}}\right]^{\gamma_{g}}}} \tag{22.65}
\end{gather*}
\]
where \(i=e, h\) for either electrons or holes, \(\frac{m_{i}^{*}}{m_{0}}\) is a fitting parameter related to the relative effective mass and \(\frac{m_{j}^{*}}{m_{0}}\) is the matching fitting parameter for the other carrier. The argument \(P_{i}\) of these functions is a screening parameter defined as a weighed harmonic mean of the Brooks-Herring and Conwell-Weisskopf approaches:
\[
\begin{equation*}
P_{i}=\left[\frac{f_{C W}}{3.97 \times 10^{13} N_{s c}^{-\frac{2}{3}}}+\frac{f_{B H}}{\frac{1.36 \times 10^{26}}{n+p} \frac{m_{i}^{*}}{m_{0}}}\right]^{-1}\left(\frac{T}{T_{0}}\right)^{2} \tag{22.66}
\end{equation*}
\]

The other parameters for this model (along with their default values) are defined in the following table:
\begin{tabular}{||l|l|l|l|l||}
\hline symbol & parameter name & electron value & hole value & units \\
\hline \hline \hline\(\mu_{\max }\) & umax & 0.1417 & 0.04705 & \(m^{2} /(V s)\) \\
\hline\(\mu_{\min }\) & umin & 0.00522 & 0.00449 & \(\mathrm{~m}^{2} /(V s)\) \\
\hline\(\theta\) & theta & 2.285 & 2.247 & \\
\hline\(N_{\text {ref }}\) & e_ref & 9.68 E 22 & 2.23 E 23 & \(\mathrm{~m}^{-3}\) \\
\hline\(\alpha\) & alpha & 0.68 & 0.719 & \\
\hline\(N_{D, \text { ref }}\) & d_ref & 4 E 26 & 4 e 26 & \(\mathrm{~m}^{-3}\) \\
\hline\(N_{A, \text { ref }}\) & a_ref & 7.2 E 26 & 7.2 e 26 & \(\mathrm{~m}^{-3}\) \\
\hline\(c_{D}\) & c_d & 0.21 & 0.21 & \\
\hline\(c_{A}\) & c_A & 0.5 & 0.5 & \\
\hline\(m_{e}^{*}\) & me & 1.0 & 1.0 & \\
\hline\(m_{h}^{*}\) & mh & 1.258 & 1.258 & \\
\hline\(m_{0}\) & m0 & 1.0 & 1.0 & \\
\hline\(f_{C W}\) & fcw & 2.459 & 2.459 & \\
\hline\(f_{B H}\) & fbh & 3.828 & 3.828 & \\
\hline\(a_{g}\) & ag & 0.89233 & 0.89233 & \\
\hline\(b_{g}\) & bg & 0.41372 & 0.41372 & \\
\hline\(c_{g}\) & cg & 0.005978 & 0.005978 & \\
\hline\(\alpha_{g}\) & alpha_g & 0.28227 & 0.28227 & \\
\hline\(\alpha_{g}^{\prime}\) & alpha_g2 & 0.72169 & 0.72169 & \\
\hline\(\beta_{g}\) & beta_g & 0.19778 & 0.19778 & \\
\hline\(\gamma_{g}\) & gamma_g & 1.80618 & 1.80618 & \\
\hline & & & & \\
\hline
\end{tabular}

Note that the parameter names are abbreviated here for the sake of convenience. When the Philips unified model is activated, an el_phili_ (for electrons) or hole_phili (for holes) prefix must be added to the name shown in the table.

\section*{Parameters For Surface Degradation Models}

These models are mainly used in MOSFET applications where high transverse electric fields cause the carriers to strongly interact with the semiconductor/oxide interface. These effects are highly localized and throughout this section, a scaling parameter \(D=e^{-\frac{\text { distance }}{l_{\text {crit }}}}\) is used to turn off the mobility degradation away from the interface. Surface effects also cause anisotropic mobility and throughout this section, \(F_{\perp}\) is defined as the transverse electric field normal to the interface.

As such, it is not recommended to combine the surface degradation models of this section with the mobility__xy statement. Crosslight's recommendation is to use the surface degradation models for MOSFET/transistor applications (especially in silicon) while the mobility __xy model is better suited to scale the mobility in nanostructured materials such as superlattice blocking layers or VCSEL DBR mirrors.

\section*{University of Bologna Inversion Layer}

This model combines the scattering effects from Coulombic effects \(\left(\mu_{c b}\right)\), surface acoustic phonons \(\left(\mu_{a c}\right)\) and surface roughness ( \(\mu_{\text {rough }}\) ) using the following relationship[129]:
\[
\begin{equation*}
\frac{1}{\mu_{\text {surf }}}=\frac{1}{\mu_{c b}}+\frac{D}{\mu_{a c}}+\frac{D}{\mu_{\text {rough }}} \tag{22.67}
\end{equation*}
\]

The Coulomb term and screening effects are given by:
\[
\begin{gather*}
\mu_{c b}=\mu_{b u l k}\left[D\left(1+f_{s c}^{\tau}\right)^{\frac{1}{\tau}}+(1-D)\right]  \tag{22.68}\\
f_{s c}=\left(\frac{N_{1}}{N_{A}+N_{D}}\right)^{\eta} \frac{N_{\min }}{N_{A}+N_{D}} \tag{22.69}
\end{gather*}
\]
where \(N_{\min }\) is the minority carrier concentration.
The surface scattering terms are defined as:
\[
\begin{align*}
\mu_{a c} & =c\left(\frac{T}{T_{0}}\right)^{-\gamma_{c}}\left(\frac{N_{A}+N_{D}}{N_{2}}\right)^{a} F_{\perp}^{-\delta}  \tag{22.70}\\
\mu_{\text {rough }} & =d\left(\frac{T}{T_{0}}\right)^{\gamma_{d}}\left(\frac{N_{A}+N_{D}+N_{3}}{N_{4}}\right)^{b} F_{\perp}^{-\gamma} \tag{22.71}
\end{align*}
\]

The other parameters for this model (along with their default values) are defined in the following table:
\begin{tabular}{||l|l|l|l|l||}
\hline symbol & parameter name & electron value & hole value & units \\
\hline \hline\(N_{1}\) & n 1 & 2.34 E 22 & 2.02 E 22 & \(\mathrm{~m}^{-3}\) \\
\hline\(N_{2}\) & n 2 & 4 E 2 & 7.8 E 21 & \(\mathrm{~m}^{-3}\) \\
\hline\(N_{3}\) & n 3 & 1 E 23 & 2 E 21 & \(\mathrm{~m}^{-3}\) \\
\hline\(N_{4}\) & n 4 & 2.4 E 24 & 6.6 E 23 & \(\mathrm{~m}^{-3}\) \\
\hline\(c\) & c & 1.8 & 0.5726 & \(\mathrm{~m}^{2} /(V s)\) \\
\hline\(\gamma_{c}\) & gamac & 1.6 & 1.3 & \\
\hline\(d\) & d & 5.80 E 15 & 7.82 E 11 & \(\mathrm{~m}^{2} /(V s)\) \\
\hline\(\gamma_{d}\) & gamad & 0 & 1.4 & \\
\hline\(\tau\) & tau & 1.0 & 3.0 & \\
\hline\(\eta\) & eta & 0.3 & 0.5 & \\
\hline\(a\) & a & 0.026 & -0.02 & \\
\hline\(b\) & b & 0.11 & 0.08 & \\
\hline\(l_{\text {crit }}\) & lcrit & \(1 \mathrm{E}-8\) & \(1 \mathrm{E}-8\) & \(m\) \\
\hline\(\delta\) & delta & 0.29 & 0.3 & \\
\hline\(\lambda\) & lambda & 2.64 & 2.24 & \\
\hline
\end{tabular}

Note that the parameter names are abbreviated here for the sake of convenience. When the University of Bologna Inversion Layer model is activated, an el_uni_boloinve_ (for electrons) or hole__uni_boloinve_ (for holes) prefix must be added to the name shown in the table.

\section*{Enhanced Lombardi}

This model is an enhanced version of the Lombardi model found in mobility__xy. It combines the scattering from surface acoustic phonons ( \(\mu_{a c}\) ) and surface roughness ( \(\mu_{\text {rough }}\) ) using the following relationship[130]:
\[
\begin{equation*}
\frac{1}{\mu_{\text {surf }}}=\frac{1}{\mu_{\text {bulk }}}+\frac{D}{\mu_{\text {ac }}}+\frac{D}{\mu_{\text {rough }}} \tag{22.72}
\end{equation*}
\]

The acoustic phonon contribution takes the form:
\[
\begin{equation*}
\mu_{a c}=\frac{B}{F_{\perp}}+\frac{C\left(\frac{N_{i}}{N_{0}}\right)^{\lambda}}{F_{\perp}^{\frac{1}{3}}\left(\frac{T}{T_{0}}\right)^{k}} \tag{22.73}
\end{equation*}
\]
while the surface roughness term is defined by:
\[
\begin{gather*}
\frac{1}{\mu_{r o u g h}}=\frac{1}{\delta}\left(\frac{F_{\perp}}{F_{r e f}}\right)^{A^{*}}+\frac{F_{\perp}^{3}}{\eta}  \tag{22.74}\\
A^{*}=A+\alpha_{\perp}(n+p)\left(\frac{N_{r e f}}{N_{i}+N_{1}}\right)^{v} \tag{22.75}
\end{gather*}
\]
with a reference field of \(F_{r e f}=1 \mathrm{~V} / \mathrm{cm}\) and a reference doping density of \(F_{r e f}=1 \mathrm{~cm}^{-3}\). The other parameters for this model (along with their default values) are defined in the following table:
\begin{tabular}{||l|l|l|l|l||}
\hline symbol & parameter name & electron value & hole value & units \\
\hline \hline\(B\) & B & 4.75 E 5 & 9.925 E 4 & \(\mathrm{~m} / \mathrm{s}\) \\
\hline\(C\) & C & 0.26921 & 1.36788 & \(m^{\frac{5}{3}} s^{-1} V^{-\frac{2}{3}}\) \\
\hline\(N_{0}\) & n 0 & 1 E 6 & 1 E 6 & \(m^{-3}\) \\
\hline\(N_{1}\) & n1 & 1 E 6 & 1 E 6 & \(m^{-3}\) \\
\hline\(\lambda\) & lambda & 0.125 & 0.0317 & \\
\hline\(k\) & k & 1.0 & 1.0 & \\
\hline\(\delta\) & delta & 5.82 E 10 & 2.0546 E 10 & \(\mathrm{~m}^{2} /(V s)\) \\
\hline\(A\) & A & 2.0 & 2.0 & \\
\hline\(\alpha_{\perp}\) & alpha & 0.0 & 0.0 & \(m^{3}\) \\
\hline\(v\) & v & 1.0 & 1.0 & \\
\hline\(\eta\) & eta & 5.82 E 32 & 5.82 E 32 & \(m^{-1} s^{-1} V^{2}\) \\
\hline\(l_{\text {crit }}\) & lcrit & \(1 \mathrm{E}-8\) & \(1 \mathrm{E}-8\) & \(m^{\prime}\) \\
\hline
\end{tabular}

Note that the parameter names are abbreviated here for the sake of convenience. When the Enhanced Lombardi model is activated, an el_lombard_ (for electrons) or hole_lombard_(for holes) prefix must be added to the name shown in the table.

\section*{Examples}
```

low_field_mobility_model mater=1 \&\&

```
```

 el_philips_unified_model = yes el_phili_umax=0.1417
    ```

This statement activates the unified Philips model for electrons in material \#1 and the parameter umax in the function is specified as \(0.1417 \mathrm{~m}^{2} /(V s)\).

\subsection*{22.439 lplot_xy}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & [vttek] \\
\hline variable & char & (see list) \\
\hline n_variables & charxn & \\
\hline integration & char & [no] \\
\hline x_from__label & char & [void] \\
\hline y_from_label & char & [void] \\
\hline x_to_label & char & [void] \\
\hline y_to_label & char & [void] \\
\hline math_oper & char & [void] \\
\hline xy_from & realx2 & \\
\hline xy_to & realx2 & \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline z & real & \\
\hline integration_start & real & {\([0.0]\) (um) } \\
\hline integration_length & real & {\([1 . e 5](\mathrm{um})\)} \\
\hline var_num & intg & {\([1]\)} \\
\hline mode_index & intg & {\([1]\)} \\
\hline trap_index & intg & {\([1]\)} \\
\hline
\end{tabular}
lplot_xy is a post-processor statement used to plot data along a 1 D cut line. It is similar to plot_1d and lplot_xyz. Depending on the 2D/3D nature of the simulation, the following rules should guide the choice of plotting command:
- 2D simulations: use plot_1d
- 3D cylindrical simulations with one mesh plane: use plot_1d
- xy cut of a 3D simulation: use lplot_xy
- z cut of a 3D simulation: use lplot_xyz

\section*{Parameters}

Most parameters for this function are similar to the ones for plot_1d and are omitted for the sake of brevity. The following parameters are specific to lplot_xy:
- \(\mathbf{z}\), in conjunction with \(\mathbf{x y}\) _from and \(\mathbf{x y} \_\)_to, defines the beginning and ending points of the 1D cut line. Note that xrange and yrange also provide an alternate way to define the extent of the cut line in the mesh plane.

Unlike plot_1d, parameters related to plotting of the QW states are not available in this function. Use lplot__xy__qw__states instead.

\section*{Examples}
lplot_xy variable=wave_intensity xy_from=(0.5 1.1) \&\&
\(x y_{\_}\)to \(=\left(\begin{array}{ll}0.5 & 1.9\end{array}\right) \quad z=200\).

\subsection*{22.440 lplot_xy_qw_states}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & {\([\) void \(]\)} \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline qw_wave_ht & real & {\([0.1](\mathrm{eV})\)} \\
\hline length__below_qw & real & {\([-9999]\).} \\
\hline length_above_qw & real & {\([-9999]\).} \\
\hline cond_subband & intg & {\([1] 2\)} \\
\hline val_subband & intg & {\([1] 23\)} \\
\hline zseg_num & intg & {\([1]\)} \\
\hline complex & intg & {\([1]\)} \\
\hline
\end{tabular}
lplot_xy_qw_states is a variation of lplot_xy. However, instead of plotting a 1 D cut line from a 3D simulation, it plots the QW states on the band diagram.

\section*{Parameters}
- data_file is the name of a text file in which a copy of the plot data will be saved.
- xrange and yrange can be used to define the plot region.
- qw__wave_ht is the height of the quantum wave amplitude as plotted on the band diagram. However, the simulation must first have been run using the self_consistent statement. It is also necessary to output the QW wave data using more__output.
- length__below_qw and length__above_qw extend the plotting region beyond the QW. This can make it easier to observe the spatial extent of wave functions.
- cond__subband is used when \(q \mathbf{q}\) __wave \(=1\) to indicate which conduction band is being plotted. The main condition band valley \((\Gamma)\) is equal to 1 while 2 represents the side valley \((L, X)\).
- val__subband is used when \(\mathbf{q w}\) __wave \(=1\) to indicate which valence band is being plotted. Values of 1, 2 and 3 are used to represent the HH, LH and CH bands, respectively.
- zseg_num defines the z-segment number of the region being plotted. This value should match what is defined in the corresponding z_structure statement.
- complex is the number of the complex MQW region being plotted.

\subsection*{22.441 lplot_xyz}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & [vttek] \\
\hline variable & char & (see list) \\
\hline n_variables & charxn & \\
\hline integration & char & {\([\) no \(]\)} \\
\hline math_oper & char & {\([\) void \(]\)} \\
\hline xy_point & realx2 & \\
\hline z_from & real & \\
\hline z_to & real & \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline integration_start & real & {\([0.0](\mathrm{um})\)} \\
\hline integration_length & real & {\([1 . e 5](\mathrm{um})\)} \\
\hline qw_wave_ht & real & {\([0.1](\mathrm{eV})\)} \\
\hline var_num & intg & {\([1]\)} \\
\hline mode_index & intg & {\([1]\)} \\
\hline trap_index & intg & {\([1]\)} \\
\hline qw__wave & intg & {\([0] 1\)} \\
\hline cond_subband & intg & {\([1] 2\)} \\
\hline val_subband & intg & {\([1] 23\)} \\
\hline
\end{tabular}
lplot_xyz is a post-processor statement used to plot data along a 1D cut line. It is similar to lplot_xy and plot__1d. Depending on the \(2 \mathrm{D} / 3 \mathrm{D}\) nature of the simulation, the following rules should guide the choice of plotting command:
- 2D simulations: use plot_1d
- 3D cylindrical simulations with one mesh plane: use plot_1d
- xy cut of a 3D simulation: use lplot_xy
- z cut of a 3D simulation: use lplot__xyz

\section*{Parameters}

Most parameters for this function are similar to the ones for plot__1d and are omitted for the sake of brevity.
- xy_point defines the position of the cut line in the \(x y\) plane. If the cut line is not parallel to the z axis, xrange and yrange may be used to define the extent of the cut line in the mesh plane.
- \(\mathbf{z}\) _from and \(\mathbf{z} \_\)to define the extent of the 1 D cut line along the z direction.

\section*{Examples}
```

lplot_xyz variable=elec_conc xy_point=(2.5 0.4) \&\&
z_from=0. z_to=50

```

\subsection*{22.442 makebend_dome}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline xy_center_1st_plane & realx2 & {\([0.0].(\mu \mathrm{m})\)} \\
\hline height_1st_plane & real & {\([0.1](\mu \mathrm{m})\)} \\
\hline diameter_1st_plane & real & {\([1].(\mu \mathrm{m})\)} \\
\hline xy_center_last_plane & realx2 & {\([0.0].(\mu \mathrm{m})\)} \\
\hline height_last_plane & real & {\([0.1](\mu \mathrm{m})\)} \\
\hline diameter_last_plane & real & {\([1].(\mu \mathrm{m})\)} \\
\hline zseg_num & intg & {\([1]\)} \\
\hline
\end{tabular}


Figure 22.16: 2D cut of spherical dome bending

This statement is used to bend xy mesh planes in the z direction to form a spherical dome. The curvature of the first and last mesh planes in the segment are specified and the bending is interpolated for intermediate layers.

\section*{Parameters}

The parameters for this statement can be more easily understood by examining Fig. 22.16. The spherical dome is shown by a 2D cut through the maximum bending area and the highlighted section of the circle represents the edge of the bent plane.
- xy__center_1st__plane are the in-plane coordinates of the center of curvature for the first plane in the segment.
- height_1st_plane is the maximum bending height on the first plane. A value of zero means no bending in the z direction.
- diameter_1st__plane is the diameter of a circle in the x-y plane formed by intersecting the dome and original unbent mesh plane. It is an indirect way of specifying the solid angle represented by the bent plane.
- xy__center_last__plane is the same as xy __center_1st__plane for the last mesh plane in the segment.
- height__last__plane is the same as height__1st__plane for the last mesh plane in the segment.
- diameter__last__plane is the same as diameter__1st__plane for the last mesh plane in the segment.
- zseg_num is the segment in which the bending is applied.

\section*{Examples}
```

makebend_dome zseg_num=1 \&\&
xy_center_1st_plane=(0.5 0.5) \&\&
height_1st_plane = 0.0 \&\&
diameter_1st_plane = 1.0 \&\&
xy_center_last_plane=(0.5 0.5) \&\&
height_last_plane = 0.2 \&\&
diameter_last_plane = 1.0

```

\subsection*{22.443 makebend__rectangle__based__pyramid}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline xy_center_1st_plane & realx2 & {\([0.0].(\mu \mathrm{m})\)} \\
\hline height_1st_plane & real & {\([0.1](\mu \mathrm{m})\)} \\
\hline x_width_1st_plane & real & {\([1].(\mu \mathrm{m})\)} \\
\hline y_width_1st_plane & real & {\([1].(\mu \mathrm{m})\)} \\
\hline xy_center_last_plane & realx2 & {\([0.0].(\mu \mathrm{m})\)} \\
\hline height_last_plane & real & {\([0.1](\mu \mathrm{m})\)} \\
\hline x_width_last_plane & real & {\([1].(\mu \mathrm{m})\)} \\
\hline y_width_last_plane & real & {\([1].(\mu \mathrm{m})\)} \\
\hline zseg_num & intg & {\([1]\)} \\
\hline
\end{tabular}

This statement is used to bend xy mesh planes in the z direction to form pyramids. The bending is specified for the first and last mesh planes in a segment and interpolated for intermediate planes.

\section*{Parameters}

The parameters for this statement can be more easily understood by examining Fig. 22.17. The pyramid is shown in a projection view with \(h\) being the height of


Figure 22.17: Projection view of pyramidal bending
the pyramid in the z direction and \(w x, w y\) are the widths of the pyramid base in the x and y direction.
- xy__center_1st__plane are the in-plane coordinates of the center of curvature for the first plane in the segment.
- height_1st_plane is the maximum bending height on the first plane. A value of zero means no bending in the z direction.
- x__width__1st__plane and y__width__1st__plane are the widths of the pyramid base in the x and y direction.
- xy__center_last__plane is the same as xy __center__1st__plane for the last mesh plane in the segment.
- height__last__plane is the same as height__1st__plane for the last mesh plane in the segment.
- x__width_last__plane and y__width_last__plane are the same as x__width \(\qquad\) _plane and \(\mathbf{y}\) __width_1st__plane for the last mesh plane in the segment.
- zseg_num is the segment in which the bending is applied.

\section*{Examples}
```

xy_center_1st_plane=(0.5 0.5) \&\&
height_1st_plane = 0.0 \&\&
xy_center_last_plane=(0.5 0.5) \&\&
height_last_plane = 0.2 \&\&

```

\subsection*{22.444 makebend_tilt}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline fixed_xy_1st_plane & realx2 & {\([0.0].(\mu m)\)} \\
\hline theta_1st_plane & real & {\([0].(\) degrees \()\)} \\
\hline phi_1st_plane & real & {\([0\).\(] (degrees)\)} \\
\hline fixed_xy_last_plane & realx2 & {\([0.0].(\mu m)\)} \\
\hline theta_last_plane & real & {\([0\).\(] (degrees)\)} \\
\hline phi_last_plane & real & {\([0\).\(] (degrees)\)} \\
\hline zseg_num & intg & {\([1]\)} \\
\hline
\end{tabular}

This statement is used to tilt xy mesh planes in a particular direction. The direction of the plane normal vector is specified for the first and last planes in a segment and interpolated for intermediate planes.

\section*{Parameters}
- fixed_xy__1st__plane is a point of the mesh plane that is on the tilt axis: it is not affected by the transformation.
- theta_1st_plane and phi__1st__plane are the angles describing the direction of the plane normal vector in the spherical coordinate system.
- fixed__xy__last__plane is the same as fixed__xy__1st__plane for the last mesh plane in the segment.
- theta _last__plane and phi__last__plane are the same as theta__1st__plane and phi_1st__plane for the last mesh plane in the segment.
- zseg_num is the segment in which the transformation is applied.

\section*{Examples}
makebend_tilt zseg_num=1 \&\&
```

xy_center_1st_plane=(0.5 0.5) \&\&
phi_1st_plane = 0.0 \&\&
xy_center_last_plane=(0.5 0.5) \&\&
phi_1st_plane = 45.0

```

\subsection*{22.445 mass_density}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement mass_density is used to define the density (in \(\mathrm{kg} / \mathrm{m}^{3}\) ) of the semiconductor material.

The use of this parameter and related examples are given under material__par in section 22.456 .

\subsection*{22.446 mass__gamma__bar}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement mass_gamma__bar is an active layer macro statement used to define the relative effective mass of the Gamma band in the quantum barrier.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

\subsection*{22.447 mass__gamma__bulk}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

It is the conduction bane effective mass in direction along the c-axis. This statement is applicable for wurtzite structure bulk region [1].
[1] S. L. Chuang, "Optical Gain of Strained Wurtzite GaN Quantum Well Lasers", IEEE J. Quantum Electron., VOL. 32, NO. 10, OCTOBER 1996, p. 1791

\subsection*{22.448 mass_gamma_well}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement mass_gamma__well is an active layer macro statement used to define the relative effective mass of the Gamma band in the quantum well.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

\subsection*{22.449 mass_l_bar}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement mass_l__bar is an active layer macro statement used to define the relative effective mass of the L-band in the quantum barrier.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

\subsection*{22.450 mass_l_well}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement mass_l__well is an active layer macro statement used to define the relative effective mass of the L-band in the quantum well.
The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material__par in section 22.456 .

\subsection*{22.451 mater__var}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline name & char & \\
\hline variation & char & linear_x, linear_y \\
\hline n_values & realxn & \\
\hline rotation_angle & real & (degrees) \\
\hline reference_point & realx2 & \((\mu m)\) \\
\hline data_num & intg & \\
\hline
\end{tabular}
mater__var works in conjunction with the load_macro statement to define the spatial variation of a user-defined variable. The local value of this variable is passed as an argument to the various functions inside the macro to define material parameters.

In many ways, this statement duplicates some of the functionality common to all material parameter statements (c.f. Sec. 22.456). However, it operates at a higher level and is usually automatically generated by Crosslight helper tools like the layer.exe program.

\section*{Parameters}
- name is a unique identifier used to identify the spatial variation. It should be the same as var__name in load__macro in order to correctly link the variation to the right symbol/macro variable.
- variation defines how the variable varies with distance:
- linear_x means that the physical quantity linearly depends on the position in the x-direction. This must be used in conjunction with the parameters data_num and n__values.
- linear_y is the same as linear_x except it is in the \(y\)-direction.
- linear_xy is a linear variation in an arbitrary direction specified by rotation__angle and reference_point.
- function means a mathematical function of the form:
```

function(variable1, variable2, ...)
end_function

```

All lines in a function except the last one must end with a semicolon (;) to suppress the line output. The output of the last line is the value returned by the function. The rules for mathematical functions are further explained in Appendix B.
- table is used for tabulated data. Multi-dimensional data may be used but a column-wise variation with the left-most index varying the quickest is needed as shown below:
```

table(x,y)
x(1) y(1) matrix(1,1)
x(2) y(1) matrix(2,1)
x(3) y(1) matrix(3,1)
x(1) y(2) matrix(1,2)
x(2) y(2) matrix(2,2)
x(3) y(2) matrix(3,2)
end_table

```
- rotation__angle is effective when variation=linear_xy. It is the angle from the \(y\)-axis.
- reference_point is ( \(\mathrm{x}, \mathrm{y}\) ) coordinate of the reference point of the rotated grading region. It is effective when variation=linear_xy. In listing of coordinate/composition in \(n\) _values above, the coordinate is the distance from this reference point for a rotated grading region.
- n__values specifies data points used for the linear interpolation when variation \(=\) linear_ \(x\). The format is \(\mathrm{n} \backslash\) values \(=(\mathrm{x} 1, \mathrm{f} 1, \mathrm{x} 2, \mathrm{f} 2, \mathrm{x} 3, \mathrm{f} 3, \ldots)\) where \(x \_i\) and \(f \_i\) are the \(x\)-coordinate \(\bar{a}\) and function value of the ith point. A similar format is used with the other linear variation formats.
- data__num is the number of data values in n__values. It is equal to twice the number data points since coordinates must also be included in n_values.

\section*{Examples}
```

mater_var name=In variation=linear_y 4_values=(0. 0.14, 0.3, 0.2) \&\&
data_num=4

```

\subsection*{22.452 material}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline type & char & [semicond] \\
\hline el_vel_model & char & constant, 2.piece,[beta],n.gaas \\
\hline hole_vel_model & char & constant, 2.piece,[beta],n.gaas \\
\hline trapleveli_model & char & gaussian, expo_tail \\
\hline trapleveli_tail_side & char & conduction, valence \\
\hline trapleveli_charge_type & char & donor, acceptor \\
\hline band_valleys & realx2 & {\([11]\)} \\
\hline mater & intg & {\([1]\)} \\
\hline group_index & real & {\([3.56]\)} \\
\hline
\end{tabular}
material is a passive macro statement that defines various model parameters for a specific material.

\section*{Parameters}
- type is the type of material. It takes one the following:
- semicond refers to a normal semiconductor like Si or InP.
- insulator is a special material type where the current is exactly zero.
- resistor is a special material type used for metals. See Sec. 5.3.
- wurtzite refers to semiconductors like GaN and ZnO which have the wurtzite crystal structure.
- organic refers to organic semiconductors.
- super_struc_type is a complicated layer structure which is usually simulated separately in a smaller sub-project.
- mater is the index of the material being described. This is omitted when the statement is used in a macro file.
- el__vel_model and hole__vel__model are the field-dependent mobility models from Sec. 5.1.6. Each parameter can take on the following:
- 1. constant
- 2. 2.piece
- 3. beta. This is the default for most devices.
- 4. n.gaas. This model shows the negative differential resistance typical of GaAs and applies to electrons only.
- 5. poole_frenkel. This model is used for organic semiconductors.
- 6. modified_transf_elec. This corresponds to a mixture of the "beta" or Canali model and a modified transferred-electron model: it applies to electrons only. See beta__mte for details.

A user-defined mobility model can also be used.
- band__valleys is the number of equivalent conduction band valleys and valence band peaks. This is needed to compute the density of states from the effective masses.
- group_index is the group index of the 2D cross section being simulated. The group index is used to measure the velocity of the photon energy and it appears in the photon rate equation and in stimulated emission terms.
- trapleveli_model, trapleveli__tail_side and trapleveli_charge_type are a set of parameters defining traps that are always a part of the material being defined in a particular macro. This provides an alternate means of defining traps in the software besides the use of the doping statement. Refer to Sec. 5.5 for the rules governing traps when both sets of statements are used.
The significance of these parameters and the values allowed is the same as for the similarly-named parameters in the doping statement. Note that "i" is an identifying label \((\mathrm{i}=1 . .9)\) so different traps species can coexist in the same material.

\section*{Examples}
```

material band_valleys=(6 1) \&\&
el_vel_model=beta hole_vel_model=beta

```

This is used for Si .
```

material type=semicond band_valleys=(1 1) \&\&
el_vel_model=n.gaas hole_vel_model=beta

```

This is used for GaAs.

\subsection*{22.453 material_3d}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline global & char & [yes], no \\
\hline intern_spon_par & char & {\([\) yes \(]\), no } \\
\hline spon_par & real & {\([1.7]\)} \\
\hline dkdn_real & real & {\([0].\left(m^{2}\right)\)} \\
\hline dkdn_imag & real & {\([0].\left(m^{2}\right)\)} \\
\hline dkdn_nref & real & {\([2 . e 24]\left(m^{-3}\right)\)} \\
\hline dndn_type2 & real & {\([-1 . e-28]\left(m^{3}\right)\)} \\
\hline dgdn_type2 & real & {\([1 . e-22]\left(m^{2}\right)\)} \\
\hline dgdw_type2 & real & {\([0.0]\)} \\
\hline dkdj_real & real & {\([0].(m / A)\)} \\
\hline dkdj_imag & real & {\([0].(m / A)\)} \\
\hline dkdj_jref & real & {\([0].\left(A / m^{2}\right)\)} \\
\hline sec_num & intg & {\([1]\)} \\
\hline
\end{tabular}
material__3d is primarily used in PICS3D in conjunction with passive__3d to describe how the real and imaginary parts of the propagation constants vary in unmeshed passive regions. Other parameters relating to the Green's function analysis are also set here so this command may also be used to override internal defaults for that model.

\section*{Parameters}
- global determines whether this statement applies to all optical sections. If not, only the section defined in sec_num is affected.
- dkdn_real and dkdn_imag are the derivatives of the real and imaginary parts of the propagation constant with respect to the carrier density; dkdn__nref is the reference carrier density. \(\mathbf{d k d j} \_\)real, \(\mathbf{d k d j} \_i m a g\) and \(\mathbf{d k d j}\) _jref implement a similar model using a reference current. These values are used in the longitudinal transfer matrix code.
- dndn_type2, dgdn_type2 and dgdw__type2 are derivatives of the refractive index and optical gain with respect to the carrier density (n) and frequency (w). These values are used in the small-signal and noise analysis.
- intern_spon_par determines whether the internally calculated value of the population inversion factor \(n_{s p}\) (as defined in Eq. D.124) is used in the Green's
function model. If global=no, this setting must be the same in all sections of the device.

If intern_spon_par=no, a hard-coded value defined in spon__par is used in all integrals that depend on \(g n_{s p}\); typical values for AlGaAs and InGaAsP lasers are 2.6 and 1.6, respectively. If intern_spon_par=yes, \(n_{s p}\) is obtained from the gain value at each bias step and Eq. D.124.
From the round-trip gain formulation of Green's function theory, we know that the imaginary component of the optical frequency represents the contribution of the spontaneous emission to the propagation so that changes in \(n_{s p}\) will be reflected in that value. Such changes will thus affect multiple aspects of the model including the emission spectra, noise and linewidth analysis, the shape of the L-I curve near threshold, the photon number in each mode, etc...

We note that this term is a key component of the Green's function model and is not always fully understood: in the model, the optical gain, the photon density of states and the amount of spontaneous emission coupling into the longitudinal modes are all interconnected; the latter term includes both lateral coupling of the emission due to the waveguide shape/index profile and longitudinal coupling due to shape of the longitudinal mode solutions. While a quantum mechanical relationship exists based on material gain properties (c.f. Chap D), we must also consider how optical losses in the cavity affect the population inversion in the device under operating conditions.

Additionally, if intern_spon_par=no then the integrated spontaneous emission rate in each mode is also replaced by the averaged value over each mode; this is done for historical reasons and to support regions defined using passive__3d statements. As can be seen in Sec. E, this modification can have strong effects on the shape of the emission spectrum and the definition of the side mode suppression ratio. For this reason, the default setting of intern_spon_par=yes is strongly recommended: numerical testing shows the spectrum shape does not match experiment if intern__spon__par=no.

\subsection*{22.454 material_label_define}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline label & char & \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
material_label_define is used for import/export purposes with CSUPREM and assigns a specific user-defined label to a material number.

\section*{Parameters}
- label is the user-defined label.
- mater is the material number associated with that label.

\subsection*{22.455 material_lib}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline name & char & \\
\hline var_namei \((\mathrm{i}=1 . .9)\) & char & \\
\hline var_symboli \((\mathrm{i}=1 . .9)\) & char & \\
\hline type & char & [basic], complex \\
\hline vari(i=1..9) & real & \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
material_lib is the equivalent of the load_macro statement for the "library" material system described in Sec. 3.5. It associates a certain library name and its associated parameter with a material number. This statement is usually automatically generated by layer.exe.

See complex__var_symbol for further information.

\section*{Parameters}
- name is the name of the library.
- var_symboli, with \(i=1 . .9\), is the variable name (.e.g. "x" for composition) of variable \(\# \mathrm{i}\). This symbol must be associated with the value of the variable in vari or otherwise link with a grading function name in var_namei.
- type determines whether this library will only use the passive part of the underlying macro (simple) or also invoke the complex MQW active macro (complex). In general, this parameter is automatically set by the layer.exe program for those layers tagged as being part of a quantum-confined region.
- mater is the material number being linked to this material library.

\section*{Examples}
```

material_lib name=AlGaAs mater= 1 \&\&
var_symbol1=x var1= 0.7100E+00

```

\subsection*{22.456 material__par}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variation & char & linear_x,linear_y,function,[constant \(]\) \\
\hline var_namej \((\mathrm{j}=1 . .9)\) & char & {\([\) void] } \\
\hline varj \((\mathrm{j}=1 . .9)\) & real & \\
\hline var_symbolj \((\mathrm{j}=1 . .9)\) & char & void \\
\hline mater_label & char & void \\
\hline value & real & \\
\hline n_values & realxn & \\
\hline mater & intg & {\([1]\)} \\
\hline data_num & intg & {\([0]\)} \\
\hline var_num & intg & {\([1]\)} \\
\hline
\end{tabular}
material_par is not a statement that can be processed by the software. It is simply a stand-in name for all the material macro statements that use the same set of parameters. For example, the parameters of the table above apply equally to band_gap and hole_mass. The parameters described here are also collectively referred to as group1 parameters which are common to most physical quantities of the simulation program.

The statements in group1 are most often found in material macro files but can also be used in other input files to manually define parameters or override default macro values.

\section*{Parameters}
- variation defines how the physical quantity varies with position. There are several options for this parameter:
- constant means that a fixed value is used everywhere in the material to define a physical quantity.
- linear_x means that the physical quantity linearly depends on the position in the x-direction. This must be used in conjunction with the parameters data__num and n__values.
- linear_y is the same as linear_x except it is in the \(y\)-direction.
- function means a mathematical function of the form:
```

function(variable1, variable2, ...)
end_function

```

All lines in a function except the last one must end with a semicolon (;) to suppress the line output. The output of the last line is the value returned by the function. The rules for mathematical functions are further explained in Appendix B.
- table is used for tabulated data. Multi-dimensional data may be used but a column-wise variation with the left-most index varying the quickest is needed as shown below:
```

table(x,y)
x(1) y(1) matrix(1,1)
x(2) y(1) matrix(2,1)
x(3) y(1) matrix(3,1)
x(1) y(2) matrix(1,2)
x(2) y(2) matrix(2,2)
x(3) y(2) matrix(3,2)
end_table

```
- var_name1-9 is used when variation=function and the user-defined variable varies in space according to the matching definition in mater__var. The local mesh value of the variable is passed to the macro functions as an argument. This parameter must be paired with var_symbol1-9 to define the symbol of the function argument in free-style macros.
This is often used to define composition gradings.
- var1-9 is used when variation=function and the user-defined variable is a constant. This constant is passed to the macro functions as an argument. This parameter must be paired with var_symbol1-9 to define the symbol of the function argument in free-style macros.
- var_symbol1-9 is the symbolic variable name used as function argument in the macro. If symbols are defined by the user, then they must exactly match the function arguments in the macro. If they are omitted, then the software assumes the older fixed-form is being used for the macro and the order of
the parameters in var1-9 or var__name1-9 must exactly match that of the function arguments in the macro.
- mater_label is a user-defined label that can be used to refer to this material in other commands.
- value is the value of the statement or physical quantity if variation=constant.
- n__values specifies data points used for the linear interpolation when variation \(=\) linear_ \(x\). The format is \(\mathrm{n} \backslash \_\)values \(=(\mathrm{x} 1, \mathrm{f} 1, \mathrm{x} 2, \mathrm{f} 2, \mathrm{x} 3, \mathrm{f} 3, \ldots)\) where \(x\) _i and \(f\) _i are the \(x\)-coordinate and function value of the ith point. A similar format is used when variation=linear_y.
- mater is the material number of the material being described. This is omitted within the scope of a macro file but must be specified when overriding default macro values elsewhere in the simulation.
- data_num is the number of data values in \(\mathbf{n} \_\)values. It is equal to twice the number data points since coordinates must also be included in \(\mathbf{n} \_\)values.
- var__num is the number of function arguments used when variation=function. it is obsolete for newer free-style macros.

\section*{Examples}
```

band_gap value=1.425 mater=2
dielectric_constant variation=linear_y data_num=6 \&\&
6_values=(0. 10.5, 0.5 11.4, 0.9 12.)
electron_mass variation=function var1=0.3
function(x)
0.4\&+0.2\&*x
end_function

```

\subsection*{22.457 max_electron__mob}

See electron__mobility

\subsection*{22.458 max_hole_mob}

See hole _mobility.

\subsection*{22.459 mesh_output}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mesh_outf & char & \\
\hline order & char & [yes],no \\
\hline
\end{tabular}

The mesh generation statement mesh_output defines the mesh output data files. This statement is used after the placement of mesh lines on the edges of the polygons.

\section*{Parameters}
- mesh_outf is the mesh output file.
- order specifies the format of the mesh output. If the mesh output is to be used by the solver, yes should be chosen; that is, ordering of the mesh is required to interface with the solver. If the mesh is to be further manipulated after this statement, a no value should be chosen.

\section*{Examples}
mesh_output mesh_outf=bulk2d.msh order=yes

\subsection*{22.460 microcavity__model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline fdfd_vectorial & char & {\([\) yes],no } \\
\hline set_wavelength & real & \((\mu \mathrm{m})\) \\
\hline
\end{tabular}
microcavity_model solves the wave equation directly (i.e. without doing a separation of variables) using an eigenvalue method.

In order to force the outgoing wave (which normally extends to infinity) to decay to zero within a fixed simulation domain, Perfectly Matched Layer boundaries (PML) are applied to the output facet using the microcavity__exit statement. The output power vs. bias is then obtained by integrating the power loss in the PML region: this value is equal to the power which would have travelled to infinity if a free space region had been used instead of the PML.

As of v.2016, this model is available for Fabry-Perot-like 2D edge emitters and VCSELs, with a particular focus on surface relief applications. As of v.2017, a new vectorial mode solver is available for VCSELs and is used as the new default; edge emitting devices should manually enable the previous scalar mode solver.

\section*{Parameters}
- fdfd__vectorial enables a finite difference frequency domain (FDFD) vectorial mode solver for the microcavity model. The FDFD mesh is rectangular and uniformly-spaced in any given direction. The spacing of this mesh is obtained from the smallest of the following criteria:
- the minimum mesh spacing in a given direction
- the Courant stability condition typically used in the related field of finite difference time domain (FDTD) simulations \(\left(\frac{\lambda}{10 n}\right)\)
- an internally-set minimum of 5 points in the radial direction and 100 points in the vertical/propagation direction

Material properties and mode profiles are interpolated to/from the irregular FEM mesh used for the drift-diffusion model and the FDFD grid.
- set__wavelength sets the wavelength used to solve the wave equation.

\subsection*{22.461 microcavity_exit}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline below_y & real & \((\mu \mathrm{m})\) \\
\hline above_y & real & \((\mu \mathrm{m})\) \\
\hline left_x & real & \((\mu \mathrm{m})\) \\
\hline right_x & real & \((\mu m)\) \\
\hline power_refl & real & {\([0.0]\)} \\
\hline
\end{tabular}
microcavity__exit sets up the position of PML boundary conditions used for the microcavity__model command.

\section*{Parameters}
- below_y sets the position of the bottom horizontal boundary. If omitted, no PML boundary is set on that side of the device.
- above__y sets the position of the top horizontal boundary. If omitted, no PML boundary is set on that side of the device.
- left_x sets the position of the left vertical boundary. If omitted, no PML boundary is set on that side of the device.
- right_ \(\mathbf{x}\) sets the position of the right vertical boundary. If omitted, no PML boundary is set on that side of the device.
- power_refl is a power reflection coefficient applied to the wave before hitting the PML boundary.

\subsection*{22.462 min__electron__mob}

See electron__mobility

\subsection*{22.463 min_hole_mob}

See hole__mobility.

\subsection*{22.464 minispice}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline circuit_file & char & \\
\hline spice_device_to_tcadmesh & char & \\
\hline spice_source_to_tcadbias & char & \\
\hline scan__variable & char & \\
\hline contactj_to_spice_node \((\mathrm{j}=1 . .109)\) & char & \\
\hline spice_source_node_scan & char & \\
\hline z_dim & real & {\([10](\mu \mathrm{m})\)} \\
\hline spice_node_scan & intg & \\
\hline
\end{tabular}
minispice is new to the 2013 version of Crosslight and enables a full-fledged mixedmode (SPICE + TCAD) simulation. It replaces and enhaces the external_cir statement used to define external circuits in previous versions.
This statement may be used in one of two ways: to define a sub-circuit attached to a particular contact or to substitute one or more SPICE devices in a larger circuit with TCAD devices. The first mode replicates the functionality of external_cir and may be used multiple times to attach different sub-circuits to different electrodes.
The second approach is more typical of mixed-mode simulation and may be used to model a larger integrated circuit. In this mode, the TCAD device is defined inside the SPICE circuit file using a placeholder element, with the Drift-Diffusion model replacing the usual SPICE compact model of the device during the full mixed-mode simulation. This second approach is more powerful and should be used for all new simulations.
Note that if multiple devices in the same circuit must be replaced by TCAD devices, then more_tcadmesh must be used to define the extra placeholder elements in the circuit file.
As of the 2014 version, transient simulations and DC parameter sweeps are supported in mixed-mode simulations. Small-signal AC modeling is new to the 2015 version of the software but still under development. See ac__voltage for examples of the currently-available functionality.

\section*{Parameters}
- circuit_file is the name of the SPICE layout file (.cir) defining circuit (or sub-circuit) for this command. For those users not familiar with SPICE layout rules, a convenient manual may be found at http://www.freeda.org/doc/ SPICE/spice.pdf.

If the sub-circuit mode of minispice is used, then multiple circuit files may be defined (one for each contact) by repeatedly using this command. In that case, node numbers may be repeated in each layout file as they are independent from each other.
Please note that following normal SPICE convention, node zero (0) of the layout should be the circuit's electrical ground; however, this convention may be ignored in the sub-circuit mode of minispice.
- spice_device_to_tcadmesh, is the name of a circuit entity in the above layout file which is replaced by the TCAD meshed device. As an example, a simple diode or MOSFET model from a standard library can be used as a placeholder to draw the circuit layout with a third-party GUI tool. The actual mixed-mode simulation will then be performed using the TCAD device's
own geometry, doping profiles, trap settings, etc... rather than the model parameters from the SPICE library.
This parameter is not used in the sub-circuit mode of minispice.
- contactj__to__spice__node associates the mesh boundary \(\# \mathrm{j}(\mathrm{j}=1 . .109)\) (i.e. the contact boundary for the TCAD device) with a given SPICE node label in the circuit layout file. If the sub-circuit method is used, then only one such statement may be used in each minispice command, in which case it associates a SPICE sub-circuit with a particular electrode.

If spice_device_to__tcadmesh is used though, then each mesh electrode/contact number that connects with a SPICE element must be associated with its equivalent SPICE node label.
- spice__node_scan is used to define where the scan bias control variable (e.g. voltage_1) is applied in the SPICE circuit or sub-circuit. An illustration of this can be found in the examples below.

Note that the control variables always follow the usual rules of the scan statement: at equilibrium, the voltage and net current are all zero. Afterwards, the bias voltage stays constant and always inherits the value of the previous scan unless it is explicitly scanned or a current boundary is used.

Please note that although the control variables from the scan statement are assigned to a particular SPICE node, the software will usually print the bias values for the internal bias point (electrode) in the simulation log file.
- scan_variable may be used to associate the electrode number of the scan control variable with the node number of spice_node_scan. For example, specifying scan_variable=voltage_1 means that the voltage applied at spice__node_scan is \(V_{1}\).

However, this approach should be considered obsolete and contactj__to__spice__node is the preferred method of assigning a sub-circuit to a particular electrode.
- As an alternative to directly driving the SPICE sub-circuit with APSYS bias controls, spice__source_to_tcadbias may be used to drive an existing voltage or current source in circuit layout file using a transient simulation or a DC parameter sweep; in the scan statement, the corresponding variables for this are time and virtual_time, respectively. In this case, the SPICE source connected at the node label defined in spice__source__node_scan is scanned.
- zdim is the omitted dimension in the z-direction used in 2D simulations to convert units (e.g. Amperes to A/m). It is not used in 3D simulations.

\section*{Sub-Circuit Example: Series Resistor}

Consider a simple diode with a parasitic 100 Ohm resistance connected in series (res.cir):
```

\#comment line

```
r 01100

The simulation file for the diode invokes this external circuit using the following commands:
```

minispice circuit_file=resistor.cir \&\&
contact2_to_spice_node=0 spice_node_scan=1

```
```

scan var=voltage_1 value_to=-0.7 \&\&
init_step=0.01 min_step=1.e-5 max_step=0.02

```

Here the sub-circuit (resistor) is connected to electrode \#2 of the device. Inside the sub-circuit, SPICE node 0 is connected to the device electrode while SPICE node 1 is used to apply the bias voltage voltage_2. Since the scan statement applies to electrode \(\# 1\), a value of -0.7 V is applied directly to the device since there is no subcircuit on that side of the device. On the "+" side of the device, voltage_2 stays at 0 V throughout the simulation since it is never scanned; the internal voltage of electrode \(\# 2\) is left floating and depends on the current flow in the resistor.

\section*{Sub-Circuit Example: Multiple Series Resistors}
```

minispice circuit_file=res1.cir \&\&
contact2_to_spice_node=0 spice_node_scan=1
minispice circuit_file=res2.cir \&\&
contact1_to_spice_node=0 spice_node_scan=1
.
scan var=voltage_1 init_step=0.01 value_to=-3. min_step=1.e-5

```

Here two sub-circuits are defined and are attached to electrodes \(\# 2\) and \(\# 1\), respectively, where each of the two circuit files is similar to the one in the previous section. As can be seen in Fig. 22.18 within each layout file, the electrode is connected to

(b)

Figure 22.18: Sub-circuits attached to one (a) or two (b) contacts. SPICE node numbers in each sub-circuit are reused
the local SPICE node \#0 and the scan bias variables (voltage_1 and voltage_2) are applied to local SPICE node \(\# 1\). As before, scan variable voltage_2 stays at 0 V throughout the simulation; however, the voltage of both electrodes is now floating.

Note that different resistor values may be used in each circuit file and the sub-circuits may also have completely different elements.

\section*{Sub-Circuit Example: Parallel Resistor}

This is a trick question \({ }^{2}\) : it is not possible to use a sub-circuit approach to represent a resistor or capacitor connected in parallel with a TCAD device. By definition, a sub-circuit is only attached to one electrode and a parallel resistor would connect two different electrodes. Resistors and other SPICE devices may be connected in parallel but only within the same sub-circuit.

To model this kind of situation, a complete layout file for the whole circuit must be used along with spice__device_to__tcadmesh. The next example describes a more complex version of the same concept.

\footnotetext{
\({ }^{2}\) Previous version of the manual was in error
}


Figure 22.19: Circuit layout for a IGBT switching test circuit

\section*{Integrated Circuit Example: External Bias}

Let us consider the circuit shown in Fig. 22.19 and defined in the file "IGBT_switching.cir" below:
```


A switching test circuit

VG 1 0 pulse(0 15 1e-6 1e-9 1e-9 0.5e-6 1e-6)
RG 1 2 40
Zigbt 3 2 0 IGBT
Lstray 3 4 0.02u
Dfwd 4 5 FWD 1e-5
Lload 3 5 0.5u
VDD 5 0 100
.MODEL FWD D(AF=1 BV=1200 CJO=0. EG=1.11

+ FC=0. IBV=1.E-10 IS=1.E-14
+ KF=0 M=0.5 N=1 RS=1e-10 TT=1e-6
+ VJ=1.0 XTI=3.00E+00)
.TRAN 5n 2.5u
.PROBE
.END

```

In this setup, we replace the IGBT device with our meshed TCAD device. We also note that this circuit contains an external transient source term (Vg) in addition to a DC bias (VDD). By using the minispice and scan statements below, we can
control both of these sources in the simulator: the normal scan variables (voltage_1) are not used.
```

minispice circuit_file=IGBT_switching.cir z_dim=1e6 \&\&
spice_device_to_tcadmesh=zigbt \&\&
contact1_to_spice_node=0 \&\&
contact2_to_spice_node=2 \&\&
contact3_to_spice_node=3
scan var=virtual_time value_to=1 init_step=0.01 min_step=1e-5 \&\&
max_step=0.1

```
scan var=time value_to=1.0e-6 init_step=1e-9 min_step=1e-14 \&\&
max_step=1e-7

During the simulation, virtual_time controls all of the DC sources simultaneously: it acts a scaling factor for the value defined in the SPICE layout with a initial value of zero to match the equilibrium conditions required for TCAD modeling. After this initial biasing, the transient pulse source Vg is activated by increasing the wall clock of the simulation (time).

\subsection*{22.465 mmb_gaintable}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline directory & char & [void] \\
\hline use_gain_spec & char & {\([\) yes] } \\
\hline use_index_spec & char & {\([\) yes] } \\
\hline use_spon_spec & char & {\([\) yes] } \\
\hline active_regnum & intg & {\([1]\)} \\
\hline
\end{tabular}

The statement mmb_gaintable is used to activate an interface to import the microscopic many-body material data base of Univ. of Arizona (or Non-linear Control Strategy Inc.). The data base consists of quantum well optical gain, refractive index and spontaneous emission computed at a limited number of temperatures and carrier densities. The assumption in the data base is that there is equal amount of electrons and holes in any quantum wells. This statement simply imports the gain and
index data from the mmb-data base and interpolates between data files to obtain a continuous gain spectrum useful for simulation. To make the simulation compatible, we have to average the amount of electrons and holes in the well to come up with a single value of density to compare with the data files in the mmb-data base.
- directory is the name of the directory where the data files of mmb-data is stored. This directory must be located in the current directory of the input files of the simulation.
- use_gain_spec instructs the simulator to import the gain spectrum data from the mmb-data.
- use_index_spec instructs the simulator to import the refractive index spectrum data from the mmb-data.
- use_index_spec instructs the simulator to import the spontaneous emission spectrum data from the mmb-data.
- active_regnum is the active region number this statement takes effect.

\section*{Example(s)}
mmb_gaintable directory=mmb_data use_gain_spec=yes use_index_spec=yes

\subsection*{22.466 mobility_xy}
\begin{tabular}{|c|c|c|}
\hline parameter & data type & values [defaults] \\
\hline dir & char & [y], x \\
\hline elec_field_model & char & [void],intel1,intel2,lombardi \\
\hline hole_field_model & char & [void],intel1,intel2,lombardi \\
\hline use_elec_hv_expo_factor & char & [no] \\
\hline use_hole__hv_expo_factor & char & [no] \\
\hline mater_label & char & \\
\hline factor_elec & real & [1.] \\
\hline factor_hole & real & [1.] \\
\hline elec_intel1_beta & real & [0.5] \\
\hline elec_intel1_e_crit & real & [4.2e6] (V/m) \\
\hline elec_intel2_alpha & real & [1.02] \\
\hline elec_intel2_e_univ & real & [5.71e7] (V/m) \\
\hline hole_intel1_beta & real & [0.5 \\
\hline hole_intel1_e_crit & real & [3.e6] (V/m) \\
\hline hole_intel2_alpha & real & [0.95] \\
\hline hole_intel2_e_univ & real & [2.57e7] (V/m) \\
\hline elec_lombardi_b & real & [4.75e7] (cgs unit) \\
\hline elec_lombardi_alpha & real & [1.74e5] (cgs) \\
\hline elec_lombardi_beta & real & [0.125] \\
\hline elec__lombardi_delta & real & [5.82e14] (cgs) \\
\hline hole_lombardi_b & real & [9.93e7] (cgs) \\
\hline hole_lombardi_alpha & real & [8.84e5] (cgs) \\
\hline hole_lombardi_beta & real & [0.0317] \\
\hline hole_lombardi_delta & real & [2.05e14] (cgs) \\
\hline elec_hv_critical_field & real & [5.e7] (V/m) \\
\hline elec_hv_expo_field & real & [1.e7] (V/m) \\
\hline elec_hv_minfac & real & [0.5] \\
\hline hole_hv_critical_field & real & [5.e7] (V/m) \\
\hline hole_hv_expo_field & real & [1.e7] (V/m) \\
\hline hole_hv__minfac & real & [0.5] \\
\hline mater & intg & [1] \\
\hline
\end{tabular}

This statement defines an anisotropic mobility on the x-y plane. This may be useful for an effective medium approximation of multiple layers (such as DBR mirrors in a VCSEL) or for vertical field-dependent mobility in a MOSFET channel.

For mobility reduction due to transverse field under the MOSFET channel, we have implemented the following mobility models:
- intel1 is based on the PISCES-2ET manual[131] and defines a factor to reduce the mobility under the channel:
\[
\begin{equation*}
r_{\text {perp }}=\left(1+E_{\perp} / E_{\text {crit }}\right)^{-\beta} \tag{22.76}
\end{equation*}
\]
where \(E_{\perp}\) is the field perpendicular to the \(\mathrm{SiO} 2 / \mathrm{Si}\) interface.
- intel2 is the same as above with the following formula for the reduction factor:
\[
\begin{equation*}
r_{\text {perp }}=\left[1+\left(E_{\perp} / E_{\text {univ }}\right)^{\alpha}\right]^{-1} \tag{22.77}
\end{equation*}
\]
- lombardi sums up the contributions to mobility from different sources as follows[132]:
\[
\begin{equation*}
\frac{1}{\mu}=\frac{1}{\mu_{a c}}+\frac{1}{\mu_{s r f}}+\frac{1}{\mu_{0}} \tag{22.78}
\end{equation*}
\]
where \(\mu_{0}\) is the mobility due to longitudinal field/hot-carrier effect.
The other terms are as follows:
\[
\begin{gather*}
\mu_{a c}=\frac{B}{E_{\perp}}+\frac{\alpha N^{\beta}}{T_{L} E_{\perp}^{\frac{1}{3}}}  \tag{22.79}\\
\mu_{s r f}=\frac{\delta}{E_{\perp}^{2}} \tag{22.80}
\end{gather*}
\]

Optionally, an additional mobility reduction factor of the following form is used:
\[
f_{h v}= \begin{cases}1 & \text { if } E_{\perp} \leq E_{c r}  \tag{22.81}\\ f_{\text {min }}+\left(1-f_{\text {min }}\right) e^{-\left(E_{\perp}-E_{c r}\right) / E_{c r a p}} & \text { if } E_{\perp}>E_{c r}\end{cases}
\]

This additional reduction is used to describe quasi-saturation effect in high voltage (HV) MOSFET where strong suppression of mobility due to high vertical field (or high Vg ) has been reported.

\section*{Parameters}

In the following description, we only define parameters for electrons; those for holes are completely similar.
- dir is the direction in which the mobility is modified by a factor.
- elec_field_model specifies the model used for electron mobility. If set to void, a constant factor is used to modify the default mobility.
- factor_elec is a constant scaling factor applied to the electron mobility.
- elec_intel1__beta, elec_intel1_e_crit are parameters for the intel1 model described above.
- elec_intel2__alpha, elec_intel2__e_univ are parameters for the intel2 model described above.
- elec__lombardi_b, elec__lombardi__alpha, elec__lombardi__beta, elec__lombardi_delta are parameters for the Lombardi model described above. Please note that to keep the same formulas as in the original paper, we use CGS units for these values.
- use_elec_hiv_expo_factor enables the additional mobility reduction factor \(f_{h v}\). elec_hv__critical_field,elec_hv__expo_field and elec_hv__minfac are the \(E_{c r}, E_{\text {exp }}\) and \(f_{\text {min }}\) values for this model.
- mater is the number of the material affected by this statement. If a label has previously been defined, mater_label may be used instead.

\section*{Examples}
mobility_xy dir=y factor_elec=0.6 mater=3

The above statement decreases the electron mobility in \(y\)-direction by a factor of 0.6 in material number 3.

\subsection*{22.467 mode_srch}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline adjust_range & char & {\([\) no], yes } \\
\hline force_yrange & char & {\([\mathrm{no}]\), yes } \\
\hline omega_xrange & real & {\([8]\).} \\
\hline omega_yrange & real & {\([4]\).} \\
\hline omega_ymin & real & {\([1 . \mathrm{e} 3]\)} \\
\hline wavel_xrange & real & \((\mathrm{m})\) \\
\hline sample_x & intg & {\([391]\)} \\
\hline sample_y & intg & {\([101]\)} \\
\hline cavity_num & intg & {\([1]\)} \\
\hline
\end{tabular}
mode_srch sets parameters relating to the longitudinal mode search in PICS3D.

\section*{Parameters}
- adjust_range turns on/off the option to search for the position of the dominant mode; when turned on, the program will attempt to put the dominant mode in the middle of the frequency range. This search is done prior to the onset of the coupling; once photon coupling is turned on, the same set of longitudinal modes will be used throughout the simulation.
- omega_xrange defines a range of optical frequencies ( \(\Re \omega\) ) for the longitudinal mode search and is expressed as a multiple of the Fabry-Perot mode spacing for this cavity \(\left(\frac{2 \pi c}{n L}\right)\). This range is defined around the frequency corresponding to the reference wavelength defined in the longitudinal statement.
- omega_yrange is similar to omega__xrange but defines the maximum value for the imaginary part of the frequency, as defined in Sec. 16.4. This parameter must be limited since with enough additional spontaneous emission, any wavelength can be made to satisfy the round-trip gain equation: we must limit the analysis to mode of importance with sufficient cavity feedback.
- wavel__xrange (in unit of meter) is the wavelength search range for the longitudinal modes. If this is defined, it will override the search range define by omega_xrange but the latter should still be used to allocate sufficient storage for the mode search.
- force_yrange is used to force the y-range ( \(\Im \omega\) ) for mode search on the complex omega plane. If this is not forced, the range used in the mode search is determined by a quick search on both ends of the x-range. This option may be used to ensure all modes are found within a certain y-range.
- omega_ymin is used so that \(\Im \omega\) never dips below a certain minimum amount. Since this quantity is related to the amount of additional power provided by the spontaneous emission, it has a tendency to go to zero as the mode starts to lase and the photon number goes up. However, a certain amount of spontaneous emission is always present, even above threshold.
- sample_x and sample__y is the number of sample points in the complex frequency plane that are used for the mode search.
- cavity__num can be used to specify different longitudinal settings when working with multiple optical cavities. See also begin_ccavity.

\section*{Examples}
```

mode_srch omega_xrange = 20

```

\subsection*{22.468 modify__bias_output}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline radiative_qw_only & char & [yes],no \\
\hline
\end{tabular}
modify__bias_output changes the way certain bias-dependent variables are computed.

\section*{Parameters}
- When radiative_qw_only=yes, only radiative emission from the QW regions contributes to the internal quantum efficiency (IQE) calculations.

\subsection*{22.469 modify__bulk_macro}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & \\
\hline mater_label & char & \\
\hline add_to_value & real & {\([0.0]\)} \\
\hline scale_value & real & {\([1.0]\)} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
modify_bulk_macro provides a convenient way of modifying an existing or previously defined bulk macro variable.

\section*{Parameters}
- variable is the macro variable being altered by this statement.
- add_to__value adds a certain value to the specified variable.
- scale_value multiplies the specified variable by a certain value.
- mater is the material number where the variable should be modified. If a label has previously been defined as an alias, mater_label may be used instead.

\section*{Examples}
modify_bulk_macro variable=affinity add_to_value=0.2

The above command would shift the affinity, and thus the band alignment, by 0.2 eV.

\subsection*{22.470 modify__gain}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline positive__only & char & yes,[no] \\
\hline add_bulk_absorption_to__qw & char & yes,[no] \\
\hline add__bulk_abs_spectrum & char & yes,[no] \\
\hline enforce__index_spectrum & char & {\([\) no],yes } \\
\hline bulk_abs_eg & real & {\([1].(\mathrm{eV})\)} \\
\hline bulk_abs__wavelength & real & \((\mu m)\) \\
\hline scale__bulk_abs & real & {\([1]\).} \\
\hline
\end{tabular}
modify_gain is used to modify the gain spectrum that is computed by the software.

\section*{Parameters}
- positive_only truncates the negative part of the gain curve.
- add__bulk__absorption_to__qw can be used to add an imported gain or absorption spectrum to the gain curve. This can important in QW or QDOT solar cell applications which require accurate broad-band absorption, including the inter-valley transitions. Since the internal gain model in Crosslight is only valid for interband transitions near the \(\Gamma\) point, experimental absorption data can be imported to bridge the gap between the two spectral domains.

When using this parameter, it is assumed that spectrum data has been imported using the index_spectrum statement or that absorption has been set to a non-zero value.
- add__bulk_abs__spectrum is used in conjunction with add__bulk__absorption_to__qw. When used, the bulk absorption is added to the full spectrum and not merely to the local values (at each mesh point).
- enforce_index_spectrum instructs the software to ignore the default internal gain spectrum calculations and completely use the imported data from index_spectrum for the gain curve of this active region. Note that for passive regions, merely using index_spectrum already forces the software to use the specified absorption data: this parameter is only necessary for cases where a region is declared as an active material for other reasons, such as enabling photon recycling models.
- bulk_abs_eg is the bandgap of the bulk material, used for cut-off of the absorption. bulk__abs__wavelength may be used to define this using the wavelength instead but only one of these parameters should be used.
- scale__bulk__abs may be used to artificially scale the bulk absorption spectrum before adding it to the QW. This can be used to account for uncertainties in the bulk effective mass.

\section*{Examples}
modify_gain add_bulk_absorption_to_qw=yes

\subsection*{22.471 modify_layer_height}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline curve_data_file & char & \\
\hline location & char & top, [middle], bottom \\
\hline bottom_shaping & char & [uniform], gradual \\
\hline top_shaping & char & [uniform], gradual \\
\hline delta_y_from_bottom & real & (um) \\
\hline delta_y_from_top & real & (um) \\
\hline relative_yrange & realx2 & [-1.e9 1.e9] (um) \\
\hline
\end{tabular}
modify_layer_height is used to modify the height of one or more layers when defining the device structure in the .layer file. This is shown schematically in Fig. 22.20.

A reference point \(\left(y_{r e f}\right)\) must be defined where the layer height is left unchanged: this is done using the location parameter for the y-position and layer__height__ref for the x -position.



Figure 22.20: Visual representation of the parameters to modify_layer_height

\section*{Parameters}
- curve_data_file is the name of the data file containing the profile/shape function used to alter the height of the layers. Note that only the shift away from the reference point is used to alter the profile: the absolute value of the reference curve is not used.
- bottom_shaping and top_shaping defines how the interfaces on each side of the reference point are altered. If set to uniform, the same y-shift is applied to all the interfaces; if set to gradual, the shift is linearly scaled so it becomes zero at the end of the range.
- location, delta_y_from_bottom and delta_y_from_top are used to define the reference y-position where the layer height is not modified. These parameters are used in the same way as those of layer__position and positions are relative to the last layer command issued.
- relative_yrange selects the interfaces that are affected by this command. It should be understood as an absolute position range with \(y_{\text {ref }}\) acting as the zero reference.

\section*{Examples}
modify_layer_height curve_data_file=myshape_function_data.txt
This will modify all interfaces in the layer file according to the shape function.
```

modify_layer_height curve_data_file=myshape_function_data.txt \&\&
relative_yrange=(-0.5 0.5) location=middle

```

This will set y reference to be middle of the preceding layer and modify the shape of all layer interfaces within \(y_{r e f} \pm 0.5 \mu m\).
```

modify_layer_height curve_data_file=myshape_function_data.txt \&\&
relative_yrange=(-0.5 0.5) location=middle
bottom_shaping=gradual top_shaping=gradual

```

This is the same as the previous example except that the layer distortion is strongest at the reference point and goes to zero for interfaces close to the ends of the y-range.

\subsection*{22.472 modify_light_spectrum}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline light_filter & char & {\([\mathrm{no}]\)} \\
\hline incident_power & real & {\([0].\left(\mathrm{W} / \mathrm{m}^{2}\right)\) or \(W\)} \\
\hline wavelength & real & {\([1].(\mu \mathrm{m})\)} \\
\hline filter_range & realx2 & {\([-9999.0-9999.0](\mu \mathrm{m})\)} \\
\hline
\end{tabular}

This statement is used to facilitate the modeling of the external quantum efficiency (EQE) of individual cells in a multi-junction solar cell. It allows the user to define a band-stop filter to prevent all absorption in a given cell (thereby making that cell current-limiting) and add a secondary monochromatic light source to probe the cell response.
modify__light__spectrum works in conjunction with the light__power statement and is often used as part of a series simulation to change the wavelength of the light probe.

\section*{Parameters}
- light_filter activates a virtual band-stop filter on the incoming light spectrum.
- incident__power is the incident power of the secondary light source. It follows the same rules as in light \(\qquad\) power.
- wavelength is the wavelength of the secondary light source.
- filter_range is the spectrum range of the virtual band-stop filter. By default, it blocks out the entire light spectrum.

\section*{Examples}
modify_light_spectrum light_filter=yes filter_range=(0.3 0.8) \&\& incident_power=1.e5 wavelength=0.56

\subsection*{22.473 modify__opt__gen__rate}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline factor_file & char & {\([\) no] yes } \\
\hline
\end{tabular}
modify_opt_gen_rate offers a way to modify the optical generation rate by a factor for different wavelengths.
- factor_file is the data file containing a 2 -column data with first column being the wavelength in microns and the 2nd column being the factor to scale the optical generation rate profile.
modify_opt_gen_rate factor_file=my_scale_factor

\subsection*{22.474 modify_plot}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline surface_bottom & char & {\([\) yes \(]\)} \\
\hline show_data_points & char & {\([\) no \(]\)} \\
\hline watt_to_candela & char & {\([\) no \(]\)} \\
\hline qdot_wave_carrier_type & char & [electron,hole \(]\) \\
\hline longitudinal_mode & intg & {\([1] 23\)} \\
\hline elec_conc_valley & intg & {\([1] 2\)} \\
\hline hole_conc_valley & intg & {\([1] 23\)} \\
\hline elec_conc_subb & intg & {\([1] 234\)} \\
\hline hole_conc_subb & intg & {\([1] 234\)} \\
\hline light_source & intg & {\([1] 234\)} \\
\hline pics3d_lateral_mode & intg & \\
\hline
\end{tabular}
modify__plot is a post-processor statement used to modify the appearance and content of subsequent plots.

\section*{Parameters}
- surface_bottom affects surface plots to indicate whether a color bottom contour will be plotted to indicate different materials.
- show__data__points turns on/off plotting of individual data points in the graph.
- longitudinal_mode sets the index of longitudinal mode for the plotting statements related to 3D laser devices. This parameter is only used in PICS3D. Note that the lateral mode index is controlled separately, usually in the 2D plotting command itself.
- elec_cconc__valley and hole_conc__valley are used to specify which band valley is used in the plotting of carrier concentrations.
- elec__conc_subb and hole_conc__subb are used to specify which subband is being plotted for the carrier concentrations.
- light__source can be used when multiple input light sources are defined in a simulation.
- pics3d_lateral_mode can be used in certain cases to sum up the power in all the longitudinal modes corresponding to a specific PIC3D lateral mode.
- watt_to_candela changes plots to display luminous intensity (SI unit of candela) instead of optical power (Watt). This is primarily used for LEDs emitting at optical wavelengths.
- qdot__wave__carrier_type is used when plotting the 3D (or cylindrical 2D) wave function from quantum dots and controls the carrier type that is plotted. The sub-band number may be accessed through the mode index parameter, similar to what is done to plot optical mode profiles.

\section*{Parameters}
modify_plot surface_bottom=no

The above statement suppresses the plotting of material region at the bottom of a surface plot.

\subsection*{22.475 modify_qw}
\begin{tabular}{|c|c|c|c|}
\hline parameter & data type & values [defaults] & \\
\hline confine_left & char & [no] yes & \\
\hline use_bulkmass & char & [no] yes & \\
\hline kp_pot_sym & char & [yes] no & \\
\hline gain_num_integr & char & [no] & \\
\hline all_active_mater & char & [yes] & \\
\hline active_macro & char & [void] & \\
\hline tail_dos_n & char & [no] & \\
\hline tail_dos_p & char & [no] & \\
\hline kp88_cond_parab & char & [no] & \\
\hline use_av_pmass & char & [yes] & \\
\hline remove_above_line & char & [no] & \\
\hline lower_bound_label & char & [void] & \\
\hline upper_bound_label & char & [void] & \\
\hline complex_start_label & char & [void] & \\
\hline mb_pf_model & char & [no] yes & \\
\hline mater_label & char & & \\
\hline new_kp & char & & \\
\hline boundary_condition & char & [dirichlet], periodic & \\
\hline type2_detect & char & [no], yes & \\
\hline subhh_levelk(k=1..5) & real & [0.0] & \\
\hline sublh_levelk(k=1..5) & real & [0.0] & \\
\hline
\end{tabular}
\begin{tabular}{||l|l|l||}
\hline subhh_mxfack \((\mathrm{k}=1 . .5)\) & real & {\([1.0]\)} \\
\hline sublh_mxfack \((\mathrm{k}=1 . .5)\) & real & {\([1.0]\)} \\
\hline left_mesh & real & \((\mathrm{um})\) \\
\hline right_mesh & real & \((\mathrm{um})\) \\
\hline more_cond_energy & real & {\([0].(\mathrm{eV})\)} \\
\hline more_val_energy & real & {\([0].(\mathrm{eV})\)} \\
\hline dip_factor_pump & real & {\([1]\).} \\
\hline tail_energy & real & {\([0].(\mathrm{eV})\)} \\
\hline tail_state_scale & real & {\([1]\).} \\
\hline tail_bulk_ref & real & {\([0.02] \mathrm{eV}\)} \\
\hline mb__damping_factor & real & {\([1.0]\)} \\
\hline set_kp8x8_angle & real & \\
\hline max_kp8x8_angle & real & {\([90]\).} \\
\hline scale_mb_screen_length & real & {\([1]\).} \\
\hline max_mb_screen_length & real & {\([1 . \mathrm{e} 16]\) (um) } \\
\hline mb_pf_expo_factor & real & {\([1]\).} \\
\hline kp_search__offset & real & {\([0.1](\mathrm{eV})\)} \\
\hline mater & intg & \\
\hline kp_points & intg & {\([35]\)} \\
\hline kp_bands & intg & {\([2]\)} \\
\hline qlevel_once & intg & {\([0], 1\)} \\
\hline kp_extra & intg & {\([10]\)} \\
\hline number_period & intg & {\([1]\)} \\
\hline
\end{tabular}
modify_qu can be used in the gain preview (.gain) or main simulation (.sol) to modify quantum well model parameters.

\section*{Parameters}
- confine_left is used to handle the special case of unconfined quantum states. In a self-consistent model of a quantum well, it may happen that the external bias is large such that right side (or the top side if well plane is horizontal) of the barrier is lowered to form another potential well which is made possible by the infinite potential wall at the right-most (or top-most) boundary. Solving the wave equation in such a coupled two-well system may result in many states being confined to the secondary right-well.
These states are unrealistic and exist only because we impose an infinite potential wall by forcing the wave function to be zero at the right-most (or top-most)
boundary. Thus, we should filter out those unrealistic states while keeping the ones confined in the primary well on the left side (or lower side). The parameter confine_left is used to select the confined states in the primary well on the left. It is useful for quantum-MOS model when the gate bias is so large as to lower the oxide barrier potential to a level below that of the left barrier.
- use__bulkmass is to instruct the simulator to use bulk macro effective singleband mass when computing unconfined carrier density. We recall that the bulk macro provides effective mass for a single band model. For example, the heavy hole and light hole bands are combined to form an effective single valence band for convenience. One the other hand, the active layer macro for quantum well (or active region) computes the carrier density according to a multi-band model (with distinct HH and LH bands, for example).
It is not always possible to reconcile the single-band and multi-band models. For example, if there is a split between the HH and LH levels as a result of strain, the equivalent single band model does not exist. In such a case, the simulator uses the multi-band model to override the single-band one for both confined and unconfined states within the active region.
This may become a problem for the unconfined states since the model for the barrier region near a quantum well (in a self-consistent model, both well and barrier belong to the same active region) is different from that for the bulk region adjacent to it. We may see a discontinuity in background bulk (or unconfined) carrier density. Typically, if we plot the total carrier density, we may see the confined carrier density decays nicely to zero whereas there may be a discontinuity in the background bulk density. This behavior may destroy solution convergence causing frustration for users. The parameter use__bulkmass may be used to avoid such a situation. Please note that use of this parameter does not affect the discrete quantum states which are the most important in the active region.
- kp__pot__sym is used to indicate if symmetric potential is used to calculate the subband structure in the k.p theory.
- gain_num_integr is to indicate whether numerical integration is used to obtain the optical gain for the active region. By default, the free carrier optical gain is done by piece-wise analytical formulas. It is switched to numerical integration if many-body gain model is activated. One may choose to use numerical integration for the purpose of fair comparison with many-body gain. Also, in the limit of large kp_points, numerical integration produces the most accurate optical gain because direct integration is performed without any analytical fitting approximations.
- all__active__mater allows all active layers to use parameters in this statement, unless a specific material is defined by active__macro or mater.
- active__macro indicates that this statement affects all active layers with the above active macro name.
- tail_dos_n assigns the DOS tail (due to inhomogeneous broadening) to the conduction band. This works with the tail_energy parameter.
- tail_dos_p assigns the DOS tail (due to inhomogeneous broadening) to the valence band. This works with the tail_energy parameter.
- kp88_cond_parab sets parabolic conduction band for \(8 x 8\) valence mixing model. This parameter may be used to study the effect of non-parabolicity due to the conduction band.
- use__av__pmass instructs the simulator to use effective mass with average weighted by the envelop wave function for the purpose of computing optical gain. This parameter will have a significant effect if the barrier and well masses are substantially different.
- remove_above_line This parameter should be understood using a band diagram of quantum well with envelop function drawn at the confined energy levels. This parameter instructs the program to remove all quantum states which are centered above a line with connects the left-most and right-most points of the band diagram.
- lower__bound_label, if defined, is used by the program to set a lower boundary point in a 1-D potential distribution so that if the wave is localized outside of this lower limit, the state will be eliminated. This position label must be predefined in a .layer or .mater file. Note that this only applies to the full solution (.sol) since the .gain preview file does use the regular mesh.
- upper__bound_label is the same as lower__bound__label but sets an upper bound.
- complex_start_label must be defined if either or both of lower__bound_label, upper__bound_label are used. It is a position label for the bottom of the first quantum well of the MQW-complex being studied.
- mb_pf_model would turn on the Poole-Frenkel field dependence for the exciton model.
- subhh_level \(\_\mathbf{j}, \mathbf{j}=1 . .5\) is the amount of modification made to the level of heavy hole subband \(j\). "level" is measured downwards from the top of the corresponding bulk valence band.
- sublh_level_j,j=1..5 is the amount of modification made to the level of light hole subband j. "level" is measured downwards from the top of the corresponding bulk valence band.
- subhh_mxfac_j, \(\mathbf{j}=\mathbf{1 . . 5}\) is the factor multiplied to the in-plane heavy hole mass of subband j .
- sublh_mxfac_j, \(\mathbf{j}=\mathbf{1} . . \mathbf{5}\) is the factor multiplied to the in-plane light hole mass of subband j .
- tail_energy is the parameter \(E_{\text {tail }}\) describing an exponential tail of the joint density of states (JDOS) extending into the energy bandgap. The JDOS near the bandgap is written as JDOS \(=\rho_{r} \exp \left[\left(E-E_{\text {edge }}\right) / E_{\text {tail }}\right]\), where \(E_{\text {edge }}\) is the energy of the band edge or the quantum subband edge, \(\rho_{r}\) is the reduced density of states at the band edge which is constant for a quantum well. This tail is associated with inhomogeneous broadening.
- tail__bulk_ref is for bulk active layer for which the reduced density of states is energy dependent. The exponential tail of the JDOS starts at a value (from the band edge) determined by this parameter.
- tail__state__scale may be used to scale the JDOS tail states described in the statement of tail_energy above.
- left__mesh, if defined, is the outer barrier thickness on the left side of a MQW region. This outer barrier is used to solve the Schrödinger equation and indicates the position of the zero-wave boundary condition; a convenient way to picture this is to imagine an infinite potential well encompassing the MQW region we are trying to solve.
If this parameter is omitted then by default, a value of three times the quantum well width is used.
- right__mesh is the same as left__mesh but the defines the outer barrier thickness on the right-hand side of the MQW region.
- boundary_condition defines the boundary conditions used to solve the Schrödinger equation:
- The default Dirichlet boundaries impose a zero-wave boundary condition as described in left__mesh above.
- The periodic boundary conditions impose periodicity on the wave, with the total period length equal to the MQW thickness (including the outer barriers defined using left__mesh and right__mesh).
- type2_detect enables a model which automatically detects the position of the "well" and "barrier" layers in a MQW. This detection is necessary to work with type II superlattices and periodic boundaries but is disabled by default as it interferes with self-consistent quantum well regions and Dirichlet boundaries.
- more__cond__energy is used to extend the search of conduction subband energy levels up into the unbounded states. The densely populated energies in the extended unbound states can be used to treat optical transitions from bound-unbound states. Please note that the distribution of the unbound states depends on the boundary condition of the quantum mechanical wave equation. Only works when finite difference method is used for solving QW states (for non-symmetric QW, complex-MQW or self-consistent model).
- more__val__energy same as more__cond__energy except for the valence band.
- dip_factor__pump is the dipole factor affecting only the optical pumping wavelength.
- kp__points determines how many points in the k-axis will be included in the k.p valence mixing model. A smaller kp__points value results in a faster runtime but with a loss in precision.
- kp__bands is number of band valleys (such as HH, LH, SO) used in the k.p theory for zincblende material system. For wurtzite, see modify__wurtizte.

The total order of the k.p matrix is twice the parameter value to take into account spin degeneracy:
- 2: 4x4 k.p theory taking into account HH and LH bands.
- 3: 6x6 k.p theory taking into account HH, LH and SO bands.
- 4: 8x8 k.p theory taking into account the conduction, \(\mathrm{HH}, \mathrm{LH}\) and SO bands.
- mb__damping_factor is used to artificially scale the many-body effects contained in the gain/absorption spectrum. Please note that this parameter controls the magnitude and shape only. The bandgap renormalization can be scaled by scale__mb__screen__length.
- set__kp8x8__angle is the angle of k -vector with respect to the \(k_{x}\) axis in the k.p theory. If new__kp=no, this parameter only affects 8 x 8 k .p calculations. If this parameter is not specified, the Hamiltonian is averaged over a range from zero to max__kp8x8__angle before it is solved. Note that this is not the recommended averaging procedure and when using gain__wavel to average the gain, this angle is internally set. Users are thus advised to be careful when examining band dispersion results and transition dipole moments for 8x8 calculations: plotted values will not correspond to values from "proper" averaging.
If new__kp=yes, the default setting of this value turns on the block-diagonalization procedure so that k.p results are independent of the in-plane angle, thereby
avoiding the averaging issue above. Setting a specific value instead forces the Hamiltonian to be solved at a specific in-plane angle: the axial approximation must also be disabled to use this feature.
- scale_mb_screen_length is used to artificially scale the screening length in the many-body theory and control the amount of bandgap renormalization.
- max_mb__screen_length is the maximum screening length used in the many-body theory gain model.
- mb__pf_expo_factor is a Poole-Frenkel field dependence factor used to account field dependence in the exciton model. This model assumes that external field alters the coulomb potential of the exciton in much the same way as in Poole-Frenkel style ionization. The formula we use is as follows:
\[
\begin{equation*}
\text { field factor }=\exp \left(-q E_{\text {shift }} / k T\right) \tag{22.82}
\end{equation*}
\]
where
\[
\begin{equation*}
E_{\text {shift }}=\left[\frac{F q}{\pi \varepsilon_{0} \varepsilon}\right]^{\left(P_{f} / 2\right)} \tag{22.83}
\end{equation*}
\]

The mb_pf_expo_factor is the parameter \(P_{f}\) above.
- max_kp8x8__angle is the maximum angle used in averaging the k.p Hamiltonian if set__kp8x8__angle is not used. If new__kp=yes, this parameter may be used for all supported number of subbands; otherwise, only 8 x 8 calculations use this parameter.
- mater is the material number of the quantum well being modified. If a label has previously been defined for this material, mater__label may be used instead.
- qlevel_once forces the simulator to evaluate the quantum subbands only once in order to save on computation time. This parameter should not be used for self-consistent simulations since the multiple evaluations of the quantum subbands are the source of the self-consistency the user is trying to achieve.
- new_kp turns on a improved version of the zincblende k.p code. This version supports the following features for all supported subband settings:
- block-diagonal mode with/without symmetric potential setting
- explicit in-plane averaging of the in-plane angle (no-block diagonalization)

Setting new__kp=yes is necessary to use non-common-atom interface effects in type II superlattices. See nca_deltapot for details.
- kp__search_offset controls some of the details of the eigenvalue search when new_kp=yes. The code searches for all eigenvalues \(\leq E_{0}\) and after the first \(k_{t}\) iteration, this search offset is added to the highest found eigenvalue when starting a new search.

This value also serves to detect type II band alignment situations when conduction band is coupling is considered; in that case, the search windows for eigenvalues may accidentally overlap and the number of search roots may need to be increased.
- kp_extra controls some of the details of the eigenvalue search when new__kp=yes. This is the number of extra search roots added to those found by a 1-band/parabolic solution of the Schrödinger equation. These extra search roots are necessary to improve the convergence of the "good" eigenvalues that are solutions of interest to the k.p Hamiltonian.
- number_period may be used if periodic boundary conditions are used to solve the Schrödinger equation and defines the total number of periods ( \(N\) ) in the superlattice. Note that this parameter does not repeat the MQW layer structure before the equation is solved: instead, multiple calls \((n=0 . . N-1)\) to the eigensolver are made, each with boundary conditions that impose a different phase shift to the wave function:
\[
\begin{aligned}
\Psi(z+L p) & =\Psi(z) * e^{i q L p} \\
q & =\frac{2 \pi n}{N L p}
\end{aligned}
\]
where \(L p\) is the total period length, measured from the edges of the MQW solution domain (including left_mesh and right_mesh).

Because only a single period is solved, the wave inside each period is normalized to \(\frac{1}{N}\) : this allows the gain curve to have the same maximum value for a single period and a superlattice. The number of periods parameter may be seen as merely providing a broadening of the transition energies by introducing additional near-degenerate solutions to the Schrödinger equation.
The main advantage of this method (vs. simply repeating the MQW structure) is speed: eigensolvers tend to have a complexity greater than \(O\left(N^{2}\right)\) so making repeated calls on a smaller problem makes the eigensolver solution time scale linearly. However, the user should keep in mind that the number of transitions will still scale as \(O\left(N^{2}\right)\), no matter which method is used: this means that the gain calculations are always slower for a superlattice than for a single quantum well.

\section*{Examples}
modify_qw sublh_level1=-0.01 sublh_mxfac1=1.5
To introduce an exponential tail in the joint density of states for optical transition in the active layer, you may use the following:
```

modify_qw tail_energy=0.06 tail_states_scale=1

```

\subsection*{22.476 modify_taper_height}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline bottom_data_from & char & \\
hline top_data_from & char & \\
hline bottom_data_to & char & \\
hline top_data_to & char & \\
hline region_ref_x & real & {\([0\).\(] (um)\)} \\
hline from_segment & intg & {\([1]\)} \\
\hline
\end{tabular}
modify__taper__height modifies a taper line by defining a vertical offset in the mesh connection scheme. This can enhance the accuracy of a 3D simulation if, for example, the position of a QW region shift significantly and there is poor overlap between the two mesh planes during the 3 D connection process. If this problem were allowed to persist, carriers could not freely flow along the longitudinal direction inside the QW and the connection would only be made indirectly, via other mesh points.
An alternate method of solving this kind of problem would be to define additional mesh planes and sample the longitudinal variation more precisely. However, this would increase the computational workload.
See taper__between_segments and Sec. 6.3 for a more complete description of the 3D modeling process and how tapers are defined in Crosslight.

\section*{Parameters}
- bottom_data_from and top_data_from are data file names which define \((x, y)\) pairs for the bottom and top of the taper region at the beginning of the taper. bottom_data__to and top_data__to are the matching parameters for the end of the taper.
- from_segment is the z-segment number immediately before the taper.

\subsection*{22.477 modify__vector_plot}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline vector_flag & intg & {\([2]\)} \\
\hline
\end{tabular}
modify__vector_plot is a post-processor statement used to modify vector plots (such as current flow plots).

\section*{Parameters}
- vector_flag flags different shapes of arrows used in the plot.

\subsection*{22.478 modify__wurtzite}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline fit_mass & char & [no],yes \\
\hline mass_model & char & [average],small_k,large_k \\
\hline simple_field_profile & char & [no],yes \\
\hline barrier1_top_label & char & \\
\hline mater_label & char & \\
\hline c_axis_theta & real & {\([0]\).} \\
\hline c_axis_phi & real & {\([0]\).} \\
\hline psi_wurtz & real & {\([90]\).} \\
\hline angle_ridge_c_axis_proj & real & \\
\hline hex_lattice_a0 & real & {\([3.189] \AA\)} \\
\hline hex_lattice_c0 & real & {\([5.185] \AA\)} \\
\hline barrier1_top & real & \\
\hline fit_mass_k_range & real & {\([0.08]\)} \\
\hline growth_plane_miller_index & intgx4 & \\
\hline mater & intg & \\
\hline qw_plane_miller_index & intgx4 & \\
\hline
\end{tabular}
modify__wurtzite is used to modify various parameters related to the wurtzite material system. Refer to Chap. 13 for additional theoretical background.

\section*{Parameters}
- fit__mass indicates whether parabolic fitted masses are used for the valence band. If not, analytical mass models are used as explained in the mass_model parameter. The fitting range is defined by fit__mass__k_range which is a fraction of the Brillouin zone \(\frac{2 \pi}{a}\).
- mass_model indicates which analytical mass model is to be used. For a value of small \(\_k\), the zone center mass is used. Caution: zone center masses can be negative in some material compositions, especially with tensile strain. This may cause numerical trouble because of parabolic band fitting approximations. For a value of large_ \(k\), a large k-range is considered for the analytical model. average is an average of the above two cases.
- simple_field_profile turns on a simple 1D Poisson solver which can be combined with self-consistent quantum well calculations. This parameter is only used for gain preview calculations in the .gain file: in the full device simulation, the Poisson equation is solved over the full FEM mesh.
- barrier1__top_label and barrier_top are currently unused. They are intended to locate (using a position label or an absolute coordinate), the material corresponding to the first barrier and extract material properties for the simplified 1D Poisson solver in the gain preview mode.
- c__axis_theta and c_axis__phi are rotation angles \(\theta\) and \(\phi\) which define the orientation of the growth plane normal with respect to the original hexagonal coordinate system for wurtzite. By default, no rotation is defined which corresponds to the typical polar (c-plane) growth. Refer to Sec. 13.6 and Fig. 13.9 for more details.
- psi_wurtz is the in-plane rotation angle \(\psi\) which specifies the direction of the TE mode. This is needed to define the anisotropic refractive index that may arise in non-polar and semi-polar wurtzite orientations. angle_ridge_cc_axis_proj is the complement of this angle and defines the waveguide propagation direction: only one of these these values needs to be defined. Refer to Sec. 13.6 and Fig. 13.9 for more details.
- growth__plane__miller_index can be used to specify the direction of the growth plane normal using the Bravais-Miller indices (hkil) instead of using \(\theta\) and \(\phi\). The lattice constants hex_lattice_a0 and hex_lattice__c0 must be provided to calculate the vector direction. Note that the direction of the waveguide \((\psi)\) must still be defined.
- qw__plane__miller_index is similar to growth_plane__miller_index but specifies the direction of the quantum confinement rather than the growth
plane. This is often used in GaN nanowires where confinement occurs in the side walls rather than in the growth direction.
- mater may be used to specify different wurtzite settings for different material numbers in the simulation. For example, the side walls of a GaN nanowire may each have different properties. If a label has previously been assigned to this material, mater_label may be used instead.

\section*{Examples}
modify_wurtzite fit_mass=no mass_model=average

\subsection*{22.479 modu__bias}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline section1 & real & {\([1]\).} \\
\hline section2 & real & {\([1]\).} \\
\hline section3 & real & {\([1]\).} \\
\hline section4 & real & {\([1]\).} \\
\hline section5 & real & {\([1]\).} \\
\hline n_sections & realxn & \\
\hline sec_num & intg & {\([-1]\)} \\
\hline
\end{tabular}
modu_bias is used in the older AC model described in Sec. 18.6 to specify which section of the laser is modulated for the analytic AM and FM responses. In general, the fully coupled AC model in the post-processing stage should be preferred.

\section*{Parameters}
- \(\operatorname{section} i(i=1,2,3,4,5)\) gives the relative modulation bias current at section \(i\). This can be used to define push-pull (out-of-phase) modulation or simply to adjust the amplitude of the modulation.
- n_sections can be used to list certain sections that share the same modulation bias and will override the above section \(i\) setting. The number of items in that list is given by sec_num.

\section*{Examples}
modu_bias section1=1 section2=3
modu_bias sec_num=3 3_sections=(1 3 2 2 )

\subsection*{22.480 monitor_emission}
monitor_emission is used to plot the emitting light power in mesh points. It provides viewing the emission process for the "mesh_points" emission model. This statement is used at the post-processing stage after ray-tracing program is run.

This statement has no parameters.

\subsection*{22.481 more_dos_fermi__output}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline near_xyz & realx3 & {\(\left[\begin{array}{lll}0 & 0 & 0\end{array}\right](\mathrm{um})\)} \\
\hline conduction_band_valley & intg & \\
\hline valence_band_valley & intg & \\
\hline
\end{tabular}
more__dos_fermi__output exports the density of states curve \((\operatorname{DOS}(E))\) and quasi-Fermi level for a specific mesh point of the device.

See also plot__more__dos_fermi which is used to plot the resulting curve in the post-processing stage.

\section*{Parameters}
- near_xyz specifies the coordinates of the mesh point for the data export.
- conduction__band__valley is the conduction band valley number for the export.
- valence__band__valley is the valence band valley number for the export.

\subsection*{22.482 more__output}
\begin{tabular}{|c|c|c|c|}
\hline parameter & data type & values [defaults] & \\
\hline ac_data & char & [no], yes & \\
\hline qw_states & char & [no], yes & \\
\hline ac_light_input & char & [no], yes & \\
\hline elec_mobility & char & [no], yes & \\
\hline hole_mobility & char & [no], yes & \\
\hline trap_information & char & [no], yes & \\
\hline minimum & char & [no], yes & - \\
\hline rcled_information & char & [no], yes & \\
\hline impact_ionization & char & [no], yes & \\
\hline organic_exciton & char & [no], yes & \\
\hline space_charge & char & [no], yes & \\
\hline light_reflection & char & [no] & \\
\hline pics3d_ase & char & [no] & \\
\hline nonlocal_current & char & [no] & \\
\hline split_qw_states & char & [no] & \\
\hline pics3d_longitudinal & char & [yes] & \\
\hline qdot_conc & char & [no] & \\
\hline stress & char & [no] & \\
\hline heat_flux_density & char & [no] & \\
\hline polar_spectrum & char & [yes] & \\
\hline polar_vector & char & [no] & \\
\hline pics3d_noise & char & [no] & \(\square\) \\
\hline wave_phase & char & [no], yes & \\
\hline spectrum_print & char & [yes], no & \\
\hline mixmode_ac_data & char & [no], yes & \\
\hline mesh_detail & char & [no], yes & - \\
\hline peltier_heat_related & char & [no],yes & \\
\hline pics3d_photon_bal_ac & char & [no], yes & \\
\hline elec_conc_subb & intg & [0] & \\
\hline hole_conc_subb & intg & [0] & \\
\hline cond_valley_prop & intg & [0] & \\
\hline val_valley_prop & intg & [0] & \\
\hline sum_space_charge_mater & intg & [0] \(12 .\). & \\
\hline
\end{tabular}

The statement more_output is used to instruct the simulator to print additional data which is not normally included in the output files. This statement will affect
all scan statements that follow and should therefore be included at the beginning of the .sol file.
- ac_data generates the data necessary for small-signal AC analysis in the postprocessing stage.
- qw_states enables the printing of quantum well subband wave functions. This may only be used if self-consistent MQW option is activated.
- ac__light_input is used in conjunction with ac__data to obtain the smallsignal response of a photo-sensitive device in the post-processing stage.
- elec_mobility and hole_mobility print the carrier mobility distribution.
- trap_information enables the printing of trap information such as trapped electrons and trap levels.
- minimum may be used save on disk space by printing only the minimum amount of data sufficient to keep the main solver running. As a result, many quantities may not be available for plotting during the post-processing.
- rcled_information enables the printing of RCLED related information, such as optical cavity standing power distribution.
- impact__ionization enables the printing of data related to the impact ionization (II) model such as the II rate distribution.
- organic_exciton enables the printing of organic exciton diffusion profiles.
- space_charge enables the plotting of the space charge distribution.
- light_reflection turns on data related to light reflected by the transfer matrix model (TMM) used by the optical pumping code.
- pics3d__ase prints data related to the amplified spontaneous emission model (ASE) in PICS3D. This is primarily used in amplifiers (SOAs) and superluminescent diodes (SLEDs).
- nonlocal_current prints data for the non-local transport model used in q_transport and other similar commands.
- split__qw_states prints data for the split-state model in the q__transport statement.
- pics3d_longitudinal prints data that can be plotted along the optical longitudinal axis in PICS3D rather than the electrical z-axis imported from the mesh planes. This is necessary to use plot_longitudinal in the .plt file.
- qdot__conc enables plotting of the concentration inside embedded quantum dots.
- stress enables plotting the stress profiles which can be imported from CSUPREM or defined manually in APSYS.
- heat_flux_density prints data related to the heat flow for use in statements such as plot_2d.
- polar_spectrum enables plotting of the TE and TM spontaneous emission spectra.
- polar_vector enables plotting of the polarization vector in piezoelectric materials. It is related to the polarization_charge command.
- wave__phase is used in PICS3D to print the phase shift seen by the output light of an amplifier (SOA) or modulator (EAM).
- pics3d_noise enables plotting of noise spectrum terms in PICS3D such as relative intensity noise (RIN) and frequency modulation (FM) noise.
- spectrum_print may be used to disable optical gain and spontaneous emission spectrum data in order to speed up a simulation.
- mixmode_ac__data enables the use of the small-signal AC model for external circuit elements during the post-processing stage.
- mesh_detail enables printing of special detailed information about mesh points, such as the equivalent interface length at material boundaries or the local area around mesh points. Printing of this data may be useful to convert back and forth between 2D and 3D quantities on surfaces or to manipulate the raw data produced by raw_output.
- peltier_heat_related enables printing of key derivatives and gradients used in the calculations of the Thomson/Peltier heat source.
- pics3d_photon_bal__ac is only used when ac__data=yes. When enabled, this statement instructs PICS3D to export an AC Jacobian based on the photon balance model described in init__wave instead of the usual round-trip-gain (RTG) model.
Note that if the photon balance model is turned on in init__wave, this parameter should not be used as the AC data will already in the photon balance format. This parameter should only be enabled in cases where the RTG model is used for DC simulations but the user wishes to use the photon balance model in the AC post-processing.
- elec__conc__subb and hole__conc_subb determine how many quantum well subbands are available when plotting carrier concentration in the post-processing.
- cond__valley_prop and val__valley__prop determine how many properties for each band valley (e.g. mobility or effective mass) are stored in the output file. See the various variations of condj__valley __propk and valj__valley __propk for details.
- sum_space_charge__mater enables printing of the integrated net space charge for a given material number. This parameter must match the material number defined when loading the macros and may usually be found in the .mater file.

\section*{Examples}
more_output ac_data=yes qw_states=no

\subsection*{22.483 more_spectrum__output}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & {\([\) gain \(]\)} \\
\hline mode & char & {\([\) te] \(]\) tm } \\
\hline mater_label & char & \\
\hline wavel_range & realx2 & {\([.51 .5]\)} \\
\hline diffuse_length & real & {\([0.2](\mu \mathrm{m})\)} \\
\hline diffuse_center_depth & real & {\([0.2](\mu \mathrm{m})\)} \\
\hline mater & intg & {\([1]\)} \\
\hline point_num & intg & {\([99]\)} \\
\hline tunnel_region & intg & \\
\hline set_lateral_mode & intg & \\
\hline
\end{tabular}
more_spectrum__output can be used to generate additional spectrum output that would be otherwise unavailable for plotting. See also plot__more_spectrum.

\section*{Parameters}
- variable is the spectral variable being exported. See the online Wizard in SimuCenter for a full list of supported variables.
- mode specifies whether the TE or TM spectrum data is being printed.
- wavel_range is the wavelength range over which the variable is exported. The number of data points in this range is given by point__num.
- diffuse_length and diffuse_center_depth are used in Optowizard to give a very rough approximation of the effects of diffusion current on the quantity being exported. In this program, the current transport equations are not solved so a makeshift diffusion constant (diffuse_length) is used to smooth out the results; the maximum value is assumed to be at a certain fixed position (diffuse_center_depth).

Variables affected by this artificial broadening have a "diffuse" in their name.
- mater is the material number corresponding to the variable being exported. If a label has previously been defined for this material, mater_label may be used instead.
- tunnel_region defines the tunnel region number corresponding to the variable being exported. These regions are numbered according to the order in which the tunneling commands appear in the input file.
- set_lateral__mode fixes sets the lateral mode for the variable being saved (e.g. for modal gain).

\subsection*{22.484 more_sym_polygon}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline polygon_center_x & real & {\([1.0](\mathrm{um})\)} \\
\hline polygon_center_y & real & {\([1.0](\mathrm{um})\)} \\
\hline
\end{tabular}

The statement more_sym_polygon creates another copy of a polygon defined previously with sym_polygon_for_semicrafter
- polygon_center_x and polygon_center_y are the ( \(\mathrm{x}, \mathrm{y}\) ) center coordinates of the new polygon.

\subsection*{22.485 more__tcadmesh}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline name & char & \\
\hline contactj_to_spice__node \((\mathrm{j}=1 . .109)\) & char & \\
\hline
\end{tabular}
more tcadmesh expands the minispice statement and allows for multiple SPICE entities in the same integrated circuit to be replaced by TCAD devices. more_tcadmesh should be repeated as many times as necessary when replacing multiple devices in the same circuit file, the first replacement being done by the minispice statement itself.

One important point to understand for multi-device simulation is that the Poisson and Drift-Diffusion equations for all the devices must be solved simultaneously. This means that all of the TCAD devices are part of the same simulation and a threedimensional mesh is required: this can mean multiple 2D devices ( 1 mesh plane per device) or multiple 3D simulations for each device (each device represents a subset of the total number of mesh planes).
Either way, while the TCAD devices must all be solved at the same time, it does not necessarily mean that those devices are monolithically integrated. That is, even if multiple devices co-exist within the same sparse matrix in the Newton solver, this does not imply that there is current flow between "neighboring" devices. A helpful way of separating the devices is the isolate__mesh__segment command: this cuts off the FEM connection (current flow and potential) between devices.
Please note that Crosslight supports setting up each TCAD device in its own separate project folder. This allows for initial device-level simulation before modeling the integrated circuit. Statements such as set_include may be used to simplify the integration of multiple project files.

\section*{Parameters}
- name is the name of the SPICE entity being replaced by a meshed TCAD device.
- contactj__to_spice__node associates a specific contact number (" \(j\) ") with the given spice node.

\section*{Examples}
minispice circuit_file=dio.cir \&\&
```

spice_device_to_tcadmesh=Ztcad1 \&\&
contact1_to_spice_node=1 \&\&
contact2_to_spice_node=2

```

\subsection*{22.486 more__trap__output}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline tag & char & \\
\hline x_label & char & \\
\hline y_label & char & \\
\hline zplane_label & char & \\
\hline near_x & real & {\([0].(\mu m)\)} \\
\hline near_y & real & {\([0].(\mu m)\)} \\
\hline zplane__num & intg & {\([1]\)} \\
\hline
\end{tabular}

This statement will output trap information near a specified point. This information is output only during normal printing of mesh-related data (e.g. band diagrams) and is not available for all bias steps.

\section*{Parameters}
- tag is a user-defined label which links this command with plot__more__trap.
- x__label, y__label and zplane_label are position labels used to identify the coordinates of the data export. near__x, near_y and zplane__num serve the same purpose but rely on the \(\mathrm{x}, \mathrm{y}\) coordinates and mesh plane number (for 3D simulations)..

\subsection*{22.487 multimode}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline sort_modepeak & char & {\([\) void \(]\)} \\
\hline sort_modespan & char & [void] \\
\hline initialize_bpm & char & [no] yes \\
\hline mode_num & intg & {\([1]\)} \\
\hline boundary_type1 & intgx4 & \\
\hline boundary_type2 & intgx4 & \\
\hline pick_xmode & intg & {\([0]\)} \\
\hline pick_ymode & intg & {\([1]\)} \\
\hline ymode_num & intg & {\([1]\)} \\
\hline polar_num & intg & {\([1]\)} \\
\hline
\end{tabular}

The statement multimode is used to control the multi-lateral mode solutions. In general, the wave equation has two types of boundary conditions if the device is symmetric and only the right half is simulated. The two types are symmetric and anti-symmetric wave functions with respective to the axis of symmetry (usually located on the left hand side). Please see the definition of boundary conditions in the statement init__wave. If the whole device is simulated, only one type of boundary condition is sufficient.

If there are n modes required and there are two types of boundary conditions, the first \(\mathrm{n} / 2\) modes are solutions obtained with the first type of boundary condition and the last \(\mathrm{n} / 2\) modes are those with the second type.

Using the effective index method, the simulator is capable of solving for the optical power of more than one lateral (x-mode) mode. However only one transverse (ymode) mode is selected.

Please note that by default, the optical modes are numbered according to the modal index, starting from number one for the highest index. Sometimes, it is desirable to order the modes according to their geometries or shapes.
- sort_modepeak may take void, \(+\mathrm{x},+\mathrm{y}-\mathrm{x}\) or -y . If not void, it is used to instruct the program to sort the lateral optical modes according to the positions of the mode peak. For example, a parameter value of \(+\mathbf{x}\) will result in modes being sorted such that mode peaks are located increasingly towards the +x direction with increasing mode number.
- sort_modespan may take void, \(+\mathrm{x},+\mathrm{y}-\mathrm{x}\) or -y . If not void, it is used to instruct the program to sort the lateral optical modes according to the span (or width) of the mode. For example, a parameter value of +x will result in
modes being sorted such that the mode half width in the x -direction increases with increasing mode number.
- initialize_bpm indicates whether a multiple mode solution is used to initialize a BPM calculation.
- mode_num is the number of lateral modes to be included in the simulation.
- boundary_type1 is the first type of wave equation boundary. Its definition is identical to boundary__type in the the statement init__wave.
- boundary_type \(\mathbf{2}\) is the first type of wave equation boundary. Its definition is identical to boundary_type in the the statement init__wave.
- If pick_xmode is zero, the program will solve all modes from mode number 1 to mode number mode_num (specified above) in the x -direction (lateral mode). If greater than zero, the program will solve only for mode number pick_xmode. For a device with multi-mode solution, it is recommended that all lateral modes be solved pick_xmode \(=\mathbf{0}\).
- pick_ymode must be a non-zero integer so that one mode in the transverse direction (y-direction) is selected for the simulator. Please note that the optical modes are numbered according to the modal index, starting from number one for the highest index.
- ymode__num is the number of y-modes.
- polar__num is number of polarizations (TE/TM) involved in the simulation.

\section*{Example(s)}
multimode mode_num=6 boundary_type1=( \(\left.\begin{array}{llll}2 & 1 & 1 & 1\end{array}\right) \quad \& \&\)
boundary_type2=( \(\left.\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)\)

In this example, six lateral modes are required. The device has a symmetric axis located on the left hand side (i.e. lx1, please see init__wave). The first three modes belong to symmetric (or even parity) modes of the first boundary type while the last three modes correspond to the second type with anti-symmetric (or odd parity) modes.

\subsection*{22.488 multimode_detect}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline detect_ratio & real & {\([1]\).} \\
\hline mode_num & intg & {\([1]\)} \\
\hline
\end{tabular}

The statement multimode__detect is used to specify the difference in power detection from different lateral modes. Usually, the laser power measurement equipment covers a limited angular range and higher order lateral modes will be detected with less amount of power.
- detect_ratio is a factor proportional to the power detected for a certain lateral mode.
- mode_num is the lateral mode index being affected.

\section*{Example(s)}
multimode_detect front_back=0.7 mode_num=2

In this example, the 2 nd order lateral mode detected is 70 percent of the fundamental mode which has a default detection factor of 1 .

\subsection*{22.489 multimode_mirror}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline front_back & realx2 & \\
\hline mode_num & intg & {\([1]\)} \\
\hline
\end{tabular}

The statement multimode_mirror is used to control the multi-lateral mode mirror reflectivity. Without this statement, mirror reflectivities are assumed to be the same as set by statement init__wave. It allows setting of different reflectivities for different lateral modes.
- front__back is used to define both front and back facet (or left and right) power reflectivity.
- mode_num is the lateral mode index being affected.

\section*{Example(s)}
multimode_mirror front_back=(0.2 0.2) mode_num=2
In this example, the 2 nd order lateral mode is set to experience a mirror reflectivity of 20 percent while the fundamental mode is still defined by statement init__wave.

\subsection*{22.490 nca_deltapot}
nca_deltapot is an active layer macro statement that defines "non common atom" (NCA) effects at the interface of a quantum well. As explained in the literature[133], the standard \(k \cdot p\) theory used to derive the Hamiltonian for zincblende structures assumes the existence of certain symmetries and under certain conditions this approximation breaks down. For example in the case of \(\mathrm{InAs} / \mathrm{GaSb}\) superlattices, there is no shared atom between the two regions so when looking at the location of the atomic bonds, the [110] and [110] directions are no longer equivalent.

In order to continue using our usual \(k \cdot p\) theory, a correction term must be added to the Hamiltonian. Unlike other \(k \cdot p\) coupling terms which depend on the in-plane kinetic energy, this correction term breaks the symmetry of the potential profile and takes the following form:
\[
\begin{equation*}
V=H_{X Y}^{A B} a_{0} \delta(z) \Theta-H_{X Y}^{B A} a_{0} \delta(z-L) \Theta \tag{22.84}
\end{equation*}
\]
where \(H_{X Y}\) is the strength of the interface effect (in eV ), \(a_{0}\) is the lattice constant and \(\delta(z)\) is the Dirac delta function which localizes the interface peaks on either side of the QW. \(\Theta\) is the \(k \cdot p\) matrix coupling the different hole basis functions and which is given in [133]: unlike the usual well/barrier potential terms, the NCA correction does not go into the diagonal of the Hamiltonian.
The value defined by nca_deltapot gives the strength of \(H_{X Y}^{A B}\) on the left side of the QW with nca_deltapot_right giving the value on the right side; the minus sign of Eq. 22.84 is already built into the program for the right side. If either of these statements is omitted, the corresponding \(H_{X Y}\) is set to zero; in the absence of both statements, the default (no NCA effects) \(k \cdot p\) theory is recovered. Since the literature indicates that both parameters seem to have a complimentary effect, we expect that most users will only use nca_deltapot as a fitting parameter and leave \(H_{X Y}^{B A}=0\) by omitting nca__deltapot_right.
Note that as of the 2014 version of APSYS, we follow [133] and assume atomically sharp interfaces in the correction term: the coupling matrix \(\Theta\) reflects this. If there is sufficient user demand, graded interfaces may be added at a later date by modifying the coupling matrix and adding additional fitting parameters; please consult Crosslight if you need to include these effects in your models.
We also note that because of the shape of the coupling matrix \(\Theta\), the correction term is not compatible with \(k \cdot p\) calculations using the block-diagonalization theory pioneered by S.L. Chuang[15, 33, 63]. As a result, plots of the subband dispersion relations and/or the transition dipole moments will only include NCA effects if the axial approximation is disabled in set__active_reg and a specific in-plane angle is specified in modify__qw. However, NCA effects will be included as part of an optical gain/absorption calculation if explicit averaging of the in-plane angle is used in lieu of block-diagonalization; see gain_wavel.
The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.491 nca_deltapot_right}

See nca_deltapot.
The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.492 negf_model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline add_to_dd_current & char & [yes],no \\
\hline phonon_scat & char & yes,[no] \\
\hline use_contact_imref & char & yes,[no] \\
\hline model_type & char & [quantum_well], quantum_wire \\
\hline charge_couple_model & char & \begin{tabular}{l} 
[dd_conc_inject], add__negf_conc, \\
mix
\end{tabular} \\
\hline carrier & char & {\([\) lectron], hole } \\
\hline division & real & {\([5 . \mathrm{e}-4](\mu m)\)} \\
\hline phonon_energy & real & {\([0.062](\mathrm{eV})\)} \\
\hline phonon_elast_rate & real & {\([1.08 \mathrm{e}-2]\left(\mathrm{eV} \mathrm{V}^{2}\right)\)} \\
\hline phonon_inelast_rate & real & {\([0.0147]\left(\mathrm{eV} \mathrm{V}^{2}\right)\)} \\
\hline max_tunnel_factor & real & {\([1 . \mathrm{e} 10]\)} \\
\hline scale_current & real & {\([1]\).} \\
\hline solve_schr_num & intg & {\([10]\)} \\
\hline subband_num & intg & {\([2]\)} \\
\hline tunnel_contact_from & intg & {\([1]\)} \\
\hline tunnel_contact_to & intg & {\([3]\)} \\
\hline
\end{tabular}
negf_model is new to the 2013 version of Crosslight and implements a NonEquilibrium Green's Function (NEGF) transport model[134]; currently, only electron transport is considered in this model. This command works in conjunction with tunneling to define the range over which the NEGF transport operates.
See also negf_plot which is used to visualize output from this model.

\section*{Parameters}
- add_to_dd_current controls whether the NEGF current is added to the classical drift-diffusion current. There are two reasons for adding the NEGF current to the classical drift-diffusion current:
1. NEGF treats only the coherent quantum ballistic transport which incoherent drift-diffusion does not include: for structures with a potential barrier, adding the NEGF contribution recovers the current that is missing from the classical model.
2. The NEGF model in Crosslight is only applied to a subset of the whole device (both in terms of energy and geometry) in order to save on com-
putation time. Adding the NEGF model to the classical drift-diffusion allows for a proper model of the entire device.

The downside to this approach is that there will be double-counting for the part of the current above the barrier which is already included via thermionic emission in the classical drift-diffusion model. For devices without significant tunneling potential barriers, add__to__dd_current=no may therefore be more accurate.

However for most devices where non-equilibrium/ballistic transport occurs, add_to_dd_current=yes is recommended since it may be important to include the incoherent diffusion process which is not included in the NEGF. Please note that the DD current can easily be adjusted through the mobility and the saturation velocity settings.
- charge_couple_model determines how the NEGF charge is coupled into the Poisson equation. This carrier charge can either be the one from the standard drift-diffusion model, the one for the NEGF model or a mixture which progressively switches to the NEGF model at high current densities. This parameter may affect convergence.
- phonon_scat turns on the phonon scattering model in the NEGF calculations. The LO phonon energy \(\left(\hbar \omega_{0}\right)\) for the material is given by phonon_energy while the elastic and non-elastic collision rates are defined using phonon_elast_rate and phonon_inelast_rate, respectively. These rates correspond to the \(D_{0}\) coefficient often found in the literature:
\[
\begin{align*}
\Sigma^{i n}\left(E_{l}\right) & =D_{0}\left[(N+1) \cdot G^{n}\left(E_{l}+\hbar \omega_{0}\right)+N \cdot G^{n}\left(E_{l}-\hbar \omega_{0}\right)\right]  \tag{22.85}\\
\Sigma^{\text {out }}\left(E_{l}\right) & =D_{0}\left[(N+1) \cdot G^{p}\left(E_{l}+\hbar \omega_{0}\right)+N \cdot G^{p}\left(E_{l}-\hbar \omega_{0}\right)\right] \tag{22.86}
\end{align*}
\]
- division is the sampling interval along the transport direction used to solve the Schrödinger equations. This value should be less than the quantum mechanical wavelength or the NEGF current may be overestimated.
- max_tunnel_factor is used to limit the tunneling coefficient and avoid accidental numerical blow-ups in the calculations.
- scale_current is a fudge factor that may be used to artificially scale the NEGF current.
- solve__schr__num is the number of Schrödinger equations being solved. The computation time will rise linearly with this number.
- subband_num is the number of sub-bands (confined states) considered in the model. To save on computation time, it is assumed that only the first few sub-bands are populated enough to significantly contribute to the NEGF current.
- model_type determines whether the carriers are confined in 2D (quantum well) or 1D (quantum wire). The 1D model may be appropriate in certain MOSFET channel designs.
- tunnel__contact_from and tunnel_contact_to are the contact numbers which serve as the boundary conditions for the Green's function. At these points, the carrier populations are assumed to be at equilibrium and follow normal Fermi-Dirac statistics.
use_contact_imref also controls this behavior by determining where the equilibrium boundary is located: either at the mesh points where the contact's ohmic/Schottky boundary is defined or at the start/end points of the NEGF region in the highly-doped source/drain region. Minute differences in the position of the Fermi level at these two points may lead to convergence issues so using the Fermi level/IMREF at the edges of the NEGF region is likely to lead to better results.
- carrier determines whether this command defines electron or hole transport. Note that at present, our NEGF model is still unipolar even if both carrier types are available.

\section*{Examples}
```

\$ this is for ballistic transport along the channel.
tunneling direction=x carrier=electron barrier_type=propagation_matrix \&\&
x1_label=x1 y1_label=y1 x2_label=x2 y2_label=y2
negf_model division=2.e-4 solve_schr_num=10 add_to_dd_current=yes \&\&
phonon_scat=no

```

\subsection*{22.493 negf_plot}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline variable & char & \\
\hline log_conc & char & yes,[no] \\
\hline view_xrot & real & {\([0\).\(] (degrees)\)} \\
\hline view_yrot & real & {\([0\).\(] (degrees)\)} \\
\hline valley & intg & {\([1]\)} \\
\hline subband & intg & {\([1]\)} \\
\hline
\end{tabular}
negf_plot is a post-processing command used to plot data related to the NonEquilibrium Green's Function (NEGF) model.

\section*{Parameters}
- variable can show either:
- band_structure: a surface plot of the conduction band used for NEGF transport
- elec_conc: a surface plot of the electron concentration
- current_spectrum: a plot of the NEGF current vs. energy
- elec_density_spectrum: a plot of the carrier density vs. energy
- quantum_level: is a 1D plot of the sub-band energy level vs. position
- log_conc determines whether carrier concentrations are shown on a linear or log scale.
- view__xrot and view_yrot are angles of rotation applied to 3D plots for viewing purposes.
- valley is the band valley number for which the NEGF calculations have been performed.
- subband is the confined sub-band number for which the NEGF calculations have been performed. It must be consistent with subband__num from negf__model.

\subsection*{22.494 new_inset_planes}

This command is for internal use only.

\subsection*{22.495 newton_freeze_carrier}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline freeze_electron_mater & intg & \\
\hline freeze_hole_mater & intg & \\
\hline unfreeze_electron_mater & intg & \\
\hline unfreeze__hole_mater & intg & \\
\hline freeze__both_mater & intg & \\
\hline
\end{tabular}

The usage of newton_freeze_carrier is similar to that of newton_par and it defines parameters for the non-linear iterations in Newton's method. It should be used before the scan statement it intends to control.

\section*{Parameters}
- freeze_electron__mater would freeze the electron profile for the material it specifies.
- freeze__hole__mater would freeze the hole profile for the material it specifies.
- unfreeze_electron_mater would unfreeze the electron profile for the material it specifies.
- unfreeze_hole_mater would unfreeze the hole profile for the material it specifies.
- freeze__both_mater would freeze both the electron and hole profile for the material it specifies.

\section*{Examples}
newton_freeze_carrier freeze_hole_mater=3

The above command would freeze the hole distribution for material number 3. This can be set in the middle of a simulation when hole profile is not important.

\subsection*{22.496 newton__par}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline
\end{tabular}

\begin{tabular}{||l|l|l||}
\hline loopback & intg & {\([0]\)} \\
\hline converge_test & intg & {\([2]\)} \\
\hline gainsearch_num & intg & {\([30]\)} \\
\hline iter_flag & intg & {\([0] 12\)} \\
\hline iter_sstep & intg & {\([5]\)} \\
\hline mf_solver & intg & \(0,1,2,[3], 4\) \\
\hline mf_md__flag & intg & {\([1] 0\)} \\
\hline mf_pivot_update & intg & {\([64]\)} \\
\hline
\end{tabular}

The statement newton_par controls the non-linear Newton solver used in our software. The parameters of this statement may be used to improve the convergence rate of difficult problems.

For more details on the equations being solved and the numerical techniques involved, please see Chapters 5 and 6. Additional advice on troubleshooting convergence issues can be found in Chap. 4.

Note that the nonlinear variables are internally normalized to the order of 1-100.

\section*{Examples}
- search_gainpeak is used to pick the wavelength of the lateral mode. Since many spectral quantities go into the non-linear equations, this can have an influence on convergence.
- full means the peak of the modal gain, integrated over all mesh points. This is the default method except for PICS3D.
- one_point means the peak of the material gain at a chosen mesh point. This is the fastest but least numerically stable method.
- long_mode means the wavelength is determined by the longitudinal mode solver. This is the default method for PICS3D.
- extrapolate turns on/off the solution extrapolation used to improve the initial solution guess in the non-linear Newton solver. In most situations, this should be enabled. However, in low temperature simulations using carrier concentrations as solver variables, this should be disabled to avoid numerical overflow.
- change__variable is used to change the variables of the device simulator from quasi-Fermi levels to carrier densities. This can be helpful in carrier-blocking
structures or other low-current regimes where even large changes in the quasiFermi levels still produce very small carrier densities. For examples of such situations, see Chap. 4.
Note that change__var_type can be used to restrict the change of variables to only one type of carrier. However, this is not usually recommended in practice.
- limit__elem is used to set a upper limit to the off-diagonal elements in the Jacobian matrix. If set to yes, the parameter huge_elem will be used as the upper limit. When using carrier densities as the variable of solution, the off-diagonal elements may be so large that the computer can not handle it and may give an overflow error (printed as NaN ). In such a case, it may help to set this parameter.
- update_tunneling can be used to update the tunneling model at every bias step.
- update__mqw can be used to update the quantum well subband calculation model at every bias step.
- update_lateral__mode is used to update the lateral mode eigensolver at every bias step. If lateral mode switches cause the main simulator to diverge, one may wish to switch this off so that a more stable (but less self-consistent) solution may be obtained.
- negative_stimulate controls whether or not the stimulated recombination term may become negative.

To clarify the meaning of this parameter, it is important to note that carrier generation \((G)\) and stimulated recombination \(\left(R_{\text {stim }}\right)\) are usually separate terms in the Crosslight model. The first term usually comes from an external light source and is used in solar cells or optically-pumped lasers; the second term comes the optical gain calculations and is used for internally-generated light propagating through a waveguide. These two terms often involve very different wavelength ranges and must thus be treated separately.

If negative_stimulate=yes, stimulated recombination may give rise to a carrier generation term but in common laser designs, transparency occurs before the current crosses threshold so this case can often be neglected (i.e. \(S \approx 0\) when gain is negative). However in structures with strongly non-uniform local gain profiles, neglecting this term may create kinks in the L-I curve: one part of the active region structure may provide enough gain to cross threshold and support a large photon density while another part of the active region is still absorbing.

On the other hand, gain curves below transparency are also known to have very large negative values away from the bandgap: this can lead to numerical overruns during the wavelength search of the peak if negative_stimulate=yes.

Turning this effect off may thus be seen as a convenient way to avoid numerical difficulties.

In general, negative_stimulate \(=\) yes represents the correct physics and should be used in most cases. If users observe the numerical overruns described above, it is recommended to restrict the wavelength search range in init__wave instead of using the \(=\) no setting.
- recover_prev__mqw is used to modify the behavior of the self-consistent quantum well solver when a bias step in scan fails. When this parameter is enabled, the program solves and recovers the QW solution for the previous successful step to ensure that the previous convergence condition (including QW solution) can be reproduced. This recovery action involves more numerical solutions and takes more computation time. Otherwise the simulator does not recover previous QW solution and simply reduces the bias step in the hopes that this produces a convergent solution. In general recovery action increase convergence and accuracy of the simulation at the cost of extra computation time.
- rescale__poisson indicates that whether the Poisson's equation is to be scaled. This may affect converge.
- update_rc_extraction updates the resonant cavity extraction coefficient from the RCLED model at every bias step. This parameter can improve the smoothness of the L-I curve in these cases.
- freeze_carrier stops the update of the specified carrier distribution in all materials. Note that a related command can be used to stop the update for a specific material: newton_freeze_carrier.
- update__index_change turn on the updates to the refractive index (i.e. the change from its equilibrium value) at every bias step.
- update__macro turn on the updates to various material macro parameters at every bias step.
- turnoff__update_lightprof turns off the update of the light profile when using optical pumping.
- update_rtg_phase works similarly to the ignore_rtg_phase of the longitudinal statement. However, instead of completely ignoring the imaginary part of the round-trip gain equation (i.e. the wavelength of the mode) this parameter instructs PICS3D to stop solving this equation, thereby freezing the value of the mode wavelength.
- stall_restart controls the behavior of the software when a scan command loses convergence. If this parameter is enabled, the software will move on to
the next scan command in the input file (if any) instead of terminating the program.

IMPORTANT NOTE: This restart behavior can have unexpected side effects on device simulations. Unless otherwise specified, the software automatically uses the bias conditions at the end of the preceding scan as the initial conditions at the beginning of a scan command. If a scan is terminated early because of a stall, a stall restart will cause the initial conditions of the next scan to be different than what the user expected them to be.
- lateral_mode_perturbation instructs the software not to make repeated call to the eigenmode solver for the optical mode. Instead, the initial optical mode shape and refractive index perturbations are used to update the effective index.
- linear_matrix instructs the software to make a single linear solver step inside the Newton method. It is strongly recommended to limit the size of the bias step in the scan command so that the initial guess is close enough to converge to the specified tolerance using that single iteration of the Newton method.
- damping_step puts a limit on the size of the solution update between Newton iterations. Smaller values yield slower but more reliable convergence; larger values can converge quicker but may lead to solution oscillations in difficult problems.

This option is similar (in principle) to many globally convergent Newton algorithms but a fixed limit is used instead of an automatically determined optimal update size.
- var_tol is the convergence criterion for the solver variables. Below this threshold, the solution can be considered "stable". Similarly, res_tol is the convergence criterion for the equation residues. Below this threshold, the equations can be considered as being "satisfied".

The overall convergence criterion for a non-linear Newton step is a combination of these two criterion. Depending on the value of converge__test, the following conditions need to be met:
- 1 Either var_tol or res_tol is satisfied.
- 2 Both var_tol or res_tol are satisfied.
- 3 var_tol is satisfied.
- 4 res_tol is satisfied.

The default value (2) ensures that the solution is both accurate and stable.
- min_lit is the minimum normalized light power, used to prevent the solution from accidentally approaching unphysical zero or negative values. It may be useful in transient simulations.
- rate_damp is the damping coefficient for the rate equation at steady state. The larger the coefficient, the more stable the solution to the rate equation, but the solution becomes less accurate. For transient simulation, no damping is used.

It is not recommended to use a large rate__damp if a steady state simulation is to be connected to a transient simulation because the large difference between the damped and undamped rate equations may cause convergence problems for the transient step.
- scale__eqn__n and scale_eqn_p are the scaling factor for the electron and hole continuity equations, respectively.
- impact__damp is a small number used to control or damp the impact ionization term. The exponential impact ionization term tends to negative infinity if the local field is zero. This parameter is used to prevent such an infinity.
- var_fac is the variable factor used to normalize the carrier densities if change__variable=yes.
- ratio__max is the maximum ratio (or fraction) of change allowed for the carrier density during each Newton iteration. It is effective if change__variable=yes.
- density_tol is a reference value representing a small carrier concentration \(\left(1 / m^{3}\right)\) in the solution when change__variable=yes. The program uses this value to decide if the carrier concentration is to be considered small numerically.
- step_decrease is a factor less then unity used to alter the bias step size if a bias step fails. Similarly, step_increase is a factor greater than unity used when the bias step succeeds.

By default, neither valued is used and the solver heuristically determines the step size based on the suggested number of iterations in opt_iter and the actual number of iterations needed to achieve convergence.
- back_refine_error_scale is used to scale the error term in the iterative refinement method of the linear solver step. Although this may affect the convergence of the refinement method, this parameter should not normally be used by the end user.
- max_iter is the maximum number of nonlinear iterations. If the required number of iterations is greater than this value, the software will give up, automatically reduce the bias step and start the nonlinear iteration again.
- opt_iter is an estimate of the optimal number of nonlinear iterations. The software will always try to force convergence to occur within this number of iterations, increasing the bias step if the solution requires few iterations and decreasing it if more are required.
The optimal value of this parameter can be difficult to set for even the most experienced user: there is always a tradeoff between a large bias steps which may fail and require many retries and small bias steps which converge reliably but take a long time to achieve the desired bias. The default value has produced good results for a large class of problems.
- stop_iter is used to examine the convergence trend and, if necessary, prematurely terminate the non-linear iteration before max_iter is reached. In many cases, it is preferable to terminate a large bias step which has little chance of reaching convergence and try again with a smaller step.
- print_flag controls how much information is printed during program execution.
- loopback is the number of loopback iteration used to update numerical equations (such as tunneling, optical wave, heat flow) decoupled from the main drift-diffusion solver after the normal updating procedure. Use of this parameter will increase the self-consistency but requires more computation time.
- gainsearch_num is the number of points used in search the lateral modal gain peak in a laser diode simulation. The simulator performs a uniform search of modal gain peak within the wavelength range specified by the init__wave statement. This initial search is followed a golden section search to refine the results; this is skipped if the input value is negative.
- iter_step is the number of GMRES iteration used if the CG method is specified in mf_solver.
- mf_solver determines which linear solver is used at every iteration of the non-linear Newton solver:
- 0 Conventional sparse matrix solver: slow but reliable.
- 1 Combined GMRES iterative method with multi-frontal LU decomposition.
- 2 Multi-frontal LU decomposition with iterative refinement. Somewhat slower than GMRES but more reliable.
- 3 Parallel multi-threaded multi-frontal solver. In newer version of the software, the number of threads is determined automatically based on the number of available processing cores. See also parallel_linear__solver for alternate solver accessible with this option.
- 4 A parallel solver which can make use of graphical processing units (GPUs). This is built using the CUDA \({ }^{\mathrm{TM}}\) technology from NVidia \({ }^{\circledR}\).
Note that when using the GPU solver, parallel_linear__solver must not be used as it forces \(\mathbf{m f}\) _solver \(=3\).
- mf_md_flag takes 0 or 1, indicating different versions of minimum degree reordering method for the multi-frontal sparse solver.
- mf__pivot_update is the pivotal matrix size to update the F matrix from the C-matrix. For details, please see Ref: "An unsymmetric-pattern multifrontal method for sparse LU factorization", T. A. Davis and I. S. Duff, Tech. Report TR-94-038, University of Florida, November, 1994.

\section*{Examples}
```

newton_par damping_step=2 var_tol=1.e-5 res_tol=1.e-4 \&\&
max_iter=40 opt_iter =12 stop_iter=10 print_flag=2 \&\&

```

To take the defaults,
newton_par print_flag=3

\subsection*{22.497 no__auto__workfunction}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}

Prior to version 2013 of the software, the affinity defined in a metal macro was used at heterojunctions so that combined with the default thermionic emission boundary a Schottky contact was effectively formed. Starting with the 2013 version, the work function of metals is automatically adjusted to match the Fermi level of the neighbouring highly-doped region and form an ohmic contact.
no__auto__workfunction is used to recover the previous behavior by disabling this automatic adjustment.

\section*{Parmaters}
mater is the material number of the macro affected by this command. If a label has previously been defined for this material, mater_label may be used instead.

\subsection*{22.498 nonlocal_path}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline y_start_label & char & \\
\hline y_end_label & char & \\
\hline model & char & [use_mobility], use_tau \\
\hline carrier_type & char & [electron], hole \\
\hline xrange & realx2 & (um) \\
\hline yrange & realx2 & (um) \\
\hline mobility & real & {\([0.1]\left(\frac{m^{2}}{V_{s}}\right)\)} \\
\hline tau & real & {\([1 . \mathrm{e}-12](\mathrm{s})\)} \\
\hline mean_free_path & real & {\([0.01](\mathrm{um})\)} \\
\hline zseg_num & intg & {\([1]\)} \\
\hline field_dep_model_id & intg & \\
\hline
\end{tabular}
nonlocal__path defines a non-local transport path between two arbitrary points. See also nonlocal_transp_model which controls additional parameters for the non-local transport path.

\section*{Parameters}
- y__start_label y__end_label are y-position labels defining the non-local transport path. Absolute coordinates can also be used with xrange and yrange.
- model changes the way the current along the non-local path is computed.
- use_mobility uses an equivalent mobility model based on the value of mobility.
- use_tau uses an equivalent lifetime based on the value of tau.
- carrier_type determines the type of carrier which travels along the non-local path.
- mean_free_path scales the current depending on the path length, following a Drude-like approximation.
- zseg_num is the z-segment number in which the non-local path is located.
- field__dep__model_id is a label identifying a matching nonlocal_transp__model statement.

\section*{Examples}
```

define_symbol symbol=%mob value=1.
define_symbol symbol=%mfp value=0.1
start_loop symbol=%i value_from=1 value_to=25
integer_func symbol=%k value_from=0 value_to=24
nonlocal_path y_start_label=active%k_end y_end_label=inj%i_start \&\&
model=use_tau tau=1.e-13
nonlocal_path y_start_label=inj%i_start y_end_label=inj%i_end \&\&
mobility=%mob mean_free_path=%mfp field_dep_model_id=1
....
end_loop
nonlocal_transp_model field_dep_file=field_dep_mob.txt \&\&
field_dep_model_id=1

```

\subsection*{22.499 nonlocal__transp_model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline qcl_mobility_per_period & char & yes,[no] \\
\hline qcl_mfp_per_period & char & yes,[no] \\
\hline use_density_matrix_model & char & yes,[no] \\
\hline field_dep_file & char & [field__dep_mob.txt] \\
\hline field_dep_model_id & intg & \\
\hline
\end{tabular}
nonlocal__transp__model defines additional models for the transport properties of non-local transport paths.

\section*{Parameters}
- field_dep_file is a user-specified text file containing the field dependence of the mobility for the non-local path.
- qcl_mobility__per_period determines if the equivalent mobility used in nonlocal__path is proportional to the number of QCL periods.
- qcl_mfp_per_period determines if the mean free path used in nonlocal__path is proportional to the number of QCL periods.
- field__dep__model_id is a label identifying a matching nonlocal__path statement.
- use_density__matrix_model uses a relationship between the field and the non-local transport velocity that is derived from density matrix theory[135].

\section*{Examples}

See nonlocal_path.

\subsection*{22.500 nonlocal_transp_region}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline region_label & char & {\([\) void] } \\
\hline point1_near & realx2 & (um) \\
\hline point2_near & realx2 & (um) \\
\hline distance1 & real & {\([0.01](\mathrm{um})\)} \\
\hline distance2 & real & {\([0.01](\mathrm{um})\)} \\
\hline ref_interface_mater & intgx2 & \\
\hline zseg_num & intg & {\([1]\)} \\
\hline
\end{tabular}
nonlocal__transp_region is used to define a region across which non-local transport (such as tunneling) can occur from one side of the region to another, relative to a material interface. This is useful when such a region is not rectangular or when we wish to define a region relative to a irregular material interface. It is preferred that the material interface follows a line that is approximately straight so that the direction of the non-local transport can be certain. Please refer to Fig. 22.21 for details.

\section*{Parameters}
- region_label is a user-specified label identifying this region in other commands.
- point1_near and point2_near are two reference points near the reference material interface and which are used to define the extent/width of the nonlocal transport region.

Non-local transport (or tunneling)


Figure 22.21: Schematic to explain the definition of a non-local transport region

The position does not need to be exact: the software will try to locate nearby mesh points on the specified interface.
- distance1 and distance 2 are perpendicular distances away from the interface which determine the start and end points of the non-local transport region.

Positive values are as defined in Fig. 22.21 but negative values may also be entered to put some end points on the opposite side of the interface.
- ref_interface__mater is a pair of material numbers (defined in .mater files) used to identify the a material interface. This interface is then used as a reference to define the non-local transport region.
- zseg_num is the z-segment number for 3D simulation.

\section*{Examples}
```

nonlocal_transp_region region_label=%junc1 \&\&
point1_near=(0. 11.16) point2_near=(6. 11.16) ref_interface_mater=(3 4) \&\&
distance1=0.019 distance2=-0.001

```

The above command would define a region some distance from a reference interface between material 3 and 4 .

\subsection*{22.501 norm_field}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material parameter norm_field is added to the list of parameters in the material library. It is used if "n.gaas" is chosen as the type of field-dependent mobility, as the normalizing field \(\left(F_{0 n}\right)\) (see the User's Manual). It allows the user to specify more accurate electron mobility as a function of field in III-V or II-VI materials, where the Gamma to L and Gamma to X bands cause the velocity vs. field relation to exhibit a negative slope.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

\subsection*{22.502 ohmic_junction}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline between_mater & intgx2 & \\
\hline
\end{tabular}

The statement ohmic_junction may be used to set the current transport model across a heterojunction to an ohmic model: that is, the current is proportional to the carrier density times the gradient of quasi-Fermi levels. By default, thermionic emission model is used for all heterojunctions. We may call this model a Schottky type junction model because it is capable of rectifying the current by promoting it in the forward direction.

\section*{Parameters}
- between_mater is used to specify two material numbers representing two materials between which the heterojunction is forced to behave like a ohmic junction. Like in the usual drift-diffusion model, the current is expressed as proportional to the local carrier density times the gradient of the quasi-Fermi levels.

\section*{Examples}
ohmic_junction between_mater=[lll 12\(]\)
The above statement forces the heterojunction between materials 1 and 2 to behave like an ohmic junction. The material numbers can be found in the .mater files.

\subsection*{22.503 oled_control}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline wavelength & real & \((\mu \mathrm{m})\) \\
\hline
\end{tabular}

The statement oled_control activates the organic LED (OLED) model. Its use is similar to statement led_control.
- wavelength is the estimated peak emission wavelength in microns.

Example(s):
oled_control wavelength=0.51

\subsection*{22.504 optic_coating}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline spectrum_file & char & {\([\) void \(]\)} \\
\hline thickness & real & {\([0.01](\mu \mathrm{m})\)} \\
\hline real_index & real & {\([3.2](\mu \mathrm{m})\)} \\
\hline imag_index & real & {\([0].(\mu \mathrm{m})\)} \\
\hline segment_from & real & {\([-1 . \mathrm{e} 7](\mu \mathrm{m})\)} \\
\hline segment_to & real & {\([1 . \mathrm{e} 7](\mu \mathrm{m})\)} \\
\hline layer_num & intg & {\([1]\)} \\
\hline segment_num & intg & {\([1]\)} \\
\hline
\end{tabular}
optic__coating defines an optical coating that affects the optical pumping of the device but is not part of the FEM mesh solved by the software.
See front_reflection for an overview of the relevant model but take care not to combine the two statements.

\section*{Parameters}
- spectrum_file defines a text file containing the \(n, k\) optical constants of the coating.
- thickness defines the optical coating thickness.
- real_index and imag_index define fixed \(n, k\) values for the coating. It is preferable to use spectrum_file if a broadband light spectrum is used (e.g. solar cells).
- layer_num is used to define a multi-layer coating. The layers are numbered from the starting point of the light path to the ending point. For example, if the light is incident from the top, then layer number 1 is the topmost layer.
- segment__num is used to define regions in the x-direction which have different coatings. This is analogous to defining columns in the layer file and should not be confused with the segment number used to define the z-mesh in 3D simulations.
- segment_from and segment__to work in conjunction with segment__num to define the x-range where a specific coating is applied. These parameters should not be confused with the \(z\)-segment range used to define the position of mesh planes in a 3D simulation.

\section*{Examples}
optic_coating thickness=0.147 real_index=2.05 imag_index=0.

\subsection*{22.505 optical_axis}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline ref_angle & real & {\([0\).\(] (degrees)\)} \\
\hline aniso_index_factor & real & {\([1]\).} \\
\hline aniso_index_polar & intg & {\([0]\)} \\
\hline
\end{tabular}
optical__axis (previously called polarization) is used to specify the orientation of the optical axis with respect to the waveguide. Note that with the 2013 version, material properties which depend on the TE/TM orientation of the electric field are both calculated automatically by the software.

This command enables the use of birefringent materials; see delta__real__index_caxis
Note that using this setting overrides the TE/TM mode setting in the active_reg statement.

\section*{Parameters}
- angle is the angle of the electric field with respect to the QW plane. For a TE waveguide, this angle is 0 ; for TM , it is 90 degrees.
- aniso_index_factor is used in birefringent materials and defines the projection of the extraordinary axis on the polarization axis (TE or TM) being considered.
- aniso_index_polar applies the index difference on the extraordinary axis to one of the polarizations \((1=\mathrm{TE}, 2=\mathrm{TM})\). If zero (the default), this index difference is ignored.

\section*{Code Notes}
```

sn=rldx(node)+delindx(ku)
if(janiso_index_polar.gt.0) then
if(jpolar.eq.janiso_index_polar) then
sn=sn+delta_rldx_caxis(node)*aniso_index_factor
endif
endif

```

\section*{Examples}
optical_axis angle=45.

\subsection*{22.506 optical_field}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline profile & char & [gaussian], effective_index \\
\hline y.data & char & [void] \\
\hline update & char & no \\
\hline standing_wave & char & no \\
\hline uniform_stdwave & char & no \\
\hline gainguiding_stdwave & char & no \\
\hline x_prof & realx4 & x1,x2,dx1,dx2 \((\mu m)\) \\
\hline y_prof & realx4 & y1,y2,dy1,dy2 \((\mu m)\) \\
\hline x_segment & intg & 40 \\
\hline
\end{tabular}
optical_field defines the solution of the optical field for the lateral mode of a waveguide. This statement can be used in conjunction with multimode if multiple lateral modes are present.

This statement has two main modes of operation: it can either define a basic Gaussian-shaped optical profile or use an 1D effective index method to solve the mode profile.

\section*{Application Notes}

Because of the restrictions in the optical_field algorithm, this command is the preferred lateral mode solver for 1D simulations (without lateral mesh variations) and broad-area devices (with many lateral mesh points but without a lateral structural variation).

For devices with a lateral structural variation, direct_eigen should be used. Since the algorithm used inside optical_field can only solve 1D problems, the effective index of 2D structures is found using successive cuts along the \(y\) and \(x\) directions, with the \(x\) direction assumed to have a slowly-varying refractive index. Such an approach is significantly less accurate than a direct solution of the 2D wave equation.

The iterative SOR method in use_sor can also be used to refine the accuracy of the solution provided by optical_field. However, the SOR algorithm is considered obsolete and Crosslight strongly recommends using direct_eigen in 2D cases.

Conversely, direct_eigen is not recommended for use in the situations where optical_field excels; please refer to the application notes section of that command. Note that these two commands should not be used together.

\section*{Parameters}
- profile is the profile of the user-defined optical field:
- gaussian instructs the software to use a roughly Gaussian shape, based on the settings in \(\mathbf{x} \_\)prof and \(\mathbf{y} \_\)prof.
- effective_index activates a 1D solution of the effective index as explained above, with the \(x\) direction as the slowly-changing index direction.
- y.data is a user-supplied data file for the optical field distribution in the ydirection. This allows the optical field in the y-direction to be imported from a data file instead of generated by the self-consistent optical field solver.
This method is of particular interest in multimode simulations where we wish for all higher-order modes to be in the \(x\) direction while the \(y\) direction stays in its fundamental mode.
- update determines if the optical mode defined by this statement is updated at all bias steps. If set to no, the mode is only updated at the start of each scan command.
- x_prof specifies the profile of the Gaussian-shaped mode defined in profile. This parameter is defined as a set of four values: \(x_{1}, x_{2}, d x_{1}, d x_{2}\). The mode is defined as constant in the \(\left[x_{1}, x_{2}\right]\) interval and decays with Gaussian tails with standard deviations \(d x_{1}\) and \(d x_{2}\) on either side.
- y__prof is identical to \(\mathbf{x} \_\)prof but defines the beam shape in the \(y\) direction.
- standing_wave is used to turn on an analytical model for the lateral standing wave in a broad-area device. The mode in the \(x\) direction will vary according to a \(\sin \left(\beta\left(x-x_{0}\right)\right)\) shape.
This option is useful in devices where the lateral dimension is in order of several hundred microns and the lateral mesh spacing is coarser than the standing wave period.
- uniform_stdwave forces the use of a uniform magnitude in the \(x\) direction instead of a sine wave when standing_wave is used.
- gainguiding_stdwave partially overrides the normal decoupling of the lateral ( \(x y\) ) and longitudinal \((z)\) wave in PICS3D edge-emitter simulations. The normal behavior is to use the modal gain in the longitudinal propagation constant so that the whole mode sees the same amplification factor. When this parameter is yes however, a small correction to the round-trip gain is added so that regions with a higher local gain (i.e. "hot spots") in the lateral standing wave have a stronger amplification than the rest of the device.
- x__segment is the number of points used in the \(x\) direction when using the 1D effective index model. This number can be kept small for 1D cases but should be increased for broad-area devices in order to sample the lateral standing wave.

\section*{Examples}
optical_field profile=effective_index update=yes

\subsection*{22.507 organic_exciton_diff}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline add_oxd_memory & real & {\([0].(\mathrm{MB})\)} \\
\hline heteroj_scrn_factor & real & {\([0.1]\)} \\
\hline el_frac_non_active & real & {\([0.9]\)} \\
\hline
\end{tabular}
organic_exciton_diff enables organic exciton diffusion model. The exciton diffusion across a heterojunction follows the thermionic emission model: excitons with thermal energy may emit from barrow bandgap to larger bandgap material. Similar to thermionic emission model in electrons, the following flux density is used for exciton (S) flowing from wider bandgap material 2 to material 1:
\[
\begin{equation*}
J=V_{t h}\left\{S_{2}-S_{1} \exp \left[-\gamma_{s}\left(E_{g 2}-E_{g 1}\right) / k_{B} T\right]\right\} \tag{22.87}
\end{equation*}
\]
where \(V+t h\) is thermal velocity of the exciton. \(\gamma_{s}\) is a screening factor less than unity. Since excitons are charge neutral, they should experience less crystal field potential than charged particles and thus the bandgap difference they experience should be less than electrons or holes. The screening factor is used to denote this effect.
- add__oxd__memory is used to add memory to the sparse solver for the diffusion equations.
- heteroj__scrn_factor is the heterojunction screening factor above.
- el_frac_non__active is the fraction of excitons in non-active (or undoped layers) that are eventually harvested by dopants.

Example(s):
```

organic_exciton_diff el_frac_non_active=0.85

```

The above statement directs 85 percent of excitons in undoped (non-active) layers be collected by dopants to emit light.

\subsection*{22.508 outer_section}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline core_radius & real & (um) \\
\hline indexi, \(i=1 . .9\) & & \\
\hline sec_num & intg & {\([1]\)} \\
\hline
\end{tabular}
outer_section is used to inform the program of the termination of a VCSEL section with an insulator (e.g. outside air). It is only used in .vcsel files.

\section*{Parameters}
- core_radius is the radius of core region, which indicates to the simulator that this VCSEL section is terminated by an insulator layer on the outside.
- indexi, \(\mathrm{i}=1 . .9\) is the outer refractive index matching one or more DBR layers in the core region of the VCSEL.
- sec_num is a section number.

\section*{Example(s)}
outer_section core_radius=6.0 sec_num=7

\subsection*{22.509 output}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline sol_outf & char & \\
\hline \hline
\end{tabular}
output defines the base name of the output data files; extensions are added to this name automatically to account for the data set set number and the type of output information the file contains.

\section*{Examples}
output sol_outf=bulk2d.out

\subsection*{22.510 output__suprem__mesh}

This statement instructs the layer.exe to generate SUPREM mesh declarations instead of the .geo format used in APSYS, LASTIP and PICS3D. It is outside the scope of this manual.

\subsection*{22.511 ox__dopant__el_transfer}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline transfer_from_host & char & {\([\mathrm{no}]\)} \\
\hline transfer_fraction & real & {\([0]\).} \\
\hline efield_ref & real & {\([1 . \mathrm{e} 8](\mathrm{V} / \mathrm{m})\)} \\
\hline mater_from & intg & {\([1]\)} \\
\hline mater_to & intg & {\([1]\)} \\
\hline dopant_index_from & intg & {\([1]\)} \\
\hline dopant_index_to & intg & {\([1]\)} \\
\hline
\end{tabular}
ox_dopant__el_transfer is used to enable the transfer of exciton energy from one type of dopant to another type. This reveals itself in the shift of color from shorter to longer wavelengths.

The formula used a factor factor \(=1-f r a c-F / F_{r}\) on the shorter wavelength dopant EL where frac is the transfer fraction. F is the electric field and \(F_{r}\) is a reference field. Similarly a factor factor \(=1+f r a c+F / F_{c}\) is used for the longer wavelength EL.
- transfer_from__host would let the energy be transferred from the host instead of from a dopant.
- transfer_fraction is the fraction of exciton transferring from one type of dopant to another.
- efield_ref is the reference electrical field above.
- mater_from is the material index from which energy transfer originates.
- mater_to is the material index to which energy transfer arrives.
- dopant_index_from is the dopant index (for multiply dopants) from which energy transfer originates.
- dopant_index_to is the dopant index (for multiply dopants) to which energy transfer arrives.

Example(s):
ox_dopant_el_transfer mater_from=5 mater_to=4 \&\&
transfer_fraction=0.2 efield_ref=-4.e8

\subsection*{22.512 ox_el__weight}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement ox_el_weight is used to define the electroluminescent spectrum weight for the host organic material. This is useful when there is dopant in the system so that one has to define the relative contribution from host and the dopant.

For EL spectrum model when there is dopant, two approaches are used, depending on whether exciton diffusion equations are solved. If exciton transport is solved by organic_exciton_diff, dopant and host spectra at each mesh point are simply mixed by local exciton density, divided by their respective life times, and weighted by this factor. If exciton transport is not considered, their respective bimolecular recombination rates are used along with this factor to determine the relative contributions.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material__par in section 22.456 .
```

Example(s)
ox_el_weight value=0.8 mater=1

```

\subsection*{22.513 ox_exciton_eg}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement ox_exciton_eg is the exciton bandgap of the organic material.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .
```

Example(s)
ox_exciton_eg value=1.9 mater=2

```

\subsection*{22.514 ox__extern__spectrum}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement ox_extern_spectrum is used to define the electroluminescent (EL) spectrum of the host material imported from an external source. This may be based on experimental data or on a different type of model. If table format is used, the program expects a 2 -column uniformly spaced data with first column being the wavelength in micron meters. The unit of the EL is arbitrary and the program will normalize it.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456.
```

Example(s)
ox_extern_spectrum variation=table
table(wavelength)
0.488524E+00 0.309522E-01
0.499601E+00 0.421672E-01
end_table

```

\subsection*{22.515 ox__gaussian_sdj}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement ox_gaussian_sdj is the standard deviation (in unit eV) of the Gausian function used to broaden the exciton transition energy. If more than one Gaussian function is used in different energy range, this parameter works with parameter ox_gaussian_div( \(\mathbf{k}=\mathbf{1} \ldots\) ) as follows: For example, the spectrum is broadened with N parameters: ox_gaussian__sd(j=1...N). Then ox_gaussian_sd(j) acts on an energy range defined between ox_gaussian__div \((\mathbf{j}-1)\) and \(\mathbf{o x} \quad\) gaussian__div \((\mathbf{j})\). Please note thta ox_gaussian__div(0) equals zero and ox_gaussian_div(N) equals infinity.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

Example(s)
ox_gaussian_sd1 value=0.12 mater=2

\subsection*{22.516 ox__gaussian__divj}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement ox_gaussian__divj is the division in energy (in unit eV) for different Gausian function to be used to broaden the exciton transition energy. If more than one Gaussian function is used in different energy range, this parameter works as follows: For example, the spectrum is broadened with N Gaussian function of parameters: ox__gaussian__sd( \(\mathbf{j}=\mathbf{1} . . \mathrm{N}\) ). Then \(\mathbf{o x \_ g a u s s i a n \_ \_ s d ( \mathbf { j } ) \text { acts on an }}\) energy range defined between ox_gaussian__div \((\mathbf{j}-1)\) and \(\mathbf{o x \_} \quad\) gaussian__div( \(\left.\mathbf{j}\right)\). Please note thta ox_gaussian__div(0) equals zero and ox__gaussian_div(N) equals infinity.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

Example(s)
ox_gaussian_div1 value=2.21 mater=2

\subsection*{22.517 ox_hopping_energy}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement ox_hopping_energy is the hopping integral (in units of the vibrational quanta) describing the nearest-neighbor interaction of the exciton (as quasiparticle) in a tight-binding model.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

Example(s)
ox_hopping_energy value=0.6 mater=1
22.518 ox_life_field_dependence
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline increase & char & {\([\mathrm{yes}]\)} \\
\hline triplet & char & {\([\mathrm{yes}]\)} \\
\hline mater_label & char & \\
\hline pf_lifetime_expo & real & {\([0.5]\)} \\
\hline efield0_pf & real & {\([2 . \mathrm{e} 8](\mathrm{V} / \mathrm{m})\)} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
ox_life_field_dependence is used to enable a field-dependent model for the organic exciton lifetime. As with many other field models for organic semiconductors, we assume a Poole-Frenkel-like dependence:
\[
\begin{equation*}
\tau_{o x}=\tau_{0} e^{ \pm\left(F / F_{t 0}\right)^{\alpha}} \tag{22.88}
\end{equation*}
\]

\section*{Parameters}
- increase determines whether to choose positive or negative sign for the above formula.
- triplet indicates whether the model applies to singlet or triplet diffusion.
- pf_lifetime_expo is the exponent \(\alpha\) in the above formula.
- efield \(0 \_\)pf is the threshold field \(F_{t 0}\) in above formula.
- mater is the material number affected by this statement. If a label has previously been defined as an alias, mater_label may be used instead.

\section*{Examples}
```

\$ field-dep lifetime needed to tune blue color change
ox_life_field_dependence increase=yes triplet=no \&\&
pf_lifetime_expo=0.5 efieldO_pf=1.e8 mater=2

```

\subsection*{22.519 ox__peak__abs}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement ox_peak__abs is the absorption peak in units of \(1 / \mathrm{m}\) of the organic material.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

Example(s)
ox_peak_abs value=1.e7 mater=2

\subsection*{22.520 ox_vib_quanta}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement ox__vib__quanta is the organic molecular vibrational quanta, or phonon energy unit, in eV .
The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

Example(s)
ox_vib_quanta value=0.16 mater=1

\subsection*{22.521 ox_xp__coupling}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement ox_xp_coupling is the exciton-phonon (XP) coupling coefficient. It is a dimensionless number with its square equal to the vibrational relaxation energy (Franck-Cordon energy) divided by the vibrational quanta (or molecular phonon quanta).

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

Example(s)
ox_xp_coupling value=1.0 mater=1

\subsection*{22.522 oxd __diff_length}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement oxd__diff_length is used to define the exciton diffusion length in micron meters for organic material.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

Example(s)
oxd_diff_length value=1.e-2 mater=2

\subsection*{22.523 oxd_lifetime}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement oxd_lifetime is used to define the exciton diffusion life time in seconds for organic material.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

Example(s)
```

oxd_lifetime value=1.e-6 mater=2

```

\subsection*{22.524 oxd_quench}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & \\
\hline tau & real & {\([1.0](\mathrm{s})\)} \\
\hline elec_factor & real & {\([0.0]\left(\mathrm{m}^{3} / \mathrm{s}\right)\)} \\
\hline hole_factor & real & {\([0.0]\left(\mathrm{m}^{3} / \mathrm{s}\right)\)} \\
\hline biex_factor & real & {\([0.0]\left(\mathrm{m}^{3} / \mathrm{s}\right)\)} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
oxd_quench is used in organic semiconductor simulations to define the quenching term \(\tau_{q}\) used in the exciton diffusion equation (Eq. 14.73) for singlets.

The quenching term depends on several terms:
\[
\frac{S}{\tau_{q}}=\frac{S}{\tau}+A n S+B p S+\frac{1}{2} C S^{2}
\]
where \(n, p\) and \(S\) are the free electron, free hole and exciton concentrations. The other terms are defined below.

\section*{Parameters}
- tau is the fixed quenching term \(\tau\) defined above. It is usually slow enough that other terms dominate.
- elec_factor is \(A\) in the above formula.
- hole_factor is \(B\) in the above formula.
- biex_factor is the bi-exciton quenching term \(C\) in the above formula. This term is usually zero for singlet states.
- mater is the material number affected by this statement. If a label has previously been defined as an alias, mater_label may be used instead.

\section*{Examples}
oxd_quench tau=10.e-6 mater=2

\subsection*{22.525 oxd2_diff_length}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement oxd2__diff_length is used to define the diffusion length of the 2nd type (triplet) of exciton in micron meters for organic material.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .
```

Example(s)

```
oxd2_diff_length value=1.e-2 mater=2

\subsection*{22.526 oxd2_lifetime}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement oxd2__lifetime is used to define the diffusion life time of the 2nd type of exciton (triplet) in seconds for organic material.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

Example(s)
```

oxd2_lifetime value=1.e-6 mater=2

```

\subsection*{22.527 oxd2_quench}
oxd2__quench is identical to oxd__quench except that it defines the quenching term for triplet exciton states.

Unlike singlets, the triplet-triplet bi-exciton quenching term is usually not zero.

\subsection*{22.528 para_extract}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline file & char & {\([\) extract.txt \(]\)} \\
\hline append_data & char & {\([\) no \(]\)} \\
\hline type & char & {\([\) intercept \(]\)} \\
\hline fit_hori_from & real & {\([-1 . e 49]\)} \\
\hline fit_hori__to & real & {\([1 . e 49]\)} \\
\hline fit_cvert_from & real & {\([-1 . e 49]\)} \\
\hline fit_vert_to & real & {\([1 . e 49]\)} \\
\hline vert_intercept & real & \\
\hline hori_intercept & real & \\
\hline xy_hori_from & real & {\([-1 . e 49]\)} \\
\hline xy_hori_to & real & {\([1 . \mathrm{e} 49]\)} \\
\hline xy_vert_from & real & {\([-1 . e 49]\)} \\
\hline xy_vert_to & real & {\([1 . \mathrm{e} 49]\)} \\
\hline xy_product_scale & real & {\([1]\).} \\
\hline add_vert_intercept & real & {\([0]\).} \\
\hline add_hori_intercept & real & {\([0]\).} \\
\hline scale_fit_slope & real & {\([1]\).} \\
\hline scale_fit_inv_slope & real & {\([1]\).} \\
\hline vt_search_range & realx2 & {\([01 . e 49], 0.10,1.3 .,-10.0\).} \\
\hline
\end{tabular}
para_extract is used in .plt file in order to extract data curve characteristics generated by the next plot_scan statement issued after this command. Only one set of parameters can be extracted from each figure so multiple sets of para__extract and plot_scan commands may be needed to extract all of the relevant information from a curve.

\section*{Parameters}
- file is the output file name where the extracted parameters are saved (in ASCII text format). An existing file will be overwritten unless append__data is used; this point is of special importance when generating series and doing Design of Experiments analysis as all of the extracted parameters need to be extracted to the same output file.
- type is the type of data extracted from the curve:
- intercept - finds the intercept point with the \(\mathrm{x} / \mathrm{y}\) axis or with an arbitrary vertical/horizontal line.
- fit_line - fits a set of data to a straight line.
- xy_product_search - searches for an interpolated data point which maximizes the \(\mathrm{x}^{*} \mathrm{y}\) product.
- hori_max_search - searches for a data point with maximum x-value.
- vert_max_search - searches for a data point with maximum y-value.
- vt - used in Id-Vg transistor curves, searches for the threshold voltage.

Please note that in the above, x \& y refer to the horizontal and vertical axes of the graph and not spatial coordinates.
- fit__hori_from and fit__hori__to is the horizontal fitting range used to fit data to a straight line. A matching set of parameters for the vertical fitting range is given by fit__vert__from and fit__vert__to. These parameters are used when type=fit_line.
- vert_intercept defines the x value of an arbitrary vertical line. It is used when type \(=\)
- intercept.
- hori_intercept defines the y value of an arbitrary horizontal line. It is used when type=
- intercept.
- xy__hori_from, \(x y\) __hori__to, \(x y \_\)vert_from and \(x y\) __vert__to define the search range in the horizontal and vertical directions when type=xy_product_search.
- xy_product_scale may be used to artificially scale the maximum x*y product found during the extraction.
- add__vert_intercept may be used to artificially offset the vertical line intercept result. Similarly, add_hori_intercept may be used to offset the horizontal line intercept result.
- scale_fit_slope may be used to artificially scale the slope when type=fit_line. Similarly, scale_fit_inv_slope may be used to artificially scale the inverse of the slope.
- vt_search_range is the horizontal (voltage) search range used to find the threshold voltage on a Id-Vg plot when type=vt.

\section*{Examples}

The following statement fits the L-I curve above 1 mW to a straight-line so that threshold current can be found as an intercept with the horizontal axis; it also finds the drive current at 8 mW . Results of the parameter extraction is written to file extract.txt by default.
```

para_extract type=fit_line fit_vert_from=1 \&\&
hori_intercept=8.
plot_scan scan_var=current_1 variable=laser_power

```

The following command finds the maximum power from an I-V curve, a type of analysis often used in solar cell simulations:
```

para_extract type=xy_product_search xy_hori_from=0 xy_vert_from=0

```
plot_scan scan_var=voltage_1 variable=current_2

\subsection*{22.529 parallel_linear_solver}
\begin{tabular}{||l|l|l||}
\hline \multicolumn{1}{|c|}{ parameter } & data type & values [defaults] \\
\hline \hline solver & char & [mumps], pardiso \\
\hline pardiso_iterative & char & [void], cgs, outer_loop \\
\hline mumps_workspace & intg & {[] (percent) } \\
\hline
\end{tabular}
parallel_linear__solver may be used to specify alternate parallel sparse Newton solvers. Using this statement also forces \(\mathbf{m f}\) _solver \(=3\) in newton_par.

\section*{Examples}
- solver is used to specify the Newton solver. Available choices are:
- MUMPS: public domain solver available at http://graal.ens-lyon.fr/ MUMPS/
- PARDISO: originally developed at http://www.pardiso-project.org/, the version included in our software is licensed as part of the Intel Math Kernel Library \({ }^{\mathrm{TM}}\).

The PARDISO solver has poor convergence properties for the problems solved in Crosslight and is not recommended.
- pardiso_iterative can be used to turn on an iterative solver method in PARDISO and specifies the preconditioning algorithm. The sparse matrices encountered in Crosslight are badly conditioned and do not generally respond well to iterative methods so these options are not recommended.
- mumps_workspace exposes an internal setting of the MUMPS solver and allows users direct control over the amount of extra memory used for fill-in: by default the MUMPS solver uses \(20 \%\) of the sparse matrix size but this may prove insufficient in certain problems.

Please note that as of the 2015 version, the software will analyse MUMPS error messages and automatically attempt to retry solver calls that fail due to a lack of memory. The main benefit of setting this variable explicitly is to avoid the extra time associated with this retry.

\subsection*{22.530 passive_3d}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline index & real & \\
\hline intern_loss & real & \((1 / \mathrm{m})\) \\
\hline carrier_conc & real & \(\left(1 / m^{3}\right)\) \\
\hline sec_num & intg & \\
\hline
\end{tabular}

In the coupled RTG method of PICS3D, optical properties for the longitudinal propagation are usually provided through interpolation of mesh plane data from the electrical problem. However, it is also possible to define optical parts of the cavity which are not meshed and are purely passive: external cavities, fiber pigtails, etc... passive \(\_\mathbf{3 d}\) is used to define these regions.

\section*{Parameters}
- index is the refractive index of the passive section.
- intern_loss is the internal loss of the passive section.
- carrier_conc provides a reference carrier concentration for plotting only. It is otherwise unused in current versions of the software.
- sec_num is the section number (or section index) of the corresponding optical section.

\subsection*{22.531 passive_carr_loss}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & \\
\hline ncarr_loss & real & {\([0] \mathrm{m}^{2}\)} \\
\hline pcarr_loss & real & {\([0] \mathrm{m}^{2}\)} \\
\hline two_photon_loss & real & {\([0]\left(\mathrm{m}^{2}\right)\)} \\
\hline two_photon_carr & real & {\([0]\left(\mathrm{m}^{5}\right)\)} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
passive_carr_loss is used to specify in the .sol file the free carrier absorption in regions other than those which have been assigned an active macro; for those regions, equivalent settings are available in active__reg. The free carrier loss is expressed as:
\[
\begin{equation*}
\alpha=\text { ncarr_loss } \times\left(n-n_{0}\right)+\text { pcarr_loss } \times\left(p-p_{0}\right) \tag{22.89}
\end{equation*}
\]

Note that the same functionality can also be achieved using elec_carr__loss and hole_carr__loss; these statements are meant to be used inside a material macro but may also be used in the .sol as a material parameter override.

It is also important to mention that unlike the gain/index change calculations used in active regions, no attempt is made by the software to reconcile this parameter with the carrier-dependent index change mechanism defined in index_model. This command is meant to be used for experimental/empirical coefficients so it is the user's responsibility to provide values which obey the Kramers-Kroenig relationship.

\section*{Parameters}
- ncarr_loss is the coefficient of free carrier absorption for electrons. elec__carr__loss may also be used.
- pcarr_loss is the coefficient of free carrier absorption for holes. hole__carr__loss may also be used.
- two__photon_loss is a two-photon absorption term in \(S^{2}\). two__photon__loss may also be used.
- two__photon_carr is a free carrier loss coefficient related to the two-photon absorption process: these two effects combine to create an \(S^{3}\) loss term. See two__photon_carr for details.
- mater is the material number. If a label has previously been defined for this material, mater_label may instead be used.

\section*{Examples}
passive_carr_loss ncarr_loss=2.e-21 pcarr_loss=1.e-21 mater=1

\subsection*{22.532 passive_fiber}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline intern_loss & real & {\([5 . \mathrm{e}-5](1 / \mathrm{m})\)} \\
\hline index_core & real & {\([1.8]\)} \\
\hline index_cladding & real & {\([1.3]\)} \\
\hline core_radius & real & {\([8].(\mathrm{um})\)} \\
\hline group_index & real & {\([1.48]\)} \\
\hline sec_num & intg & {\([1]\)} \\
\hline bessel_order & intg & {\([0]\)} \\
\hline
\end{tabular}
passive_fiber may be regarded as a special case of passive__3d. In addition, fiber scalar modes are computed within the fiber section.
- intern_loss is the internal loss of the fiber section.
- index_core is the core index of the fiber.
- index_cladding is the cladding index of the fiber.
- core_radius is the core radius of the fiber.
- group_index is the group index of the fiber.
- sec_num is the section number of the fiber section.
- bessel_order is the Bessel function order used to represent the scalar lateral modes within the fiber section. The fundamental mode order is zero.

\section*{Example(s)}
passive_fiber intern_loss=4.6e-5 sec_num=4 \&\& index_core=1.5 index_cladding=1.496 core_radius=9.

\subsection*{22.533 pc_led_model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline top_emission & char & {\([\) yes \(]\)} \\
\hline surface_y_label & char & {\([\) void \(]\)} \\
\hline rectangle & char & {\([\) no] } \\
\hline surface_y & real & (um) \\
\hline grating_height & real & {\([0.1](\mathrm{um})\)} \\
\hline grating_dia_ratio & real & {\([0.2](\mathrm{dia} /\) period \()\)} \\
\hline x_range & realx2 & \((-9999.9999).(\mathrm{um})\) \\
\hline height_range & realx2 & {\([0.11].(\mathrm{um})\)} \\
\hline surface_mater & intg & {\([1]\)} \\
\hline model_points & intg & {\([10]\)} \\
\hline
\end{tabular}

The statement pc_led__model is used to define model parameters for photonic crystal LED (PhCLED) model which is treated as a post-processor module.
- top_emission indicates whether the LED emits from the top.
- surface__y_label is a position label for the material interface of the (air/semiconductor) LED.
- rectangle indicates whether the air holes of the PhC is rectangle or hexagonal.
- surface _ y is the absolute y-coordinate for the material interface of the (air/semiconductor) LED.
- grating_height is the height of the air-hole grating.
- grating_dia_ratio this ratio of the air-hole diameter over the period (or the real space lattice vector constant) of the photonic crystal.
- \(\mathbf{x} \_\)range is range in x over which the current spreading effect is taken into account for the calculation of distribution of extracted power emission.
- height_range is the range of air-hole height over which the LED emission properties are to be evaluated.
- surface_mater is the semiconductor material number over which the air-holes of the photonic crystal are to be made.
- model_points is the number of spacing divisions over the \(\mathbf{x} \_\)range for the calculation of spatial variation of LED properties.

Example(s):
pc_led_model top_emission=yes surface_y_label=air_hole \&\& grating_height=0.3 grating_dia_ratio=0.5 surface_mater=1 \&\& model_points=20 x_range=(50 200)

\subsection*{22.534 pf_model_setting}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline min_shift_vt & real & {\([0.03](\mathrm{eV})\)} \\
\hline bias_dependent & char & {\([\mathrm{no}]\)} \\
\hline
\end{tabular}
pf_model_setting controls various aspects of the Poole-Frenkel incomplete ionization model.

\section*{Parameters}
- min__shift__vt is used to adjust the Poole-Frenkel formula.

The standard form of Sec. 5.1.4 indicates that the ionization energy would shows no shift at zero bias; however, the derivative vs. field also becomes infinite at this point which causes problems for the Jacobian used to solve the Drift-Diffusion equations self-consistently.

To solve the problem, the following formula is used instead:
\[
\begin{equation*}
\Delta E_{P F}=\sqrt{q \frac{F+F_{0}}{\pi \epsilon_{0} \epsilon}}-\sqrt{q \frac{F_{0}}{\pi \epsilon_{0} \epsilon}} \tag{22.90}
\end{equation*}
\]
where min__shift__vt is the second term on the right-hand side.
- bias_dependent determines if the energy shift is calculated only once (at equilibrium) or updated throughout the simulation.

\subsection*{22.535 piezo_d11}
piezo_d11 and related commands are a set of parameters use to define the piezoelectric properties in SAWAVE.

It is important to note that these parameters are different from the piezoelectric parameters defined in e15__bulk and other related commands. Using the straincharge form, the two sets of coefficients are related by:
\[
\begin{align*}
d_{i j} & =\frac{\partial D_{i}}{\partial T_{j}}  \tag{22.91}\\
e_{i j} & =\frac{\partial D_{i}}{\partial S_{j}} \tag{22.92}
\end{align*}
\]
where \(D\) is the electric displacement, \(T\) is the stress and \(S\) is the strain. The two sets of commands therefore differ in that \(e_{i j}\) shows the effect of built-in strain while \(d_{i j}\) shows the effect of external stress: in SAWAVE, the acoustic wave propagation is described by such a stress term.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.536 piezo__d22}

See Sec. 22.535.

\subsection*{22.537 piezo_d33}

See Sec. 22.535.

\subsection*{22.538 piezo_d31}

See Sec. 22.535.
22.539 piezo_d32

See Sec. 22.535.

\subsection*{22.540 piezo_d24}

See Sec. 22.535.

\subsection*{22.541 piezo_d15}

See Sec. 22.535.

\subsection*{22.542 plot_1d}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & [vttek] \\
\hline variable & char & (see list) \\
\hline n_variables & charxn & \\
\hline integration & char & {\([\) no \(]\)} \\
\hline x_from__label & char & [void] \\
\hline y_from_label & char & [void] \\
\hline x_to_label & char & [void] \\
\hline y_to_label & char & [void] \\
\hline math_oper & char & [void] \\
\hline nonloc_esc_cap_path & char & yes,[no] \\
\hline nonloc_fly_over_path & char & yes,[no] \\
\hline from & realx2 & \\
\hline to & realx2 & \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline integration_start & real & {\([0.0](\mathrm{um})\)} \\
\hline integration_length & real & {\([1 . \mathrm{e} 5](\mathrm{um})\)} \\
\hline qw__wave_ht & real & {\([0.1](\mathrm{eV})\)} \\
\hline var_num & intg & {\([1]\)} \\
\hline mode_index & intg & {\([1]\)} \\
\hline trap_index & intg & {\([1]\)} \\
\hline qw_wave & intg & {\([0] 1\)} \\
\hline cond_subband & intg & {\([1] 2\)} \\
\hline val_subband & intg & {\([1] 23\)} \\
\hline
\end{tabular}
plot__1d is a post-processor statement used to plot data along a 1 D cut line. It is similar to lplot_xy and lplot_xyz. Depending on the 2D/3D nature of the simulation, the following rules should guide the choice of plotting command:
- 2D simulations: use plot_1d
- 3D cylindrical simulations with one mesh plane: use plot_1d
- xy cut of a 3D simulation: use lplot_xy
- z cut of a 3D simulation: use lplot__xyz

\section*{Parameters}
- data_file is the name of a text file in which a copy of the plot data will be saved.
- variable is the physical quantity to be plotted. A detailed list of available variables is given in App. G.2. Additional data may also be presented for certain variables. For example, plotting "wave_intensity" prints the value of the optical confinement factor.
- \(\mathbf{n} \_\)variables is used to plot several variables simultaneously.
- integration can be used to tell the solver to perform a numerical integration of the plotted variable. The results of the integration will be printed in the .plt.msg file.
- x_from_label, y_from__label, x_to_label, and y_to_label are used to define the beginning and end points of the cut line using position labels. These labels must have been previously defined by using x_position or y__position. The latter statements are often generated automatically in the layer file preprocessing stage.

Using position labels has the advantage that the plotting commands will automatically adjust to changes in device geometry. It is no longer necessary to find the absolute coordinates before plotting.
- math_oper, if defined, modifies the variable being plotted so it shown on a \(\log 10\) or power 10 scale. Note that some variables are already plotted on a \(\log 10\) scale by default (e.g. carrier and dopant concentrations) and in some cases, there may be a predefined alternate variable name to plot the same value on a linear scale.
- from and to are the ( \(\mathrm{x}, \mathrm{y}\) ) coordinates which determine the beginning and end of the 1D cut line. In the 3D variations on this command, \(x y\) _from and xy_to serve the same purpose. Note that xrange and yrange also provide an alternate way to define the extent of the cut line.
- integration_start and integration_length are used to define the integration range when integration is used. The two values are defined relative to the abscissa of the 1 D cut line.
- qw__wave__ht is the height of the quantum wave amplitude as plotted on the band diagram. This parameter is only useful when \(\mathbf{q w}\) __wave \(=1\).
- var__num is the number of variables to be plotted when using n__variables.
- mode_index specifies the number of the lateral mode for the quantity being plotted. If only the fundamental mode is of interest, the default value should be used.
- trap_index identifies the trap (SRH) recombination center.
- qw_wave enables plotting of the quantum well wave functions on the band diagram when \(\mathbf{q w}\) __wave \(=1\). However, the simulation must first have been run using the self_consistent statement. It is also necessary to output the QW wave data using more_output.
- cond__subband is used when qw__wave= 1 to indicate which conduction band is being plotted. The main condition band valley \((\Gamma)\) is equal to 1 while 2 represents the side valley \((L, X)\).
- val_subband is used when \(\mathbf{q w}\) __wave \(=1\) to indicate which valence band is being plotted. Values of 1,2 and 3 are respectively used to represent the HH, LH and CH bands or their wurtzite equivalents.
- nonloc__esc__cap__path and nonloc_fly__over__path are helpful when viewing the results of a q__transport simulation or any other simulation which has defined non-local current transport paths. When turned on, these parameters add lines to the band diagram that explicitly show the carrier capture/escape and fly-over non-local paths, respectively.

\section*{Examples}
```

plot_1d variable=elec_conc from=(0.5, 0.) to=(0.5, 1.9)
plot_1d 2_variables=(elec_conc hole_conc) var_num=2 \&\&
from=(0.5, 0.) to=(0.5, 1.9)
plot_1d variable=recomb_aug from=(0.5 0.) to=(0.5, 3.)

```

\subsection*{22.543 plot_ac_curr}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & [void] \\
\hline variable & char & [void] \\
\hline imag_part & char & [no] \\
\hline input_file & char & [void] \\
\hline from & realx2 & \\
\hline to & realx2 & \\
\hline
\end{tabular}
plot__1d___ac__curr is used to plot the AC current distribution in a 1D slice. It works with the statement of ac__voltage assuming a unit AC voltage signal in the input electrode.
- data_file is the file to which the graphic data is written in ASCII format.
- input_file is the input file containing the AC analysis results to be plotted.
- variable is the variable being plotted. Its value takes the format "type_curr_d", where type may be one of "elec", "hole","disp" or "total", standing for electron, hole, displacement, and total current components. "d" can take "x" or " \(y\) " for directions.
- imag_part indicates whether imaginary part of the current is plotted.
from is the starting point of the 1D slice.
to is the starting point of the 1D slice.

\section*{Examples}
```

plot_1d_ac_curr variable=elec_curr_y imag_part=no input_file=test.ac \&\&
from=(0.5 0.) to=(0.5 2.5)

```

The above statement plots 1D distribution of real part of AC current from test.ac file.

\subsection*{22.544 plot_2d}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & (see list) \\
\hline data_file & char & \\
\hline mater_boundary & char & {\([\) no \(]\) yes } \\
\hline point_ll & realx2 & \((\mu \mathrm{m})\) \\
\hline point_ur & realx2 & \((\mu \mathrm{m})\) \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline maxvector_scale & real & {\([1]\).} \\
\hline grid_sizes & intgx2 & {\([20,20]\)} \\
\hline level & intg & {\([10]\)} \\
\hline mode_index & intg & {\([1]\)} \\
\hline trap_index & intg & {\([1]\)} \\
\hline overlap_with_mode & intg & \\
\hline
\end{tabular}
plot__2d is a post-processor statement used to plot structural data on a 2D plane. The software will automatically switch between the vector fields and contour plots according to variable selected.

Other related commands exist and should be used depending on the 2D/3D nature of the original simulation results. The following rules apply:
- 2D simulations: use plot_2d
- 3D cylindrical simulations with one mesh plane: use plot_2d
- xy plane from a 3D simulation: use cplot_xy for contour plots of scalar variables, splot_xy for 3D surface plots of scalar variables or vplot_xy for vector variables.
- xyz plane from a 3D simulation: use cplot_xyz for contour plots of scalar variables, splot_xyz for 3D surface plots of scalar variables or vplot_xyz for vector variables.

\section*{Parameters}
- variable is the variable to be plotted. See App. G for a full list of available variables.
data_file is the name of a text file in which a copy of the plot data will be saved.
- maxvector_scale is used to scale the maximum length of a 2D vector field. A vector field is plotted by drawing only the vectors of length between the minimum and maximum vector length. Vectors of lengths below the minimum are not plotted. Vectors of lengths above the maximum are plotted with the same vector size. Increasing this parameter generates a plot with many small size vectors. Decreasing this value magnifies the smaller vectors while leaving the large ones with the same size.
- mater__boundary is used to indicate if material boundaries are plotted.
- point__ll is the lower-left corner point of the 2D plotting window.
- point__ur is the upper-right corner point of the 2D plotting window.
- xrange specifies a range for the x -axis.
- yrange specifies a range for the y-axis.
- grid_sizes are the grid sizes of the 2D plot. The physical variable being plotted is interpolated from the original mesh onto this regular grid.
- level is the number of divisions in the contour plot.
- mode_index is the index of the lateral mode in a multi-lateral mode simulation. If only the fundamental mode is concerned, the default value of one should be used.
- The parameter trap_index has been added for SRH recombination, so that the user can specify which trap center is being plotted.
- overlap_with__mode will calculate and print the overlap between the mode specified in mode_index and the mode specified by this parameter.

\section*{Examples}
plot_2d variable=total_cur xrange=(0.1.5) yrange=(0. 3.)

\subsection*{22.545 plot_3d}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & (see list) \\
\hline data_file & char & {\([\) vttek \(]\)} \\
\hline integration & char & {\([\) no]yes } \\
\hline point_ll & realx2 & \((\mu m)\) \\
\hline point_ur & realx2 & \((\mu m)\) \\
\hline view_xrot & real & {\([0]\).} \\
\hline view_zrot & real & {\([0]\).} \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline zrange & realx2 & \\
\hline integration_xrange & realx2 & {\([-1 . e 41 . e 4](\mu m)\)} \\
\hline integration_yrange & realx2 & {\([-1 . e 41 . e 4](\mu m)\)} \\
\hline grid_sizes & intgx2 & {\([20,20]\)} \\
\hline mode_index & intg & {\([1]\)} \\
\hline trap_index & intg & {\([1]\)} \\
\hline
\end{tabular}
plot__3d is a post-processor statement used to plot two-dimensional scalar variable data in a 3D view.
- variable is the variable to be plotted. The variable listing is given in App. G.2.
- data_file is the file to which the graphic data is written in ASCII format.
- integration indicates whether integration is performed for the physical variable being plotted. If "yes", the results of the integration will be printed in .plt.msg file.
- point_ll is the lower-left corner point of the 2D window.
- point_ur is the upper-right corner point of the 2D window.
- view_xrot rotates the plot around the x-axis.
- view_zrot rotates the plot around the z-axis.
- xrange specifies a range for the x -axis.
- yrange specifies a range for the y -axis.
- zrange specifies a range for the z-axis.
- integration_xrange specifies a x-range for numerical integration. (see also integration parameter above).
- integration_yrange specifies a y-range for numerical integration. (see also integration parameter above).
- grid_sizes are the grid sizes for the 3D plot.
- mode_index is the index of the lateral mode in a multi-lateral mode simulation. If only the fundamental mode is concerned, the default value of one should be used.
- The parameter trap_index has been added for SRH recombination, so that the user can specify which trap center is being plotted.
```

Example(s)
plot_3d variable=hole_conc point_ll=(0., O.) \&\&
point_ur=(2., 3.)

```

\subsection*{22.546 plot_3dcolor}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline connect_planes & char & {\([\) yes \(]\)} \\
\hline variable & char & (see list) \\
\hline new_gnuplot & char & {\([\) no \(]\)} \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline zrange & realx2 & \\
\hline view_xrot & real & {\([0]\).} \\
\hline view_zrot & real & {\([0]\).} \\
\hline mode_index & intg & {\([1]\)} \\
\hline trap_index & intg & {\([1]\)} \\
\hline plane_range & intg & {\([19999]\)} \\
\hline exclude_materi \((\mathrm{i}=1 . .5)\) & intg & \\
\hline
\end{tabular}
plot_3dcolor is a post-processor statement used to plot 3-dimensional scalar variable data in a 3D color view.

\section*{Parameters}
- variable is the variable to be plotted; the list of available variables is given in App. G.2.
- data_file is a filename that can be used to export the data in ASCII format.
- connect__planes connects the mesh planes.
- new_gnuplot generates a plotting format supported only by newer versions of GnuPlot.
- xrange, yrange and zrange define the plotting range.
- view__xrot and view_zrot rotate the plot around the x and z axes, respectively.
- mode_index is the index of the lateral mode in a multi-lateral mode simulation. By default, the fundamental mode (\#1) is plotted which may not necessarily be the lasing mode.
- trap_index specifies the recombination center being plotted.
- plane_range restricts the plotting to a specific set of mesh planes.
- exclude__materi(i=1..5) can be used to exclude a specific material number from the plot.

\section*{Examples}
plot_3dcolor variable=hole_conc

\subsection*{22.547 plot_3dmesh}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & [void] \\
\hline connect_planes & char & {\([\) yes \(]\)} \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline zrange & realx2 & \\
\hline view_xrot & real & {\([0]\).} \\
\hline view_zrot & real & {\([0]\).} \\
\hline
\end{tabular}
plot__3dmesh is a post-processor statement used to plot 3-dimensional mesh.
- data_file is the file to which the graphic data is written in ASCII format.
- connect__planes connects the planes with mesh lines.
- xrange specifies a range for the x -axis.
- yrange specifies a range for the \(y\)-axis.
- zrange specifies a range for the \(z\)-axis.
- view_xrot rotates the plot around the x-axis.
- view_zrot rotates the plot around the z-axis.

\section*{Example(s)}
plot_3dmesh connect_planes=yes

\subsection*{22.548 plot_3dvtk}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & (see list) \\
\hline vtk_file & char & {\([\) vttek] } \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline zrange & realx2 & \\
\hline mode_index & intg & {\([1]\)} \\
\hline trap_index & intg & {\([1]\)} \\
\hline grid_sizes & intgx3 & {\([202020]\)} \\
\hline
\end{tabular}
plot__3dvtk is a post-processor statement used to output 3-dimensional scalar variable data in VTK format. VTK format file can be visualized by another softwares such as MayaVi and ParaView.
- variable is the variable to be plotted. The variable listing is given in App. G.2.
- vtk_file is the file to which the 3D grid data is written in VTK format. If vtk_file is not supplied, variable will be used for the naming of output file.
- xrange specifies a range for the x -axis.
- yrange specifies a range for the y -axis.
- zrange specifies a range for the z-axis.
- mode_index is the index of the lateral mode in a multi-lateral mode simulation. If only the fundamental mode is concerned, the default value of one should be used.
- The parameter trap_index has been added for SRH recombination, so that the user can specify which trap center is being plotted.
- grid_sizes specifies the grid size in each axis of 3D space.

\section*{Example(s)}
plot_3dvtk variable=optical_energy grid_sizes=[50 50 50]

\subsection*{22.549 plot__ac__curr}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & [void] \\
\hline input_file & char & [void] \\
\hline scale_2 & char & {\([\) linear],log } \\
\hline variable & char & [void] \\
\hline input_f2 & char & [void] \\
\hline n__variables & charxn & \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline factor_vertical & real & {\([1]\)} \\
\hline var_num & intg & {\([1]\)} \\
\hline
\end{tabular}
plot__ac_curr is used to plot the AC current responses and related AC characteristics produced as the result of 1 V of applied AC bias. The AC data must have been previously generated by ac__voltage.

\section*{Parameters}
- data_file is the file to which the graphic data is written in ASCII format.
- input_file is the input file containing the AC analysis results to be plotted.
- scale_2 is used to control the scale of the AC characteristics being plotted (the ordinate).
- factor_vertical is a factor scaling the vertical axis of the plot.
- variable is the variable being plotted. It is defined as follows:
\begin{tabular}{|c|c|}
\hline Variable & definition \\
\hline n__real_k (k=1,2,...) & Real part of electron AC current at kth electrode. \\
\hline \[
\begin{aligned}
& \mathrm{n}_{\mathrm{n} \text { _imag_k }}(\mathrm{k}=1,2, \ldots) \\
& \hline
\end{aligned}
\] & Imaginary part of electron AC current at kth electrode. \\
\hline p_real_k (k=1,2,...) & Real part of hole AC current at kth electrode. \\
\hline \[
\begin{aligned}
& \mathrm{p} \text { _imag_k } \\
& (\mathrm{k}=1,2, \ldots) \\
& \hline
\end{aligned}
\] & Imaginary part of hole AC current at kth electrode. \\
\hline d__real_k (k=1,2,...) & Real part of displacement AC current at kth electrode. \\
\hline \[
\begin{aligned}
& \hline \text { d_imag_k } \\
& (\mathrm{k}=1,2, \ldots) \\
& \hline
\end{aligned}
\] & Imaginary part of displacement AC current at kth electrode. \\
\hline t_real_k (k=1,2,...) & Real part of total (electron + hole + displacement) AC current at kth electrode. \\
\hline t_imag_k (k=1,2,...) & Imaginary part of total (electron + hole + displacement) AC current at kth electrode. \\
\hline \[
\underset{(\mathrm{k}=1,2, \ldots)}{\mathrm{n} \_ \text {magn_k }}
\] & Magnitude of electron AC current at kth electrode. \\
\hline  & Magnitude of hole AC current at kth electrode. \\
\hline \[
\underset{(\mathrm{k}=1,2, \ldots)}{\mathrm{d} \_ \text {magn_k }}
\] & Magnitude of displacement AC current at kth electrode. \\
\hline \[
\underset{(\mathrm{k}=1,2, \ldots)}{\mathrm{t} \_ \text {magn_k }}
\] & Magnitude of total (electron + hole + displacement) AC current at kth electrode. \\
\hline \[
\begin{aligned}
& \text { ratio_ik/ij } \\
& (\mathrm{k}=1,2, \ldots) \\
& (\mathrm{j}=1,2, \ldots) \\
& \hline
\end{aligned}
\] & Ratio of the total AC current magnitudes at the kth and jth electrodes. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{\(\left|\frac{i_{k}}{i_{j}}\right|_{v_{1}}\)} & \\
\hline \begin{tabular}{l} 
ratio_i_real_k/ij \\
\((\mathrm{k}=1,2, \ldots)\) \\
\((\mathrm{j}=1,2, \ldots)\)
\end{tabular} & \begin{tabular}{l} 
Ratio of the real part of the AC current \\
at the kth electrode over the AC current \\
magnitude at the jth electrode.
\end{tabular} \\
\hline \begin{tabular}{l} 
ratio_i_imag_k/ij \\
\((\mathrm{k}=1,2, \ldots)\) \\
\((\mathrm{j}=1,2, \ldots)\)
\end{tabular} & \begin{tabular}{l} 
Ratio of the imaginary part of the AC cur- \\
rent at the kth electrode over the AC cur- \\
rent magnitude at the jth electrode.
\end{tabular} \\
\hline \begin{tabular}{l} 
ratio2_ik/ij \\
\((\mathrm{k}=1,2, \ldots)\) \\
\((\mathrm{j}=1,2, \ldots)\)
\end{tabular} & \begin{tabular}{l} 
Ratio of the total AC current magnitude \\
at the kth electrode in response to the AC \\
voltage defined in input_file to the total \\
AC current magnitude on the jth electrode \\
in response to the AC voltage defined in \\
input_f2. To generate the two AC data \\
input files, ac_voltage must be used for \\
each electrode.
\end{tabular} \\
\hline \begin{tabular}{l} 
conductance_k \\
\((\mathrm{k}=1,2, \ldots)\)
\end{tabular} & \begin{tabular}{l} 
Conductance at kth electrode, obtained \\
from the real part of the total AC current \\
on that electrode.
\end{tabular} \\
\hline \begin{tabular}{l} 
capacitance_k \\
\((\mathrm{k}=1,2, \ldots)\)
\end{tabular} & \begin{tabular}{l} 
Capacitance at kth electrode, obtained \\
from the imaginary part of the total AC \\
current on that electrode.
\end{tabular} \\
\hline\(\left.i_{v_{1}}\right|_{v_{2}}\)
\end{tabular}

Units in the above will be changed depending on the \(2 \mathrm{D} / 3 \mathrm{D}\) nature of the simulation. For example, 2D simulation give currents in \(\mathrm{A} / \mathrm{m}\) and 3 D simulations will use Amperes directly.
- input_f2 is the 2 nd AC input data file when variable=ratio2_ \(i k / i j\).
- n__variables may be used to list more than one variable so that more that one variable may be plotted on the same graph.
- xrange and yrange specify the axis plotting range.
- var_num is the number of variables being plotted and if used, must match the prefix in n__variables.

\section*{Examples}
```

plot_ac_curr input_file=pmosB.ac variable=capacitance_3
plot_ac_curr input_file=pmosB.ac variable=conductance_3

```

The above two statements are used to plot capacitance and conductance at electrode 3 in response to the AC voltage response saved in the pmosB.ac file.
```

plot_ac_curr scale_2=log variable=ratio_i3/i4

```

The above statement plots the current ratio at electrode 3 over that at electrode 4. The AC data is automatically obtained from a preceding ac__voltage statement.
```

ac_voltage output_file=pmosB.ac log_freq1=6. log_freq2=12. \&\&
contact_num=4 freq_point=20
ac_voltage output_file=pmosB.ac2 log_freq1=6. log_freq2=12. \&\&
contact_num=3 freq_point=20
plot_ac_curr input_file=pmosB.ac scale_2=log variable=ratio2_i3/i3 \&\&
input_f2=pmosB.ac2

```

The above statements generate two sets of AC responses on electrodes 3 and 4. The final plot shows the AC voltage ratio or voltage amplification by showing the current ratios on electrode \#3.

\subsection*{22.550 plot_ac_laser}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & [void] \\
\hline input_file & char & [void] \\
\hline facet & char & [void] front, back \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline
\end{tabular}
plot_ac_laser is used to plot the power response of a laser diode.
- data_file is the file to which the graphic data is written in ASCII format.
- input_file is the input file containing the AC analysis results to be plotted. If this is not defined, an internal data filename will be assigned.
- facet, if specified, is the facet where the power is calculated. If not specified, the total power will be computed.
- xrange specifies a range for the abscissa.
- yrange specifies a range for the ordinate.

\section*{Examples}
plot_ac_laser facet=front

The above statement plots frequency response of front facet power.

\subsection*{22.551 plot_ac__minispice}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & [void] \\
\hline variable & char & \begin{tabular}{l} 
[voltage], current, conductance, ca- \\
pacitance
\end{tabular} \\
\hline node & char & [void] \\
\hline element & char & [void] \\
\hline scale_2 & char & {\([\) linear], log } \\
\hline imag_part & char & {\([\) no],yes } \\
\hline xrange & realx2 & {[]\([\) log10 \()\)} \\
\hline yrange & realx2 & {[]} \\
\hline factor_vertical & real & {\([1]\).} \\
\hline
\end{tabular}
plot_ac__minispice is used to plot AC results in external circuit elements from a mixed-mode (minispice) simulation.

\section*{Parameters}
- data_file can be used to save the graphic plot data in ASCII format.
- variable is the AC variable being plotted; when appropriate, imag_part controls whether the real or the imaginary part of this variable is being plotted.
- node is the SPICE node number or node name used for an AC voltage plot.
- element is the SPICE element name used to plot AC current. Since conductance and capacitance values are extracted from AC current (see ac__voltage), this parameter also affects these variables.
- scale__2 is used to control the scale of the AC characteristics being plotted (the ordinate).
- xrange and yrange are used to zoom the plot. As the abscissa is usually a frequency axis, the x-range is given using a logarithmic scale.
- factor_vertical is an artificial scaling factor that can be applied to the ordinate.

\section*{Examples}

See ac__voltage.

\subsection*{22.552 plot__ac__modal__gain}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & [void] \\
\hline input_file & char & [void] \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}
plot__ac__modal__gain is used to plot the modal gain of a wave guided device. Here modal gain is defined local material gain averaged over optical power distribution of all lateral modes, assuming no interference effects between different modes.
- data_file is the file to which the graphic data is written in ASCII format.
- input_file is the input file containing the AC analysis results to be plotted. If this is not defined, an internal data filename will be assigned.
- facet, if specified, is the facet where the power is calculated. If not specified, the total power will be computed.
- xrange specifies a range for the abscissa.
- yrange specifies a range for the ordinate.

\subsection*{22.553 plot_ac_parameters}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & {\([\) void \(]\)} \\
\hline input_file & char & [void] \\
\hline scale_vertical & char & {\([\) linear \(] \log\)} \\
\hline parameter_type & char & {\([\mathrm{s}], \mathrm{y}, \mathrm{h}\)} \\
\hline smith_chart & char & {\([y e s]\) no } \\
\hline touchstone_export & char & [void] myfile.s2p \\
\hline touchstone_freq_units & char & [ghz]hz,khz,mhz,ghz \\
\hline touchstone_format & char & {\([\mathrm{ma}]\) ma,db,ri } \\
\hline char_impedance & real & {\([50]\) Ohm) } \\
\hline zdim & real & {\([10](\mathrm{um})\)} \\
\hline
\end{tabular}
plot_ac__parameters is used to plot the AC 2-port parameters produced by the AC analysis defined in ac__parameters.

\section*{Parameters}
- data_file can be used to save the graphic plot data in ASCII format. Unlike other plotting commands, multiple columns of data are printed as a result of this command. The first column corresponds to the frequency (or bias, depending on the type of AC analysis that was performed) and subsequent columns each correspond to one of the graphs that was produced as a result of this command.

To output the results of a frequency analysis, the touchstone_export command should be preferred over data_file.
- input_file is the input file containing the AC analysis results to be plotted. If this is not defined, an internal data filename will be assigned.
- scale__vertical is used to control the scale of the AC characteristics being plotted (the ordinate).
- parameter_type defines the type of 2-port analysis plotted: \(s, h\) or \(y\).
- smith_chart is applicable only when parameter type is \(s\) and specifies that a Smith chart should be used to plot the results. If negative, the S-parameters will be plotted against frequencies in the conventional way.
- touchstone_export instructs the program to export data in http://en. wikipedia.org/wiki/Touchstone_fileTouchstone .s2p format. The frequency units used in this file are specified by touchstone_freq_units.

The format of the data and the representation of the complex numbers is specified by touchstone_format:
- \(R I\) for a cartesian (real and imaginary) representation
- MA for an polar (magnitude and angle) representation
- \(d B\) for a decibel-angle representation commonly used in electronics textbooks.

See also the following http://vhdl.org/ibis/connector/touchstone_spec11. pdflink for a more complete description of the Touchstone format.
- char_impedance is the characteristic impedance of the high frequency system.
- zdim is valid for 2D simulations only. It is the omitted third dimension (perpendicular to the 2D simulation mesh) which is needed to compute the absolute impedance of the device being simulated.

\section*{Examples}
plot_ac_parameters parameter_type=y zdim=10

The above statement plots Y11, Y21, Y12, and Y22 parameters as functions of frequencies.
```

plot_ac_parameters parameter_type=s zdim=10 smith_chart=no

```

The above statement plots S11, S21, S12, and S22 parameters as functions of frequencies.
```

plot_ac_parameters parameter_type=s zdim=10 smith_chart=yes

```

The above statement plots S11 and S22 in a Smith chart and S21 and S12 in a polar plot.

\subsection*{22.554 plot_bias}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & {\([\) void \(]\)} \\
\hline variable & char & {\([\) void \(]\)} \\
\hline n__variables & charxn & \\
\hline start & real & {\([0]\).} \\
\hline end & real & {\([1]\).} \\
\hline scale_x & real & {\([2]\).} \\
\hline scale_y & real & {\([1]\).} \\
\hline scale_power & real & {\([2]\).} \\
\hline var_num & intg & {\([1]\)} \\
\hline curve_math & intg & {\([0], 1\)} \\
\hline dataset_start & intg & {\([1]\)} \\
\hline dataset_end & intg & {\([99]\)} \\
\hline
\end{tabular}

The post-processor statement plot__bias is used to plot many important physical variables as a function of bias.
- data_file is the data file where the graphic data is to be stored.
- variable can be one of following:
\begin{tabular}{|l|l|}
\hline delta_freq & \begin{tabular}{l} 
Main long. mode frequency deviation from \\
the reference frequency.
\end{tabular} \\
\hline power_left & \begin{tabular}{l} 
Main long. mode power emission from the \\
left facet.
\end{tabular} \\
\hline power_right & \begin{tabular}{l} 
Main long. mode power emission from the \\
right facet.
\end{tabular} \\
\hline sms_ratio & Side main suppression ratio. \\
\hline linewidth_spon & Linewidth due to spontaneous emission. \\
\hline linewidth_carrier & Linewidth due to carrier fluctuation. \\
\hline linewidth_cross & Linewidth due to cross correlation between \\
\hline carrier and photon density. & \begin{tabular}{l} 
Linewidth due to side long. mode. \\
\hline linewidth_sidemode \\
\hline linewidth_total
\end{tabular} \begin{tabular}{l} 
Linewidth from all of the above. \\
\hline linewidth*power_left \\
\hline effective_alpha \\
\hline real_freq_\# \\
\hline Effectidth power product. \\
\hline imag_freq_\# \\
\hline Rhd_\# \begin{tabular}{l} 
Real part of the complex frequency of the \\
long. mode number \#.
\end{tabular} \\
\hline power_left_lm_i \\
\begin{tabular}{l} 
Imaginary part of the complex frequency \\
of the long. mode number \#.
\end{tabular} \\
\hline power_right_lm_i \\
\hline power_total_lm_i \\
\begin{tabular}{l} 
Second harmonic distortion due for chan- \\
nel number \#.
\end{tabular} \\
\hline
\end{tabular} \begin{tabular}{l} 
Left facet emission power of lateral mode \\
(lm) number i.
\end{tabular} \\
\hline \begin{tabular}{l} 
Right facet emission power of lateral mode \\
(lm) number i.
\end{tabular} \\
\hline \begin{tabular}{l} 
Total (left+right) facet emission power of \\
lateral mode (lm) number i.
\end{tabular} \\
\hline
\end{tabular}
- n__variables takes more than one of the variables tabulated above.
- start is the starting bias point in the plot.
- end is the relative ending bias point in the plot.
- scale_x is used to scale the horizontal axis (i.e., the current). By default, we assume that only one half of the symmetric device is simulated. Thus, a default scale of 2 is needed to recover the current for the whole structure.
- scale_y is used to scale the vertical axis of the bias plot for variables other than laser power.
- scale_power is used to scale the vertical axis of the light vs. current plot. A default of scale 2 is used to recover the current for the whole structure.
- var__num is the number of variables listed in n__variables.
- curve_math is used to indicate whether or not there is mathematical operation between different curves (e.g., whether or not they should be added together). For a value of 0 , no math operation is done between the curves. If it takes a value of 1 all the curves on the same plot is added together to produce an additional curve.
- dataset__start and dataset__end are used to set the starting and ending data sets used in the plot. If dataset_end exceeds the existing number of data sets, the last data set will be used.

\section*{Example(s)}
```

plot_bias variable=power_left
plot_bias variable=power_right
plot_bias variable=sms_ratio
plot_bias variable=shd_1

```

\subsection*{22.555 plot_data}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline plot_device & char & [postscript] \\
\hline
\end{tabular}
plot_data determines how data is plot during the post-processing stage (.plt file). The following plot__device settings are available:
- postscript generates postscript files (.ps) through a GnuPlot script.
- windows displays the plots through a series of GnuPlot windows.
- data_file merely writes the data to text files without displaying any figures

Note that in addition to these options, interactive plotting of figures is also supported through the CrosslightView GUI.

\subsection*{22.556 plot_longitudinal}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline variable & char & [wave_total_peakmode] \\
\hline select_lateral_mode & intg & {\([1]\)} \\
\hline
\end{tabular}
plot_longitudinal is used in the post-processing (.plt) of PICS3D results to plot data on the optical longitudinal mesh defined in the section statements.

Unlike lplot_xyz and other conventional plotting statements, this command does not gather data directly from the (electrical) mesh planes. This distinction is important since it allows plot_longitudinal to plot data from passive un-meshed sections.

\section*{Parameters}
- data_file is a file name used to save the plot data.
- variable is the variable being plotted. It must be one of the following:
- ase_density: amplified spontaneous emission profile
- photon_density
- photon_density_allmode
- wave_total: \(|L(z)|^{2}+|R(z)|^{2}\); total envelope of the optical wave
- wave_left
- wave_right
- wave_total_use_phase: \(|L(z)+R(z)|^{2}\); total optical wave including standing wave pattern. A dense optical mesh is required to resolve these oscillations clearly.
- wave_total_peakmode
- wave_left_peakmode
- wave_right_peakmode
- alpha_l_over_2: imaginary part of the \(\beta\) propagation constant, normalized to cavity length; corresponds to a gain/absorption term. The factor of 2 shows this is the value applied to the optical field and not the photon flux.
- delta_beta_l: real part of the \(\beta\) propagation constant, normalized to cavity length; only the deviation away from the \(\beta_{0}\) used for the expansion is shown.
- density_mode_average: average density in the active region, weighed by the longitudinal mode profile.
- kappa_l_real: grating strength \(\Re \kappa L\)
- kappa_l_imag: grating strength \(\Im \kappa L\)
- phase_index: effective index of each mode; goes into the \(\beta\) calculations. This value is calculated on the first mesh plane of each segment: use multiple z-segments to increase the sampling of this value.
- select_lateral__mode selects the lateral mode number for the plot.

\section*{Examples}
```

plot_longitudinal variable=photon_density

```

\subsection*{22.557 plot__mesh}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mesh_infile & char & \\
\hline plot_device & char & \\
\hline xrange & real & \((\mu \mathrm{m})\) \\
\hline yrange & real & \((\mu \mathrm{m})\) \\
\hline
\end{tabular}
plot__mesh is used by the mesh generator to plot the generated mesh.

\section*{Parameters}
- mesh_inf is the input meshfile, not ordered.
- plot_device is the Gnuplot device used for the output (e.g. "postscript").
- xrange and yrange allow the user to define an area of the mesh to zoom in on.

\section*{Examples}
```

plot_mesh mesh_inf=pn.msh plot_device=x11 \&\&

```
    xrange \(=(0.150 .3)\) yrange \(=(0.81 .2)\)

\subsection*{22.558 plot_minispice}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline variable & char & [voltage],current \\
\hline node & char & \\
\hline element & char & \\
\hline set_scan_var & char & [void], virtual_time, time \\
\hline hori_variable & char & \\
\hline hori__node & char & \\
\hline hori_element & char & \\
\hline variable2 & char & \\
\hline node2 & char & \\
\hline element2 & char & \\
\hline hori_scale & char & [linear],log \\
\hline vert_scale & char & {\([\) linear],log } \\
\hline scan__var_range & realx2 & (sec) \\
\hline hori_range & realx2 & \\
\hline vert_range & realx2 & \\
\hline circuit & intg & {\([1]\)} \\
\hline scan_num_range & intgx2 & {\([099]\)} \\
\hline
\end{tabular}
plot_minispice is new to the 2013 version and is used to plot the results of a mixed-mode simulation (see minispice.

\section*{Parameters}
- data_file is the name of a text data file which can be used to export the plot data.
- variable indicates whether the voltage at a SPICE node or the current through an element should be plotted:
- voltage: the voltage at the specified node value is plotted
- current: the current through the specified element is plotted. A node parameter connected to this element must also be given to set the sign of the current: by convention, current flowing into a node is positive.
- variable 2 is a second variable plotted on the same plot; node 2 and element 2 serve the same purpose as their normal counterpart for this new variable.
- set_scan__var sets whether variables are shown as a function of the transient simulation time or the virtual_time used in the scan statement; the latter is used for DC sweeps.
- hori__variable is similar to scan__var in plot_scan. If this parameter is used, then instead of showing (e.g.) V1 ( t ) the plot will show V1(t) vs. V2(t) where V 2 is the variable defined as the horizontal variable.

For this horizontal variable, hori__node and hori_element serve the same purpose as their normal counterpart in variable.
- hori_scale and vert__scale control the linear/log scaling of the horizontal and vertical axis, respectively.
- scan_var_range may be used to restrict the time or virtual_time variable to a certain range in the plot. If using a horizontal variable to plot rather than this time variable, hori_range and vert_range may be used to restrict the horizontal and vertical ranges.
- circuit refers to a specific external circuit file used in the simulation. These files are numbered following the order of the minispice statements in the .sol input file.
- scan__num_range may be used to restrict which data sets are used in the plot.

\section*{Examples}

The following plots the voltage at node 1 ; the x axis will correspond to either the time in a transient simulation or the "virtual_time" used for a SPICE DC sweep.
plot_minispice variable=voltage node=1
For the next example, assume the following declarations in the .cir layout:
\begin{tabular}{lrrr} 
R1 & 1 & 2 & 10 k \\
R2 & 1 & 2 & 1 k
\end{tabular}

To plot the different currents flowing through the two parallel branches, the following commands should be used:
plot_minispice variable=current element=R1 node=1
plot_minispice variable=current element=R2 node=1

\subsection*{22.559 plot_more_dos_fermi}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline energy_range & realx2 & \((\mathrm{eV})\) \\
\hline
\end{tabular}
plot__more_dos_fermi is a post-processing statement that plots additional data previously generated by a more__dos_fermi__output statement.

\section*{Parameters}
- data_file is user-specified text file containing a copy of the plot data.
- energy_range is abscissa range of the \(\operatorname{DOS}(E)\) plot.

\subsection*{22.560 plot_more_spectrum}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline variable & char & \begin{tabular}{l} 
[more_spectrum1], \\
more_spectrumi \((\mathrm{i}=1 . .29)\)
\end{tabular} \\
\hline user_xlabel & char & \\
\hline user_ylabel & char & \\
\hline
\end{tabular}
plot_more_spectrum is a post-processing statement that plots additional data previously generated by a more__spectrum_output statement.

\section*{Parameters}
- data_file is user-specified text file containing a copy of the plot data.
- variable is the variable being plotted. The names of these variables (more_spectrumi(i=1..29)) correspond to the order of the more__spectrum_output commands in the input file.
- user_xlabel and user_ylabel are user-defined labels added to the plot.

\subsection*{22.561 plot__more_trap}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & \\
\hline tag & char & \\
\hline trap_index & intg & {\([1]\)} \\
\hline
\end{tabular}
plot__more_trap is a post-processing statement used to plot additional trap information generated by more_trap__output. This statement will plot the distribution of trap states relative the energy bands along with their occupancy.

\section*{Parameters}
- data_file is user-specified text file containing a copy of the plot data.
- tag is a user-defined label that is used to link this command with the appropriate more_trap_output statement.
- trap_index identifies the species of traps being plotted.

\subsection*{22.562 plot_multilayer_optics}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & \begin{tabular}{l} 
[reflection], transmission, absorp- \\
tion
\end{tabular} \\
\hline data_file & char & \\
\hline wavelength_range & realx2 & [-9999. 9999.] \((\mu m)\)
\end{tabular}
plot__multilayer_optics is a post-processing statement used to get results from the multi-layer transfer matrix model (TMM) used for light__power. This value is averaged from the cut lines used in the TMM but it is not weighed by the input light profile. For full-spectrum simulations, it plots the spectrum of the coefficient. For single-wavelength pumping, a single value will be output in the simulation window.

This statement is typically used in solar cells to verify the spectral response of the device.

\section*{Parameters}
- variable is one of the outputs from the TMM model: reflection, absorption or transmission.
- data_file is a file where the plot data can be saved.
- wavelength_range can be used to restrict plotting to a part of the spectrum.

\section*{Examples}
plot_multilayer_optics variable=absorption

\subsection*{22.563 plot_qw_raw_data}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline complex & intg & {\([1]\)} \\
\hline cond_band & intg & {\([1]\)} \\
\hline val_band & intg & {\([1]\)} \\
\hline
\end{tabular}
plot_qw_raw__data may be used to plot the band structure, levels and wave functions directly from the Schrödinger solver rather than in a band diagram sampled from the finite element mesh.

For example, if the self-consistent MQW model is turned off, the software will use a flat-band model to obtain the QW levels. Under these conditions, this command will show the flat bands in the QW and barrier while the usual band diagram would show the potential distorted by the applied potential.

However if the self-consistent model is turned on, then after an initial iteration using flat band conditions, the potential for the Schrödinger solver is sampled using a single cut line across the QW region. Under these conditions, plot__qw__raw__data will then show that sampled potential while the usual band diagram would show the potential at the cut line specified by that plotting command.

\section*{Parameters}
- data_file is the name of a text file in which a copy of the plot data will be saved.
- complex is the complex MQW region number being plotted. cond_band is the number of the conduction band valley ( \(\Gamma=1\) ). cond__band is the number of the valence band valley \((\mathrm{HH}=1, \mathrm{LH}=2, \mathrm{CH}=3)\).

\subsection*{22.564 plot_rtgain}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline plot_device & char & [void] \\
\hline rtgain_data & char & [void] \\
\hline standing_wave & char & [void] \\
\hline std_wave_range & realx2 & \\
\hline
\end{tabular}

The statement plot_rtgain is used as a preprocessing tool to plot the round trip gain and standing wave pattern within a LD or a VCSEL. It takes the data ( .rtd file) from PICS3D running a .sol file on a statement rtgain__phase.
- plot_device is the Gnuplot device used for the output (i.e. "postscript").
- rtgain__data is the .rtd file as a result of running rtgain_phase statement in .sol file.
- rtgain__data is the .rtd file as a result of running
- standing_wave is the file (.stw file) containing standing wave in a VCSEL. This will be generated for a VCSEL by the rtgain_phase.
- std__wave__range specifies the wave range to be plotted.

\section*{Example(s)}
```

plot_rtgain rtgain_data=jim.rtd standing_wave=jim.stw \&\&
plot_device=postscript

```

\subsection*{22.565 plot_scan}

\begin{tabular}{||l|l|l||}
\hline filter__value & real & {\([0]\).} \\
\hline horizontal_power & real & {[]} \\
\hline vertical_power & real & {[]} \\
\hline parallel_resistor & real [50.0] (ohm*m \(\mid\) ohm \()\) & \\
\hline series_resistor & real [50.0] (ohm*m \(\mid\) ohm \()\) & \\
\hline var_num & intg & {\([1]\)} \\
\hline mode_index & intg & {\([1]\)} \\
\hline trap_index & intg & {\([1]\)} \\
\hline scanline & intg & \\
\hline scan_num & intg & \\
\hline
\end{tabular}
plot_scan is a post-processor statement used to plot "scan" data as a function of the applied bias on the device. This should be contrasted with "xy" (structural) data which is plotted as a function of the local mesh points.

The data sets plotted by this command are specified in the preceding get_data statement.

\section*{Parameters}
- data_file is the name of a text file in which a copy of the plot data will be saved.
- scale_1 is used to indicate linear or log scale on the abscissa.
- scale__2 is used to indicate linear or log scale on the ordinate.
- scan__var is the scanned variable (on the abscissa). Refer to App. G for a full list of scan variables.
- variable is the scanned variable (on the ordinate). Refer to App. G for a full list of scan variables.
- n_variables is a group of variables to be plotted on the ordinate.
- include_data is the name of a text file containing data to be added to the plot. This can be used, for example, to add experimental data to a figure and compare with the simulation results.
The expected format of the text file is that the first line defines the number of points while all the other lines are x-y pairs. The following may be used as an example:

3
\(0.1 \quad 0.5\)
0.20 .8
0.51 .2
- facet is a LASTIP-only parameter used to determine whether the laser output power corresponds to the front or back facet (or both). Note that the power is also scaled by scale_lit to account for the symmetry of the device.
- user_xlabel, user_ylabel and user_title are user-defined labels for the abscissa, ordinate and plot title, respectively. White spaces are not supported and should be replaced with an underscore (_). The upper limit on the number of characters in the string is 20 except for user_xlabel which allows for 68 characters.
- user_label1, user_label2 and user_label3 are user-defined labels which can be added at certain coordinates of the plot. These coordinates are defined by xy_label1, xy_label2 and xy_label3, respectively.

The same rules as for user_title apply concerning the content and length of the user-supplied string.
- merge_next is used to instruct the program to not to plot this curve but to transfer the data and merge the curve into the next plot statement.
- filter_name, if used, is the name of a control variable used to filter plotting results. For example, this can be used to plot some quantity p1 vs. p2 with the condition that only results that match the condition \(\mathrm{p} 3=\) value are included. This control value is set by filter__value.
- plot_slope will cause the statement to plot the slope instead of the original quantity.
- set_grid turns on the display of the plot grid.
- show_points shows the data points of the plot instead of just the lines.
- parallel_circuit defines a resistor in parallel to an electrode. This is different from a more complex external circuit which would be defined in the .sol file with the minispice statement.

Instead, this parameter merely adjust the value of the current being plotted by adding or subtracting a component \(\Delta I=\frac{V}{R}\). The resistor value is defined by parallel_resistor.
- oscillation_smooth tells the software to try to smooth the plot.
- series_circuit is similar to parallel_circuit circuit above but defines a resistor connected in series with the device. The resistor value is defined by series_resistor.
- save__as_excel_csv, if used, is a file name used to export the plot data in a comma-separated values (CSV) format; the .csv extension is automatically added. Column headers for this file may be defined using the csv__col_labeli(i=1...9) parameters.
- scale_lit and scale_curr are LASTIP-only parameters used to to scale the output power and current (respectively) to account for the symmetry of the device. In previous versions of the software, a default value of 2 was used to account for implied symmetry; this is no longer the case as of the 2012 version.
- xrange and yrange specify value ranges for the abscissa and ordinate, respectively.
- horizontal_power and vertical_power are used to scale the abscissa and ordinate, respectively, by applying a power rule of the form \(x^{n}\).
- var__num is the number of variables to be plotted when using n__variables.
- inc_curve is the number of curves in the file specified with include_data.
- mode_index specifies the number of the lateral mode for the quantity being plotted. If only the fundamental mode is of interest, the default value should be used.
- trap_index identifies the trap (SRH) recombination center.
- scale_horizontal and scale_vertical are user-supplied scaling factors for the abscissa and ordinate, respectively. This can be used, for example, to scale to other units or to compute average current densities. It is recommended to provide user-specific axis labels when scaling the results in this manner.
Note that this is different from LASTIP-specific scaling provided by scale_lit and scale_curr
- scanline is used to group together all data sets generated from a single scan statement and limit the plot data to these particular data sets.
The data generated from the equilibrium statement is counted as scanline \(=1\) and every scan statement afterwards increases this value by 1 so scanline \(=2,3,4\), etc...

Note that the plotting is still restricted to the data sets specified in the preceding get_data statement. The scanline mechanism merely provides a way to narrow the plot data further.
- scan_num is the same as scanline except that the count starts at zero. scan statements after equilibrium are thus numbered as scan_num=1,2,3,etc...
- scan_label works in the same way as scanline but allows the scan to be selected using a user-defined label instead of the automatic numbering scheme. This label must be supplied in the original scan statement.

\section*{Examples}
plot_scan scan_var=voltage_1 variable=current_1

This would plot all the I-V data for data collected by the get_data command.
plot_scan scan_var=voltage_1 variable=current_1 scan_num=3

This would plot all the I-V data for data produced by the 3rd scan.

\subsection*{22.566 plot_spectrum}
plot_spectrum is identical to gain_spectrum.

\subsection*{22.567 pml}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline gain_correction & char & {\([\) yes \(]\)} \\
\hline pure_index_loss & char & {\([\) no \(]\)} \\
\hline permittivity_real & real & {\([1.0]\)} \\
\hline permittivity_imag & real & {\([0.1]\)} \\
\hline pml_length & real & {\([6.0](\mathrm{um})\)} \\
\hline pml_mesh & intg & {\([10]\)} \\
\hline
\end{tabular}

The statement pml is used to activate the perfectly matched layer (PML) boundary model. This is a special type of boundary condition for the lateral optical mode solver which absorbs radiative waves from a leaky waveguide structure. An effective anisotropic PML method is used in the simulator.
- gain_correction may be used to enable the optical gain in the rate equation to be corrected for radiation loss. When set to "no", the simulator will calculate the modal gain by a weighed averaging of the local material gain with the wave intensity.
- pure__index_loss. There are two ways to estimate the modal radiative loss at the PML boundary. The first is the pure index method in which all imaginary material indices are set to zero throughout the device. The imaginary part of the wave equation eigenvalue is then the modal loss due to radiation. The other method involves comparing the total waveguide loss given by the eigenvalue with a weighed averaging of the local material gain with the wave intensity. The first method is more numerically stable while the second method is more accurate.
- permittivity_real is the real part of permittivity in the absorbing PML material, relative to the material being matched. The recommended value is around unity.
- permittivity__imag is the imaginary part of permittivity in the absorbing PML material, relative to the material being matched. The recommended value is between 0.01 and 0.1 .
- pml_length is the length (or thickness) of the PML layer used for the absorption.
- pml__mesh is the number of mesh lines within the PML layer.

\section*{Examples}
pml permittivity_real=1.0 permittivity_imag=0.02 pml_mesh=50 \&\& pure_index_loss=no

\subsection*{22.568 point}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline label & char & \\
\hline xy & real & \((\mu m)\) \\
\hline
\end{tabular}
point defines a point in 2D space.
- label labels a point.
- xy are the coordinates of the point.

\section*{Example(s)}
point label=a \(\mathrm{xy}=(0.4,0.5)\)


\subsection*{22.569 poisson_ratio}
poisson_ratio defines Poisson's ratio for the acoustic wave propagation model in SAWAVE.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.570 polarization}

In the 2013 version, this statement has been renamed to avoid confusion and to reflect the fact that TE/TM material properties are now both computed automatically. See optical__axis for the new command used to set the orientation of the waveguide.

For interface polarization charges (e.g. wurtzite), see set_polarization or polarization_charge.

\subsection*{22.571 polarization_charge}

This statement is used in the material macro files to define the polarization vector magnitude \((P(z)\) in the literature) for piezoelectric materials such as GaN and ZnO . This command defines the total polarization including both the spontaneous and strain-induced components so some assumptions must be made regarding the growth conditions of the material to define the strain and provide relevant formulas. By default, the macros included with the software assume a base lattice constant matching that of GaN; for materials grown on AlN or other substrates, these macro formulas should be revised. As an alternative to this command, spont_ccharge may be used to define a model where the strain-induced component of the polarization vector is computed automatically using piezoelectric tensor elements.

We also note that a reduction of the interface charge due to screening by defects and other effects is often reported experimentally; while it is possible to include this effect in the macro formula, we do not recommend this approach. Instead,
the polarization_charge_model command which activates this model provides built-in parameters to control screening and the effects of plane orientation.

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.572 polarization__charge__model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & \\
\hline input_piezo_param & char & {\([\) yes], no } \\
\hline screening & real & {\([0.5]\)} \\
\hline vector & realx3 & {\([0.1 .0]\).} \\
\hline growth_plane_normal & realx3 & {\([0.1 .0]\).} \\
\hline hex_lattice_a0 & real & {\([3.189](\AA)\)} \\
\hline hex_lattice_c0 & real & {\([5.185](\AA)\)} \\
\hline growth_plane_miller_index & intgx4 & \\
\hline mater & intg & \\
\hline between_mater & intgx2 & \\
\hline
\end{tabular}
polarization_charge_model works in conjunction with either the polarization__charge or the spont_charge macro statements. When used in the .sol file, this allows the charge from piezoelectric materials to be used in the simulation but only if the matching material macros define these quantities.
This command is new to the 2011 version of the software and is intended to eventually replace set_polarization. Do not use both methods as this will double-count the interface charge. The code to use piezoelectric tensor elements to account for the strained-induced polarization was added in the 2013 version.
Note that polarization_charge__model is implemented as a 3D charge distribution at the level of Poisson solver while set__polarization implements a 2D charge via the interface statement. Integrating the 3D distribution should give the same result as the 2D interface charge since both methods implement the Bernardini[117] formulas by default. However, the 3D charge distribution is very narrow so a fine interface mesh may be required to integrate it properly; the statement internal_xpoint may be used to control this.

\section*{Parameters}
- screening is a screening coefficient to represent the fraction of the theoretical interface charge observed experimentally due to compensation by defects and other effects. If set 1 , the full value of the interface charge is used; at a value of 0 , no interface charges are present. The exact value to use in any given application is the subject of much controversy but values near 0.5 are commonly reported in the literature.
- vector is used to define the orientation of the polarization vector when polarization_charge is positive. Typically, this means the c-plane Ga-face growth direction so it corresponds to \(\left[\begin{array}{lll}0 & 1 & 0\end{array}\right](+y)\) for a 2D simulation.
- input__piezo__param controls whether the strain-induced component of the polarization vector is computed by the software using the piezoelectric tensor elements. If yes, the tensor elements are used alongside the spontaneous component of the polarization vector defined in spont_charge. Otherwise, the total (spontaneous and strain-induced) polarization vector formula defined in the polarization_charge statement is used to compute the charge.
- growth_plane__normal indicates the direction of the growth according to the simulation axes. In a normal 2D simulation, this is \(+\mathrm{y}\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\) while in a 3D simulation, \(+\mathrm{z}\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\) would be typical. More complex situations may occur in nanowires.

This parameter is used in conjunction with growth_plane_miller_index to indicate the crystal orientation ((h k il) notation) that is being grown. Both parameters are optional and are an alternate means of defining the orientation of the vector parameter.

In order to calculate the orientation of the polarization vector, the crystal lattice parameters \(a\) and \(c\) must also be defined using hex_lattice_a0 and hex_lattice_c0. The default values are those of GaN.
- mater may be used to define different orientations of the polarization vector for different materials of the device. This may occur in the side walls of nanowires.
- between_mater defines the polarization charge only at the interface between these two specific materials. This may be used to quickly and easily ignore all other passivated interfaces in the device.

\section*{Examples}
polarization_charge_model screening=0.5 vector=( 0100\()\)

\subsection*{22.573 polygon}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline name & char & \\
\hline 4_points & realx4 & \\
\hline 3_points & realx3 & \\
\hline material & intg & \\
\hline boundary_i & charx2 & \\
\hline limits_i & realx2 & \((\mu \mathrm{m})\) \\
\hline
\end{tabular}
polygon is used in the mesh generator to define the geometry of the device.
- name is the name of the polygon.
- 4_points are the labels of the four points used to define a polygon. The points should be arranged in counterclockwise order starting from the reference point, which is equivalent to the \((0,0)\) point of a rectangle.
- 3_points are the labels for the three points used to define a triangle. The points should be arranged in counterclockwise order starting from the reference point, which is equivalent to the \((0,0)\) point of a rectangle.
- material is the material number of the polygon being described.
- boundary_i (i=1,2,...) contains the labels of two corner points. These two points define an edge where the ith boundary is to be defined.
- limits_i contains the starting and ending points of the ith boundary along the edge defined by boundary__i. The reference direction is along the counterclockwise direction.

\section*{Example(s)}
polygon name=rect1 4_points=(a b c d) boundar_1=(a b)
limits_1=(0. 0.7)

\subsection*{22.574 previous_layer}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline file & char & {\([\) void] } \\
\hline auto_sequence & char & yes, [no] \\
\hline
\end{tabular}

This statement is used in a .layer file when that file is used to represent a single x-y plane of a larger 3D structure. Since the layer.exe processing of the file assigns material numbers to each region, it must be made aware of the previously-declared layers (in other files) to increment these materials number correctly.

\section*{Parameters}
- file is the name of the .layer file representing the previous z-plane in the 3D structure (starting from the bottom at \(\mathrm{z}=0\) ).
- auto__sequence, if enabled, will automatically take the name of the previous .layer file from a temporary file created by the previous layer.exe call.

\section*{Examples}
previous_layer file=test1.layer

\subsection*{22.575 print_active_layer}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
print__active__layer is used in the gain preview mode to print the active layer material macro in the .gain.msg output file. The material affected by this command is either specified through its number (mater) or a label (mater_label) if one has previously been defined.

\subsection*{22.576 print__macro}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
print_macro is used in the gain preview mode to print the bulk material macro in the .gain.msg output file. The material affected by this command is either specified through its number (mater) or a label (mater_label) if one has previously been defined.

\subsection*{22.577 print_optowizard_data}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline more_data & char & {\([\mathrm{no}]\)} \\
\hline
\end{tabular}
print__optowizard__data is used to force the Optowizard program to generate output data files (.out, .std) used by other Crosslight simulation programs. This allows the use of plotting tools such as CrosslightView.

\subsection*{22.578 print__sparse__matrix}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline stop_after_print & char & {\([\) yes \(]\)} \\
\hline print_solution & char & {\([\) no \(]\)} \\
\hline line_scan & intg & {\([2]\)} \\
\hline bias_point & intg & {\([1]\)} \\
\hline iteration & intg & {\([1]\)} \\
\hline
\end{tabular}
print__sparse__matrix is primarily used for testing and debugging of the software. It exports (to a text file) the sparse matrix \((A)\) and RHS vector data (b) for the \(A X=b\) problem being solved at a given iteration of the non-linear Newton solver.

\section*{Parameters}
- stop_after_print terminates the solver after the export.
- print__solution also prints the solution vector from the sparse matrix solver during the export step.
- line_scan .... in the scan statement.
- bias_point is the bias step number where the data export will occur.
- iteration is the non-linear Newton iteration where the data export will occur.

\subsection*{22.579 prop__constant__model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline precalculated_gain & char & {\([\mathrm{no}]\)} \\
\hline precalculated_index & char & {\([\mathrm{no}]\)} \\
\hline zseg_num & intg & {\([1]\)} \\
\hline
\end{tabular}

By default, PICS3D uses tabulated gain and index values only during the round-trip gain (RTG) preview (c.f. Sec. 21.2 for details). This command extends the use of tabulated values to the full calculations of the RTG during the scan statements. This is occasionally helpful to deal with convergence problems (e.g. noisy gain curves) or to speed up the simulation when the normal gain calculations take too much time.

\section*{Parameters}
- precalculated__gain turns on or off the use of tabulated gain values.
- precalculated_index turns on or off the use of tabulated index values.
- zseg_num is the segment number where this command will take effect.

\section*{Examples}
```

prop_constant_model precalculated_gain=yes

```

\subsection*{22.580 put_mesh}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline polygon & char & \\
\hline edge & charx2 & \\
\hline point_from & real & \((\mu m)\) \\
\hline point_to & real & \((\mu m)\) \\
\hline number & intg & \\
\hline ratio & real & \\
\hline shift_center & real & {\([0].(\mu m)\)}
\end{tabular}
put__mesh places mesh lines on a polygon edge. This statement is automatically generated when the layer and [st:column]column statements from the .layer files are processed to create .geo files or when defining mesh directly in the GeoEditor GUI.

\section*{Parameters}
- polygon is the name of the polygon to be affected.
- edge is the edge where mesh lines are defined.
- point_from and point_to are the beginning and ending of the mesh point allocation region. Distances are measured relative to the edge, in counterclockwise order.
- number is the number of mesh lines to be placed.
- ratio is the ratio of mesh point intervals between neighbors. A schematic diagram illustrating the effect of various ratios is given in Fig. 22.22.
1. ratio \(=1\) Uniform mesh
2. ratio \(>1\) Mesh interval increases with distance, starting from point_from.
3. \(0<\) ratio \(<1\) Mesh interval decreases with distance, starting from point_from.
4. \(-1<\) ratio \(<0\) Mesh interval decreases with distance, starting from a symmetric point.
5. ratio \(<=-1\) Mesh interval increases with distance, starting from a symmetric point.


Ratio \(=0.8 \quad\) Ratio \(=1.2 \quad\) Ratio \(=-0.8 \quad\) Ratio \(=-1.2\)
Figure 22.22: Effects of different ratio on putting mesh points on an edge (a b).
- shift_center may be used when mesh lines are allocated around a symmetric point: that is, when ratio is negative. When used, this parameter shifts the symmetric point away from the center. The input value is relative so for example, 0.2 means a shift of 20 percent of the total length.

\section*{Examples}
```

put_mesh polygon=p1 edge=(a b) point_from=0. point_to=1.4

```

\subsection*{22.581 q_transport}
\begin{tabular}{|c|c|c|}
\hline parameter & data type & values [defaults] \\
\hline n_side_down & char & [yes],no \\
\hline sequential_model & char & [yes],no \\
\hline optic_pumped_escape & char & [no],yes \\
\hline optic_pumped_fly & char & [no],yes \\
\hline well_barrier_transport & char & [thermionic], trap_detrap_tau, hot_auger_thermionic, hot_auger_direct, hot_auger_indirect \\
\hline set_q_trap_landing & char & [yes], no \\
\hline use_drude_model & char & [no],yes \\
\hline sequential_capture & char & [no],yes \\
\hline collective_capture & char & [no],yes \\
\hline split_qw__states & char & [no] yes \\
\hline temp_dep_tau_model & char & [no] yes \\
\hline scale_elec_fly_over & real & [1.] \\
\hline scale__hole_fly_over & real & [1.] \\
\hline scale_elec_capture & real & [1.] \\
\hline scale_hole_capture & real & [1.] \\
\hline set_elec_mean_fp & real & [0.01] (um) \\
\hline set_hole_mean_fp & real & [0.01] (um) \\
\hline drift_away & real & [0.01] (um) \\
\hline bottom_drift_away & real & (um) \\
\hline top_drift_away & real & (um) \\
\hline q_trap_tau & real & [1.e-12] (s) \\
\hline q_elec_trap_tau & real & (s) \\
\hline q_hole_trap_tau & real & (s) \\
\hline landing_point & real & [0.5] \\
\hline split_b_coef & real & [1.e-16] \(\left(m^{3} / \mathrm{s}\right)\) \\
\hline temp_dep_tau_t0 & real & [20.] (degK) \\
\hline hot_auger_cn & real & [0.], 1.e-42, 1.e-44 ( \(\mathrm{m}^{6} / \mathrm{s}\) ) \\
\hline hot_auger_cp & real & [0.], 1.e-42, 1.e-44 ( \(\mathrm{m}^{6} / \mathrm{s}\) ) \\
\hline hot_auger_threshold & real & [1.e24] \(\mathrm{m}^{-3}\) \\
\hline hole_drift_away & real & [0.01] (um) \\
\hline hole_bottom_drift_away & real & (um) \\
\hline hole_top_drift_away & real & (um) \\
\hline spread_top_drift_away & real & (um) \\
\hline sequential_neigbor & intg & [1] \\
\hline
\end{tabular}

The statement q_transport uses non-local transport technique to modify the behavior of the default drift-diffusion model in a quantum well or quantum dot structure.

\subsection*{22.581.1 Default drift-diffusion transport model}

By default Crosslight uses drift-diffusion (DD) theory with a thermionic emission model as the boundary condition for heterojunctions. A quantum well is treated as having two back-to-back heterojunctions and transport is mesh-point sequential: carriers from the left barrier must first drop into the well before they jump to the right barrier.

The basic assumption here is that carriers are treated as fluid-like continuous medium where the current flow goes from one mesh point to the nearest neighbor when solving the DD partial differential equations. Put another way, imagine a 1D discretized set of equations: the DD model creates equations which couple mesh point \(j\) with its immediate neighbors \(j-1\) and \(j+1\). However in a real device, carriers make discrete random thermal motions before scattering with lattice and other carriers. In the 1D model, this means mesh point \(j\) may need to directly couple with a far-away point \(j+n\) which introduces terms away from the diagonal in the sparse matrix solver.
If the feature size of the device is less than or comparable to the mean free path (MFP) of the carriers, the fluid-like model may become inaccurate on a microscopic scale. When dealing with nitride-based devices where the QWs are thin (2nm) and the barriers are high, this assumption may cause inaccuracies and high voltage drops not seen in experiments. This command attempts to find a solution to model this kind of structure.

\subsection*{22.581.2 Carrier trapping with non-local transport}

\section*{A. Theoretical Basis}

The non-local carrier trapping theory is based on a modified version of the driftdiffusion equation where quantum wells/dots boundaries are treated as carrier traps. We therefore aim to write a trapping rate similar to that of phonon scattering theory in the form:
\[
\begin{equation*}
R_{q w}=\left(n-n_{0}\right) / \tau \tag{22.93}
\end{equation*}
\]
where \(\tau\) is believed to be in the order of picoseconds.
It is important to note that this trapping describes how the 3D states of the barrier are confined to 2D confined states in the quantum well (and vice versa). It is therefore
the goal of this section to explain how the normal heterojunction boundary conditions and \(R_{q w}\) are formulated at a quantum well interface. For convenience, we only discuss electrons here; the case for holes is similar.

The carrier capture rate can be written as [136]:
\(R_{q w}=\int_{E_{b}}^{\infty} d E_{3 D} \int_{E_{q w}}^{\infty} d E_{2 D} g_{2 D}\left(E_{2 D}\right) g_{3 D}\left(E_{3 D}\right) S\left(E_{2 D}, E_{3 D}\right) \times f_{3 D}\left(E_{3 D}\right)\left(1-f_{2 D}\left(E_{2 D}\right)\right)\)
where S is the transition probability between 3D to 2D states and the \(g_{i}\) are densities of states. The integrand in the above is usually a complicated function of Fermi levels and \(2 / 3 \mathrm{D}\) carrier energy. To simplify the above, we make a few approximations.
The first is to ignore the dependence of \(S\left(E_{2 D}, E_{3 D}\right)\) on \(E_{3 D}\) and let it equal to the conduction band energy \(E_{c}\) of the barrier. Noting that \(n_{3 D}=\int d E_{3 D} g_{3 D}\left(E_{3 D}\right) f_{3 D}\left(E_{3 D}\right)\), the above can be rewritten as:
\[
\begin{equation*}
R_{q w}=n_{3 D} \int_{E_{q w}}^{\infty} d E_{2 D} g_{2 D}\left(E_{2 D}\right) S\left(E_{2 D}, E_{c}\right)\left(1-f_{2 D}\left(E_{2 D}\right)\right) \tag{22.95}
\end{equation*}
\]

We also assume that most carriers are at located at the bottom of the QW so that \(g_{2 D} \approx \delta\left(E_{2 D}-E q w\right)\). This gives us:
\[
\begin{equation*}
R_{q w}=n_{3 D} S\left(E_{q w}, E_{c}\right)\left(1-f_{2 D}\left(E_{q w}\right)\right) \tag{22.96}
\end{equation*}
\]

It is reasonable to expect that the transition probability \(S\) depends on the injection conditions. However, it is convenient for implementation to replace it with a single time constant \(\tau\). We also have the restriction that we expect to have \(R_{q w}=0\) when no bias is applied so that the equilibrium condition of zero current is maintained. We therefore rewrite the above as:
\[
\begin{equation*}
R_{q w}=\left(\frac{n_{3 D}-n_{3 D, 0}}{\tau}\right)\left(1-f_{2 D}\left(E_{q w}\right)\right) \tag{22.97}
\end{equation*}
\]
where \(n_{3 D, 0}\) is the bulk (barrier) carrier density at equilibrium.
We again stress that \(R_{q w}\) is a re-statement of the same thermionic emission boundary conditions that are used everywhere else in the drift-diffusion model. However, this formulation allows for an explicit time constant to be easily set and override this boundary condition.

\section*{B. Implementation in Drift-Diffusion solver}

The main difference between this model and the default DD theory is that this model allows carriers to directly flow over the quantum well as if it did not exist: the well interface only contributes a trapping/escape term. Carriers which flow over the QW
can be considered to not follow the normal thermalization rules and this may be considered as a form of hot carrier transport; further theoretical justifications will be given below.
The potential profile of a quantum well can be of complex shape and distorted by internal and external electrical fields (see Fig. 22.23). Given the finite size and arbitrary shape of the QW in general, the question arises what happens to the carriers that do not get trapped but fly over the quantum well. Where do they land after the flight? Thus we introduce a "landing-point" to describe the non-local nature of this problem.

Crosslight supports two models to determine the landing-point for the fly-over carriers. The first is based on mean-free-path (MFP landing-point). In this approach, we assume the carriers can fly as far as the MFP allows. Since MFP scales with \(\tau\), variation of this parameter should affect the landing-point. Thus, this approach has only \(\tau\) as independent variable once relationship between MFP and \(\tau\) has been calibrated. This model corresponds to setting set__q_trap_landing=no.

Another model is based on the energy division line between bound and unbound states. In the self_consistent statement, the wave_range has been used to choose an end point in the energy band profile: the landing point can be made to coincide with this value. Within this picture, the unbound carriers fly above the energy division line \(\overline{A B}\) and lands at landing point B (see Fig. 22.23). This model corresponds to setting set_q_trap_landing=yes.

As a reference, the simple Drude model may be used to obtain some indicative values of the MFP. It can be written as:
\[
\begin{equation*}
\lambda_{\text {Drude }}=v_{t h} \tau_{\text {Drude }} \tag{22.98}
\end{equation*}
\]
where
\[
\begin{gather*}
\tau_{\text {Drude }}=\mu m / q  \tag{22.99}\\
v_{t h}=\sqrt{\frac{k T}{2 m \pi}} \tag{22.100}
\end{gather*}
\]
where \(m\) is the carrier mass, \(\mu\) the carrier mobility, \(q\) the electronic charge and \(v_{t h}\) the thermal velocity. For convenience, the following formula may be used for a quick estimate:
\[
\begin{equation*}
\lambda_{\text {Drude }}=1.35 \times 10^{-7} \mu \sqrt{m^{*}} \tag{22.101}
\end{equation*}
\]
where \(\mu\) is in \(m^{2} /(V . s e c), m^{*}\) is the relative mass and the MFP is in unit of meters. A typical value is in the range of \(50-100 \AA\). This model corresponds to setting use_drude_model=yes.


Figure 22.23: Schematic diagram explaining the quantum trapping model.

\section*{C. Mean free path-adjusted non-local transport model}

This model should be regarded as a numerical approach to take into account discrete scattering events in a fluid-like DD solution. The basic physics is based on the classical DD model with thermionic emission as boundary.
The basic idea (Dr. Z.M. Simon Li, Crosslight, private communication 2009) is that when mesh size or QW size is less than the MFP of the scattering events, it is possible for the transport to occur non-locally to a remote mesh point, with a probability of:
\[
\exp \left(-\frac{\text { distance }}{M F P}\right)
\]

This correction becomes negligible if the mesh size and/or QW size are much larger than MFP. In this case, the continuous fluid-like behavior of drift-diffusion can be expected.

Another explanation on why such approach should work is based on the argument (Dr. Z.M. Simon Li, Crosslight, private communication 2004, also in [137]) that due to strong disturbance from the abrupt potential profiles of the MQW, carriers deviate from the ideal Fermi distribution, or the carriers are not being thermalized to local Fermi levels. Those non-thermal carriers are responsible for the flyover and non-local capture/escape processes. However, such interpretation is more difficult to quantify without more advanced tools such as Monte-Carlo simulation or non-equilibrium


Figure 22.24: Schematic diagram explaining the sequential transport model.

\section*{Green's function (NEGF).}

The implementation of this method in Crosslight is to add extra mesh point connections to those already defined by the DD model. Non-local transport is allowed to occur from barrier to barrier (over the quantum well) and between the well and barrier (for carriers with sufficient energy). In other words, we express the current density in the same way we usually use to solve the DD equations; the only difference is that the discretized current density is scaled by a factor
\[
\text { scale } \times \exp \left(-\frac{\text { distance }}{M F P}\right)
\]
where scale = 1 by default. The MFP value may be set by user (with a default of 100 \(\AA\) ) or can be computed from the simple Drude model if use_drude_model=yes. Ideally, this MFP based non-local transport model is non-sensitive to the remote mesh location due to the exponential scaling. Therefore, it is sufficient to pick a mesh point in the middle of the barrier (landing-point). This model supports two modes: sequential and collective (non-sequential) non-local transport.

The sequential model allows transport to occur between the adjacent well/barriers. (see schematic in Fig. 22.24). The collective transport model allows the flow directly to from and to a emitter and collector on both sides of the MQW system (see schematic in Fig. 22.25). An interpretation of the collective injection model is that non-local transport is more favored for those carriers coming from the emitter because they do not experience the many potential barriers within the MQW.


Figure 22.25: Schematic diagram explaining the non-sequential or collective transport model.

\section*{D. Relationship to hot carrier theory}

Non-local transport with a mean free path can be related to hot carrier theory. By software implementation, we define scale_elec_fly__over as a scaling factor for the current component that directly flies over the QW to the next barrier without falling into the QW: this can be interpreted as the proportion of QW carriers which are "hot". Similarly, scale_elec_capture is to scale the current that is directly captured from or escaped to (two reversible processes in the software) the barrier non-locally. Again, this would be interpreted as the hot carrier fraction in the QW.
For simplicity, we imagine a situation where the transporting carriers are thermalized on the left barrier upon injection. When reaching the QW, part of the carriers fall into the QW via the trapping rate derived in the first part of this subsection and get thermalized to the lattice temperature while the rest are regarded as non-local hot carriers.

We start with the hot carrier theory developed by Azoff[2]. The current density in the hot carrier theory is written as:
\[
\begin{equation*}
J_{n}=\mu_{n}\left[n\left(T_{e}\right) \nabla E_{c}+\nabla\left(n\left(T_{e}\right) T_{e}\right)-(3 / 2) n T_{e} \nabla \ln \left(m_{n}\right)\right] \tag{22.102}
\end{equation*}
\]
where \(T_{e}\) is the electron temperature ( \(W=\left(3 / 2 T_{e}\right.\) ) in Azoff's notation. To simplify our derivation, we assume the gradient of \(T_{e}\) can be ignored within the QW and also there is no composition grading.

It is a common practice (see also Appendix C) to introduce a parameter:
\[
\begin{equation*}
\gamma_{f}=N_{c} F\left[\left(E_{c}-E_{f n}\right) / k T_{e}\right] / \exp \left[-\left(E_{c}-E_{f n}\right) / k T_{e}\right] \tag{22.103}
\end{equation*}
\]
so that the electron density within the well can be written in a simple exponential form:
\[
\begin{equation*}
n\left(T_{e}\right)=N_{c} \gamma_{f} \exp \left[-\left(E_{c}-E_{f n}\right) / k T_{e}\right] \tag{22.104}
\end{equation*}
\]
and the current flow can be expressed as:
\[
\begin{equation*}
J_{n}=\mu_{n} N_{c} \gamma_{f} \exp \left[-\left(E_{c}-E_{f n}\right) / k T_{e}\right] \nabla E_{f n} \tag{22.105}
\end{equation*}
\]

We treat \(\left(T_{e}-T\right) / T\) as a small quantity and expand the electron concentration around the lattice temperature to get a correction term due to hot carriers:
\[
\begin{equation*}
n\left(T_{e}\right)=N_{c} \gamma_{f} \exp \left[-\left(E_{c}-E_{f n}\right) / k T\right]+\beta N_{c} \gamma_{f} \exp \left[-\left(E_{c}-E_{f n}\right) / k T\right] \tag{22.106}
\end{equation*}
\]
where the scaling factor
\[
\begin{equation*}
\beta=\frac{\left(E_{c}-E_{f n}\right)\left(T_{e}-T\right)}{k T^{2}} . \tag{22.107}
\end{equation*}
\]

Therefore the current flow can be separated into two terms:
\[
\begin{equation*}
J_{n}=J_{l o c}(T)+\beta\left(T_{e}\right) J_{n l}(T) \tag{22.108}
\end{equation*}
\]
where the first term is the usual current determined by local gradient of Fermi level and expressed as a function of local band edge and local lattice temperature.

The second term is also written mathematically as a function of local lattice temperature but the it is no longer suitable to use local quantity such as band edge \(E_{c}\). The reason is that hot carriers have higher energies and do not experience scattering by local energy barriers contained in \(E_{c}\), which is defined at equilibrium for carriers with lattice temperature. Thus we treat \(J_{n l}\) using a different and higher band edge. A phenomenological approach is to define a split higher band edge and assume the hot carriers fly without scattering to a distance of the mean free path (the landing point).

In Crosslight, the scaling factors for the non-local current are interpreted as the \(\beta\) factor above.

\section*{E. Hot Auger Models}

One recent but controversial theory for the origin of droop in GaN LEDs is that the Auger recombination process creates hot carriers which can more easily leak over
blocking layers[138, 139]. For example in the CCCH process, the recombination of the electron-hole pair transfers an energy of \(E_{g}\) to a second electron and it takes a certain amount of time for that carrier to relax through a phonon emission process. Depending on how fast this process occurs, the carriers may or may not be at the lattice temperature by the time they reach the current blocking layers.
Such a model can only be properly handled within a framework that describes the carrier energy transport. At present, our hydrodynamic model does not include the necessary terms to represent this effect although Crosslight is also currently developing a Non-Equilibrium Green's Function (NEGF) model which will hopefully include this mechanism.
While it is not possible to represent the energy transport without these additional equations, we can attempt to represent the additional carrier leakage terms associated with hot Auger processes: these are added to the standard thermionic emission process at the well/barrier boundary. Starting with the 2014 version, three different models are offered.

Thermionic This model attempts to formulate the additional leakage current in the form of an effective emission velocity:
\[
\begin{equation*}
\frac{J}{q}=v_{e f f} n_{\text {above barrier }} \tag{22.109}
\end{equation*}
\]

Converted to current, the Auger rate has the form:
\[
\begin{equation*}
\frac{J}{q}=c_{n} n_{\text {well }}^{2} p_{w e l l} \times \text { well_thickness } \approx c_{n} n_{w e l l}^{3} \times \text { well_thickness } \tag{22.110}
\end{equation*}
\]

To write the equivalence between the two terms, we write \(n_{\text {above barrier }} \approx \beta n_{\text {well }}\) where \(\beta\) is a fraction which we treat as constant. Using this approximation, we get:
\[
\begin{equation*}
v_{e f f}=\frac{c_{n}}{\beta} n_{w e l l}^{2} \times \text { well_thickness } \tag{22.111}
\end{equation*}
\]

This model is thus controlled by the parameter \(\frac{c_{n}}{\beta}\) which we treat as a constant. However, by numerical experiment, we find that \(\beta\) is a bias-dependent parameter which reaches around unity when droop sets in at higher bias. For information purposes, APSYS prints outs the \(\beta\) value in the simulation log:
```

==>Special report on hot_auger_thermionic model
Ratio of density_emission/density_at_well= 0.103595E+01

```

This model may be regarded as a mixture of thermionic and hot-Auger electron models (hence the name). Physically, it means that only those carriers excited above the barrier are free to leak through the Auger process which explains the smooth droop this model produces. The major disadvantage of this model is the bias dependent \(\beta\) which may also be structure-dependent.

Auger direct escape This model assumes the full amount of confined electrons in the well are free to escape. It is then trivial to show that
\[
\begin{equation*}
v_{e f f}=c_{n} n_{\text {well }}^{2} \times \text { well_thickness } \tag{22.112}
\end{equation*}
\]

However, experimental observations of droop suggest that the Auger process does not contribute at low bias values. This can be understood by the fact that if the electrons are not sufficiently accelerated, the phonon emission will relax the hot carriers before they reach the blocking layers and the situation will not differ significantly from the cold-carrier model. APSYS therefore assumes the existence of some sort of threshold density for the hot Auger process and \(v_{\text {eff }}\) is scaled by:
\[
\begin{equation*}
f_{\text {onset }}=\frac{n_{\text {well }}}{n_{\text {well }}+n_{\text {threshold }}} \tag{22.113}
\end{equation*}
\]

In numerical experiments, threshold densities around 1.e24 to \(4 . \mathrm{e} 24 \mathrm{~m}^{-3}\) would give a smooth droop similar to experimental observation. However, the initial zero efficiency from this model is somewhat odd: it may simply be unrealistic to assume confined carriers in the well are free to emit at any time.

Auger indirect escape This model is a combination of the two models above and attempts to remove the uncertainty in the \(\beta\) coefficient:
\[
\begin{equation*}
v_{\text {eff }}=c_{n} \frac{n_{\text {well }}^{3}}{n_{\text {above barrier }}+n_{\text {threshold }}} \times \text { well_thickness } \tag{22.114}
\end{equation*}
\]

This model is recommended since the rate is identical to the common Auger rate at higher injection. By adjusting \(n_{\text {threshold }}\), a smooth droop can be achieved.

Notes on equilibrium balance In all of the above models, a balancing term accounting for the equilibrium contribution is included. This is similar to the normal case where \(R_{a u g}=c_{n} n\left(n p-n_{i}^{2}\right)\) and the local carrier density at equilibrium balances out the net recombination rate. In the case of a non-local link, the balancing term must come from the remote point; it must also ensure that the Fermi level difference between these remote points is zero at equilibrium (i.e. no net current).

\subsection*{22.581.3 Split-state local carrier trapping model}

\section*{A. Current Theory}

In the non-local model previously described, carrier trapping/escape occurs only at well boundaries and exchanges occur between bulk 3D states in the barrier and
confined 2D states in the QW ("left-right"). Carriers flow locally in the quantum well by following a certain Fermi level and carriers which are allowed to escape/fly over the quantum well do so by deviating from normal Fermi statistics.

A different implementation of this idea is more commonly found in the literature and uses a split-state solution to describe carrier trapping in quantum wells. In this model, carrier trapping occurs continuously in the QW and not just at the barrier interfaces. Instead, an artificial band of bulk 3D states is created above the quantum well which has its own Fermi level, separate from that of the confined 2D states below. Carrier trapping/escape occurs at all mesh points inside the QW and allows exchange between these two states ("up-down"). Carriers from the barrier are no longer injected directly into the QW but instead first flow into the upper band ( \(3 D \Leftrightarrow 3 D\) ) and are only confined in 2D states via this exchange mechanism.
This model has the advantage of being easier to understand since all current components are strictly local, from one mesh point to its neighbor, just like the classical drift-diffusion model. The only deviation from standard DD theory is that one has to construct an artificial upper conduction band (see Fig. 22.26): in a MQW region with a distorted potential (e.g. from piezoelectric effects), the choice of upper conduction affects the transport behavior significantly. Our current implementation to simply use a straight-line connection between two barrier reference points to form the upper conduction band.

The current model in the 2014 version of the software is to assume that given a certain quasi-Fermi level \(E_{f n}\), the total carrier density at any given point is the same in the split-state and regular cases: \(n_{t o t}=n_{2 D}+n_{3 D}\). What is needed then is a way to determine the ratio between the 2 D and 3 D populations.

As we discussed above, we assume that all current pumping is done through the 3D split band and that QW states are populated only through a local capture/escape mechanism: from this, we can deduce that for every mesh point, the recombination from QW states must be equal to the net capture rate from the split band. As seen in Ref. [136], the net capture rate must have the form:
\[
\begin{equation*}
R_{c a p}=\frac{n_{3 D}}{\tau}\left(1-f_{2 D}\right)-\frac{n_{3 D, 0}}{\tau}\left(1-f_{2 D, 0}\right) \tag{22.115}
\end{equation*}
\]
where \(f_{2 D}\) is the 2D QW state filling factor (required due to the Pauli exclusion principle) and \(n_{3 D}\) is the 3D carrier concentration in the upper state; we can see that this formulation is quite close to that of \(R_{q w}\) above. Due to our assumption on the total carrier density, we write \(f_{2 D} \approx \frac{n_{2 D}}{n_{t o t}}\).
For the recombination of the QW states, we currently assume that it is dominated by a spontaneous emission term: \(R_{2 D}=B\left(n_{2 D} p_{2 D}-n_{2 D, 0} p_{2 D, 0}\right)\). Under a further assumption of charge neutrality \((n=p)\), we can write an analytical formula to determine the split ratio \(f\) :


Figure 22.26: Schematic diagram explaining the split-state local trapping model.
\[
\begin{equation*}
B\left(n_{t o t}^{2} f^{2}-n_{2 D, 0}^{2}\right)=\frac{n_{t o t}}{\tau}\left(1-f^{2}\right)-\frac{n_{3 D, 0}}{\tau}\left(1-\frac{n_{2 D, 0}}{n_{2 D, 0}+n_{3 D, 0}}\right) \tag{22.116}
\end{equation*}
\]

The 2D Fermi level is then adjusted numerically to match the target value of \(n_{2 D}\); we assume the same ratio of 2D to 3D states in both \(n\) and \(p\) carrier populations. This is done after each bias step, after the main Newton solver has converged so the split ratio is only periodically updated: use loopback iterations in newton_par to get more frequent updates.

\section*{B. Improved Theory}

As seen in the previous subsection, the previous split-state model has several flaws. Aside from the arbitrary energy position of the upper split band, assuming that all current flow occurs in the upper split band requires that the Fermi level of the 2D states be flat, something which is not guaranteed by enforcing a ratio between split and confined QW densities.

Proof. When separating the 2D and 3D states, the steady-state current continuity equation for electrons is written as:
\[
\begin{equation*}
\nabla \cdot J_{n}=R_{3 D}+R_{2 D} \tag{22.117}
\end{equation*}
\]
where \(R_{3 D}\) and \(R_{2 D}\) are the total net recombination from the 2 D and 3 D bands.

If we consider the two bands separately, then two governing equations appear:
\[
\begin{align*}
\nabla \cdot J_{n, 3 D} & =R_{3 D}+R_{c a p}  \tag{22.118}\\
\nabla \cdot J_{n, 2 D} & =R_{2 D}-R_{c a p} \tag{22.119}
\end{align*}
\]
so that the net capture/exchange rate is invisible to the overall discretization \(\left(J_{n}=\right.\) \(\left.J_{n, 3 D}+J_{n, 2 D}\right)\).
Enforcing the condition that all current flow occurs in the 3D band requires that \(J_{n, 2 D}=0\) so that as above, \(R_{2 D}=R_{\text {cap }}\). However, since \(J_{n}=n \mu \nabla E_{f n}\), it also means that \(E_{f n}\) for the QW states must be a constant and that the entire quantum-confined region shares a uniform Fermi level. In other words, only the 3D (split-state) Fermi level may have a gradient since it is the one driving the drift-diffusion current.

Due to time constraints for the 2014 release, this improved model is not yet available; please contact Crosslight if you require it. Interested users should also inquire as to the availability of our Non-Equilibrium Green's Function (NEGF) model which should eventually render the entire split-state approach obsolete.
As the improved split-state model is not ready yet and the older version has an obvious flaw, users should consider our existing implementation of the split-state model as extremely experimental.

\subsection*{22.581.4 Parameters}
- n_side_down lets the program to recognize which is the n -doping side. The program assumes that the model operates under forward bias and thus needs to know the direction of flow based on the position of the \(n\)-side.
- sequential_model indicates the quantum well transport happens from one well to the next instead of collectively or coherently from all the wells to the drift-away distance. For a comparison of the collective and sequential escape/capture models, please see Figs. 22.24 and 22.25.
For the sequential model, only the forward links are active and there is no scaling of the non-local transport terms. For the collective model, all links are active but the non-local transport terms are scaled via the MFP so interactions from distant wells is less likely to occur.
- well__barrier__transport replaces an older parameter called q_trap__model and indicates how the trapping occurs at well/barrier interfaces. The following models are available:
- thermionic: default thermionic emission theory
- trap_detrap_tau: \(R_{q w}\) based on q__trap_tau, as described above
- hot_auger_thermionic
- hot_auger_direct
- hot_auger_indirect
- optic_pumped_escape is used to describe a non-equilibrium process where bound carriers are excited by optical pumping and acquire momentum to escape the quantum well. Specifically, this is used to model optical generation process in QWIP. The details are as follows: optical pumping causes bound carriers to become unbound carriers with density \(N_{u b}\).
The \(N_{u b}\) are estimated based on the following theory: within one period of the QWIP, optical pumping causes unbound carriers to escape quantum confinement with the thermal velocity \(v_{t h}\). It can be shown that
\[
N_{u b}=\frac{\text { pumping_rate } \times \text { period }}{v_{t h}}
\]

Given unbound carrier density, it is easy to estimate the total QWIP photocurrent by drift-diffusion theory: like the pumping rate, the quantum escape term is proportional to the light intensity.
- set__q_trap_landing is used only when with trap_detrap_tau. If set to no, the MFP is used to set the landing point and drift-away distance. Otherwise, the landing point and drift-away will be set by landing_point and drift_caway, respectively.
- use__drude__model would set the MFP according to the simple Drude model.
- sequential_capture and collective_ccapture are used to turn on/off the backward nonlocal mesh links as indicated in Figures 22.24 and 22.25. These parameters were previously labeled sequential__back__links and collective__back_links.
Numerical experiment indicates that sequential transport is more directional and more localized so it would make sense to turn off the backward mesh links to keep the current flowing unidirectionally. However, the collective model is more non-local and backward links are needed for injection; it is recommended to keep the links active in that case.
- split_qw_states would turn on the split-state local trapping model and disable all the non-local current components. The drift-away parameter is used to find the end points of the upper split band in the barrier regions.
- split__b_coef is used to estimate the Fermi level split between the bulk 3D states and the QW 2D states, for a given \(\tau\) constant.
- scale_elec_fly_over, or scale__hole_fly__over is a parameter to scale the direct fly-over current for electrons or holes.
- scale_elec_capture, or scale__hole_capture is a parameter to scale the non-local electron or hole current between barrier and well.
- set_elec_mean_fp, or set__hole__mean_fp is used to set the electron or hole mean free path. For the quantum-trapping model, this is used to set the landing point and drift-away distance if set_q_trap_landing=no. For the MFP non-local transport model, these are used for the exponential factor to control the non-local current flow intensity.
- drift__away is the distance from the first and last QW at which the nonlocal fly-over and capture/escape current would be directed towards. This setting would be overridden by the MFP if set_q__trap_landing=no in the quantum trapping model. This parameter would have similar meaning as landing_point except it also serves as emitter and collector point for the transport processes.

This parameter applies to both carriers by default. However, a separate parameter for holes is available: hole_drift__away.
- bottom_drift__away, if defined, is the bottom drift-away distance. Please use drift_away instead.

This parameter applies to both carriers by default. However, a separate parameter for holes is available: hole__bottom_drift__away.
- top_drift__away, if defined, is the top drift-away distance. Please use drift__away instead.

This parameter applies to both carriers by default. However, a separate parameter for holes is available: hole_top_drift_away.
- spread_top_drift__away modifies top_drift__away for electrons. If used, the landing point for non-local carriers is spread over the length defined by this parameter: this length is split equally in each direction.
- q_trap__tau is the time constant for the trapping model. It is used in both the calculation of \(R_{q w}\) and \(R_{\text {trap }}\). q_elec_trap_tau and q_hole_trap_tau can be used to set different times for the electrons and holes.
- landing_point is the landing-point of the fly-over non-local current after capture by the QW or QD. Another interpretation of this landing point is that energy level intercepting this landing-point in the band diagram would be used to define the band-edge for the unbound carriers. This parameter is expressed as a fraction of the barrier width with zero locating at the left (or bottom) side of the barrier.

For the quantum-trapping model, this parameters affects the voltage drop of the MQW since a far landing point means current can flow without resistance for a longer distance.
- temp__dep_tau_t0 corresponds to the term \(t_{0}\) in the following formula:
\[
\frac{1}{\tau}=\frac{1}{\tau_{300}} \exp \left(-\frac{T-300}{t_{0}}\right)
\]

This is used to modify the trapping time constant as a function of the temperature; the default value is defined at 300 K .
- hot__auger_cn represents either \(c_{n}\) or \(\frac{c_{n}}{\beta}\) depending of which hot Auger model is used. hot_auger_cp is the matching parameter for the hole current.
- hot__auger_threshold is the threshold density used in some of the hot Auger models.
- sequential_neighbor is the farthest neighbors to which the sequential transport model allows the carriers to make a quantum leap with a mean free path.

\subsection*{22.581.5 Examples and recommended usage for InGaN/GaN devices}

For new users, the following default setting may suffice:
```

q_transport

```

Another common usage is the non-sequential model with the quantum trapping model:
```

q_transport sequential_model=no q_trap_model=yes

```

In this model, the user may need to fit the time constant (default of 1 ps ) to affect the amount of carriers being trapped into the QW/QD. For a longer tau (i.e. less trapping):
```

q_transport sequential_model=no q_trap_model=yes \&\&
q_trap_tau=1.e-11

```

The landing point may also be adjusted from the default value of \(100 \AA(0.01 \mu \mathrm{~m})\) :
```

q_transport sequential_model=no q_trap_model=yes \&\&
set_elec_mean_fp=0.015 set_hole_mean_fp=0.015

```

\subsection*{22.582 q_transport_mqw_bundle}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline bundle_tag & char & mqw1 \\
\hline mater_label & char & \\
\hline mater & intg & 1 \\
\hline
\end{tabular}

The statement q__transport__mqw__bundle works in conjunction with the q__transport statement. It is used to bundle (group) together different sets of quantum wells which share the same orientation and confinement direction: this allows the software to correctly set the non-local transport path between the different wells.

\subsection*{22.582.1 Parameters}
- bundle_tag is a user-defined label shared by all quantum-confined regions that are part of the same bundle.
- mater is the material number of the region being added to the bundle. If a label has been defined for this material, mater_label may be used instead.

\subsection*{22.583 qc_laser_preview}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline export_property & char & void \\
\hline search_wavelength & char & {\([\) no \(]\), yes } \\
\hline current_range & realx2 & {\([1 . \mathrm{e}-31].(\mathrm{A})\)} \\
\hline waveguide_loss & real & {\([5000]\left(\mathrm{m}^{-1}\right)\)} \\
\hline confinement & real & {\([0.5]\)} \\
\hline mirror_refl_2facets & realx2 & {\([0.320 .32]\)} \\
\hline cavity_length & real & {\([1360](\mu m)\)} \\
\hline group_index & real & {\([3.8]\)} \\
\hline laser_width & real & {\([15](\mu m)\)} \\
\hline injection_threshold & real & {\([0]\left(A / m^{2}\right)\)} \\
\hline field_current_ratio & real & {\([1].\left(\frac{A}{V m}=\frac{A / m^{2}}{V / m}\right)\)} \\
\hline wavelength_range & realx2 & {\([5.10].(\mu m)\)} \\
\hline current_points & intg & {\([50]\)} \\
\hline
\end{tabular}

This statement defines a basic rate equation model for a Fabry-Perot laser. It is used in the gain preview mode (.gain) in conjunction with the qcl_3level__model statement to model the lasing behavior of a quantum cascade laser (QCL).
The macroscopic rate equations for the laser are quite simple:
\[
\begin{aligned}
\frac{d N}{d t} & =\frac{I}{q V}-R_{s p}-v_{g} g_{n e t} S-R_{n r} \\
\frac{d S}{d t} & =v_{g} g_{n e t} S-\frac{S}{\tau_{p}}+\beta R_{s} p
\end{aligned}
\]

In more recent versions of the software, a full device model is also available based on [135]. See the tutorial examples in the LASTIP or PICS3D installation directory for details.

\section*{Parameters}
- export_property is a file name used to save certain parameters from the QCL model such as those from qcl_3level_model.
- current_range is the range of current values at which the rate equation model is solved.
- active__area is the area of the active region (width \(\times\) thickness).
- waveguide_loss is the optical loss coefficient.
- confinement is the waveguide confinement factor \((\Gamma)\).
- mirror_refl_2facets is the two mirror facet reflectivities.
- cavity_length is the length of the laser cavity.
- group_index is the group index \(\left(n_{g}\right)\).
- laser__width is the width of the laser. It should be the same as the thickness used in active__area.
- injection_threshold can be used to artificially offset the threshold current to match experiments.
- field_current_ratio converts the applied current into the effective field value which is used in the 3 level QCL gain model.
- current__points is the number of data points used to sample current_range.
- search_wavelength controls how the lasing wavelength is determined. If \(=n o\), it is determined by the energy of the confined levels used in qcl__3level__model. If \(=y e s\), it is determined by the peak of the gain spectrum inside the wavelength_range limits.

\section*{Examples}
```

qc_laser_preview current_range=(10.e-3 500.e-3) \&\&
waveguide_loss=13000 \&\&
confinement=0.5 \&\&
mirror_refl_2facets=[0.32 0.32] \&\&
cavity_length=1360 \&\&
group_index=3.8 \&\&
active_area=18. \&\&
laser_width=14

```

\subsection*{22.584 qc__laser__vs__current}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline data_file & char & void \\
\hline qc_variable & char & \\
\hline label_horizontal & char & \\
\hline label_vertical & char & \\
\hline scale_horizontal & real & 1. \\
\hline scale__vertical & real & 1. \\
\hline
\end{tabular}
qc_laser__vs_current plots various quantities generated by the quantum cascade laser (QCL) rate equation model (gain preview only) versus the bias current.

\section*{Parameters}
- data_file may be used to export the plot data to a text file.
- qc__variable is the variable being plotted. It must be one of the following:
- laser_power_2facets, the total laser power output.
- laser_power_left, the laser power output from the left facet.
- laser_power_right, the laser power output from the right facet.
- conc_injection_layer, the carrier concentration in the injection layer.
- conc_active_level1, the carrier concentration in level 1.
- conc_active_level2, the carrier concentration in level 2.
- conc_active_level3, the carrier concentration in level 3.
- peak_net_modal_gain, the peak of the net modal gain.
- slope_eff_per_period, the L-I slope efficiency divided by the number of QCL periods.
- label__horizontal and label__vertical may be used to define user labels on the plot axes.
- scale__horizontal and scale__vertical may be used to scale the axes of the plot.

\section*{Examples}
qc_laser_vs_current qc_variable=laser_power_2facets

\subsection*{22.585 qc__net_gain__spectrum}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & void \\
\hline wavelength_range & realx2 & {\([5.10].(\mu m)\)} \\
\hline current_range & realx2 & {\([100 . \mathrm{e}-3200 . \mathrm{e}-3](\mathrm{A})\)} \\
\hline current_points & intg & {\([5]\)} \\
\hline spectrum_points & intg & {\([80]\)} \\
\hline
\end{tabular}
qc_net__gain_spectrum plots the net modal gain spectrum generated by the quantum cascade laser (QCL) rate equation model.

\section*{Parameters}
- data_file is a file name used to save a copy of the plotted data
- wavelength_range is the wavelength range of the plot.
- current_range controls the bias current of the various curves in the plot.
- current__points is the number of points used to sample current \(\qquad\) range. It controls how many curves are plotted.
- spectrum__points is the number of points used to sample spectrum_range. It controls the spectral resolution of the plot.

\section*{Examples}
qc_net_gain_spectrum \&\&
wavelength_range=[212] \&\&
current_range=[10.e-3 500.e-3] \&\&
current_points=10 spectrum_points=200

\subsection*{22.586 qcl_3level_model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline complex_start & char & void \\
\hline active1_start_label & char & void \\
\hline active1_end_label & char & void \\
\hline active2_start_label & char & void \\
\hline active2_end_label & char & void \\
\hline qc3__gain_tau & real & \(2.5 \mathrm{e}-13(\mathrm{~s})\) \\
\hline qc3_tau21 & real & \(0.4 \mathrm{e}-12(\mathrm{~s})\) \\
\hline qc3_tau31 & real & \(12.3 \mathrm{e}-12(\mathrm{~s})\) \\
\hline qc3__tau32 & real & \(7.3 \mathrm{e}-12(\mathrm{~s})\) \\
\hline qc3_injection_tau & real & \(8 . \mathrm{e}-12(\mathrm{~s})\) \\
\hline qc3_extraction_tau & real & \(7 . \mathrm{e}-12(\mathrm{~s})\) \\
\hline thick_qc_period & real & \(0.051(\mu m)\) \\
\hline average_qc_index & real & 3.47 \\
\hline total_sheet_density & real & {\([1.6 \mathrm{e} 15]\left(\mathrm{m}^{-2}\right)\)} \\
\hline equil_3lev_density & real & {\([0.4 \mathrm{e} 15]\left(\mathrm{m}^{-2}\right)\)} \\
\hline qc3_gain_adjust & real & {\([0].(1 / \mathrm{m})\)} \\
\hline level3_saturation_conc & real & {\([3 \mathrm{e} 15]\left(\mathrm{m}^{-2}\right)\)} \\
\hline thick_inj_barrier & real & {\([3 . \mathrm{e}-3](\mathrm{um})\)} \\
\hline detuning_field_fwhm & real & {\([5 . \mathrm{e} 7](\mathrm{V} / \mathrm{m})\)} \\
\hline resonant_field_temp_dep & real & {\([-1 . \mathrm{e} 4](\mathrm{V} / \mathrm{m}) / \mathrm{K}\)} \\
\hline state_broadening & real & {\([3 . \mathrm{e}-22](\mathrm{J})\)} \\
\hline shift_active_levels & intg & {\([0]\)} \\
\hline
\end{tabular}
\(\qquad\)


Figure 22.27: Energy levels and lifetimes used in the microscopic rate equation model of the QCL

This statement activates a 1D 3-level rate equation model used to describe the active region of a quantum cascade laser (QCL). It can be used in gain preview mode to compute the material gain and a rough estimate of the L-I curve or more recently, to provide data for a full device simulation. Our model is based on [140] and developed in more detail in [135].

For a given period of the QCL, we solve for all quantum states. Based on the shape and location of the wave functions and their respective energy levels, we identify the states that belong to the active region and those that belong to the injection region. Coupled microscopic rate equations then determine the population of three critical levels in the active region: from this, we can calculate the transition strengths and the optical gain.

Figure 22.27 shows the various levels and lifetimes involved in the quantum cascade.

\section*{Parameters}
- complex_start is a position label that defines the start of the search region for quantum states: this position may lie outside the active region.
- active1__start_label and active1__end_label are the labels used to define the beginning and end positions of the first active region.
- active2_start_label and active2__end_label are the labels used to define the beginning and end positions of the second active region.
- qc3_gain__tau is the broadening constant used in the gain calculations.
- qc3_tau21 is the time constant of the transitions between levels 2 and 1 of the active region.
- qc3_tau31 is the time constant of the transitions between levels 3 and 1 of the active region.
- qc3_tau32 is the time constant of the transitions between levels 3 and 2 of the active region.
- qc3_injection_tau is the time constant of the transition between the injection region and level 3 of the active region.
- qc3_extraction__tau is the time constant of the transition between level 1 of the active region and the injection region.
- thick_qc__period is the period of the quantum cascade.
- average_qc_index is the average refractive index in the active region: this is used to calculate the gain.
- shift__active_levels is used to shift up the selection of the three levels for the quantum cascade if level 1 of the active region is not the lowest well level.
- total_sheet_density is the total sheet density at which the material gain is computed.
- equil_3lev__density is the sheet density at equilibrium and can be estimated from the doping.
- qc3_gain__adjust can be used to artificially adjust the material gain.
- level3__saturation_conc is the level 3 sheet density at which gain saturation starts to occur.
- thick_inj__barrier is the thickness of the injection barrier.
- detuning_field_fwhm is the full width at half maximum of the Lorentzian detuning field. The peak frequency is further adjusted with the temperature based on resonant_field__temp_dep.
- state_broadening is used to broaden the energy level \((\Gamma)\).

\section*{Examples}
```

qcl_3level_model qc3_gain_tau=2.5e-13 \&\&
active1_start_label=active1_start active1_end_label=active1_end \&\&
active2_start_label=active2_start active2_end_label=active2_end \&\&
complex_start=complex_start_well \&\&
qc3_injection_tau=7.e-12 qc3_extraction_tau=5.e-12

```

\subsection*{22.587 qcl_lo_phonon_scattering}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline phonon_energy & real & {\([0.035](\mathrm{eV})\)} \\
\hline diel_inf_minus_static & real & {\([-3.0]\)} \\
\hline upper_level_k_factor & real & {\([10]\).} \\
\hline
\end{tabular}
qcl_lo__phonon_scattering enables LO phonon scattering in the quantum cascade laser models.

This model is used in QCL devices with high k-space lasing[141]; in these devices, local minima in k-space ("electron pools") may create competitive alternate transition paths where the LO phonon scattering occurs before the optical transition.

\section*{Parameters}
- phonon_energy is the LO phonon energy.
- diel__inf__minus__static is the difference between the relative dielectric constant at \(\omega=\infty\) at the static value at \(\omega=0\).
- upper_level__k_factor denotes the position of the high k-space local minima as a multiple of the LO phonon energy: in other words, this is the average number of phonon events that occur prior to the optical transition.

\subsection*{22.588 qcl_period_location}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline y_start_label & char & \\
\hline y_end_label & char & \\
\hline yrange & realx2 & (um) \\
\hline
\end{tabular}
qcl__period__location defines the range of one superlattice period in a QCL structure.

The range can be defined using either position labels ( \(\mathbf{y}\) _start_label and \(\mathbf{y}\) __end__label) or absolute coordinates (yrange).

\subsection*{22.589 qcl__qw__region}
\begin{tabular}{|l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline property & char & [active], injection \\
\hline mater_label & char & \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
qcl_qw_region identifies the role a particular QW layer serves in a QCL structure. The layer can be part of either the active (gain) region or part of the injection region.

The layer tagged in this fashion must be identified by either its material number or a previously defined label alias.

\subsection*{22.590 qcl_temperature__model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline backfill_tau & real & {\([1 . \mathrm{e}-12](\mathrm{s})\)} \\
\hline gain_tau_temp_coef & real & {\([0.001](1 / \mathrm{K})\)} \\
\hline lo_phonon_energy & real & {\([0.1](\mathrm{eV})\)} \\
\hline
\end{tabular}
qcl_temperature_model defines parameters which control the temperature dependence of the QCL gain model[135].

\section*{Parameters}
- backfill__tau is the backfill time constant \(\tau_{b f}\).
- gain_tau_temp_coef is the coefficient \(\left(A_{g}\right)\) controlling the temperature dependence of the gain broadening time constant \(\tau_{g}\).
- lo__phonon_energy is the LO photon energy \(E_{L O}\).

\subsection*{22.591 qdot_individual}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline tau__broaden & real & {\([0.6 \mathrm{e}-13](\mathrm{s})\)} \\
\hline
\end{tabular}
qdot_individual is used to turn on a stand-alone model in which the drift-diffusion model is solved (along with the 3D Schrödinger equation) in an isolated quantum dot region such as in the tip region of a GaN nanowire.

Note that this model is different than our older approach using qdot__material, in which quantum dots are declared as an embedded material inside a larger-scale wetting layer. The older model merely solves Schrödinger equation using a separate sub-project to provide extra confined states that affect the calculation of the optical gain/spontaneous emission spectra of the main device simulation. The QDOT region is thus ignored for most other purpose, including carrier transport.

On the other hand, qdot_individual allows for a more tightly coupled solution of the dot region but it completely ignores the behavior of the rest of the device. This model should thus be used when circumstances dictate that the QDOT region behaves differently than the rest of the device.

\section*{Parameters}
- tau_broaden is a broadening time constant with the same meaning as in qdot__material.

\subsection*{22.592 qdot_layer_mater}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline macro_name & char & [void] \\
\hline active_macro & char & [void] \\
\hline var_symboli \((\mathrm{i}=1 . .9)\) & char & [void] \\
\hline avar_symboli(i=1..9) & char & [void] \\
\hline vari \((\mathrm{i}=1 . .9)\) & real & {\([-9999]\).} \\
\hline avari \((\mathrm{i}=1 . .9)\) & real & {\([-9999]\).} \\
\hline mater_lib & char & {\([\) void \(]\)} \\
\hline column_num & intg & {\([1]\)} \\
\hline
\end{tabular}
qdot_layer__mater is used to indicate the presence of quantum dots (QDOTs) in a certain layer. It must be used after the layer_mater statement describing the wetting layer in which the quantum dots are embedded.

Please note that in general, the .layer format is used to define the device layout on a macroscopic scale (several \(\mu m\) ): as the QDOTs are much smaller objects, they are not directly represented in the .layer file. Instead, the .layer format declares them as being an "embedded" material to be declared later. The full device simulation thus requires a preliminary step of finding the 3D quantum levels of the dots using a separate project file. Once these levels are available, they can be imported into the main device simulation.

\section*{Parameters}

All parameters for this command are the same as in layer_mater.
Please note that if you are using the "macro" system instead of the "library" system to declare material parameters, a complex MQW macro (typically prefixed by "cx-") must be used; see Sec. 3.5 for details.

\section*{Examples}

qdot_layer_mater macro_name=ingan active_macro=cx-InGaN \&\& var_symbol1=x avar_symbol1=xw var1=0.450 avar1=0.450 \&\& column_num=1 height=0.005

\subsection*{22.593 qdot_material}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline import_dir & char & [void] \\
\hline import_qdot_data & char & {\([\) void \(]\)} \\
\hline import_diri, i=2...19 & char & {\([\) void \(]\)} \\
\hline import_qdot_datai, \(\mathrm{i}=2 \ldots 19\) & char & {\([\) void \(]\)} \\
\hline surface__density & real & {\([1 . \mathrm{e} 15]\left(\mathrm{m}^{-2}\right)\)} \\
\hline tau_broaden & real & {\([0.6 \mathrm{e}-13](\mathrm{s})\)} \\
\hline wetting_area_ratio & real & {\([0.1]\)} \\
\hline set_cond_level1 & real & \\
\hline set_cond_level2 & real & \\
\hline set_cond_level3 & real & \\
\hline set_hh_level1 & real & \\
\hline set_hh_level2 & real & \\
\hline set_hh_level3 & real & \\
\hline set_lh_level1 & real & \\
\hline set_lh_level2 & real & \\
\hline set_lh_level3 & real & \\
\hline set_ch_level1 & real & \\
\hline set_ch_level2 & real & \\
\hline set_ch_level3 & real & \\
\hline weight & real & {\([100]\).} \\
\hline weight2-19 & real & {\([0]\).} \\
\hline tau__broaden2-19 & real & {\([0.6 \mathrm{e}-13]\)} \\
\hline dos_reduction_factor & real & 1. \\
\hline mater_active & intg & \\
\hline coupled_dots & intg & {\([1]\)} \\
\hline
\end{tabular}
qdot__material defines the properties of one type of quantum dot (QDOT) material. This QDOT material must be defined as an embedded (or mildly active) material inside a quantum well region which serves as the wetting layer. The structure of the quantum dot is defined using a separate sub-project and the properties of this dot are loaded back into the main macroscopic simulation using this command.

For more details on embedded active materials, please see statement active__reg.

\section*{Parameters}
- import__dir is a directory containing a sub-project for an isolated quantum dot region; inside this sub-project, the Schrödinger solution is solved and the confined states are loaded back into the main macroscopic simulation using a data file specified by import__qdot__data.
If multiple species of QDOTs are present in the same device, multiple directories may be loaded using import__diri and import__qdot_datai, with i as a placeholder number for the \(\mathrm{i}^{\text {th }}\) species of dot.
- surface_density is the surface density of the quantum dots inside a given layer. If multiple species of QDOTs are present, this value defines the total dot density and the density of individual dots is derived through relative weighing parameters in weight and weighti, \(\mathrm{i}=2 \ldots 19\).
- tau_broaden and tau__broadeni, \(\mathrm{i}=2 \ldots 19\), are the energy broadening time constants used to broaden the spectrum. This parameter lumps together different effect including inhomogeneous broadening (due to size/composition fluctuation) and intraband scattering.
Please note that different type of QDOTs may be associated with different time constants.
- wetting_area_ratio is a parameter related to the surface area of the quantum well material vs. the surface area of quantum dots in the wetting layer; this ratio controls the relative intensity of the two emission spectra. Microscopically, the quantum dot size is determined by the spatial extent of the wave function.
- set_cond_level1-3, if defined, are used to manually set the quantum levels of the conduction subbands.
- set_hh_level1-3, if defined, are used to manually set the quantum levels of the heavy hole subbands.
- set_lh_level1-3, if defined, are used to manually set the quantum levels of the light hole subbands.
- set__ch_level1-3, if defined, are used to manually set the quantum levels of the crystal field hole subbands. This is used for material of wurtzite structure (such as GaN).
- dos_reduction_factor may be used to artificially reduce the density of states of the quantum dot.
- mater__active is the material number of the active layer serving as the host material for the embedded qdots.
- coupled_dots is used to indicate whether a QDOT is quantum mechanically coupled to QDOTs in other wells. If so, this parameter is used to avoid double counting. For example, if two QDOTs in two different wells are coupled to each other, they should be counted only once since there will be a lifting of degeneracy in quantum levels.

\section*{Examples}
```

qdot_material surface_density=5.e15 tau_broaden=0.30e-13 \&\&
mater_active=3 import_dir=dot import_qdot_data=dot.qdd \&\&
coupled_dots=1 wetting_area_ratio=0.2 \&\&
tau_broaden2=0.18e-13 import_dir2=dot1 import_qdot_data2=dot.qdd \&\&
tau_broaden3=0.10e-13 import_dir3=dot2 import_qdot_data3=dot.qdd \&\&
tau_broaden4=0.10e-13 import_dir4=dot3 import_qdot_data4=dot.qdd \&\&
weight=100 weight2=75 weight3=18 weight4=4

```

\subsection*{22.594 qwell__normal}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline dir & char & \(\mathrm{x},[\mathrm{y}], \mathrm{z}\) \\
\hline force_n_side & char & {\([\) void], down, left } \\
\hline zdir_xy_ref & realx2 & (um) \\
\hline
\end{tabular}

The qwell_normal statement is used in the .sol file to specify the direction normal to the quantum well plane (where there is quantum confinement). This statement is not needed for 2D devices grown along the y-axis.

\section*{Parameters}
- dir is the direction normal to the quantum well plane.
- force_n__side may be used to help the software define the orientation of the QW normal relative to the p-n junction. This may be necessary for some non-local transport models.
- zdir_xy_ref is a coordinate used to evaluate the well thickness in the \(z\) direction.

\section*{Examples}
qwell_normal dir=y
22.595 qw__optics_control
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline parameterize & char & [yes]no \\
\hline junction_type & char & [forward] reverse, non-optical \\
\hline extrap_energy & char & [yes]no \\
\hline extrap_conc & char & [yes]no \\
\hline extrap_pn_ratio & char & [no]yes \\
\hline extrap_temper & char & [yes]no \\
\hline conc_range & realx2 & \(\left(m^{-3}\right)\) \\
\hline wavel_range & realx2 & \((\mathrm{um})\) \\
\hline pn_ratio_range & realx2 & {\([0.51 .5]\)} \\
\hline temper_range & realx2 & (K) \\
\hline wavel_points & intg & {\([50]\)} \\
\hline conc_-points & intg & {\([10]\)} \\
\hline pn_ratio_points & intg & {\([3]\)} \\
\hline temper_points & intg & {\([8]\)} \\
\hline
\end{tabular}
qw__optics_control is related to import__gain__data. While the latter is explicitly used to import data from a data file, the former is to let the program generate the tabulated gain data internally and then use the interpolated data table to perform the simulation.
- parameterize is used to enable or suppress this statement.
- junction_type
- forward sets conc_range \(=5 . \mathrm{e} 23 \rightarrow 5 . \mathrm{e} 24\).
- reverse sets conc_range \(=1 . \mathrm{e} 22 \rightarrow 5 . \mathrm{e} 23\).
- non-optical will suppress optical gain/spon. em. in active layers.
- extrap_energy indicates if extrapolation is used when photon energy is outside of the range in imported data.
- extrap_conc indicates if extrapolation is used when concentration is outside of the range in imported data.
- extrap_pn_ratio indicates if extrapolation is used when hole/electron ratio is outside of the range in imported data.
- extrap_temper indicates if extrapolation is used when temperature is outside of the range in imported data.
- wavel_range is the wavelength range.
- conc_range is the electron concentration range in the well.
- pn_ratio_range is the range of ratio of hole over electron concentrations.
- temper_range is the temperature range.
- wavel__points is the number of points in the wavel_range.
- conc__points is the number of points in the conc_range.
- pn__ratio__points is the number of points in the pn__ratio__range.
- temper_points is the number of points in the temper_range. For uniform temperature simulation, only a single temperature is used in gain table evaluation. For heat transport simulation, more than one points must be used. The default for heat transport simulation is eight.

\section*{Example(s)}
qw_optics_control parameterize=yes

\subsection*{22.596 qw_trap_assisted_tunneling}
\begin{tabular}{|c|c|c|}
\hline parameter & data type & values [defaults] \\
\hline \hline field & real & {\([1 . \mathrm{e} 7][\mathrm{V} / \mathrm{m})\)} \\
\hline s_huang & real & {\([0.3]\)} \\
\hline phonon_energy & real & {\([0.09](\mathrm{eV})\)} \\
\hline elec_mass & real & {\([0.2]\)} \\
\hline scale_phonon_term & real & {\([0.3]\)} \\
\hline qw_level_from_ec_bar & real & {\([0.5](\mathrm{eV})\)} \\
\hline trap_level_from_ec_bbar & real & {\([0.5](\mathrm{eV})\)} \\
\hline scale_total_rate & real & {\([1 . \mathrm{e}-2]\)} \\
\hline
\end{tabular}
qw__trap__assisted__tunneling enables a phonon and trap-assisted tunneling model for confined QW states; this model has been proposed as a possible mechanism for GaN LED droop.

Using this approach, the emission rate into the barrier is given by[142, Eq. 19]:
\[
\begin{align*}
e(T) & =\sqrt{\frac{k_{B} T}{2 \pi m^{*} L_{w}^{2}}} e^{-\Delta E / k_{B} T}+k \cdot\left(1-e^{-\hbar \omega / k_{B} T}\right)  \tag{22.120}\\
& \times \sum_{n=0}^{\infty} \sum_{p} e^{-n \hbar \omega / k_{B} T} \Gamma\left(\Delta_{p}\right) J_{p}^{2}\left[2 \sqrt{S\left(n+\frac{1}{2}\right)}\right]
\end{align*}
\]
where \(\Gamma\left(\Delta_{p}\right)\) is Korol's formula for the ionization rate of an electron trapped in a delta function potential well.

\section*{Parameters}
- field is the electrical field used to define \(\Gamma\left(\Delta_{p}\right)\).
- s_huang is the Huang-Rhys electronâĂŞphonon coupling constant \(S\).
- phonon_energy is the \(\hbar \omega\) term in the above equation.
- elec_mass is the relative electron mass \(m^{*}\) in the above equation.
- scale_phonon_term is the scaling coefficient \(k\) in the above equation.
- qw_level_from_ec__bar is the position of the confined state relative to the conduction band barrier.
- trap_level_from_ec__bar is the position of the defect state relative to the conduction band barrier.
- scale_total_rate is a scaling factor applied to the total recombination rate when this term is used for the non-radiative recombination rate in the DriftDiffusion model.

\subsection*{22.597 qwip_model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline period_thickness & real & {\([0.05]\) (um) } \\
\hline average_refr_index & real & {\([3.5]\)} \\
\hline spectrum_tau & real & {\([2.5 \mathrm{e}-13](\mathrm{sec})\)} \\
\hline
\end{tabular}
qwip__model is used to set a number of parameters for absorption spectrum calculation of a quantum well in a QWIP (quantum well infrared photodetector).
- period_thickness is the period of the QWIP.
- average_refr_index is the average refractive index used by the absorption spectrum formula.
- spectrum_tau is the spectral broadening tau constant used by a Gaussian function. It is the standard deviation of the Gaussian.

\section*{Example(s)}
```

qwip_model period_thickness=0.05 average_refr_index=3.5 \&\&
spectrum_tau=2.5e-13

```

This would be a typical use of the command.

\subsection*{22.598 qwip_preview}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline export_spectrum & char & {\([\) qwip_specfile.txt] } \\
\hline data_file & char & {\([\) void] } \\
\hline wavelength_range & realx2 & {\([39]\) (um) } \\
\hline spectrum_points & intg & {\([50]\)} \\
\hline
\end{tabular}
qwip_preview is used to preview the QWIP model characteristics. It instructs how the program should present the QWIP absorption data. This command is used in conjunction with band_distance command which supplies the carrier density and with the gain__module command which defines the applied field.
- export_spectrum exports the absorption spectrum to this file.
- data_file if not set to void, instructs the program to print data points of all the plots of this command.
- wavelength_range is wavelength range over which the spectrum is calculated.
- spectrum_points is the data point number of the spectrum.

\section*{Example(s)}
qwip_preview light_power_range=(0 1.e4) \&\&
wavelength_range=(3 15) spectrum_points=150

This command would cause the program to print the absorption spectrum data to qwip_specfile.txt after the plot.

\subsection*{22.599 qwire_complex_region}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
qwire_complex_region is analogous to complex_region except that it is used in the declaration of 2 D quantum-confined regions (quantum wire) rather than complex MQW regions with 1D confinement.

This statement is usually generated automatically when processing the .layer file. See start \(\qquad\) qwire _complex.

\section*{Parameters}
- mater is the material number that is part of the quantum wire cross-section. If a label has previously been defined, mater_label may be used instead.

\section*{Examples}
begin_qwire_complex \&\&
```

 x1=0.1 x2=0.15 &&
 y1=0.12 y2=0.3
 qwire_complex_region mater= 5
qwire_complex_region mater= 6
qwire_complex_region mater= 7
end_qwire_complex

```

\subsection*{22.600 radiation_heavy_ion}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline let_file & char & \\
\hline let_unit & char & \begin{tabular}{l}
{\([\mathrm{eV} / \mathrm{Angstrom}], \mathrm{eV} / \mathrm{nm}, \mathrm{eV} / \mathrm{um}\),} \\
\(\mathrm{MeV} / \mathrm{um}, \mathrm{pC} / \mathrm{um}, \mathrm{MeV}^{*} \mathrm{~cm}^{2} / \mathrm{mg}\)
\end{tabular} \\
\hline depth_unit & char & angstrom, \([\mathrm{um}], \mathrm{nm}\) \\
\hline layeri_material (i=1..5) & char & {\([\mathrm{Si}], \mathrm{Ge}, \mathrm{GaAs}, \mathrm{SiO} 2\)} \\
\hline model & char & {\([\) import_let_profile], uniform } \\
\hline lateral_straggle & real & {\([0.1](\mu m)\)} \\
\hline angle & real & {\([0](\) degrees \()\)} \\
\hline location_xz & realx2 & {\([0.10](\mu m)\)} \\
\hline pulse_stddev & real & \((\mathrm{sec})\) \\
\hline layeri_from_top \((\mathrm{i}=1 . .5)\) & real & \((\mu m)\) \\
\hline pulse_fwhm & real & \((\mathrm{sec})\) \\
\hline lateral_entry & real & \((\mu m)\) \\
\hline rotation & real & {\([0](\) degrees \()\)} \\
\hline uniform_ion_energy & real & {\([100](\mathrm{MeV})\)} \\
\hline uniform_let & real & {\([10]\)} \\
\hline
\end{tabular}
radiation_heavy_ion is used to implement an advanced heavy ion hit model in the device modeling. The path of an ion beam in a semiconductor device must be modeled using external tools such as "Stopping and Range of Ions in Matter":www. srim.org.

Note that simpler models of heavy ion impacts can also be implemented using the generation__rate statement.

\section*{Parameters}
- let_file is the name of a text file containing Linear Energy Transfer (LET) data. This data should be in two columns: depth (in units set by depth_unit) and energy loss (in units set by let__unit).
- layeri_material ( \(\mathbf{i}=\mathbf{1 . . 5}\) ) describes the material in layer \(\# \mathrm{i}\) with " i " as a placeholder value; the thickness of each layer is defined in layeri_from_top ( \(\mathrm{i}=1 . .5\) ).

In addition to the few standard materials included by default, custom materials may be defined here using a name starting by "eV" and followed by the ionization energy (e.g. eV5.91). The term ionization energy used here refers to the energy necessary to create electron-hole pairs since there are several contributions to the ion energy loss (LET) term.
- model may be used to switch between importing a profile or defining a simple uniform profile for the whole device.
- lateral_straggle is the lateral uncertainty (standard deviation) of the ion beam's position (at half-maximum). The size of the beam on entry is defined using lateral_entry and also serves to describes the ion beam's path into the device.
- location_xz is the location of the ion hit on the \(x-z\) plane.
- angle is the angle of the incoming ion beam with respect to the -y direction (inside the \(x-y\) plane); rotation describes the rotation of this beam about the y-axis. In essence, these two values are analogous to the \(\phi\) and \(\theta\) angles of spherical coordinates but with the \(y\)-axis as a reference.
- pulse_fwhm is the full-width at half-maximum of the carrier generation pulse following the ion hit. It is related to the pulse standard deviation pulse_stddev by the following formula: fwhm \(=2.355 \times \sigma\). Only one of these two quantities should be specified.
- uniform_ion__energy defines the ion energy in the simple uniform model.
- uniform_let defines the energy transfer term in the simple uniform model; this value is defined using the same units as let_unit.

\section*{Examples}

The following commands declare two separate ion strikes:
```

radiation_heavy_ion let_file=trim_ioniz.txt let_unit=eV/angstrom \&\&
depth_unit=angstrom layer1_material=Si layer2_material=SiO2 \&\&
layer3_material=Si \&\&
lateral_straggle=0.2 location_xz=(0 0) \&\&
layer1_from_top=0.5 layer2_from_top=0.025 layer3_from_top=10 \&\&
pulse_fwhm=1.5e-12

```
```

\$ 2nd ion strikes
radiation_heavy_ion let_file=trim_ioniz.txt let_unit=eV/angstrom \&\&
depth_unit=angstrom layer1_material=Si layer2_material=SiO2 \&\&
layer3_material=Si \&\&
lateral_straggle=0.2 location_xz=(0.2 0) \&\&
layer1_from_top=0.5 layer2_from_top=0.025 layer3_from_top=10 \&\&
pulse_fwhm=1.5e-12

```

During the simulation, the light variable in the scan command controls the timing of the ion impacts:
\$ The normalized light and light2 control the radiation generation
\$ rate from 1st and 2nd ion strikes, respectively.
\$ You can define up to 9 different ions, hit at different spots
\$ and strike at different times.
scan var=time value_to=6.e-12 \&\&
var2=light function_label2=gaus_pulse1 \&\&
var3=light2 function_label3=gaus_pulse2 \&\&
init_step \(=0.1 e-12\) max_step \(=0.2 e-12\)
scan_function label=gaus_pulse1 type=gaussian \&\&
\(g s n_{-} t=0 . \quad g s n_{-} d t=1.5 e-12 g_{s n} s 1=0 . \quad g s n_{-} 2=1\).
scan_function label=gaus_pulse2 type=gaussian \&\&
\(g s n \_t 1=2 . e-12 \quad g s n_{-} d t=1.5 e-12 \operatorname{gsn} s 1=0 . \quad g s n \_s 2=1\).
scan var=time value_to=1000.e-12 \&\&
init_step \(=0.1 e-12\) max_step \(=50 . e-12 \mathrm{~min}\) _step \(=0.001 \mathrm{e}-12\) \&\&
var2=light value2_to=0.0 \&\&
var3=light2 value3_to=0.

Note that in the above, two different scan functions (and labels) are used to change the timing between the initial ion hit and the secondary "echo".

\subsection*{22.601 radiative_boundary}
\begin{tabular}{||l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline x_label & char & \\
\hline y_label & char & \\
\hline within_x1_label & char & \\
\hline within_x2_label & char & \\
\hline within_y1_label & char & \\
\hline within_y2_label & char & \\
\hline x & real & {\([-9999].(\mu m)\)} \\
\hline y & real & {\([-9999].(\mu m)\)} \\
\hline within_x & realx2 & {\([-1 . e 51 . e 5](\mu m)\)} \\
\hline within_y & realx2 & {\([-1 . e 51 . e 5](\mu m)\)} \\
\hline emissivity & real & {\([0.9]\)} \\
\hline environ_temp & real & {\([300]\).} \\
\hline
\end{tabular}

This statement is similar to thermal_interf and is used to describe a radiative boundary. The heat flow through the boundary is given by the StefanÜBoltzmann law.

\section*{Parameters}

Most of the position dependent parameters are the same as those of Sec. 22.696.
- emissivity is the fraction of black body radiation being emitted.
- environ_temp is the environment temperature.

\section*{Examples}
radiative_boundary \(\mathrm{y}=0.8\) emissivity=0.9

\subsection*{22.602 radiative_recomb}
radiative_recomb is the radiative (or spontaneous) recombination coefficient in units of \(\mathrm{m}^{3} / \mathrm{sec}\). It is usually defined as the coefficient \(B\) such that the radiative recombination is given by \(B\left(n p-n_{i}\right)\) where \(n_{i}\) is the intrinsic carrier density. Note that this coefficient is only used for the non-active region of the laser. For active
regions, the spontaneous emission rate is computed from first principles, analogous to the optical gain.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.603 raw_output}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & \\
\hline output_file & char & void \\
\hline mode_index & intg & {\([1]\)} \\
\hline trap_index & intg & {\([1]\)} \\
\hline
\end{tabular}

The statement raw_output is a post processing command used to print all available 2D data in the following form:
total node number
listing of \(x, y, z, v a r i a b l e\)
- The output is written to the output file defined by output_file
- mode__index is the mode index or mode number of the wave modes if the quantity being printed is wave function.
- trap_index is the trap index or trap number of the deep level traps if the quantity being printed is related to traps (eg, trap concentration).
- variable is one of the variables listed in appendix G.2.

\subsection*{22.604 rcled_dbr}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline x_start_label & char & {\([\) void \(]\)} \\
\hline x_end_label & char & {\([\) void \(]\)} \\
\hline y_start_label & char & {\([\) void \(]\)} \\
\hline y_on_top & char & {\([\) no \(]\)} \\
\hline y_at_bottom & char & {\([\) no \(]\)} \\
\hline layer1 & real & {\([0.1]\)} \\
\hline complex_index1 & realx2 & {\([(3.51 . e-6)]\)} \\
\hline layer2 & real & {\([0.1]\)} \\
\hline complex_index2 & realx2 & {\([(3.51 . e-6)]\)} \\
\hline period_number & intg & \\
\hline
\end{tabular}

The statement rcled_dbr is used to define a DBR structure within an RCLED. The basic set up of this model is that optical layers are parallel to the x -axis and the device emits mainly in \(+y\) or -y directions.
- x_start_label, x_end_label are the position labels for the left and right bounds of the DBR. The labels were previously defined by x_position statements. If one or more of the labels are not defined, the program uses the boundary of the device.
- y__start_label is used to define the vertical position of the DBR. The bottom of the DBR stack starts from this position. It is a position label previously defined by a y_position statement. Please note that y_start_label , y__on_top and y__at_bottom are conflicting parameters and should be set with care so that only one of the three is used.
- y__on_top is used to define the vertical position of the DBR if the DBR is on top of the RCLED. Please note that y_start_label, y__on_top and y__at__bottom are conflicting parameters and should be set with care so that only one of the three is used.
- y__at__bottom is used to define the vertical position of the DBR if the DBR is at the bottom of the RCLED. Please note that y_start_label, y__on_top and \(\mathbf{y}\) __at__bottom are conflicting parameters and should be set with care so that only one of the three is used.
- layer1 and complex_index1 are the layer thickness and complex refractive index of first layer of the DBR pair.
- layer2 and complex_index2 are the layer thickness and complex refractive index of second layer of the DBR pair.
- period_number is the number of periods of DBR pairs.

Example(s):
```

\$ 5 periods TiO2/SiO2 DBR at 0.525
rcled_dbr x_start_label=x2 x_end_label=x3 \&\&
period_number=5 y_on_top=yes \&\&
layer1=0.0597 complex_index1=(2.2 0.0) \&\&
layer2=0.0899 complex_index2=(1.46 0.0)

```

The above example puts a DBR stack on top of the device. The DBR is defined between position of x 2 and x 3 .

\subsection*{22.605 rcled_model}

\section*{Parameters}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline spon_all_points & char & no \\
\hline optic_range_x1_label & char & void \\
\hline optic_range_x2_label & char & void \\
\hline optic_range_y1_label & char & void \\
\hline optic_range_y2_label & char & void \\
\hline top_emission & char & yes \\
\hline update_spec_source & char & no \\
\hline photon_recycle & char & yes \\
\hline wavelength & real & \\
\hline top_exit_index & real & 1. \\
\hline bottom_exit_index & real & 1. \\
\hline total_active_layer & real & 0.1 \\
\hline group_index & real & 3.8 \\
\hline ref_density & real & \(1 . \mathrm{e} 23\) \\
\hline ref_pn_ratio & real & 1. \\
\hline max_emit_angle & real & 60 \\
\hline stack_view__point & real & {\([9999]\).} \\
\hline num_optic_y_grid & intg & 1000 \\
\hline num_spec_source & intg & 120 \\
\hline num_emit_angle & intg & 30 \\
\hline
\end{tabular}

The statement rcled_model is used to control parameters related to the resonant cavity light emitting diode (RCLED) model. The basic set up of this model is that optical layers are parallel to the x -axis and the device emits light that is roughly parallel to the y -axis.
- spon__all__points indicates whether all mesh points are used to evaluate the spontaneous emission spectrum. Computation time is longer if all points are used.
- optic_range_x1_label, optic__range__x2_label, optic_range_y1_label, and optic_range_y2_label are four labels referring to four coordinate values defined by two previous \(\mathbf{x} \_\)position and two previous \(\mathbf{y} \_\)position. These are used to define a rectangle region within which multiple layer optical wave propagation calculation is performed. If one or more of these labels are not defined, the program uses the boundary of the device for optical wave modeling.
- top_emission indicates the main direction of power emission (top or bottom).
- update_spec__source indicates that the resonant cavity source shape function should be updated at all bias steps. The RCLED model relies on an angular and wavelength-dependent resonant shape function (representing the Q-factor of the cavity); this function is scaled with the source dipole spectrum (spontaneous bulk emission spectrum) and output as the total emission spectrum. Since the shape function mostly depends on the reflectivity of the cavity and the DBR layers, it is usually unnecessary to update the shape function at every bias.
- photon_recycle is used to enable the generation term due to the internal photon density. In thermal simulations, this setting allows heat to be generated by optical absorption. However, please note that APSYS does not posses a photon rate equation: it is expected that LEDs operate below transparency.
- wavelength is the main emission wavelength in microns.
- top_exit__index is the refractive index of the top exit medium.
- bottom__exit_index is the refractive index of the bottom exit medium.
- total__active_layer is an estimate of the total active layer thickness for the purpose of normalizing the optical power. This will affect the plotted power transmission distribution but will not affect the other results of the simulation.
- group_index is the group index used to calculate the group velocity of light within the RCLED cavity.
- ref_density is a reference carrier density, or typical carrier density of the active layer which is used to estimate the spontaneous dipole spectrum at equilibrium. Using this information, the resonant cavity properties are printed to a .res file (for resonance spectrum) and a .stw file (for standing wave). These files may be examined before running the full device simulation to help calibrate the DBR mirror settings.
- ref_pn_ratio is the ratio of hole density over electron density. This ratio is used together with ref_density above.
- max_emit_angle sets the maximum angle of emission to be computed in angular power distribution.
- stack__view__point is a reference point used to compute the reflectivity of the mirror stacks, as seen from that particular view point; these reflectivities can be plotted using the stack_refl parameter in rcled__spectrum__angle.
- num_optic_y_grid is the number of optical grid points in the y direction used to compute the standing wave pattern.
- num_spec_source is the number of RCLED emission spectrum points.
- num_emit__angle is the number of data points used in angular power distribution.

\section*{Examples}
rcled_model wavelength=0.93 total_active_layer=0.024 \&\&
optic_range_y1_label=dbr1_start top_emission=no

The above example defines an RCLED cavity to be between a y-position labeled as dbr1_start and the top of the device. The parts below dbr1_start will not be regarded as part of the optical cavity. Emission direction is towards the bottom.

\subsection*{22.606 rcled_optic_layer}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline x_start_label & char & {\([\) void \(]\)} \\
\hline x_end_label & char & {\([\) void \(]\)} \\
\hline y_on_top & char & {\([\) no \(]\)} \\
\hline layer1 & real & {\([0.1](\mathrm{um})\)} \\
\hline complex_index1 & realx2 & {\([(3.51 . \mathrm{e}-6)]\)} \\
\hline layer2 & real & \\
\hline complex_index2 & realx2 & {\([(3.5\) 1.e-6 \()]\)} \\
\hline layer3 & real & \\
\hline complex_index3 & realx2 & {\([(3.51 . e-6)]\)} \\
\hline layer4 & real & \\
\hline complex_index4 & realx2 & {\([(3.5 ~ 1 . e-6)]\)} \\
\hline layer5 & real & \\
\hline complex_index5 & realx2 & {\([(3.51 . e-6)]\)} \\
\hline
\end{tabular}

The statement rcled__optic_layer is used to define one or more optical layer within an RCLED. The basic set up of this model is that optical layers are parallel to the x -axis and the device emits mainly in +y or -y directions.
- x__start__label, x_end_label are the position labels for the left and right bounds of the layers. The labels were previously defined by \(\mathbf{x} \_\)position statements. If one or more of the labels are not defined, the program uses the boundary of the device.
- y__on_top is used to define the vertical position of the layer.
layerk ( \(\mathrm{k}=1 . .5\) ) and complex_indexk \((\mathrm{k}=1 . .5)\) are the layer thickness and complex refractive index of the kth layer.

Example(s):
```

\$ SiO2 coating
rcled_optic_layer x_start_label=x1 x_end_label=x2 \&\&
y_on_top=yes layer1=0.2 complex_index1=(1.46 0.)

```

\subsection*{22.607 rcled_plot_y}
\begin{tabular}{|l|l|ll|}
\hline parameter & data type & values [defaults] & \\
\hline \hline \hline data_file & char & [void] & \\
\hline variable & char & \begin{tabular}{l} 
[void],relative_power, \\
imag_index, spon_rate
\end{tabular} & real_index, \\
\hline add_variable & char & \begin{tabular}{l} 
[void],relative_power, \\
imag_index, spon_rate
\end{tabular} & real_index, \\
\hline distance_range & realx2 & {\([-1 . \mathrm{e} 491 . \mathrm{e} 49]\) (um) } & \\
\hline variable_range & realx2 & {\([-1 . \mathrm{e} 491 . \mathrm{e} 49]\)} & \\
\hline at_mesh_near_x & real & {\([0.5](\mathrm{um})\)} & \\
\hline scale_variable & real & {\([1]\).} & \\
\hline scale_add_variable & real & {\([1]\).} & \\
\hline
\end{tabular}
plot__plot__y is a post-processor statement used to plot quantities related to RCLED as a function of the \(y\)-coordinate.
- data_file is the file to which the graphic data is written in ASCII format.
- variable is the variable to be plotted. It takes one of "relative_power" (power distribution relative to the power source), "real_index" (real refractive index), "imag_index" (imaginary refractive index), or "spon_rate" (spontaneous emission rate).
add__variable adds a second variable to be plotted on the same figure. It takes one of the parameters listed under variable.
- distance_range is the distance range in y-direction.
- variable_range specifies a range for the function variable to be plotted. at__mesh__near__x specifies the position where a 1D slice is cut for the 1D plot.
scale_variable is used to scale the function variable to be plotted.
scale__add__variable is used to scale the 2nd function variable added by add__variable on the same plot.

\section*{Example(s)}
rcled_plot_y variable=relative_power add_variable=real_index \&\&
at_mesh_near_x=0.5 scale_variable=0.3 scale_add_variable=1

The above statement plots the relative optical power along the \(y\)-direction. Added to the same plot is the real part of the refractive index.

\subsection*{22.608 rcled_power_angle}

This command is similar to rcled__spectrum__angle except the optical power has been integrated over the whole spectrum for a particular angle.

\subsection*{22.609 rcled_refl_coating}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline x_start_label & char & void \\
\hline x_end_label & char & void \\
\hline y_on_top & char & yes \\
\hline power_refl & real & 0.32 \\
\hline refl_phase_in_pi & real & 0. \\
\hline power_loss & real & 0. \\
\hline
\end{tabular}

The statement rcled_refl_coating is used to define a reflection optical coating for an RCLED. The basic set up of this model is that optical layers are parallel to the x -axis and the device emits mainly in +y or -y directions.
- x__start_label, x_end_label are the position labels for the left and right bounds of the layer. The labels were previously defined by x_position statements. If one or more of the labels are not defined, the program uses the boundary of the device.
- y__on_top is used to define the vertical position of the coating.
- power_refl power reflectivity of the optical coating.
- refl__phase_in__pi is the phase of the reflectivity in \(\pi\).
- power_loss is the power loss percentage related to the optical coating. It may also be used to define the power loss beyond the optical coating so that the total output power is affected by it.
```

\$ For HR from metal, phase should be close to 180 degree to make zero
\$ metal boundary:
rcled_refl_coating x_start_label=x1 x_end_label=x4 \&\&
y_on_top=no power_refl=0.98 refl_phase_in_pi=1.3 power_loss=0

```

The above statement defines a metal coating with a phase close to 180 degrees so that the wave intensity is nearly zero at the metal.

\subsection*{22.610 rcled_spectrum}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & [void] \\
\hline top_emission & char & [yes],no \\
\hline stack_refl & char & [no] \\
\hline wavelength_range & realx2 & \\
\hline angle & real & {\([0\).\(] (degree)\)} \\
\hline broaden & real & (um) \\
\hline
\end{tabular}
rcled_spectrum is a post-processor statement used to plot the RCLED spectrum at a certain emission angle.
- data_file is the file to which the graphic data is written in ASCII format.
- top_emission indicates whether emission is towards the top or bottom.
- stack_refl would enable the plotting of reflectivity of multiple layer stack viewed from a reference point defined in stack__view__point in command rcled_model.
- wavelength_range is the wavelength range in microns.
- angle is the emission angle in degrees.
- broaden is the spectrum broadenning width in microns. It is the standard deviation of the gaussian broadening function.
```

Example(s)
rcled_spectrum top_emission=yes broaden=0.002

```

\subsection*{22.611 rcled_spectrum_angle}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & void \\
\hline top_emission & char & yes \\
\hline stack_refl & char & {\([\) no] } \\
\hline wavelength_range & realx2 & \((-99999999)(\mu m)\) \\
\hline theta_range & realx2 & \((090)\) \\
\hline broaden & real & -9999. \\
\hline spectrum_range & realx2 & \((-9999-9999)(\mathrm{W} / \mathrm{eV})\) \\
\hline view_xrot & real & 0. \\
\hline view_zrot & real & 0. \\
\hline
\end{tabular}
rcled__spectrum__angle is a post-processor statement used to plot the emitting power as a function of wavelength and emission angle for an RCLED.

\section*{Parameters}
- data_file is used to output the plot data to a text file.
- top_emission indicates the main direction of power emission (top or bottom).
- stack_refl enables the plotting of reflectivity of a multi-layer stack, as viewed from the reference point defined in the stack__view__point parameter of rcled_model.
- wavelength_range is the wavelength plotting range \((\mathrm{x})\) in microns.
- theta_range is the emission angle plotting range (y) in degrees.
- broaden is the spectrum broadening width in microns. It is the standard deviation of the gaussian broadening function.
- spectrum_range is the power intensity plotting range (z).
- view_xrot rotates the plot around the x -axis (or the wavelength axis).
- view_zrot rotates the plot around the z-axis (or the power axis).

\section*{Examples}
```

rcled_spectrum_angle top_emission=yes broaden=0.002

```

\subsection*{22.612 rcled_surface_plot_xy}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & [void] \\
\hline variable & char & \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline
\end{tabular}
plot__surface__plot_xy is a post-processor statement used to plot surface plot of a function of \(x\) and \(y\) for quantities related to RCLED.
- data_file is the file to which the graphic data is written in ASCII format.
- variable is the variable to be plotted. It takes one of "relative_power" (power distribution relative to the power source), "real_index" (real refractive index), "imag_index" (imaginary refractive index), or "spon_rate" (spontaneous emission rate).
- xrange specifies a range for the x -axis.
- yrange specifies a range for the y-axis.

\section*{Example(s)}
rcled_surface_plot_xy variable=relative_power

\subsection*{22.613 re_emission}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline shift & char & on \\
\hline mater & intg & \\
\hline exci_effi & real & 0.7 \\
\hline exci_spec_file & char & void \\
\hline re_emi_wavelength & real & 0.6 \\
\hline re_emi_spec_file & char & void \\
\hline loop_spec_num & intg & 20 \\
\hline absorb_pow_dens_file_prefix & char & my_rec \\
\hline did_spec_loop & char & yes \\
\hline
\end{tabular}

The re_emission statement is used in the optowizard solution file to activate the reemission function in the ray tracing model. This allows materials such as a phosphor to absorb LED-emitted light and re-emit at a secondary wavelength.

In order to use this statement, the power absorption profile must have been recorded in a previous ray tracing simulation using rec_absorb__pow_dens. Using both statements in the same ray tracing simulation is not allowed in order to avoid conflicts. Therefore, two separate runs of the ray tracing simulation are required to obtain the re-emission profile.

\section*{Parameters}
- shift is used to turn on or off this statement.
- mater is used to specify the material number of the phosphor. This must match the material number in APSYS.
- exci_effi is to specify a fixed value of the excitation efficiency of the phosphor.
- exci_spec_file is the name of the data file containing the excitation spectrum of the phosphor. The data must be in text format where the first column is the wavelength in micrometers and the second column is the excitation efficiency at this wavelength. Using this parameter will override the fixed value of exci_effi, if defined.
- re_emi_wavelength is used to specifiy a single fixed wavelength for the re-emitted light.
- re_emi_spec_file is the name of the data file describing re-emission spectrum. The data must be in text format where the first column is the wavelength in micrometers and the second column is the relative power density at this wavelength. Using this parameter overrides the fixed wavelength of the re-emitted light.
- loop_spec_num is used to discretize the re-emission spectrum defined in re_emi_spec_file. Since the ray tracing program can only work with fixed wavelengths, it will loop over the spectrum a few times in order to process the entire re-emission spectrum.
- absorb__pow_dens_file_prefix is used to specify the files where the recorded power density profile from the previous ray tracing run is stored. This file prefix should match the one in rec__absorb__pow__dens
- textbfdid_spec_loop tells the ray tracing program that a spectrum loop was used to record the power density profile in the previous ray tracing run. The software will use this information, in conjunction with the excitation effiency spectrum, to determine the amount of re-emitted light.

\section*{Examples}

re_emission shift=on mater=2 exci_effi=0.7 re_emi_wavelength=0. 65 \&\& absorb_pow_dens_file_prefix=red_phos

\subsection*{22.614 real_func}

The command real_func is identical to loop_real.

\subsection*{22.615 real_index}
\begin{tabular}{||c|l||}
\hline parameter & data type \\
\hline \hline material_par & \\
\hline
\end{tabular}

The material statement real_index is the real refractive index at the appropriate optical frequency. Please do not confuse this with the dielectric constant of Poisson's equation at DC or low frequencies.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material__par in section 22.456 .

\subsection*{22.616 real_index_spec}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline material_par & & \\
\hline
\end{tabular}

This statement is the wavelength dependent version of the real_index statement. As the free-style macro becomes available in recent versions, it has been outdated since the wavelength dependence can easily be incorporated into the real_index statement function by adding a variable (xlam).

\subsection*{22.617 rec_absorb_pow_dens}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline shift & char & {\([\) on \(]\)} \\
\hline mater & intg & \\
\hline file_prefix & char & {\(\left[\mathrm{my} \_r e c\right]\)} \\
\hline gauss_sigma & real & {\([3.0]\)} \\
\hline gauss_cutoff_dist & real & {\([5.0]\)} \\
\hline mesh_interval_xyz & realx3 & {\(\left[\begin{array}{lll||}1.0 & 1.0 & 1.0\end{array}\right](\mu m)\)} \\
\hline min_mesh_num_xyz & intgx3 & {\(\left[\begin{array}{lll}3 & 3\end{array}\right]\)} \\
\hline max_mesh_num_xyz & intgx3 & {\(\left[\begin{array}{lll}50 & 50 & 50\end{array}\right]\)} \\
\hline
\end{tabular}

The rec_absorb__pow__dens statement is used in the Optowizard solution file to record the power density of the light for a specific material. This is often a phosphor and this information can later be used in the re_emission command to compute the secondary/re-emitted light.

This statement may also be used to turn on photon recycling models in solar cells and LEDs. However, users should note that RCLED models have a built-in photon recycling which is independent from the ray tracing (i.e. Green's function analysis).

Important note: This statement can only be used once per ray tracing simulation and cannot be combined with re_emission.

\section*{Parameters}
- shift is used to turn on or off this statement.
- mater is used to specify the material number of the phosphor. This must match the material number in APSYS.
- file_prefix specifies a file prefix used to save the absorbed power density profile.
- gauss_sigma and gauss_cutoff_dist describe the lateral extent of the Gaussian beam used to record the power. Mathematically, the rays used in the ray tracing method are infinitely thin so when we record the power we assume that in reality, these rays are closer to Gaussian beams. gauss__sigma is the standard deviation of the beam's lateral profile while gauss_cutoff__dist is the cut-off distance.
- mesh_interval_xyz is the uniform mesh spacing used to record the power. However, these values are also constrained by min_mesh_num_xyz and
max__mesh__num_xyz which control the minimum and maximum number points that can be used.

\section*{Examples}
rec_absorb_pow_dens shift=on mater=2 file_prefix=red_phos

\subsection*{22.618 regrid}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & (see list) \\
\hline method_line_base & char & {\([\) yes \(]\)} \\
\hline var_diff & real & {\([3.0]\)} \\
\hline xrange1 & real & \(-1 . \mathrm{E} 10(\mu m)\) \\
\hline xrange2 & real & \(1 . \mathrm{E} 10\) \\
\hline yrange1 & real & \(-1 . \mathrm{E} 10\) \\
\hline yrange2 & real & \(1 . \mathrm{E} 10\) \\
\hline min_density & real & \(10 .\left(\mathrm{m}^{-3}\right)\) \\
\hline zseg_num & intg & {\([1]\)} \\
\hline max_double_times & intg & {\([5]\)} \\
\hline set_edge_split & intg & {\([0]\)} \\
\hline max_edge_split & intg & {\([3]\)} \\
\hline all_zsegm & char & {\([\) no \(]\)} \\
\hline
\end{tabular}
regrid, previously known as refine__mesh, is a command to adaptively refine an existing mesh based on a specified variable distribution. It should be used in the main solution module (.sol files).

The new mesh is saved to the same filename as the original. A backup of the original mesh file will also be saved.

\section*{Parameters}
- variable is the position-dependent variable according to which the mesh is refined. The following variables are accepted:
- donor_conc,acceptor_conc,2__dopants: the donor and acceptor concentrations (or both).
- elec_conc,hole_conc,2_carriers: the electron and hole concentrations (or both).
- potential: the internal electrical potential \(V\).
 than real solver values as above, these variables use the distance from the origin (in um) to determine the mesh refinement.
- var_diff is the criterion for mesh refinement. When the variable difference between two adjacent nodes is greater than this criterion, additional nodes are added until the variable difference drops down below the specified criterion. For concentrations, the unit is decades. For potential, the unit is Volt.
- method_line__base indicate whether mesh line extension method is used to do mesh-refinement. For CSUPREM imported mesh, only triangle based method is available.
- xrange 1 and xrange 2 are the lower and upper limits, in the \(x\)-direction, of the region within which the statement is effective.
- yrange1 and yrange 2 are the lower and upper limits, in the \(y\)-direction, of the region within which the statement is effective.
- min_density is the minimum concentration density below which the refinement will not take effect.
- zseg_num is the z-segment number. all_zsegm can be used to operate on all z-segments.
- max__double_times affects the mesh refinement only when method__line__base=no. The method for refining triangles is to double the mesh density several times until the criterion is met. This parameter limits the number of mesh doubling actions to avoid getting caught in an infinite loop.
- set__edge_split determines how triangle edges are split during the refinement.
- max__edge_split is similar to max_double_times as it limits the number of times the same triangle edge can be split during the mesh refinement.

\section*{Examples}
regrid variable=acceptor_conc var_diff=3.0

\subsection*{22.619 reload_mater}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline zseg_num & intg & {\([1]\)} \\
\hline
\end{tabular}
reload_mater can be used to force the solver to re-initialize the material data for device. It may be useful when doing mesh refinement and the solver needs to re-initialize.

\subsection*{22.620 remove_section}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline sec_num & intg & {\([1]\)} \\
\hline cavity_num & intg & {\([2]\)} \\
\hline
\end{tabular}

This statement tells the software that a given optical section does not exist in a given optical cavity; when the transfer matrix processes this section, an identity matrix will be used.

This statement is only relevant to the multicavity model; see the begin_cavity statement for more information.

\section*{Parameters}
- sec_num is the section number to be removed.
- cavity__num is the optical cavity number in which the optical section is removed.

\subsection*{22.621 renumber_mater}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline xrange & realx2 & {\([-9999.9999].(\mu \mathrm{m})\)} \\
\hline yrange & realx2 & {\([-9999.9999].(\mu m)\)} \\
\hline orig_mater & intg & {\([1]\)} \\
\hline new_mater & intg & {\([1]\)} \\
\hline zseg_num & intg & {\([1]\)} \\
\hline
\end{tabular}

This statement is used to override the material number assigned to a region. It should be used before the load__macro statement so that this modified region gets assigned the proper material parameters.

\section*{Parameters}
- xrange and yrange describe the spatial extend of the region being modified. By default, it applies to the entire mesh plane in a given z segment.
- orig_mater is the original material number.
- new__mater is the new material number being assigned.
- zseg_num is the new z segment number where this statement operates.

\section*{Examples}
renumber_mater orig_mater=1 new_mater=2

\subsection*{22.622 replace__macrofile}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline macro1 & char & {\([\) void \(]\)} \\
\hline macro2 & char & {\([\) void \(]\)} \\
\hline
\end{tabular}

The statement replace__macrofile may be used to replace the two default macro files containing material parameter models. This is useful when a user would like to use his/her own macro files without modifying the default macros.
- macro1 is used to replace the default macro file crosslight.mac.
- macro2 is used to replace the default macro file more.mac.
```

Example(s)
replace_macrofile macro1=my_macro.mac

```

\subsection*{22.623 report_node}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline near_xy & realx2 & {\([0.0].(\mu m)\)} \\
\hline plane & intg & {\([1]\)} \\
\hline
\end{tabular}
report__node is a programmer post-processing command which reports the number of the mesh point at a specified coordinate.

\subsection*{22.624 restart}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_set & intg & 99 \\
\hline stop_at_data_set & intg & {\([1]\)} \\
\hline
\end{tabular}
restart may be used to restart a simulation at a previous data steps. The statement itself may be placed anywhere in the .sol file and the simulation starting point is based on the specified data set number.

Note that some parameters in the .sol file may be changed between simulation runs but parameter changes that would invalidate the loading of previous simulation data (e.g. changing the mesh structure), are not allowed.

\section*{Parameters}
- data_set is the data set used to restart the simulation. If this number exceeds the number of available data sets, the highest available data set is used instead.
- stop__at__data__set stops the restarted simulation once the specified data set number has been reached. This is equivalent to using a strategically-located stop statement in the input file.

\section*{Examples}
```

restart data_set=10

```

\subsection*{22.625 right_contact}
left_contact is the same as top_contact except that the contact is placed on the right side.

One other difference is that the column number is irrelevant. The location of the contact is given by the last layer statement before the contact definition.

\subsection*{22.626 ring_structure}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline radius & real & {\([100].(\mu \mathrm{m})\)}
\end{tabular}

This statement is used to define a ring laser waveguide. Instead of left/right propagation, optical modes propagate clockwise and counter-clockwise, like in a fiber laser.

\section*{Parameters}
- radius is the radius of the ring measured in the middle of the waveguide.

\section*{Examples}
```

\$ 500 um waveguide -> ring rad from center of waveguide=79.58
\$ waveguide width=1.5 mesh origin=79.58-1.5/2=78.83
z_structure uniform_zseg_from=0 uniform_zseg_to=360 \&\&
zseg_num=1 zplanes=5 \&\&
cylindrical=yes cylindrical_origin=-78.83
ring_structure radius=79.58

```

\subsection*{22.627 rotation}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline angle & real & {\([0]\) (degrees) } \\
\hline
\end{tabular}

This statement is used in a .layer file to rotate a structure. This is mostly used to align the substrate layer along the x axis for use is some optical models.

\section*{Parameters}
- angle specifies how much the .layer is rotated when making the .geo file.

\section*{Examples}
rotation angle \(=+90.0\)

\subsection*{22.628 rtgain_phase}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline density & real & {\([3 . \mathrm{e} 24]\left(\mathrm{m}^{-3}\right)\)} \\
\hline point_x & real & {\([0.1](\mu \mathrm{m})\)} \\
\hline zseg_num & intg & {\([1]\)} \\
\hline
\end{tabular}
rtgain_phase is used to generate round-trip gain spectrum data using tabulated gain values at a specific carrier density so that the user can quickly judge the validity of a device design. It is used in PICS3D after the equilibrium statement.
The data generated by this statement is printed in a .rtd file. For VCSELs, this statement will also generate standing wave information in a .stw file.

\section*{Parameters}
- density is the electron density used to compute the round-trip gain. The hole density will be estimated using the \(\mathrm{p} / \mathrm{n}\) ratio at equilibrium unless otherwise indicated.
- point_x is the x -position for plotting the standing wave pattern in a VCSEL.
- zseg_num is the z-segment number.

\section*{Examples}
rtgain_phase density=1.5e14

\subsection*{22.629 rt3d_contact_reflector}

\begin{tabular}{||l|l|l||}
\hline contact2_layer2 & realx3 & \\
\hline contact3_layer2 & realx3 & \\
\hline contact1_layer3 & realx3 & \\
\hline contact2_layer3 & realx3 & \\
\hline contact3_layer3 & realx3 & \\
\hline
\end{tabular}
rt3d_contact_reflector is used to define the optical properties of contacts in a ray tracing simulation. This statement is new to the 2009 version of APSYS and duplicates features that were previously available in the export_raytrace statement. By moving this definition to the post-processing stage, it is no longer required to re-run the electrical simulation to change the optical properties of contacts.

\section*{Parameters}
- transp_contact indicates whether transparent contact is used. If "yes", a multi-layer transmission matrix model is used to determine how much light leaks through the contact. Otherwise, no light is allowed to escape and a fixed reflectivity value is used for the contact.
- transp_contactk, \(\mathrm{k}=1 . .4\), has the same meaning as transp_contact except it is used to specify only the kth contact. This parameter overrides the specification of transp_contact.
- contact_refl is the power reflectivity of an opaque contact. It is used for the model of opaque mirror only. This parameter applies to all contacts, unless otherwise specified by contact_reflk, \(\mathrm{k}=1 . .4\).
- contact_reflk, \(\mathrm{k}=1 . .4\), has the same meaning as contact_refl except it is used to specify only the kth contact. This parameter overrides the specification of contact_refl.
- contactn_compindex ( \(\mathrm{n}=1 . .4\) ) is the complex refractive index of a transparent contact. It is used for the transparent contact model only. Figure 22.28 presents a list of refractive indexes of a few commonly used materials.
- contactn_thick ( \(\mathrm{n}=1 . .4\) ) is the thickness of a transparent contact. It is used for the transparent contact model only.
- \(\mathbf{d b r j}\) _boxk \((\mathrm{j}=1,2 ; \mathrm{k}=1,2,3)\) is the x - y coordinates of an inside point of the jth DBR stack consisting of kth material box. The point location can be any place within the material box.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Substance} & \multicolumn{9}{|c|}{Wavelength [micrometer]} \\
\hline & & 0.400 & 0.500 & 0.600 & 0.700 & 0.800 & 1.000 & 4.000 & 10.000 \\
\hline \multirow[t]{2}{*}{Aluminum} & n & 0.400 & 0.667 & 1.043 & 1.550 & 1.990 & 1.991 & 6.100 & 26.000 \\
\hline & k & 4.450 & 5.573 & 6.568 & 7.000 & 7.050 & 9.300 & 30.400 & 67.300 \\
\hline \multirow[t]{2}{*}{Copper} & n & - & 0.880 & 0.186 & 0.150 & 0.170 & 0.197 & 1.940 & 10.520 \\
\hline & k & - & 2.420 & 2.980 & 4.050 & 4.840 & 6.272 & 23.100 & 59.290 \\
\hline \multirow[t]{2}{*}{Germanium} & n & 2.300 & 3.400 & 4.500 & 5.150 & 5.270 & 5.100 & 4.350 & 4.300 \\
\hline & k & 2.800 & 2.250 & 1.700 & 1.300 & 0.900 & 0.450 & - & \\
\hline \multirow[t]{2}{*}{Gold} & n & & 0.840 & 0.200 & 0.131 & 0.149 & 0.179 & 2.040 & 11.500 \\
\hline & k & & 1.840 & 2.897 & 3.842 & 4.654 & 6.044 & 27.900 & 67.500 \\
\hline \multirow[t]{2}{*}{Indium} & n & - & 1.020 & 1.290 & 1.390 & 1.500 & 1.760 & 7.600 & 23.800 \\
\hline & k & - & 2.080 & 2.590 & 5.750 & 6.690 & 7.690 & 26.100 & 51.700 \\
\hline \multirow[t]{2}{*}{Lead} & n & - & & & 1.680 & 1.510 & 1.410 & 6.580 & 21.000 \\
\hline & k & - & - & - & 3.670 & 4.240 & 5.400 & 20.800 & 37.400 \\
\hline \multirow[t]{2}{*}{Mercury} & n & 0.730 & 1.040 & 1.390 & 1.760 & 2.140 & & & \\
\hline & k & 3.010 & 3.700 & 4.320 & 4.830 & 5.330 & & & \\
\hline \multirow[t]{2}{*}{Silver} & n & 0.075 & 0.050 & 0.060 & 0.075 & 0.090 & 0.250 & 2.340 & 10.800 \\
\hline & k & 1.930 & 2.870 & 3.750 & 4.620 & 5.450 & 6.810 & 26.900 & 60.700 \\
\hline
\end{tabular}

Figure 22.28: Complex index of refraction of some metals and semiconductors by wavelength
- dbrj_layerl \((\mathrm{j}=1,2 ; \mathrm{l}=1,2)\) is the lth layer within the j th DBR stack.
- dbrj__indexl \((\mathrm{j}=1,2 ; \mathrm{l}=1,2)\) is the lth real index within the j th DBR stack.

\section*{Examples}
rt3d_contact_reflector transp_contact=no \&\& contact_refl=0.99

This defines all contacts as having a fixed reflection coefficient of \(99 \%\).

\subsection*{22.630 scale_radiative_recomb}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & {[]} \\
\hline factor & real & {\([1]\).} \\
\hline mater & intg & {[]} \\
\hline
\end{tabular}

The statement scale_radiative_recomb may be used to artificially scale the spontaneous emission spectrum from an active region. However, it does not affect the recombination rate in passive regions or in active regions where analytical_recomb=yes.

This statement should be contrasted with dip_factor in active__reg and set__active__reg which affects the dipole moment and so scales both the gain and spontaneous emission spectra.

\section*{Parameters}
- mater may be used to specify which material is being affected; a previouslydefined material label may also be used instead of a number with mater_label.

If no specific material is specified, then scale_radiative_recomb affects all active regions.
- factor is the scaling factor applied to the spontaneous emission spectra.
22.631 scan
\begin{tabular}{|c|c|c|c|}
\hline parameter & data type & \multicolumn{2}{|l|}{values [defaults]} \\
\hline hot_electron & char & [no] & \\
\hline hot_hole & char & [no] & \\
\hline var & char & & \\
\hline \(\operatorname{vari}(\mathrm{i}=2 . .9)\) & char & [void] & \\
\hline function_labeli(i=2..9) & char & [void] & \\
\hline infile_label & char & [void] & \\
\hline outfile_label & char & [void] & \\
\hline auto_finish & char & [void] & \\
\hline auto_condition & char & [within] above below & \\
\hline auto2_finish & char & [void] & \\
\hline auto2_condition & char & [within] above below & \\
\hline stop_thermal & char & [no] & \\
\hline solve_rtg & char & [no] yes & \\
\hline scan_label & char & [void] & \\
\hline solve_real_rtg & char & [no] yes & \\
\hline solve_imag_rtg & char & [no] yes & \\
\hline pump_no_current & char & [no] yes & \\
\hline value_to & real & & \\
\hline valuei_to(i=2..9) & real & [] & \\
\hline print_step & real & [] & \\
\hline init_step & real & [] & \\
\hline min_step & real & [] & \\
\hline max_step & real & , & \\
\hline auto_until & real & [0.9] & \\
\hline auto_within & real & [0.01] & \\
\hline auto2_until & real & [0.9] & \\
\hline auto2_within & real & [0.01] & - \\
\hline
\end{tabular}

The scan statement is used by the main simulator engine to activate the equation solver while one or more control variables are being changed (scanned).

The initial state of the simulation is always set with the equilibrium statement. This implies that the device is under thermal equilibrium and that no external bias is applied. Therefore, the voltage and current on all electrodes is zero; any external light source or e-beam pump is also zero. The reference clock for transient simulations is also set to zero at this step.

When dealing with contacts, the electrical bias can be defined in one of two ways: voltage or current. These are mutually exclusive: when the voltage is controlled,
the current may be adjusted and when the the current is controlled, the voltage is floating. This may be used in latchup simulations: explicitly forcing an electrode to have zero current allows the voltage to freely float.

In the software, current density is a mesh-dependent vector so there must be a convention to represent the total electrode current or the average current density on the electrode as a scalar. By default, current flowing into a contact boundary from the semiconductor device is considered positive. This may conflict with other software which take an external circuit view. This convention can be adjusted using the convention statement.

Between successive scan statements, the rule is always that the value of previous control variables is always conserved unless it is overridden by something else. For example, take a simple device with 2 electrodes that is subjected to an external light pump. As we vary various control variables, we get the following scenario:
- initial state: equilibrium sets light \(=0, \mathrm{~V} 1=0, \mathrm{~V} 2=0, \mathrm{I} 1=0, \mathrm{I} 2=0\).
- ramp voltage of electrode 1 to +1 V : light \(=0, \mathrm{~V} 1=1, \mathrm{~V} 2=0\), I 1 and I 2 to be solved
- ramp light source to +10 : light \(=10, \mathrm{~V} 1=1, \mathrm{~V} 2=0\), I1 and I2 to be solved
- ramp current of electrode 1 to +0.2 A : light \(=10, \mathrm{I} 1=0.2, \mathrm{~V} 2=0, \mathrm{~V} 1\) and I 2 to be solved.

The scan statement works by slowly modifying a previously known solution and making small updates to the control variable(s). An updated solution is then found using a non-linear Newton algorithm with the previously known solution as the initial guess. After convergence is achieved, the solver continues to update the solution until the target value has been reached.

The size of the update steps is therefore not strictly controlled and depends on the convergence rate of the equations for a particular device and mesh layout. As shown in Figure 22.29, the progress of the scanned variable can vary from a minimum step to a maximum step. For a smoother I-V curve, smaller steps are preferable but this increases the overall simulation time. Larger steps usually result in faster simulations but this can make the I-V curve less smooth. Larger steps can also cause convergence problems: if the real solution changes too much between bias steps, the previously known solution is not a good guess for the Newton solver. See newton__par for details on how the bias step is controlled by the convergence rate of the Newton solver.


Figure 22.29: Schematics for the scan statement.

\section*{Parameters}
- var is the name of the main variable to be scanned. Additional variables can be scanned at the same time using different vari \((\mathrm{i}=2 . .9)\) parameters. By default, the additional variables will be linearly proportional to the main variable.

For details on the available control variables, please see the table at the end of this section.

\section*{- function_label}
- function_labeli \((\mathrm{i}=2 . .9)\) is used only if more than one variable is scanned. It is used to declare or label a function relation between the ith variable with the main variable var. Such as function relation is further defined in a separate statement called scan_function. If this parameter is not used, the program assumes the default linear relation between the ith variable and the main scanned variable var.

The most obvious use of this is to use time as the main scan variable. The function labels can then be used to define \(f(t)\) relations which is especially useful in transient simulations.
- infile_label is the label of the initial guess data file for this scan statement. Without the use of this parameter, the program take the previous solution (.out file) as the initial guess. This label may be generated with the outfile_label parameter from a previous equilibrium or scan statement.
- stop_thermal instructs the main solver to stop using heat-flow model for the operation of the present statement. This means the temperature distribution will be frozen regardless bias condition.
- value_to is the final target value for the main scan variable defined in var. The initial value is determined automatically from the previous scan or from a reloaded scan when using infile_label.
valuei__to( \(\mathrm{i}=2 . .9\) ) may also be used to define the target values of additional scan variables when not using function labels.
- init_step is the initial step of the bias scan. This value must be larger than min_step. If this parameter is not defined by user, the program defaults to 20 percent of the difference between the initial and final value of the scanned variable.
- min_step is the minimum step for this scan statement. If the solver is forced to make a step smaller than this value (e.g. due to convergence difficulties), the solver will automatically terminate the simulation. If this parameter is not defined by user, the program defaults it to small fraction \(\left(1 \times 10^{-5}\right)\) of the difference between the initial and final value of the scanned variable.
- max_step is the maximum step size the solver is allowed to take. This can be used to force the I-V curve to be smoother or to prevent the solver from using a step size which could cause convergence difficulties. If this parameter is not defined by user, the program defaults to 50 percent of the difference between the initial and final value of the scanned variable.
- print__step is the interval used to print additional structural data during this bias scan. By default, structural data is automatically output at the end of the scan but print_step can be used to print additional data at specific intervals. An example of this can be seen in Fig. 22.29 where a value of print__step=0.8 is used.

Note that by necessity, the actual maximum step in the bias scan is the minimum of print__step and max_step.
- hot_electron and hot_hole instruct the solver to solve the hydrodynamic equation (energy distribution) for electrons and holes, respectively.
- auto_finish is the variable used to make a decision about terminating a bias scan before value_to is reached. This must be a variable that is being solved and not one of the control variables for the scan.
- current \(k\) or voltage \(\_k(\mathrm{k}=1 . .5)\) is the current or voltage on electrode \(\# \mathrm{k}\).
- step_current_ \(k\) or step_cvoltage_ \(k(\mathrm{k}=1 . .5)\) is the step size of the current or voltage on electrode \(\# \mathrm{k}\).
- incr_current_ \(k\) is the rate of current increase on electrode \#k. This rate is measured with respect to the bias units of the main scan variable.
- lattice_temp is the maximum lattice temperature.
- rtgain is the peak-round-trip gain (PICS3D only).
- laser_power_front, laser_power_back or laser_power_total is the laser power for the front, back or both facets, respectively (LASTIP only).

Please note that in all cases, the absolute value of the variable is used when deciding to terminate a scan. Therefore, the user does not need to worry about the current convention on the electrode.
- auto_condition is condition the variable defined in auto_finish must meet to terminate the scan.
- above: the specified variable is larger than auto__until
- below: the specified variable is smaller than auto_until
- within: the specified variable is approximately equal to auto_until, \(\pm\) auto_within.
- auto2__finish, auto2_condition, auto2__until and auto2_within are additional termination conditions the solver must meet to prematurely terminate a scan. Both conditions must be met simultaneously: it is not an either/or condition. All statements are otherwise the same as above.
- solve_rtg turns on the solution of the complex round-trip gain (RTG) equation and couples the photon density to main drift-diffusion model (PICS3D only). For this parameter to work, a previous scan command should use auto_finish=rtgain so that the RTG equation parameters are initialized.
- scan_label labels the output file so it can be easily referred to by plotting tools such as CrosslightView.
solve_real_rtg and solve_imag_rtg may be used to solve only the real or imaginary parts of the complex round-trip gain. However, this feature is for developer use only.
pump__no__current is used in some nanoscale structures to apply a bias that separates the quasi-Fermi levels without actually calculating the current flow: only the Poisson equation is solved.

\section*{Examples}
scan var=voltage_1 value_to=1.6 print_step=0. 8 \&\& init_step \(=0.02\) min_step \(=1 . e-5 \max _{\text {_ }}\) step \(=0.1\)

The above statement corresponds to Fig. 22.29.
```

scan var=time var2=voltage_1 value_to=1.e-11 \&\&
value2_to=0.5 print_step=1.e-12 \&\&
init_step=3.e-13 min_step=1.e-13 max_step=1.e-12 \&\&

```

This statement defines a transient simulation with a linear voltage ramp.
scan var=time value_to=50.e-12 \&\&
var2=light function_label2=gs_func max_step=1.e-12
scan_function label=gs_func type=gaussian gsn_dt=4.e-12

This statement defines a transient Gaussian light pulse by means of a scan function.

\section*{Available Scan Variables}
voltage_i \((i=1,2, \ldots, 9) \quad\) Voltage of the ith electrode.
current_i \((\mathrm{i}=1,2, \ldots, 9) \quad\) Current of ith electrode in A/m for 2D and Amperes for 3D.
time
Time reference of a transient simulation.
A scale factor for the input light defined in commands such as light__power and 3d__amplifier__model.
lighti \((i=2 \ldots 9)\)
new_doping bandgap_reduction
impact_fermi_factor
mobility_control
power_loss_scan_i \((\mathrm{i}=1 . .9)\) Same as "light" above, defined when there are multiple sources of input light.
See equilibrium.
See equilibrium.
See equilibrium.
See equilibrium.
Is the power loss between optical sections in PICS3D. Corresponds to the power_loss parameter of couple_next for section number \(i\).
scale_heat_source
scale_impact_cr_field
scale_negative_stim
scale_polar_charge
surf_charge_expo
temperature
wavelength_scan
virtual time
xcir_resistance_i(i=1..9)
default value is 1 .
See equilibrium.
See equilibrium.
See equilibrium.
See equilibrium.
May be used to adjust the isothermal temperature of the device. This should not be confused with self-heating simulations which invoke the heat__flow statement. The wavelength of the optical pump in light__power. Artificial quantity used for parameter sweeps in conjunction with the minispice command.
is the external circuit resistance attached to the ith contact.

\subsection*{22.632 scan_function}
\begin{tabular}{||l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline label & char & {\([\) mylabel \(]\)} \\
\hline type & char & {\([\) void \(]\)} \\
\hline user_datafile & char & {\([\) void \(]\)} \\
\hline gsn_t1 & real & {\([0]\).} \\
\hline gsn_dt & real & {\([4 . \mathrm{e}-12]\)} \\
\hline gsn_s1 & real & {\([0]\).} \\
\hline gsn_s2 & real & {\([1]\).} \\
\hline pulse_t1 & real & {\([0]\).} \\
\hline pulse_tr & real & {\([1 . \mathrm{e}-12]\)} \\
\hline pulse_dt & real & {\([4 . \mathrm{e}-12]\)} \\
\hline pulse_tf & real & {\([1 . \mathrm{e}-12]\)} \\
\hline pulse_s1 & real & {\([0]\).} \\
\hline pulse_s2 & real & {\([1]\).} \\
\hline sin_constant & real & {\([0]\).} \\
\hline sin_amp & real & {\([1]\).} \\
\hline sin_period & real & {\([1 . \mathrm{e}-9]\)} \\
\hline sin_phase & real & {\([0]\).} \\
\hline cos_constant & real & {\([0]\).} \\
\hline cos_amp & real & {\([1]\).} \\
\hline cos_period & real & {\([1 . \mathrm{e}-9]\)} \\
\hline cos_phase & real & {\([0]\).} \\
\hline
\end{tabular}

The statement scan_function is used to define relation between different variables in the scan statement.
- label corresponds to the parameter of function_labeli(i=2..9) defining a function between the ith variable and the first (main) variable.
- type is the type of function. It currently supports the following types: gaussian, pulse, sin and cos. Their meanings are as suggested by their names.
- user_datafile if defined, is the user data file containing two columns of data to define a function relation.
- gsn_t1 , gsn_dt, gsn_s1 and gsn_s2 are parameters \(t_{1}, \Delta t, s_{1}\) and \(s_{2}\) respectively, used to describe a Gaussian relation between the 1st and 2nd variable. If we use \(t\) as the 1st variable, the Gaussian function is defined as
follows:
\[
\begin{aligned}
\text { if } & \quad t_{1} \leq t \leq t_{1}+2 \Delta t \\
c_{l} & =4 \ln (2) \\
\text { var } 2 & =s_{1}+\frac{s_{2}-s_{1}}{1-\exp \left(-c_{l}\right)}\left[\exp \left(-\left(\frac{t-t_{1}-\Delta t}{\Delta t}\right)^{2} c_{l}\right)-\exp \left(-c_{l}\right)\right] \\
\text { else } & \\
\text { var } 2 & =s_{1}
\end{aligned}
\]
- pulse_t1 , pulse_tr , pulse_dt , pulse_tf, pulse_s1 and pulse_s2 are used to define a sqaure pulse of the following shape in the code:
```

if(t>=t_1 \&\& t<=t_1+t_r) {
var2=s_1+(s_2-s_1)*(t-t_1)/t_r;
} else if(t.ge.t_1+t_r.and.t.le.t_1+t_r+dt) {
var2=s_2;
} else if(t.ge.t_1+t_r+dt.and.t.le.t_1+t_r+dt+t_f) {
var2=s_2+(s_1-s_2)*(t-(t_1+t_r+dt))/t_f;
} else {
var2=s_1;
}

```
- sin_constant, \(\sin \_\)amp , sin__period, and sin_phase are used to define a sines function of the form constant+amp*sin( \(2^{*}\) pi/period*var+phase), where phase is in unit of radians.
- cos_constant , cos__amp , cos_period, and cos_phase are used to define a cosines function similar to that of sines above.

\section*{Example(s)}

The following example is to describe a sines function:
scan_function label=my_sine_lable type=sin sin_constant=0 sin_amp=0.2 \&\& sin_period=1.e-9 sin_phase=0

\subsection*{22.633 section}
\begin{tabular}{||l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline grating_model & char & {\([\mathrm{kappa}]\), 1layer, klayers \((\mathrm{k}=2 . .9)\)} \\
\hline active & char & {\([\) yes] no } \\
\hline 2nd_order & char & yes [no] \\
\hline dbr_period_index_profile & char & \\
\hline kappa_real & real & \((1 / \mathrm{m})\) \\
\hline kappa_imag & real & \((1 / m)\) \\
\hline delta_kreal & real & {\([0].(1 / \mathrm{m})\)} \\
\hline delta_kimag & real & {\([0].(1 / m)\)} \\
\hline pitch & real & \((m)\) \\
\hline delta_pitch & real & {\([0].(m)\)} \\
\hline length & real & {\([300 . \mathrm{e}-6](\mathrm{m})\)} \\
\hline phase_shift & real & {\([0].(\pi)\)} \\
\hline grating_phase & real & {\([0].(\pi)\)} \\
\hline mesh_ratio & real & {\([1]\).} \\
\hline layerj (j=1..k) & real & {\([0.096 \mathrm{e}-6](\mathrm{m})\)} \\
\hline indexj (j=1..k) & real & \\
\hline h1_real & real & \((1 / \mathrm{m})\) \\
\hline delta_h1_real & real & {\([0.0](1 / \mathrm{m})\)} \\
\hline h1_imag & real & \((1 / \mathrm{m})\) \\
\hline delta_h1_imag & real & {\([0.0](1 / \mathrm{m})\)} \\
\hline surface_p.c & real & \\
\hline delta_s.p.c & real & {\([0.0]\)} \\
\hline top_ref & real & {\([0.3]\)} \\
\hline sec_num & intg & {\([1]\)} \\
\hline mesh_points & intg & {\([8]\)} \\
\hline dbr_period_mater & intg & \\
\hline zseg_num & intg & \\
\hline & & \\
\hline
\end{tabular}

The statement section defines the optical mesh and other properties of a laser in the longitudinal direction (PICS3D only). It should be distinguished from the concept of a z-segment which defines electrical properties for a certain region. In certain cases, a section may not have any electrical mesh defined (e.g. external cavity elements). See Sec. 6.3 for details.
section is often used to directly input the grating properties of a certain region rather than computing the coupling coefficients. In that case, we can also define chirped gratings and write the z-dependent coupling coefficient as:
\[
\begin{align*}
\kappa(z) & =\kappa_{m}(z) \exp \left(j \psi_{k}(z)\right)  \tag{22.122}\\
\kappa_{m}(z) & =\kappa_{m 0}+\delta \kappa_{m} \frac{z-z_{1}}{z_{2}-z_{1}}  \tag{22.123}\\
\psi_{k}(z) & =\psi_{k 0}+\delta \psi_{k} \frac{z-z_{1}}{z_{2}-z_{1}} \tag{22.124}
\end{align*}
\]
where \(z_{1}\) and \(z_{2}\) are the starting and ending points of the section.
The resulting chirp \(\left(\zeta_{c h}\right)\) will be a spatial variation of the propagation constant. In units of \(\pi\), this can be written as:
\[
\begin{equation*}
\zeta_{c h}(z)=\zeta_{c h 0}+\delta \zeta_{c h} \frac{z-z_{1}}{z_{2}-z_{1}} \tag{22.125}
\end{equation*}
\]

\section*{Parameters}
- grating_model is the grating model being used. It may take the following values:
- 1 kappa: the coupling coefficient \(\kappa\) is used to describe the grating structure in an edge laser/waveguide structure (coupled-wave equation). This coupling coefficient can be defined directly or calculated by the software based on the mode profile.
- 2 1layer, 2layers, ..., klayers: this model uses plane wave transfer matrices through one or more layers and is often used to define DBR layers in VCSELs. In older versions of the software, layer0 is equivalent to 1layer; layer is equivalent to 2layers.

This parameter should not be confused with the similarly-named grating_model statement which is used to define other parameters needed to compute \(\kappa\) in edge-emitting devices.
- active is used to indicates that the section contains active layer. This means that this section is matched with an electrical z-segment (or a part thereof) and the optical properties will be obtained from the mesh data. For non-active (non-meshed) sections, a passive__3d statement must be used to define the optical properties.
- 2nd_order turns on the terms for the second order grating (loss/gain coupling).
- dbr__period_index_profile can be used to define an index profile in an input file. The data should be in columns: position (in \(\mu m\) ) and index.
- kappa_real and kappa_imag are used to represent the real and imaginary parts of the longitudinal coupling coefficient \(\kappa\). They are effective only when the above parameter grating_model=kappa.
If these values are omitted, PICS3D will compute the coupling coefficient based on the wave overlap and the grating compositions defined in the .layer file. This involves using either the grating_compos or grating_model statements. The latter should not be confused with the grating_model parameter defined above.
- delta_kreal and delta_kimag are used to represent the change in the real and imaginary parts of index coupling and gain/loss coupling, respectively.
- pitch and delta_pitch define the grating pitch and the change in the pitch within a section. If this is not specified, the pitch settings from the longitudinal statement should be used.
- length is the optical length of the section.
- phase_shift is the phase shift (in units of \(\pi\) ) at the end of the section. For example, in a standard phase shifted DFB laser, we need to create two sections of equal length; the phase shift at the end of the first section will be in the middle of the cavity.
- grating_phase is the phase of the grating \((\Omega)\) :
\[
\begin{equation*}
n=\tilde{n}+2(\Delta n) \cos \left(\frac{2 \pi}{L_{g}} z+\Omega\right) \tag{22.126}
\end{equation*}
\]
- mesh_ratio is the ratio between adjacent mesh intervals. shift__center may be used to shift the centre of the mesh point distribution. See put__mesh and Fig. 22.22 for details on both these parameters.
- layerj \((\mathrm{j}=1 . . \mathrm{k})\) is the thickness of the j th layer that make up one period in the layer model when parameter grating_ model=klayers.
- \(\operatorname{indexj}(\mathrm{j}=1 . . \mathrm{k})\) is the refractive index of the jth layer that make up one period in the layer model when grating_model=1layer or klayers ( \(\mathrm{k}=2 . .9\) ). This older method of defining the index profile is not recommended. In newer versions of the software, new index profile capabilities have been added to the vcsel_section statement in the .layer file: VCSELs are the most frequent situation where this capability had been used.

In the event this antiquated feature is required, here are several rules to keep in mind:
- If only one layer is specified, the index may be omitted. In that case, the software will compute the index of the layer based on the material macros, temperature, bias, etc...
- If more than one layer is specified, all the refractive indices must be specified.
- If there are multiple layers, negative values of the index may be defined. This instructs the software to compute changes in the average refractive index of the layers (using their absolute value) while keeping the index contrast between the layers constant.

The most accurate method in all cases is to separate each layer of the DBR into a different section, use the 1layer model for each and omit the index to let software automatically compute it. However, this may require extra mesh and complications with the electrical solver. Defining the DBR using material macros in vcsel_section is also a recommended method.
- h1_real and h1_imag are the real and imaginary part of the h1 parameter describing the second order grating structure. delta__h1_real and delta_h1_imag may be used to introduce a chirp in the second order grating parameters.
- surface_p.c is the surface power coupling coefficient for second order grating. If not provided, the simulator computes this parameter based on the reflection coefficient at the surface (top_refl). As in other parameters, delta__s.p.c may be used to chirp this parameter.
- sec_num is the section number or section index.
- mesh_points is the number of optical mesh points in this section. Material parameters will be interpolated from the electrical mesh at these locations and used in the optical propagation model.
- dbr__period__mater may be used to obtain the grating index profile from a certain material number. This parameter should not generally be used as there are better ways of achieving this.
- zseg_num may be used to associate this optical section with a specific electrical z-segment. In general, this is not necessary as the length information will suffice to define the alignment between the optical and electrical mesh.

\section*{Examples}
section length=800.e-6 sec_num=1 mesh_points=20

\subsection*{22.634 section_air}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline length & real & {\([300 . \mathrm{e}-6](\mathrm{m})\)} \\
\hline sec_num & intg & {\([1]\)} \\
\hline mesh_points & intg & {\([3]\)} \\
\hline
\end{tabular}

The statement section__air is a special case of section. It is used to describe an air gap within a photonic device.
- length is the length of the section.
- sec_num is the section number or section index.
- mesh_points is the subsection number or mesh points used for the purpose of calculation. All physical quantities are assumed to be constant within the subsection.

\section*{Example(s)}
section_air length=200.e-6 sec_num=2 mesh_points=10

\subsection*{22.635 section_location}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline start & real & {\([0](\mathrm{um})\)} \\
\hline end & real & {\([1].(\mathrm{um})\)} \\
\hline
\end{tabular}
- section_location is used to specify the starting point of the longitudinal mode cavity. If not specified, it will start from zero. For VCSEL, this statement may be automatically generated by the LAYER program.
- start is the starting coordinate of the optical cavity.
- end is the ending coordinate of the optical cavity.

\section*{Example(s)}
```

section_location start=2. end=12.5

```

\subsection*{22.636 self_consistent}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline conditional_off & char & {\([\) no \(]\)} \\
\hline impose__limit & char & {\([\) no \(]\)} \\
\hline sheet_charge_model & char & {\([\) no \(]\)} \\
\hline onetime_update & char & \\
\hline onetime_resume & char & {\([\) no \(]\)} \\
\hline loop_num & intg & {\([9]\)} \\
\hline electrode_off & intg & {\([1]\)} \\
\hline wave_range & real & {\([0.005]\) (um) } \\
\hline sample_distance & real & (um) \\
\hline change_limit & real & {\([0.1]\)} \\
\hline voltage_off & real & {\([-9999]\).} \\
\hline current_off & real & {\([-9999]\).} \\
\hline wave_range_bottom & real & (um) \\
\hline wave_range_top & real & (um) \\
\hline wave_range_left & real & (um) \\
\hline wave_range_right & real & (um) \\
\hline onetime_ref_voltage & real & (V) \\
\hline onetime_ref_current & real & (2D: A/m, 3D: A) \\
\hline sample_xcor & real & (um) \\
\hline sample_ycor & real & (um) \\
\hline sample_xrange & realx2 & (um) \\
\hline sample_yrange & realx2 & (um) \\
\hline autosample_y & real & (um) \\
\hline autosample_xrange & realx2 & (um) \\
\hline
\end{tabular}

The self_consistent statement is used in the main solution file (.sol) to invoke the self-consistent quantum well carrier density model. It can also be used in the gain preview module (.gain): an external field can be supplied with gain__module. This model is required to model the quantum-confined Stark effect (QCSE) that occurs in QW modulators and wurtzite piezoelectric materials.

Without this statement, a flat-band model is used in the Schrödinger solver. See Sections 8.1.2 and 8.2 for more details about the difference between these two models. In general, the self-consistent model is more accurate but more time-consuming.

The self-consistent quantum mechanical solver finds quantized energy states which may appear or disappear when the potential profile is changed. Such appearance or disappearance may cause the global Newton solver to be poorly initialized and thus diverge. In such a case, one may wish to turn off the self-consistent solver conditional
upon the bias being beyond a certain value. This means the density of states (DOS) of the QW/QDOT will be frozen at a value before the conditional turn-off.

\section*{Parameters}
- wave_range is used to define a range for the solution of the quantum mechanical wave equation. Refer to Sec. 8.2.3 for details.

The wave range value is the same in all directions unless overridden in a particular direction by wave_range__bottom, wave_range_top, wave__range__left or wave__range_right.
- sample_distance, if specified, gives the position of a 1D cut across the well and barrier layers used to sample the potential. This 1D potential profile is used to solve the quantum levels. By default, a value in the middle of the quantum well region is used.
- loop__num is the maximum number of iteration in equilibrium that is need to reach self-consistency for both the potential and quantum confined carrier density profile.
- conditional__off is to indicate whether the self-consistent update of quantum mechanical wave solver is to be turned for convergence reason when certain conditions are reached.
- electrode_off is used only when conditional_off=yes. It defines the electrode used as a condition to turn of the self-consistent update solution.
- sheet_charge__model is a simplification to the model which can help with convergence in some cases. When turned on, the total sheet charge and the position of the QW levels are calculated self-consistently. However, the carrier density distribution does not follow the self-consistent model.
- impose_limit indicates if a limit is imposed on relative change of potential for self-consistent calculation. Too large a change is thought to be harmful to convergence. One may turn on this option if non-convergence due to quantum confinement is encountered.
- change_limit is to impose a limit on relative change of potential profile in the quantum solution. The simulator calculates the average applied field and will only allow the profile to be changed by a certain amount.
- voltage_off defines a voltage condition under which the self-consistent updates may be stopped.
- current_off defines a current condition under which the self-consistent updates may be stopped. The current units (2D or 3D) are the same as the ones used in the scan statement.
- sample_xcor and sample_ycor are ( \(\mathrm{x}, \mathrm{y}\) ) coordinates used to sample the potential profile in 3D simulations where the QW normal is in the z direction.
- sample_xrange and sample_yrange may be used in rare cases where a complex MQW region with a weird shape is used. It restricts the use of the self-consistent code to a rectangular region within that complex MQW.
- onetime__update turns on a technique which can help improve convergence in cases where a sudden shift in the number of quantum states introduces convergence difficulties: this discontinuity may conflict with the initial guess to the Newton solver, which is extrapolated from the previous solution.
When using this technique, the quantum states are frozen at a certain reference bias (after turn-on) to improve convergence. Multiple simulation runs must be used to set up this initial state:
1. Set onetime__update=initial to save the quantum states for the next run. The solver does not update quantum solutions at this stage.
2. Set onetime_update=repeat. The solver imports the potential saved by the previous run and updates the quantum solution at the imported reference bias one time only (hence the name).
3. Repeat previous step as needed to improve self-consistency.

We note in passing that the extrapolation for the initial guess to the Newton solver can be turned off in newton_par. Users may wish to compare the two methods to see which yields the fastest and most reliable convergence.
- onetime__ref_coltage and onetime__ref_current set the reference bias for the "onetime" update method described above. onetime__resume determines whether the normal update of quantum states is allowed to resume once this reference bias has been reached.
- autosample_y and autosample_xrange may be used to automatically change the sampling position for self-consistency in a 3D simulation. An example of this would be a 3D Mach-Zehnder modulator with BPM propagation in the Y-branch and where the field under the waveguide better represents the device physics than the field in the middle of the QW region.
With the auto-sample parameters defined, the software cuts a line at a specific y position and looks for a semiconductor material within a certain x range. The sampling position is set to the middle of the region found within that range: presumably, this is the middle of a ridge and will be close to the peak of the optical mode.

\section*{Examples}
```

self_consistent loop_num=15

```

Changes the number of self-consistent iterations.
```

self_consistent wave_range=0.05 \&\&
electrode_off=1 conditional_off=yes voltage_off=5

```

For convergence reasons, the quantum states are not updated once the voltage on electrode \# 1 reaches 5 volts. This may cause some inaccuracy.

\subsection*{22.637 set_3dray_internal_interface}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline model & char & {\([\) fixed_index] } \\
\hline import_filei,i=1..9 & char & void \\
\hline thicknessi,i=1..9 & real & {\([0.1]\) (um) } \\
\hline refr_indexi,i=1..9 & realx2 & {\([2.1245,0.0]\)} \\
\hline inside_ref_point & realx3 & {\([0.0,0.0,0.0]\) (um) } \\
\hline outside_ref_point & realx3 & {\([0.0,0.0,0.0]\) (um) } \\
\hline nlay & intg & {\([1]\)} \\
\hline
\end{tabular}
set_3dray_internal_interface is used to specify special internal interfaces for the 3D raytracing program. For example, this can be used to represent surface coatings that are inside of the structure's geometry. For coatings on the outer surface of a structure, the surface__model parameter of do__raytrace__3d should be used instead. To define the position of an interface, the user must enter the XYZ coordinates of two points on either side of the interface.

The number of layers in the coating is controlled by nlay. The parameters numbered 1 to 9 refer to that particular layer. Layer \#1 is defined as the one closest to inside_ref_point.

The complex refractive index of each layer is controlled by the model parameter. If this is set to fixed_index, then the value of the refr__index parameter will be used.

If import_data is used instead, then the index will be read from a text file specified by the import_file parameter. This file must be formatted so that the first column contains the wavelength (in \(\mu \mathrm{m}\) ), the second column, the real part of the refractive index and the third column, the imaginary part of the refractive index.
22.638 set_3dray_mirror
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mirror1_side & char & {\([\) void \(]-x,+x,-y,+y,-z,+z\)} \\
\hline mirror2_side & char & {\([\) void \(]-x,+x,-y,+y,-z,+z\)} \\
\hline mirror3_side & char & {\([\) void \(]-x,+x,-y,+y,-z,+z\)} \\
\hline
\end{tabular}
set_3dray__mirror is used to define symmetric boundary conditions for the 3D raytracing program (do__raytrace_3d. If this statement has been used in a 3D raytracing simulation in a different .plt file, it must also be used before plotting the results to enforce the correct symmetry of the plots.

\subsection*{22.639 set__active__reg}
set__active__reg is used to override active region parameters previously defined in active_reg. Most of the material parameters used for the two commands are virtually identical and so are omitted here.

Note that by default, this command applies to all the previously declared active regions so it is often used in the .sol or .gain files to alter the gain model settings that were automatically declared when processing the .layer file.

\subsection*{22.640 set_barrier_width}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline barrier_width_bot & real & {\([0.1](\mathrm{um})\)} \\
\hline barrier_width_top & real & {\([0.1](\mathrm{um})\)} \\
\hline active_mater & intg & {\([1]\)} \\
\hline
\end{tabular}
set__barrier__width is used to let the program take into account the barrier composition grading when modeling the carrier confinement of a quantum well.

Note that this command only applies to basic QW macros and is somewhat obsolete: it is strongly recommended to use the complex MQW macros (labeled with a cxprefix) or the simplified complex QW library scheme from Sec. 3.5.1 instead.

\section*{Parameters}
- barrier__width_bot is the bottom barrier width.
- barrier__width_top is the top barrier width.
- active_mater is the active layer material number of the quantum well related to the barrier described in this statement.

\section*{Examples}
set_barrier_width barrier_width_bot=0.01 barrier_width_top=0.01 active_mater=3

\subsection*{22.641 set_fdtd_interface}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline mater_in & intg & \\
\hline mater_out & intg & \\
\hline angle_to_axis & char & {\([+\mathrm{x}],-\mathrm{x},+\mathrm{y},-\mathrm{y},+\mathrm{z},-\mathrm{z}\)} \\
\hline angular_data & char & [fdtd_data.dat]
\end{tabular}

The set_fdtd__interface statement is used in the Optowizard solution file to override the reflection properties of a specified material interface for the purposes of ray tracing. Instead of a Fresnel reflection model, reflection/transmission data from a FDTD solver will be used at the interface: this allows nanoscale effects to be considered inside a larger-scale raytracing model.

\section*{Parameters}
- mater_in and mater_out are used to specify the interface affected by this command and the direction of the incoming beam.
- angle_to__axis determines a reference axis to match the incident angle of incoming rays to angular data from FDTD solver.
- angular_data is the data file containing angular reflection/transmition data from the FDTD solver.

\subsection*{22.642 set_include}
set_include defines the relative path for all subsequent include statements.

\section*{Parameters}
relative__path specifies the path for the include statements. If a relative path is specified, it is relative to the directory of the input file where set_include has been used.

\subsection*{22.643 set_index}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater & intg & {\([-9999]\)} \\
\hline real_index & real & {\([3.5]\)} \\
\hline absorption & real & {\([200 . / \mathrm{m}]\)} \\
\hline index_file & char & {\([\) void \(]\)} \\
\hline
\end{tabular}

The set_index statement is used in the optowizard solution file to override the refractive index \((n, k)\) of a specified material for the purposes of ray tracing. If not specified, the index from the electrical simulation in APSYS will be used in the ray tracing.

Exported index data from APSYS is often only for a single wavelength so overriding it is often recommended for more accurate results. It can also be useful to override the index to change something without having to re-run the electrical simulation.

\section*{Parameters}
- mater is used to specify the material number being overridden.
- real_index is to specify a fixed real index(n) value for the specified material.
- absorption is to specify a fixed absorption coefficient \(\left(\mathrm{m}^{-1}\right)\) for the specified material.
- index_file is to specify the file name of the data file describing the index spectrum for the specified material. The data must be in text format where the first column is the wavelength in micrometers, the second column is the real part of the index and the third column is the absorption coefficient \(\left(\mathrm{m}^{-1}\right)\).

\section*{Examples}
set_index mater=1 real_index=2.8 absorption=2000

\subsection*{22.644 set__initial_stress}
set_initial_stress defines the initial or pre-existing stress in a device. This should be contrasted with external stress applied on the device, which is defined in set__stress.
All parameters for this command are the same as in set_stress.

\subsection*{22.645 set_lp__mode_index}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline lp_mode_num & intg & {\([1]\)} \\
\hline m__index & intg & {\([0]\)} \\
\hline n_index & intg & {\([1]\)} \\
\hline
\end{tabular}

This statement is used in PICS3D VCSEL simulations to replace the results from the normal mode solver with one of the linearly polarized fiber modes \(\left(L P_{m n}\right)\). These modes may be difficult to find using normal effective index sorting procedures.

\section*{Parameters}
- lp__mode_num is the number of the lateral/radial mode being specified.
- m_index and \(\mathbf{n} \_\)index are the indices of the linearly polarized mode.

\section*{Examples}
```

multimode mode_num=4
set_lp_mode_index lp_mode_num=1 m_index=0 n_index=1
set_lp_mode_index lp_mode_num=2 m_index=1 n_index=1
set_lp_mode_index lp_mode_num=3 m_index=2 n_index=1
set_lp_mode_index lp_mode_num=4 m_index=0 n_index=2

```

\subsection*{22.646 set_minority_carrier}

The command set_minority_carrier may be used to artificially reduce the bandgap so that larger minority carrier density can be used to overcome possible convergence problems.

The parameter virtual_eg_kt can be used to set a reduced bandgap in unit of kT where k is the Boltzman constant.

\section*{Example(s)}
set_minority_carrier virtual_eg_kt=30
would set the bandgap to be 30 kT for the purpose of computing minnority carriers.

\subsection*{22.647 set__negative__stim}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline max_absorption & real & {\([1 \mathrm{e} 4]\left(\mathrm{m}^{-1}\right)\)} \\
\hline zseg_num & intg & {\([1]\)} \\
\hline
\end{tabular}
set__negative_stim artificially caps the the absorption coefficient in a given zsegment.

Note that a similar adjustable scaling coefficient may be found in the equilibrium and scan statements.

\section*{Parameters}
- max__absorption is the maximum absorption value allowed: values smaller than this parameter will be left unchanged.
- zseg_num is the z-segment number where this command is applied.

\subsection*{22.648 set__polarization}

\section*{Important changes}

As of the 2011 version of the software, a newer model based on the polarization_charge macro and polarization__charge__model statement is available.

This new model offers a great deal more flexibility to the user so set__polarization may be obsoleted in a future release.

Note that the two models should not be used in conjunction as this would result in double-counting of the interface charges.
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline xy__plane & char & {\([\mathrm{no}]\)} \\
\hline alias_macroname_table & char & \\
\hline screening & real & {\([0.5]\)} \\
\hline substrate__latt & real & {\([3.189](\AA)\)} \\
\hline hex__lattice_a0 & real & {\([3.189](\AA)\)} \\
\hline hex_lattice_c0 & real & {\([5.185](\AA)\)} \\
\hline external_stress_cxx & real & {\([0].(\mathrm{GPa})\)} \\
\hline external_stress_yy & real & {\([0].(\mathrm{GPa})\)} \\
\hline ref_column & intg & {\([1]\)} \\
\hline growth_plane_miller_index & intgx 4 & \\
\hline
\end{tabular}
set_polarization is used in the .layer file to automatically generate interface statements and define the piezoelectric charges found in nitride materials.
The polarization formulas[117] used for these calculations are hardcoded. Only the following material macros are recognized: algan, ingan, alinn, gaalinn, and gan.

\section*{Parameters}
- xy__plane would produce interface charge on the x-y plane for a 3D simulation. The interface charge would be defined using the doping command.
- alias_macroname_table is the name of a data file which can be used to define how certain materials are renamed; the file should contain two columns with the original name in the first column and the new name in the second column. This should be used whenever layer.exe needs to know that a certain material has been renamed and no longer matches the default Crosslight macros.

Under normal circumstances, the .layer file is agnostic with regards to the names assigned to the various materials in each layer: these names are passed un-changed and are not used until the main simulator attempts to use the load__macro statement. In this scenario, macros may be renamed freely and the material macro need not even exist at the time when the layer file is processed: it only has to exist when the main simulator is launched.

An exception to this rule is when layer.exe calculates the interface polarization because the set_polarization command has been used. In that case, layer.exe needs knowledge of the macro names because only a handful of predetermined formulas for GaN-based materials are encoded into the program. Using aliases allows layer.exe to keep doing this job even if those materials have been renamed.
- screening is the screening factor used to account for deviations from the theory (e.g. screening by fixed defects, partial relaxation, etc...). A factor of unity means 100 percent of the theoretical interface charge is used.

This parameter affects the whole device but may be adjusted locally by using adjust_layer_screening and adjust__column__screening. This may be used to account for surface states or passivation without affecting the whole device.
- ref_column is a reference column of the layer structure which represents the complete layer stack. In newer versions of the software, the strain and piezo charge should be determined on a per-column basis so this parameter should not be used.
- substrate_latt is the reference lattice used for the strain calculations. By default, this value is set to GaN. Please note that this is not necessarily the lattice of the substrate: in many growth designs, a relaxed buffer is deliberately grown on the actual substrate to improve the material quality of the top layers. In that case, the lattice constant of the buffer should be used here.

Users working on deep UV devices on AlN substrates should also take care to use the right reference lattice as this is necessary to get the right type of strain.
- external__stress_xx and external__stress_yy can be used to define externally applied stress on the device.
- growth__plane__miller_index can be used to specify the crystal orientation of the growth using the (h k i l) notation. The software will then calculate the direction of the polarization vector based on hex_lattice_a0 and hex_lattice_c0 and scale the interface charge with the appropriate cosine factor.

\section*{Examples}

```

set_polarization screening=0.7

```

This would allow 70 percent of the total theoretical value be used on the layer interfaces.

\subsection*{22.649 set_screening_factor}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline x1_label & char & \\
\hline x2_label & char & \\
\hline y1_label & char & \\
\hline y2__abel & char & \\
\hline at_x_label & char & \\
\hline at_y_label & char & \\
\hline screening & real & {\([0.5]\)} \\
\hline xrange & realx2 & {\([-1 . e 9\) 1.e9] (um) } \\
\hline yrange & realx2 & {\([-1 . e 91 . e 9]\) (um) } \\
\hline at_x & real & (um) \\
\hline at_y & real & (um) \\
\hline at_point_range & real & {\([0.0005]\) (um) } \\
\hline zseg_num & intg & \\
\hline
\end{tabular}
set_screening_factor is used to locally override the global screening coefficient defined in the polarization_charge__model statement. This can be used to account for regions of compensating defects or interface states and alter the amount of fixed piezoelectric charges in a particular region.

\section*{Parameters}
- x1__label,x2_label,y1_label and y2_label are position labels used to define a 2 D region where the screening coefficient is modified. Absolute coordinates can also be used directly with xrange and yrange: this is the default behavior.
- at_x_label and at__y_label are position labels used to define a specific interface where the screening coefficient is modified. Absolute coordinates can also be used with at_x and at_y.
Specifying an interface will override the default behavior of defining a large 2D region for the screening override.
- screening is the new locally-defined screening coefficient used to compute the fixed charges.
- at__point__range helps locate the interface defined with at_x and related commands: it defines a small search range to account for fuzzyness in the mesh point location.
- zseg_num is the z-segment number where this statement applies.

\section*{Examples}
set_screening_factor screening=0.0 at_y=0.0

\subsection*{22.650 set_stress}
\begin{tabular}{||l|l|l||}
\hline \multicolumn{1}{|c|}{ parameter } & data type & values [defaults] \\
\hline \hline \hline all_mater & char & {\([\) yes \(]\)} \\
\hline mater_label & char & \\
\hline xx & real & {\([0](\mathrm{GPa})\)} \\
\hline yy & real & {\([0](\mathrm{GPa})\)} \\
\hline xy & real & {\([0](\mathrm{GPa})\)} \\
\hline zz & real & {\([0](\mathrm{GPa})\)} \\
\hline xz & real & {\([0](\mathrm{GPa})\)} \\
\hline yz & real & {\([0](\mathrm{GPa})\)} \\
\hline mater & intg & {[]} \\
\hline
\end{tabular}
set__stress defines the external stress applied on a device. This should be contrasted with pre-existing stress defined in set_initial_stress.

\section*{Parameters}
- \(\mathbf{x x}, \mathbf{y y}, \mathbf{z z}, \mathbf{x y}, \mathbf{x z}\) and \(\mathbf{y z}\) define the stress components \(\sigma_{i j}\) applied on the device.
- all_mater determines whether the stress is applied to all layers. In not, then a specific material where the stress exists can be specified with mater.
- mater_label may be used instead of mater if a label alias has previously been defined for the material.

\subsection*{22.651 set_temperature}
set_temperature resets the isothermal temperature of a simulation. It is used when issuing the equilibrium statement several times in the same simulation to define a new thermal equilibrium point.

All parameters are the same as in the temperature statement.

\subsection*{22.652 set_wavelength}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline wavelength & real & {\([0.5](\mathrm{um})\)} \\
\hline backg_loss & real & {\([500](1 / \mathrm{m})\)} \\
\hline
\end{tabular}
set__wavelength is used to define some critical optical properties of a device. It is used to initialize the optical mode distribution and internal loss.
- wavelength is the operating optical wavelength.
- backg_loss is the background loss coefficient. By default, regions outside the active region are assumed to have a constant loss background (which can be determined experimentally). Alternatively one can use the material statement absorption to set the material loss in different materials. A non-zero absorption setting will override the backg_loss here.

\section*{Example(s)}
set_wavelength wavelength=0.5 backg_loss=1000.

\subsection*{22.653 set_xydata_for_scan}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline scan_var & char & {\([\) void \(]\)} \\
\hline scan_var_scale & char & {\([\) linear \(]\)} \\
\hline scan_var_facet & char & {\([\) void \(]\)} \\
\hline scan_var_scale_lit & real & {\([2]\).} \\
\hline scan_var_scale_curr & real & {\([2]\).} \\
\hline scan_var_scale_horizontal & real & {\([1]\).} \\
\hline scan_var_horizontal_power & real & {\([-9999 . d 0]\)} \\
\hline scan_var_mode_index & intg & {\([1]\)} \\
\hline scanline & intg & \\
\hline scan_num & intg & \\
\hline
\end{tabular}
set__xydata_for_scan is a post-processor statement used to set plotting options affecting subsequent plots. It is used to convert structure data (xy-data) into bias dependent plots.
- scanvar is used to define scan variables to be used in AC analysis plots. The scan variables are the same as used in the plot_scan statement. Please refer to plot_scan for more details.
scanvar_xxx, all parameters with prefix scanvar_ are the same as those (without the prefix) defined in plot__scan statement. Please refer to plot__scan for more details.
- scanline is used to denote bias data from a whole scan statement. The data from statement equilibrium is counted as the scanline \(=1\); those from the next scan statement counted as scanline \(=2\), etc. For this parameter to work, the get_data command must already include the data sets associated with this parameter.
- scan_num is used to denote bias data from a whole scan statement. The data from statement equilibrium is counted as the scan_num=0; those from the next scan statement counted as scanline \(=1\), etc. For this parameter to work, the get_data command must already include the data sets associated with this parameter.
```

set_xydata_for_scan scanvar=voltage_1

```

The above statement will cause the program plot small signal quantities (regarded as xy-data or structural data) versus voltage bias at electrode number 1.

\subsection*{22.654 setup_raytrace}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline filebase & char & \\
\hline
\end{tabular}
setup_raytrace is used in the main Optowizard input file to define the data sets generated by a previous APSYS simulation.

\section*{Parameters}
- filebase is the root filename of the original simulation data, minus the extension (such as .sol or .out).

\section*{Examples}
```

setup_raytrace filebase=tip

```

\subsection*{22.655 shal_acpt_level}
shal__acpt_level is used to define or override the shallow acceptor level of the ptype dopants. The level is measured from the valence band and in the unit of eV. shal__acpt__level_i may also be used when several species of dopants are present: " i " is a placeholder for the species number.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.656 shal_acpt_level_i}
shal__acpt_level_i is used to define or override the shallow acceptor level of the of the ith p-type dopant. The level is measured from the valence band and in the unit of eV. See also shal__acpt__level.
The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.657 shal_dnr_level}
shal_dnr_level is used to define or override the shallow acceptor level of the ntype dopants. The level is measured from the conduction band and in the unit of eV. shal__dnr__level_i may also be used when several species of dopants are present: " i " is a placeholder for the species number.
The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.658 shal__dnr_level_i}
shal__dnr__level_i is used to define or override the shallow acceptor level of the of the ith n-type dopant. The level is measured from the conduction band and in the unit of eV. See also shal__drn_level.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.659 shear_modulus}
shear_modulus defines the shear modulus for the acoustic wave propagation model in SAWAVE.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.660 shift_affinity}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline delta_affinity & real & {\([0.0](\mathrm{eV})\)} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
shift__affinity is used to shift the electron affinity for the whole material. This is very convenient for fused junction devices where two completely different material systems are forced together. This statement may be used to control the band offset easily instead of defining a new affinity for each material.
- delta_affinity is the amount of shift in electron affinity.
- mater is the material number being affected.
```

Example(s)
shift_affinity delta_affinity=0.05 mater=3
shift_affinity delta_affinity=0.05 mater=4
shift_affinity delta_affinity=0.05 mater=5

```

The above example shifts the conduction band downwards by 0.05 eV for materials with material numbers of 3,4 , and 5 .

\subsection*{22.661 solve_lateral_wave}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline export_data & char & {\([\) void \(]\)} \\
\hline cond_valley & intg & {\([1]\)} \\
\hline val_valley & intg & {\([1]\)} \\
\hline
\end{tabular}
solve__lateral_wave activates the eigen equation solver to solve either the Maxwell wave equation or the Schrödinger quantum mechanical wave equations. This statement is similar to statements like equilibrium and scan in that it is the main action of the solver.
- export_data is used to export the solution of eigen equation solver. If several of the same statements are used in sequence, only the first statement needs to define the exported file. All other statements can share the same data file.
- cond__valley and band__valley define the conduction and valence band valleys being solved.

\section*{Examples}
```

solve_lateral_wave cond_valley=1 val_valley=1 \&\&
export_data=cone.qdd

```

The above statement solves Gamma and HH bands and exports the data to file cone.qdd.

\subsection*{22.662 sp.rate__wavel}
\begin{tabular}{|c|c|c|c|}
\hline parameter & data type & values [defaults] & \\
\hline data_file & char & & \\
\hline auto_pn_ratio & char & [no] & \\
\hline field_dep_curves & char & [no] & \\
\hline wavel_range & realx2 & ( \(\mu \mathrm{m}\) ) & \\
\hline conc_range & realx2 & [1.e23 1.e24] \(\left(m^{-3}\right)\) & \\
\hline pn_ratio & real & [1] & \\
\hline av_index & real & [3.3] & \\
\hline field_range & realx2 [1.e5 1.e7] & & \\
\hline curve_number & intg & , & \\
\hline data_point & intg & & \\
\hline
\end{tabular}
sp.rate_wavel plots the spontaneous emission rate versus wavelength.
- data_file is the file to which the graphic data is written in ASCII format.
- auto__pn_ratio is used to indicate if automatic setting of hole/electron density ratio is used in PICS3D simulation. If positive, averaged hole/electron density from the drift-diffusion solver is used. This parameter, if positive, will override pn_ratio.
- field_dep_curves indicates whether ot not the curves are generated with different applied electrical field intensities. If this is set to no, the curves are plotted with different carrier concentrations while the field is set to zero. If this is set to yes, the carrier concentration is set to the initial value in conc_range while the field is varied.
- av__index is the estimated average refractive index.
- wavel_range is the wavelength range.
- conc_range is the electron concentration range in the well.
- pn_ratio is the ratio of hole over electron concentrations. Note that this ratio can be set to an arbitrary number in the gain preview. In the main solver, this ratio is automatically determined by the simulator according to the local Fermi levels.
- field_range is the range of the applied field for producing the different curves. This parameter is active only if field__dep_curves is set to yes.
- curve__number is the number of spectral curves to be plotted for different carrier concentrations.
- data_point is the number of data points in one curve.

\section*{Example(s)}
```

sp.rate_wavel wavel_range=(1.0 1.4) \&\&
conc_range=(5.e23 5.e24) curve_number=5 data_point=100

```

\subsection*{22.663 sparse_eigen_solver}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline use_mf & char & [yes],no \\
\hline fast_dynamic__search & char & [no],yes \\
\hline
\end{tabular}
sparse_eigen_solver is used to control the sparse eigen solver used in the .sol file. These include lateral mode solver for wave guide modes and quantum mechanical wave solver for quantum wells.

\section*{Parameters}
- use_mf controls the use of a multi-frontal sparse matrix solver in the eigenvalue search.
- fast__dynamic_search indicates whether a fast dynamic mode search technique is used.

\section*{Examples}
sparse_eigen_solver use_mf=yes

\subsection*{22.664 special_suprem__contact}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline type & char & \begin{tabular}{l} 
[sym_polygon], surrounding, poly- \\
gon
\end{tabular} \\
\hline polygon_datafile & char & \\
\hline mater_label & char & \\
\hline insul_semi_interf & char & {\([\) no],yes } \\
\hline polygon_center_x & real & {\([1.0]\) (um) } \\
\hline polygon_center_y & real & {\([1.0]\) (um) } \\
\hline radius & real & {\([1.0]\) (um) } \\
\hline inner_radius & real & {\([0.0]\) (um) } \\
\hline num & intg & {\([1]\)} \\
\hline touch_mater & intg & \\
\hline zseg_num & intg & \\
\hline polygon_edge & intg & {\([6]\)} \\
\hline
\end{tabular}
special_suprem_contact is a variation of suprem_contact which allows for more complex contact shapes when importing structures from CSUPREM.

\section*{Parameters}

Many of the parameters in this statement are the same as in sym__polygon_for_semicrafter and contact.
- type Defines the shape of the contact:
- sym_polygon defines a symmetric polygon.
- surrounding indicates that the entire perimeter of the mesh plane is the contact boundary.
- polygon is a user-specified polygon.
- polygon_datafile is a text file containing information about a user-specified polygon.
- polygon_center_x and polygon_center_y are the ( \(x, y\) ) coordinates of the center of the symmetric polygon.
- radius and inner_radius are used when type=sym_polygon. Radius is defined as the distance between the center of the polygon and the corners, i.e. the radius of the circle which encompasses the polygon. The contact area is the space between the two polygons; it forms a sort of "ring" if the inner radius is larger than zero.
- num is the contact number.
- touch_mater determines the material number which serves as the reference for the contact. If a label has previously been defined as an alias for this material, mater_label may be used instead.
- zseg_num is the z-segment number where the contact is located.
- polygon_edge is the number of edges of the symmetric polygon.
- insul_semi_interf instructs the software to look for a semiconductor/insulator interface within the specified range and define this interface as the contact boundary. This method overrides the shape of the contact region that would otherwise be produced by this command.

\section*{Examples}
```

contact num=1
special_suprem_contact type=sym_polygon \&\&
polygon_center_x=0.6 polygon_center_y=0.6 \&\&
inner_radius=0.301 \&\&
radius=0.34 num=1 touch_mater=1 zseg_num=1 polygon_edge=6

```

\subsection*{22.665 spec_heat}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement spec_heat is used to define the specific heat (in \(\mathrm{J} / \mathrm{kg} / \mathrm{K}\) ) of the semiconductor material.

The use of this parameter and related examples are given under material_par in section 22.456 .

\subsection*{22.666 splot_xyz}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & \\
\hline data_file & char & \\
\hline wave_option & char & [right],total,left \\
\hline xy_from & realx2 & \\
\hline xy_to & realx2 & \\
\hline view_xrot & real & {\([0]\).} \\
\hline view_zrot & real & {\([0]\).} \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline zrange & realx2 & \\
\hline z_min & real & \\
\hline z_max & real & \\
\hline mode_index & intg & {\([1]\)} \\
\hline grid_sizes & intgx2 & {\([20,20]\)} \\
\hline trap_index & intg & {\([1]\)} \\
\hline
\end{tabular}
splot_xyz is a post-processor statement used to plot structural data on a 2D plane. Unlike plot_2d, this command can only generate 3D surface plots of scalar variables. Other related commands exist and should be used depending on the 2D/3D nature of the original simulation results. The following rules apply:
- 2D simulations: use plot_2d
- 3D cylindrical simulations with one mesh plane: use plot__2d
- xy plane from a 3D simulation: use cplot_xy for contour plots of scalar variables, splot_xy for 3D surface plots of scalar variables or vplot_xy for vector variables.
- xyz plane from a 3D simulation: use cplot_xyz for contour plots of scalar variables, splot_xyz for 3D surface plots of scalar variables or vplot_xyz for vector variables.

\section*{Parameters}

With the exception of the z-position and vector plot-related parameters that do not apply, all parameters are the same as in plot__2d.
- wave_option controls the plotting of certain wave-related variables in PICS3D.
- \(x y\) _from and \(x y\) _to define the ( \(\mathrm{x}, \mathrm{y}\) ) corners of the plotting plane.
- view_xrot and view_zrot rotate the 3D plot for viewing purposes.
- xrange,yrange and zrange respectively control the display ranges of the \(\mathrm{x}, \mathrm{y}\) and z axes.
- \(\mathbf{z} \_\)min and \(\mathbf{z} \_\)max define the \(z\) coordinates of the corners of the plotting plane.

\section*{Examples}
splot_xyz variable=elec_conc xy_from=(0.5, 1.4970) xy_to=(0.5 1.5030) \&\& grid_sizes=(60, 20) view_zrot=20.

\subsection*{22.667 splot_xy}
\begin{tabular}{|l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & (see list) \\
\hline data_file & char & \\
\hline integration & char & [no], yes \\
\hline math_oper & char & [void],log10,power10 \\
\hline point_ll & realx2 & \((\mu \mathrm{m})\) \\
\hline point_ur & realx2 & \((\mu \mathrm{m})\) \\
\hline view_xrot & real & {\([0]\).} \\
\hline view_zrot & real & {\([0]\).} \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline zrange & realx2 & \\
\hline z & realx2 & \\
\hline integration_xrange & realx2 & {\([-1 . e 41 . e 4] ~(\mu m)\)} \\
\hline integration_yrange & realx2 & {\([-1 . e 41 . e 4](\mu m)\)} \\
\hline grid_sizes & intgx2 & {\([20,20]\)} \\
\hline mode_index & intg & {\([1]\)} \\
\hline trap_index & intg & {\([1]\)} \\
\hline
\end{tabular}
splot_xy is a post-processor statement used to plot structural data on a 2D plane. Unlike plot__2d, this command can only generate 3D surface plots of scalar variables. Other related commands exist and should be used depending on the 2D/3D nature of the original simulation results. The following rules apply:
- 2D simulations: use plot 2d
- 3D cylindrical simulations with one mesh plane: use plot__2d
- xy plane from a 3D simulation: use cplot_xy for contour plots of scalar variables, splot_xy for 3D surface plots of scalar variables or vplot_xy for vector variables.
- xyz plane from a 3D simulation: use cplot_xyz for contour plots of scalar variables, splot_xyz for 3D surface plots of scalar variables or vplot_xyz for vector variables.

\section*{Parameters}

With the exception of the z-position and vector plot-related parameters that do not apply, all parameters are the same as in plot__2d.
- integration tells the software to integrate the variable being plotted over integration_xrange and integration_yrange and display the results in the plotting log (.plt.msg).
- view_xrot and view_zrot rotate the 3D plot for viewing purposes.
- xrange,yrange and zrange respectively control the display ranges of the \(\mathrm{x}, \mathrm{y}\) and z axes.
- \(\mathbf{z}\) is the position on the \(\mathbf{z}\)-axis for the 2 D plot. If necessary, the variable data will be interpolated from neighboring mesh planes.

\section*{Examples}
```

splot_xy variable=elec_conc z=50. grid_sizes=(35, 35) \&\&
xrange=(0. 1.5) yrange=(0.0 3.0) view_xrot=0 view_zrot=30

```

\subsection*{22.668 spont__charge}

This statement is used in the material macro files to define the spontaneous part of the polarization vector \(\left(P_{s p}(z)\right.\) in the literature) which leads to interface charges in GaN materials. This is similar to the charges created through the use of the polarization_charge macro command except that with spont__charge, the straininduced component of the polarization vector is calculated automatically using piezoelectric tensor elements such as e15__bulk.

Note that the piezoelectric tensor elements MUST be defined in the macro when using this statement; otherwise they will default to zero which will lead to an incorrect interface charge.

This macro parameter must be enabled by using the polarization_charge__model command in the .sol file; input__piezo__param=yes must be used to enable this model instead of polarization_ccharge.

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.669 start_loop}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline symbol & char & {\([\) void] } \\
\hline value_from & intg & {\([1]\)} \\
\hline value_to & intg & {\([2]\)} \\
\hline step & intg & {\([1]\)} \\
\hline
\end{tabular}
start_loop is a statement used to repeat a sequence of commands. A symbolic variable is defined as part of the loop and serves to control the number of iterations. The sequence to be repeated must be terminated by a end__loop statement.

\section*{Parameters}
- symbol is the symbol used for the loop variable.
- value_from and value_to are the starting and ending values, respectively, of the loop variable.
- step is increase of the loop variable at each iteration.

\section*{Examples}
```

start_loop symbol=%j value_from=1 value_to=3 step=1

```
scan var=voltage_\%j value_to=0.5
end_loop

The above commands cause the symbol \(\% \mathrm{j}\) to take values of 1,2 and 3 and repeat the scan command accordingly. The equivalent commands without the loop are as follows:
scan var=voltage_1 value_to=0.5
scan var=voltage_2 value_to=0.5
scan var=voltage_3 value_to=0.5

\subsection*{22.670 start_qwire_complex}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline column_start & intg & {\([1]\)} \\
\hline column_end & intg & {\([3]\)} \\
\hline
\end{tabular}
start__qwire_complex is used in the .layer file to define the xy cross-section of a 2 D quantum-confined region (i.e. a quantum wire). All the layers and columns between this statement and end__qwire_complex form part of the quantum wire region. Note that in order to use this statement, complex MQW macros (normally labeled starting with "cx-") must be used to define the materials in the wire crosssection.

When the .layer file is processed after using this statement, specialized commands including begin__qwire_complex and qwire_complex_region will be defined in the .mater file to define the quantum wire. Without this statement, these complex MQW regions would merely form a quantum well region with 1D confinement.

\section*{Parameters}
- column_start and column_end are the column numbers where the quantum wire respectively begins and ends.

\subsection*{22.671 start__same_complex}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline tag & char & {\([\) void] } \\
\hline
\end{tabular}
start__same_complex is used in the .layer file to define a smaller complex MQW chunk of a larger superlattice.

The quantum mechanical solver in the software does not handle periodic boundary conditions. Instead, an infinite potential well is used on the outer edges of the MQW region. Since it is numerically unfeasible of solving the QW states of a superlattice consisting of dozens of periods with this kind of boundary condition, a common approximation is to define a smaller chunk of 5-10 periods and use these QW states to represent the entire superlattice.

Using start__same_complex allows the smaller superlattice chunk to be repeated many times in the input files but lets the software know that all these complex MQW regions are the same which can help save on computation time
start_same_complex affects all complex MQW regions defined after this statement; its effects are terminated by the matching end__same_complex statement.

\section*{Parameters}
- tag is a user-defined label identifying the complex MQW region.

\section*{Examples}
```

start_loop symbol=%i value_from=1 value_to=25
start_same_complex tag=period4well
.....
isolate_complex
end_same_complex
end_loop

```

\subsection*{22.672 stop}

This statement forces the solver to stop: it has no parameters.

\subsection*{22.673 strain_bar}
strain_bar is an active layer macro statement used to define the strain in the barrier region. It is only used in basic QW macros where the active macro contains parameters for both the barrier and the well

This statement is otherwise identical to strain well.

\subsection*{22.674 strain_well}
strain_well is an active layer macro statement used to define the strain in the quantum well. This command is only used for zincblende wells; wurtizte regions
compute the strain based on lattice values using different commands.
By convention, compressive strain is negative and the strain is given as a fraction (e.g., 3 percent strain is 0.03 ).

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.675 strained_mobility}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline carrier_type & char & {\([\mathrm{n}] \mathrm{p}\)} \\
\hline vsat_factor & real & {\([0.8]\)} \\
\hline strained_material & char & {\([\) yes \(]\), no } \\
\hline import_ref_population & char & {\([\) void \(]\)} \\
\hline export_ref_population & char & {\([\) void \(]\)} \\
\hline vsat_factor & real & {\([0.8]\)} \\
\hline unstrained_110_enh & real & {\([1]\).} \\
\hline angle_from_100 & real & {\([0\).\(] (degree)\)} \\
\hline
\end{tabular}

The statement strained_mobility is used to specify the strain dependent mobility for strained silicon. The basic idea is to evaluate a strain dependent mobility enhancement factor based on valley/subband population which is then used to scale the unstrained mobility.

The stained mobility is evaluated according to valley/subband averaged effective conduction masses in different directions, as well as valley splitting.

\section*{Parameters}
- carrier_type is the carrier type of interest.
- strained_material indicates whether the structure is strained. This setting affects reference population data import/export as detailed below.
- import_ref_population is the data file containing reference population data for the unstrained material. It is imported to compute the strain-induced effective mass and mobility values when strained__material=yes.
- export_ref_population is the data file which is used to store unstrained population data for later use when strained__material=no.
- vsat_factor is the factor used for the saturation velocity. If this factor is unity, both low field and the saturation velocity are enhanced by the same factor.
- unstrained_110_enh is the enhancement of unstrained hole mobility in the 110 direction due to anisotropic effective hole mass.
- angle_from \(\_\mathbf{1 0 0}\) is the angle of crystal orientation with respect to 100 .
```

Examples
strained_mobility carrier_type=p vsat_factor=0.5 \&\&
import_ref_population=ref_pmos_population strained_material=yes \&\&
unstrained_110_enh=0.93 angle_from_100=45

```

The above command imports quantum level reference data from a file placed in the installation directory and sets up the strained mobility model for angle=45 degrees from 100.

\subsection*{22.676 stretch__vertical__line}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline corner & char & \begin{tabular}{l}
{\([\) bottom_left], bottom_right, } \\
top_right, top_left
\end{tabular} \\
\hline delta_x & real & {\([0.0](\mu m)\)} \\
\hline delta_y & real & {\([0.0](\mu m)\)} \\
\hline
\end{tabular}
stretch__vertical_line is used in the .layer file to alter the position of a vertical line. This statement should be used immediately after a layer__mater in order to identify the vertical line which is to be altered.

The stretching algorithm is outlined in Fig. 22.30: point \(C\) is moved to \(C^{\prime}\) and other segment lengths are modified to respect the following proportionality rule:
\[
\frac{\overline{A B^{\prime}}}{\overline{B^{\prime} C^{\prime}}}=\frac{\overline{A B}}{\overline{B C}}
\]

The algorithm can further be understood using a simple children's toy as a reference; it consists of a white board on which vertical rubber bands are anchored in order to draw various shapes. By default, all points on the top/bottom of a vertical line


Figure 22.30: Illustration of vertical line stretching.
are anchored on the board, as are all reference points on vertical lines not being stretched (Fig. 22.31 a) ). The final grid is formed by drawing horizontal lines on the picture to connect movable reference points: lack of parallelism is simply due to camera positioning and manual positioning of the reference points.

When a single point is moved (Fig. 22.31 b ) ), the affected vertical line is stretched all other points on this line move in a proportional manner. If a second point on the same line is forced to move with \(\Delta=0\) (Fig. 22.31 c ) ), it is put back to its original location which affects the stretching of other connected points and also puts them back to their original location. In this way, complex layer shapes may be drawn without resorting to the low-level .geo format: points may be moved in many different ways using different references on the same line or by combining movement on different lines.

This method also allows for layers of varying height rather than simply varying width as per the upper_w1 parameter of the layer statement. In many cases, modifying the height instead of the width results in a better-quality mesh since the ratio of the distortion \(\left(\frac{\Delta_{y}}{\Delta_{x}}\right)\) is closer to unity.

\section*{Parameters}
- corner defines the reference point used to pinch and stretch the vertical line. The corner is defined using the polygon of the preceding layer_mater statement.
- delta_x and delta_y are the offset applied to the reference point when stretching the vertical line.


Figure 22.31: Illustration of vertical line stretching using a child's toy: before stretching (a), with one moved point (b) and with a second point forcibly moved back to its original position (c).

\subsection*{22.677 stress__solution}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline initial_stress_model & char & [stress_set], wurtzite \\
\hline
\end{tabular}
stress_solution enables the use of a 3D mechanical stress solver; it is meant to be used alongside the qdot__individual statement.

\section*{Parameters}
- initial_stress_model controls the initial stress on mesh boundaries. If \(=\) stress _set the boundary conditions are set by the set_initial_stress statement.

As of v.2016, only =stress_set is a valid choice; other parameter values are still under development.

\subsection*{22.678 suprem_contact}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline side & char & [upper],lower,left,right \\
\hline mater_label & char & \\
\hline insul_semi_interf & char & {\([\) no],yes } \\
\hline xrange & realx2 & \((\mu m)\) \\
\hline yrange & realx2 & \((\mu m)\) \\
\hline num & intg & \\
\hline touch_mater & intg & \\
\hline zseg_num & intg & \\
\hline
\end{tabular}
suprem_contact is used to define electrodes on the mesh imported from CSUPREM, a process simulation program typically used to simulate the dopant profile.

\section*{Parameters}
- side specifies the which side the contact is on.
- num is the contact number.
- xrange and yrange define the extent of the contact.
- touch_mater is used to help the software determine which material should be used to determine the boundary condition. This can be helpful if a contact touches multiple materials. If a label has previously been defined as an alias, mater_label may be used instead.
- insul_semi__interf instructs the software to look for a semiconductor/insulator interface within the specified range and define this interface as the contact boundary. This method overrides the shape of the contact region that would otherwise be produced by this command.
- zseg_num is the z-segment number where the contact is located.

\section*{Examples}
suprem_contact xrange \(=(-0.050 .05)\) num=2 side=upper touch_mater=1
The above defines a contact in the region \(x \in[-0.05,0.05]\) on top of the mesh and which touches material number 1 .

\subsection*{22.679 suprem_impurity_define}
\begin{tabular}{|l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline name & char & void \\
\hline deep_level_trap & char & {\([\) no \(]\), yes } \\
\hline charge_type & char & {\([\) donor], acceptor } \\
\hline level & real & {\([0.01](\mathrm{eV})\)} \\
\hline elec_capture & real & {\([1 . \mathrm{e}-21]\left(1 / \mathrm{m}^{2}\right)\)} \\
\hline hole_capture & real & {\([1 . \mathrm{e}-21]\left(1 / \mathrm{m}^{2}\right)\)} \\
\hline
\end{tabular}
suprem_impurity__define is used control the behavior of impurities loaded from a CSUPREM process simulation.

\section*{Parameters}
- name is the impurity name in CSUPREM. Note that impurities activated manually or through a diffusion step in the process simulation usually have an "_active" suffix: plotting of the CSUPREM structure is recommended to double-check the impurity name.
- deep__level__trap controls whether the impurity acts as a shallow dopant or a deep level trap. In the latter case, the trap states have their own Fermi level rather than being in quasi-equilibrium with the carrier density.
- charge_type determines if the impurity acts as a donor or an acceptor.
- level is the energy position of the impurity.
- elec_capture and elec_capture are the capture cross-section coefficients used in the trap models.

\section*{Examples}
suprem_impurity_define name=cu deep_level_trap=yes \&\& charge_type=donor level=0.8 elec_capture=1.e-21 hole_capture=1.e-21

The above loads the raw (non-activated) copper ( Cu ) ion distribution from a customized CSUPREM implantation step into the device simulation. If a diffusion process step had also been used to activate the impurity, the name parameter should be changed to cu_active in order to load that diffused profile.

\subsection*{22.680 suprem_property}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline generic_impurity & char & [void],donor,acceptor \\
\hline donor_type2 & char & \begin{tabular}{l} 
[void], arsenic ,phosphorus ,anti- \\
mony ,selenium ,silcon ,germanium \\
,generic
\end{tabular} \\
\hline acceptor_type2 & char & \begin{tabular}{l} 
[void] ,boron ,beryllium ,magne- \\
sium ,tin ,zinc ,carbon ,generic
\end{tabular} \\
\hline n_doping_level & real & {\([0.01]\) (eV) } \\
\hline p_doping_level & real & {\([0.01]\) (eV) } \\
\hline n_doping_level2 & real & {\([0.01](\mathrm{eV})\)} \\
\hline p_doping_level2 & real & {\([0.01]\) (eV) } \\
\hline qw_thick & real & {\([0.01]\) (um) } \\
\hline qw_xrange & realx2 & {\([-0.050 .05]\) (um) } \\
\hline silicon_mater & intg & \\
\hline poly_mater & intg & \\
\hline gaas_mater & intg & \\
\hline aluminum_mater & intg & \\
\hline oxide_mater & intg & \\
\hline nitride_mater & intg & \\
\hline oxynitride_mater & intg & \\
\hline photoresist_mater & intg & \\
\hline qw_silicon_mater & intg & \\
\hline
\end{tabular}
suprem_property is used to define properties related to data imported from the CSuprem, a process simulation program typically used to simulate the dopant profile. Please note that the coordinate system in APSYS is different than SUPREM in that the positive y coordinate points upwards in the former.
- generic_impurity defines the type of dopant assigned to generic impurity.
- donor_type2 assigns a different type (type 2) of donor so that different ionization energy can be defined.
- acceptor_type \(\mathbf{2}\) assigns a different type (type 2 ) of acceptor so that different ionization energy can be defined.
- n_doping_level is the ionization energy of the donor.
- p__doping_level is the ionization energy of the acceptor.
- n_doping_level2 is the ionization energy of the donor type 2 .
- p__doping_level2 is the ionization energy of the acceptor type 2 .
- \(q \mathbf{w}\) __thick is the quantum well (qw, if any) thickness.
- qw_xrange is the x-range of he quantum well.
- silicon__mater defines the material number for silicon.
- poly_mater defines the material number for poly silicon.
- gaas_mater defines the material number for GaAs.
- aluminum__mater defines the material number for aluminum.
- oxide_mater defines the material number for SiO 2 .
- nitride__mater defines the material number for silicon notride.
- oxynitride_mater defines the material number for oxy-nidride.
- photoresist_mater defines the material number for photo-resist.
- qw__silicon_mater defines the material number for quantum-well silicon. This is actually the same material as silicon but since quantum well region receives special treatment, a different material number is assigned.
```

Example(s)
suprem_property silicon_mater=1 oxide_mater=3 qw_silicon_mater=2 \&\&
poly_mater=4 \&\&
generic_impurity=acceptor acceptor_type2=generic p_doping_level2=0.156 \&\&
qw_xrange=(-0.05 0.05)

```

The above defines a QW from -0.05 to 0.05 microns and also defines acceptor type 2 as having ionization energy of 0.156 eV .

\subsection*{22.681 suprem_to_apsys_material}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline suprem_mater & intg & {\([1]\)} \\
\hline apsys_mater & intg & {\([1]\)} \\
\hline
\end{tabular}

This command is used when importing simulation data from our process simulator CSUPREM for use in APSYS. It maps material numbers from one software to the other.

\section*{Parameters}
- suprem_mater is the original material number in the CSUPREM file.
- apsys_mater is the new material number that will be used in APSYS.

\section*{Examples}
suprem_to_apsys_material suprem_mater=3 apsys_mater=4

\subsection*{22.682 sym_polygon_for_semicrafter}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline similar_polygon_data & char & {\([\) void \(]\)} \\
\hline polygon_center_x & real & {\([1.0](\mathrm{um})\)} \\
\hline polygon_center_y & real & {\([1.0](\mathrm{um})\)} \\
\hline plane_size_x & real & {\([2.0](\mathrm{um})\)} \\
\hline plane_size_y & real & {\([2.0](\mathrm{um})\)} \\
\hline plane_start_x & real & {\([0.0](\mathrm{um})\)} \\
\hline plane_start_y & real & {\([.0](\mathrm{um})\)} \\
\hline polygon_edge & intg & {\([6]\)} \\
\hline mesh_per_edge & intg & {\([5]\)} \\
\hline plane_mesh_x & intg & {\([30]\)} \\
\hline plane_mesh_y & intg & {\([30]\)} \\
\hline uniform_below_layer & intg & {\([1]\)} \\
\hline outer_column & intg & {[]} \\
\hline
\end{tabular}
sym__polygon_for_semicrafter is a .layer pre-processing statement used to generate a set of CSUPREM mesh generation commands. It is meant to be used as quick alternative to the SemiCrafter GUI for simple shapes such as hexagonal nanowires.

When used, this statement changes the normal operation of the .layer file. Instead of defining the structure of an xy mesh plane, the layers now define the vertical stacking in the \(z\) direction with each layer corresponding to a z-segment. The top-view of the new structure (xy plane) is first given by a rectangular mesh plane. Etch statements from CSUPREM are then used to define a symmetric polygon centered somewhere on this mesh plane.

See also layers_for_semicrafter for a simplified version of this command which allows rectangular shapes in the xy plane.

\section*{Parameters}
- similar_polygon_data is a text file containing information on the polygon. It can be used as an alternative to the other parameters below.
- polygon_center_x and polygon_center_y are the ( \(\mathrm{x}, \mathrm{y}\) ) center coordinates of the new polygon.
- plane_start__x and plane_start_y determine the position of the lower left corner of the plane containing the polygon in the xy plane.
- plane__size_x and plane_size__y determine the extent of the plane containing the polygon in the xy plane.
- polygon_edge is the number of edges of the symmetric polygon.
- mesh_per_edge determines the number of mesh points to assign to each edge during the CSUPREM etch process. This works in conjunction with plane__mesh_x and plane__mesh_y which define the regular mesh for the plane containing the polygon.
- uniform__below_layer specifies the depth of the etch used to create the symmetric polygon. Below this layer, the original mesh plane is not etched by CSUPREM and the rectangular plane (substrate) is preserved.
- outer_column is the right-most column in the substrate. All columns to the right of this one are not included in the simulation.

\section*{Examples}
sym_polygon_for_semicrafter polygon_center_x=0.6 polygon_center_y=0.6 \&\& plane_size_x=1.2 plane_size_y=1.2 polygon_edge=6 mesh_per_edge=5 \&\& plane_mesh_x=30 plane_mesh_y=30

\subsection*{22.683 sym_polygon_quantum__well}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline polygon_center_x & real & {\([1.0](\mathrm{um})\)} \\
\hline polygon_center_y & real & {\([1.0](\mathrm{um})\)} \\
\hline polygon_edge & intg & {\([6]\)} \\
\hline
\end{tabular}
sym__polygon_quantum__well is a .sol statement used to define a region with quantum confinement in the area between two symmetric polygons. Based on the input, the software will look to neighboring materials to identify the QW and barrier regions. The main application of this is nanowire LEDs.
See also sym__polygon_for__semicrafter which is used to define the initial structure in most problems where sym_polygon_quantum__well would be used.

\section*{Parameters}
- polygon__center_x and polygon_center_y are the ( \(x, y\) ) coordinates of the center of the polygon.
- polygon_edge is the number of edges of the symmetric polygon.

\section*{Examples}
sym_polygon_quantum_well polygon_center_x=0.6 polygon_center_y=0.6 \&\& polygon_edge=6

\subsection*{22.684 sym_polygon_taper}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline taper_info_file & char & [sym_polygon_taper_info.txt] \\
\hline
\end{tabular}
sym__polygon_taper imports a file which defines the taper profile between mesh planes. This statement is generated automatically by layer.exe when using commands such as sym__polygon_for_semicrafter. The taper profile is usually determined automatically by the polygon shapes in the original layer structure.

\subsection*{22.685 symbol_variable}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variation & char & [function] table \\
\hline returned & char & \\
\hline num & intg & {\([1]\)} \\
\hline
\end{tabular}
symbolic__variable is used to define functional relationship between variables in the command system. The supported syntax and mathematical expressions are identical to those in the material macro library file. Please refer to the header information in the crosslight.mac file that comes with the software installation.
- variation decides if the relationship is defined by a function or a look up table. For the former, a math function of the form should follow
function(var1,var2,...) end_function
For a table the following form should be used:
table(var1,var2,...) end_table
- returned is the returned symbol which may be used in any of the states following it.
- num is a number labeling the relation definition in case there are more than one such definitions.

\section*{Example(s)}
```

symbolic_variable returned=%y

```
function( \(\%\) x)
\(s 2=\% \mathrm{x} * * 2+\sin (\% \mathrm{x})\);
\(s 2 * * 2+\% x-5\).
end_function

The above function is used to define a relation between symbolic variable \(\% \mathrm{x}\) and \%y so that
symbolic_variable variation=table returned=\%ai
table(\%volt)
0.310.
0.818.
1.828.
end_talble

This statement uses a table to define the relation. Linear interpolation will be used is the argument does not fall on the tabulated values.

\subsection*{22.686 taper_between_segments}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline y1_from_label & char & \\
\hline y2_from_label & char & \\
\hline y1_to_label & char & \\
\hline y2_to_label & char & \\
\hline layer_data_file & char & \\
\hline xpoint_from & real & (um) \\
\hline top_xpoint_from & real & (um) \\
\hline xpoint_to & real & (um) \\
\hline top_xpoint_to & real & (um) \\
\hline yrange_from & realx2 & {\([-1 . e 91 . \mathrm{e} 9]\) (um) } \\
\hline yrange_to & realx2 & {\([-1 . \mathrm{e} 91 . \mathrm{e} 9]\) (um) } \\
\hline from_segment & intg & {\([1]\)} \\
\hline to_segment & intg & \\
\hline
\end{tabular}
taper_between_segments establishes a taper connection between the first and last plane of two neighboring z-segments. This statement replaces many parameters that were previously part of the z_structure statement. See also taper_outer__boundary.

Note that a common misconception about tapers is that they allow sampling of the region between segments. This is not so: actual mesh planes must be used to sample longitudinal variations. Tapers only control how the mesh points couple to each other between planes.

A more complete discussion on the 3D modeling scheme used by Crosslight software tools can be found in Sec. 6.3.

\section*{Parameters}
- \(\mathbf{y 1}\) _from_label and \(\mathbf{y 2}\) _from_label are user labels defining the [y1,y2] range of the taper line at the beginning of the taper. The matching points of the taper line at the end of the taper are given by \(\mathbf{y} \mathbf{1}\) _ to_label and y2_to_label.

Instead of labels, absolute coordinates can also be specified using yrange_from and yrange_to.
- xpoint_from and xpoint__to are the x-coordinates of the taper line at the beginning and end of the taper, respectively. If the taper line is vertical, then only one value is required. Otherwise, xpoint_from and xpoint_to correspond to the minimum \(x\) value while top__xpoint_from and top__xpoint__to are the maximum \(x\) value of the taper line on each side of the taper.
- from_segment is the z-segment number immediately before the taper. The next segment (after the taper) is usually determined automatically but can also be specified using to__segment.
- layer__data_file is the name of a file describing variations in layer thicknesses along the taper. This file is usually generated automatically by the process simulator CSUPREM.
- layer is a layer number used to help the software connect taper lines to the right layer if there is a thickness variation along the taper.

\subsection*{22.687 taper_outer_boundary}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline left_taper & char & {\([\mathrm{no}]\)} \\
\hline right_taper & char & {\([\mathrm{no}]\)} \\
\hline bottom_taper & char & {\([\mathrm{no}]\)} \\
\hline top_taper & char & {\([\mathrm{no}]\)} \\
\hline from_segment & intg & {\([1]\)} \\
\hline
\end{tabular}
taper_outer boundary essentially serves the same purpose as taper__between__segments. but instead of using point coordinates, taper lines generated by this command are based on the outer boundaries of the mesh planes on each side of the taper.

\section*{Parameters}
- left__taper, right__taper, top__taper and bottom__taper uses a straight edge on the respective edge of the device as a taper line.
- from_segment is the z-segment number immediately before the taper.

\subsection*{22.688 tau_density}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline hh_or_lh & char & {\([\mathrm{hh}] \mathrm{lh}\) ch } \\
\hline gamma_detail & char & {\([\mathrm{no}]\) yes } \\
\hline data_file & char & {\([\) void \(]\)} \\
\hline density_start & real & {\([2 . \mathrm{e} 23]\left(\mathrm{m}^{-3}\right)\)} \\
\hline density_end & real & {\([2 . \mathrm{e} 24]\left(\mathrm{m}^{-3}\right)\)} \\
\hline pn_ratio & real & {\([1]\).} \\
\hline data_point & intg & {\([10]\)} \\
\hline elec_level & intg & {\([1]\)} \\
\hline hole_level & intg & {\([1]\)} \\
\hline
\end{tabular}
tau_density plots the intraband relaxation time (ie., tau_scat) in \(10^{-13}\) sec. versus carrier density. This statement is only used in the gain preview module.
- hh_or_lh indicates whether heavy hole or light hole subband is involved.
- gamma_detail may be used to plot individual contribution to gain broadening factor \((\Gamma)\) from different scattering mechanisms such as electron-electron, electron-hole, etc..
- data_file is the file to which the graphic data is written in ASCII format.
- density_start is the starting point of the carrier density at which the intraband relaxation time is calculated.
- density__end is the ending point of the carrier density at which the intraband relaxation time is calculated.
- pn_ratio is the ratio of hole over electron concentrations. Note that this ratio can be set to an arbitrary number in the gain preview. In the main solver, this ratio is determined automatically by the simulator according to the local Fermi levels.
- data_point is the number of data points in data curve.
- elec_level and hole_level are the electron and hole subband levels involved in the optical transition.
```

Example(s)
tau_density gamma_detail=yes density_end=5.e24

```

\subsection*{22.689 tau_energy}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}
tau_energy is the energy relaxation time of hot electrons in seconds. It is used only when hot electron model is activated.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

\subsection*{22.690 tau model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline char & char & \\
\hline phonon_omega_LO & real & {\([34 . \mathrm{E}-3](\mathrm{eV})\)} \\
\hline epsilon_infinity & real & {\([11.4]\)} \\
\hline mater & intg & 1 \\
\hline
\end{tabular}
tau_model is used to turn on the intraband scattering model discussed in Sec. 10.2. When this model is activated, the constant \(\frac{\hbar}{\tau}\) normally defined in active_reg is overridden and replaced with a temperature-dependent calculated value.

This statement may be used in both the gain preview file (.gain) and the main input file (.sol).

\section*{Parameters}
- phonon_omega__LO is the longitudinal optical phonon energy in eV.
- epsilon_infinity is the optical (or at infinite frequency) dielectric constant.
- mater is the material number of the active region under consideration. If a label has previously been defined, mater_label may be used instead.

\section*{Examples}
```

tau_model mater=2 phonon_omega_LO=46.E-3 epsilon_infinity=10.4

```

\subsection*{22.691 tau_temperature}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline hh_or_lh & char & {\([\mathrm{hh}]\) lh ch } \\
\hline gamma_detail & char & {\([\) no \(]\) yes } \\
\hline data_file & char & {\([\) void \(]\)} \\
\hline temp_start & real & {\([200]\).} \\
\hline temp_end & real & {\([400]\).} \\
\hline density & real & {\([2 . \mathrm{e} 24]\left(\mathrm{m}^{-3}\right)\)} \\
\hline pn_ratio & real & {\([1]\).} \\
\hline data_point & intg & {\([10]\)} \\
\hline elec_level & intg & {\([1]\)} \\
\hline hole_level & intg & {\([1]\)} \\
\hline
\end{tabular}
tau_temperature plots the intraband relaxation time (ie., tau__scat) in \(10^{-13}\) sec. versus temperature. This statement is only used in the gain preview module.
- hh_or_lh indicates whether heavy hole or light hole subband is involved.
- gamma_detail may be used to plot individual contribution to gain broadening factor \((\Gamma)\) from different scattering mechanisms such as electron-electron, electron-hole, etc..
- data_file is the file to which the graphic data is written in ASCII format.
- temp_start is the starting point of temperature range.
- temp_end is the ending point of temperature range.
- density is the carrier density at which the intraband relaxation time is calculated.
- pn_ratio is the ratio of hole over electron concentrations. Note that this ratio can be set to an arbitrary number in the gain preview. In the main solver, this ratio is determined automatically by the simulator according to the local Fermi levels.
- data_point is the number of data points in data curve.
- elec__level and hole_level are the electron and hole subband levels involved in the optical transition.
```

Example(s)
tau_temperature temp_start=200. temp_end=400. density=2.e24 \&\&
data_point=10 elec_level=1 hole_level=1 gamma_detail=yes

```

\subsection*{22.692 tax_mass_bar}
tax_mass_bar is an active layer macro statement used to define the anisotropic effective mass of the conduction band for silicon quantum MOS. The band structure model has a ellipsoidal shaped constant-energy surface of cylindrical symmetry around a symmetry axis. For example if the ellipsoid is symmetric around the z -axis, the energy dispersion becomes:
\[
\begin{equation*}
E\left(k_{x}, k_{y}, k_{z}\right)=E_{0}+\frac{\hbar^{2}}{2 m_{0}}\left(\frac{k_{z}^{2}}{\text { lax_mass }}+\frac{k_{x}^{2}}{\text { tax_mass }}+\frac{k_{y}^{2}}{\text { tax_mass }}\right) \tag{22.127}
\end{equation*}
\]
tax__mass_barr thus defines the transverse mass perpendicular to the symmetry axis in the quantum barrier region.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.693 tax_mass_well}
tax__mass__well is identical to tax__mass__bar but defines the transverse mass in the well region rather than in the barrier.

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.
22.694 temp__dep_macro__table
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline doping_logscale & char & {\([\) yes \(]\)} \\
\hline disable_table_method & char & {\([\mathrm{no}]\)} \\
\hline temper_points & intg & {\([60]\)} \\
\hline doping_points & intg & {\([40]\)} \\
\hline wavelength_points & intg & {\([60]\)} \\
\hline other_points & intg & {\([40]\)} \\
\hline
\end{tabular}

This statement controls the behavior of temperature-dependent macro parameters in the software. At the beginning of the simulation, macros are evaluated at fixed temperature values and a multi-dimensional table is constructed. Later, material parameters are obtained as needed by interpolation over this table.
The temperature range of the table is governed by the parameters of the heat_flow statement.

\section*{Parameters}
- doping_logscale controls whether the doping points are spaced on a linear or logarithmic scale.
- disable__table_method disables the temperature interpolation table and reverts to an older method based on a polynomial fit.
- temper_points is the number of temperature points in the interpolation table.
- doping_points is the number of doping points in the interpolation table. It used as an extra dimension for the interpolation (.e.g graded doping region).
- wavelength_points is the number of wavelength points in the interpolation table. It used as an extra dimension for the interpolation (e.g. spectrumdependent quantities).
- other__points is the number of points used for other graded properties (e.g. composition). Again, this is an extra dimension used for interpolation.

\section*{Examples}
```

temp_dep_macro_table temper_points=100

```

\subsection*{22.695 temperature}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline temp & real & {\([300](\mathrm{K})\)} \\
\hline
\end{tabular}
temperature sets the isothermal temperature in the device.

\section*{Parameters}
- temp is the temperature in K.

\section*{Examples}
```

temperature temp=350

```

\subsection*{22.696 thermal_interf}
\begin{tabular}{|c|c|c|}
\hline parameter & data type & values [defaults] \\
\hline x_label & char & [void] \\
\hline y_label & char & [void] \\
\hline within_x1_label & char & [void] \\
\hline within_x2_label & char & [void] \\
\hline within_y1_label & char & [void] \\
\hline within_y2_label & char & [void] \\
\hline thm_num & intg & \\
\hline thm_type & intg & [1] \\
\hline thm_with_x & realx2 & [-1.1e19 1.1e19](um) \\
\hline thm_with_y & realx2 & [-1.1e19 1.1e19](um) \\
\hline thm_x & real & (um) \\
\hline thm_y & real & (um) \\
\hline thm_lat_temp & real & [300.] (Kelvin) \\
\hline thm_ht_flow & real & [100.] (2D: W/m, 3D:W) \\
\hline thm_cond & real & [10.] (2D: \(\mathrm{W} / \mathrm{K}) / \mathrm{m}, 3 \mathrm{D}: \mathrm{W} / \mathrm{K})\) \\
\hline thm_ext_temp & real & [300.] (K) \\
\hline
\end{tabular}

The statement thermal_interf defines the thermal properties of a non-electrode thermal boundary.

\section*{Parameters}

The parameters of this command relating to the positioning of the thermal interface are the same as those in the interface statement. The parameters related to the thermal properties are the same as those of the contact statement, with some minor syntax variations. For the sake of brevity, these parameters will be omitted here.
- thm_num is the thermal interface number. This number is distinct from the contact numbers even though contacts also serve as thermal boundaries.

\section*{Examples}

Example(s)
thermal_interf thm_num = 1 thm_type = 1 thm_lat_temp \(=77\). \&\&
thm_with_x = (2. 2.) thm_with_y = (2.2 3.)
thermal_interf thm_num \(=2\) thm_type \(=2\) thm_ht_flow \(=0\). \&\&
thm_y \(=3\).

\subsection*{22.697 thermal_kappa}
thermal_kappa defines the thermal conductivity \(\kappa\left(\right.\) in \(\left.\mathrm{W} /\left(\mathrm{m}^{*} \mathrm{~K}\right)\right)\) for a given material. This is used to solve the heat flow equation and is otherwise ignored.
The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.698 thermal_kappa_xy}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline dir & char & {\([\mathrm{y}], \mathrm{x}\)} \\
\hline mater_label & char & \\
\hline factor & real & {\([1]\).} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}

This statement modifies the thermal conductivity defined by thermal_kappa to create an anisotropic \(\kappa\) on the x -y plane. This may be useful for the effective medium approximation of multiple layers (such as DBR mirrors in a VCSEL).

\section*{Parameters}
- dir is the direction in which the \(\kappa\) is scaled.
- factor is the scaling factor applied to \(\kappa\).
- mater is the number of the material affected by this statement. If a label has previously been defined, mater_label may be used instead.

\section*{Examples}
```

thermal_kappa_xy dir=y factor=0.6 mater=3

```

The above statement decreases \(\kappa\) in the \(y\)-direction by a factor of 0.6 in material number 3 .

\subsection*{22.699 tmass__gamma__bar}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

It is the barrier conduction band effective mass in direction perpendicular to the c -axis. This statement is applicable for wurtzite structure active region [1]. The mass in c-axis direction is specified by mass__gamma__bar.
[1] S. L. Chuang, "Optical Gain of Strained Wurtzite GaN Quantum Well Lasers", IEEE J. Quantum Electron., VOL. 32, NO. 10, OCTOBER 1996, p. 1791

\subsection*{22.700 tmass_gamma_bulk}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

It is the conduction bane effective mass in direction perpendicular to the c-axis. This statement is applicable for wurtzite structure bulk region [1].
[1] S. L. Chuang, "Optical Gain of Strained Wurtzite GaN Quantum Well Lasers", IEEE J. Quantum Electron., VOL. 32, NO. 10, OCTOBER 1996, p. 1791

\subsection*{22.701 tmass_gamma__well}
\begin{tabular}{|l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .

It is the well conduction band effective mass in direction perpendicular to the c-axis. This statement is applicable for wurtzite structure active region [1]. The mass in c-axis direction is specified by mass__gamma_well.
[1] S. L. Chuang, "Optical Gain of Strained Wurtzite GaN Quantum Well Lasers", IEEE J. Quantum Electron., VOL. 32, NO. 10, OCTOBER 1996, p. 1791

\subsection*{22.702 top_contact}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline contact_type & char & [ohmic] schottky \\
\hline use_schottky_xp & char & {\([\) yes \(]\) no } \\
\hline column_num & intg & {\([1]\)} \\
\hline from & real & \\
\hline to & real & \\
\hline contact_num & intg & \\
\hline barrier & real & (volt) \\
\hline work_function & real & (volt) \\
\hline intern_xp_size & real & {\([0.0002]\) (um) } \\
\hline
\end{tabular}
top_contact defines the placement of the top contact in the .layer file. When the .layer file is processed, it defines boundary conditions for polygons in the .geo file and creates a matching contact statement in the .mater file.

\section*{Parameters}
- contact_type indicates the type of contact and can take either ohmic or schottky.
- use__schottky__xp is used to control the use of extra point near the contact in case the contact is of Schottky type.
- column__num describes the column where this contact is found.
- to and from set the x-range where the contact lies. Note that the origin is at the upper left-hand corner of each polygon and that units are in \(\mu \mathrm{m}\).
- contact__num defines the index number of the contact.
- barrier is the barrier height of the Schottky contact.
- work_function is the work function of the Schottky contact.
- intern_xp__size is the internal extra point size around a Schottky contact.

\section*{Examples}
```

top_contact column_num=3 from=0 to=1.8 contact_num=1

```

\subsection*{22.703 trap_assisted_tunnel_junc}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline level_from_cond & real & {\([0.6](\mathrm{eV})\)} \\
\hline tau_n & real & {\([1 . \mathrm{e}-2](\mathrm{s})\)} \\
\hline tau_p & real & {\([1 . \mathrm{e}-2](\mathrm{s})\)} \\
\hline pf_expo_factor & real & {\([1]\).} \\
\hline set_tj_num & intg & \\
\hline
\end{tabular}
trap__assisted_tunnel_junc defines a trap-assisted (interband) tunneling junction model[1]. This command must be used in conjunction with tunnel_junc with use__physical__model=yes.

For trap-assisted intraband tunneling, please see trap__assisted__tunneling.

\section*{Parameters}
- level_from_cond is the energy level of the trap, measured from the conduction band.
- tau_n and tau_p are the trap carrier lifetimes.
- pf_expo_factor is the Poole-Frenkel shift of the trap level due to the local field. The same formula used for the incomplete ionization of traps (Sec. 5.1.4) is used here.
- set_tj__num, when specified, limits the trap settings to a specific tunnel junction (numbered according to the order of the tunnel_junc statements). If this parameter is omitted, all tunnel junctions share the same settings.

\section*{Examples}
```

tunnel_junc use_physical_model=yes yrange=(0.9 1.1)
trap_assisted_tunnel_junc level_from_cond=0.8 tau_n=1.e-2 tau_p=1.e-2

```

\subsection*{22.704 trap_assisted_tunneling}
\begin{tabular}{|c|c|c|}
\hline parameter & data type & values [defaults] \\
\hline direction & char & x, [y],z \\
\hline carrier & char & [electron], hole \\
\hline x1_label & char & [void] \\
\hline y1_label & char & [void] \\
\hline x2_label & char & [void] \\
\hline y2_label & char & [void] \\
\hline zplane_from_label & char & \\
\hline zplane_to_label & char & \\
\hline zdir_x1_label & char & \\
\hline zdir_x2_label & char & \\
\hline zdir_y1_label & char & \\
\hline zdir_y2_label & char & \\
\hline model & char & [linear], poole_frenkel, hopping \\
\hline trap_profile & char & \\
\hline point_ll & realx2 & [ \(\mu \mathrm{m}\) ] \\
\hline point_ur & realx2 & [ \(\mu \mathrm{m}\) ] \\
\hline scale_tunnel_coef & real & [1.] \\
\hline zdir_xrange & realx2 & [ \(\mu \mathrm{m}\) \\
\hline zdir_yrange & realx2 & [ \(\mu \mathrm{m}\) ] \\
\hline trap_density & real & [1.e20] \(\left(m^{-3}\right)\) \\
\hline linear_rate1 & real & [1.e8] (m/(V s) ) \\
\hline tau0_pf & real & [1.e7] (s) \\
\hline trap_size_hopping & real & [1.e-3] ( \(\mu \mathrm{m}\) ) \\
\hline trap_level_depth & real & [1.2] (eV) \\
\hline trap_profile_start & real & [0.] ( \(\mu \mathrm{m}\) ) \\
\hline tau0_hopping & real & [1.e-9] (s) \\
\hline trap_level_ref & real & [1.2] (eV) \\
\hline zplane_from & intg & [1] \\
\hline zplane_to & intg & [5] \\
\hline exclude_materi(i=1..5) & intg & 2 \\
\hline fly_to_contacts & intgx2 & Pr \\
\hline zseg_num & intg & \(\square\) \\
\hline
\end{tabular}
trap__assisted_tunneling defines a trap-assisted intraband tunneling model. Prior to the 2015 version, this command referred to an interband tunnel junction model which can now be accessed using trap__assisted__tunnel_junc.

\section*{Theory}

The trap-assisted tunneling (TAT) model is based on the assumption that traps in a barrier (insulator or wide bandgap material) are able to emit carriers with a rate of \(\frac{1}{\tau}\) and thus generate a current flux with the following form[143]:
\[
\begin{equation*}
J=q \int_{0}^{t_{b a r}} \frac{N_{t r a p}}{\tau} d x \tag{22.128}
\end{equation*}
\]
where the integral is along the thickness of the barrier layer and \(N_{\text {trap }}\) is the bulk trap density.

To convert the above into the familiar field-dependent mobility form, the rate must be written in a field-dependent form:
\[
\begin{equation*}
\frac{1}{\tau}=S_{t a t} f_{T} \tag{22.129}
\end{equation*}
\]
where \(S_{t a t}\) is the emission rate, \(F\) is the electrical field and \(f_{T}\) is a correction factor due to temperature, related to thermal activation of trapped carriers at energy level \(E_{t}\) :
\[
\begin{align*}
f_{T} & =A e^{-\frac{E_{t}}{k_{B} T}}  \tag{22.130}\\
A & =e^{\frac{E_{t 0}}{k_{B} \times 300}} \tag{22.131}
\end{align*}
\]

Using a first-order approximation of the above rate, the mobility form can be obtained:
\[
\begin{equation*}
S_{t a t} f_{T}=\left.S_{t a t} f_{T}\right|_{F=0}+\frac{d}{d F}\left(S_{t a t} f_{T}\right) F \tag{22.132}
\end{equation*}
\]
and by imposing the boundary condition of zero net current in the absence of applied bias, the current flux can be obtained as:
\[
\begin{equation*}
J=q N_{t r a p} \frac{d}{d F}\left(S_{t a t} f_{T}\right) \Delta V \tag{22.133}
\end{equation*}
\]

It is interesting to note that if the emission rate is linear in field, the current flux is only dependent on applied voltage and not on the field or the thickness of the barrier.

Various models of field dependence are implemented:

\section*{Linear model}

The field dependence comes from a linear \(\frac{d S_{t a t}}{d F}\) term. This model is easy to converge since there is no field-dependent mobility. Temperature dependence still included via the \(f_{T}\) term which has no field dependence.

\section*{Poole-Frenkel model}

The field dependence is introduced via \(f_{T}\) and comes from a shift in the trap level's position, assuming the presence of a Coulomb potential[143]:
\[
\begin{equation*}
\Delta E_{t}=\sqrt{\frac{q F}{\pi \epsilon_{0} \epsilon}} \tag{22.134}
\end{equation*}
\]

This model has a strong field dependence and current saturates strongly.

\section*{Hopping model}

The field dependence is introduced via \(f_{T}\) and comes from a shift in the trap level's position, assuming the presence of a rectangular potential well of size \(d_{h o p}\) :
\[
\begin{equation*}
\Delta E_{t}=F d_{h o p} \tag{22.135}
\end{equation*}
\]

\section*{Parameters}
- direction is the direction of the tunneling current.
- carrier is the type of carrier concerned.
- point__ll, point__ur are upper left and lower right corner points of the area being considered for tunneling. The area must be large enough to cover the potential barrier and must be at least a few times the mean free path of the tunneling carrier. However, it should not be so large as to affect carrier transport in areas unrelated to quantum tunneling.
- x1_label,y1_label,x2_label,y2_label are position labels equivalent to point_ll and point__ur.
- zplane_from zplane_to allow the tunneling to take place between two zmesh planes. Instead of plane numbers, labels may be used in zplane_from_label and zplane_to_label.

Optionally, the lateral range of the tunneling between these two planes may be restricted using the absolute coordinates of zdir_xrange and zdir_yrange or the position labels in zdir_x1_label, zdir_x2_label,zdir_y1_label and zdir_y2_label.
- model switches between the available trap-assisted tunneling models.
- trap_density is the trap density \(\left(N_{\text {trap }}\right)\).

Spatial dependence of the trap profile can be included via a text file defined in trap_profile; this spatial profile is relative to the position given in trap_profile_start.
- linear_rate1 defines the value of \(\frac{d S_{t a t}}{d F}\).
- tau0__pf and tau0_hopping define the value of \(\tau\) at 300 K in the PooleFrenkel and hopping models, respectively. They serve to define the constant value of \(S_{t a t}\) in the 1st-order expansion of the field dependence.
- trap_size__hopping is the value of \(d_{\text {hop }}\).
- trap_level_depth defines the trap position \(E_{t}\).
- trap_level_ref defines the trap reference \(E_{t 0}\).
- exclude_materi(i=1..5) may be used to tell the software to omit quantum tunneling from certain materials in the simulation.
- fly_to_contacts, when used, takes the tunneling current and applies it directly to the electrode current of the specified pair, bypassing the local mesh. This may be used to represent hot carriers flying over a depleted area where thermalized carriers would be unable to support the needed current flow.
- zseg_num is the z-segment number in which the tunneling takes place (if on the x -y plane).

\subsection*{22.705 trap__conc_1}
trap__conc_i,i=1..9 is a passive macro statement used when traps are defined using the material statement rather than doping. It defines the concentration (in \(m^{-3}\) ) of traps with the label "i".

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.
22.706 trap_conc_2

See trap__conc__1.
22.707 trap_conc_3

See trap_conc_1.
22.708 trap_conc_4

See trap_conc_1.
22.709 trap_conc_5

See trap_conc_1.
22.710 trap_conc_6

See trap_conc_1.
22.711 trap_conc_7

See trap_conc_1.
22.712 trap_conc_8

See trap_conc_1.
22.713 trap_conc_9

See trap_conc_1.

\subsection*{22.714 trap_excitation}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline emit_carrier & char & {\([\) electron] hole } \\
\hline mater_label & char & \\
\hline cross_section & real & {\([1 . \mathrm{e}-19]\left(\mathrm{m}^{2}\right)\)} \\
\hline power_depend_coef & real & {\([0]\left(\mathrm{m}^{4} / \mathrm{Watt}\right)\)} \\
\hline trap_index & intg & {\([1]\)} \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}

The statement trap_excitation is used to specify the photo properties of a deep level trap. The theory is detailed in Sec. 5.5.

\subsection*{22.714.1 Parameters}
- emit_carrier specifies the type of carriers emitted upon light excitation.
- cross_section is the cross section of light absorption. When it is multiplied by the density of traps responding to light, an equivalent absorption coefficient may be obtained.
power_depend_coef is the power dependent cross section coefficient. When multiplied by the optical power density in units of \(W a t t / m^{2}\), it adds to the light absorption cross section of the trap.
- trap_index is the index (or label) of the deep trap.
- mater is the index of the material being affected. If a label has previously been defined for this material, mater_label may be used instead.

\subsection*{22.714.2 Examples}
trap_excitation emit_carrier=electron \&\&
cross_section=1.e-19 trap_index=1 mater=2

\subsection*{22.715 trap_level_i}
trap_level_i is used to define or override the energy level of deep traps with the label " i " ( \(\mathrm{i}=1 . .9\) ). This level is measured from the conduction band and in the unit of eV. See Sec. 5.5 for more details.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.716 trap__ncap_i}

The material statements trap__ncap__i and trap__pcap_i are the electron and hole capture cross section in \(m^{2}\). \(\mathrm{i}=1 . .9\) is a label identifying the trap species affected by this statement. the trap_i \((i=1,2, \ldots)\).

The relationship between capture cross sections and minority carrier lifetime is explained under the statements lifetime_n and lifetime__p. See also Sec. 5.5 for more details.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.717 trap_pcap_i}

See trap__ncap_i.

\subsection*{22.718 trap_type_1}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline type & char & [donor] \\
\hline mater_label & char & \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
trap_type_i,i=1..9 is a passive macro statement used when traps are defined using the material statement rather than doping. It defines the trap type (donor or acceptor) for trap species \(\# \mathrm{i}\).

The material number is only necessary when used to override macro parameters in the .sol file. In that case, mater_label may be used instead if a label has previously been defined for the material.

\subsection*{22.719 trap_type__2}

See trap_type_1.
22.720 trap_type_3

See trap_type_1.
22.721 trap_type_4

See trap_type_1.
22.722 trap_type_5

See trap_type_1.
22.723 trap_type_6

See trap_type_1.
22.724 trap_type_7

See trap_type_1.
22.725 trap_type_8

See trap_type_1.
22.726 trap_type_9

See trap_type_1.
22.727 traplevel_stddev_1
traplevel_stddev_i,i=1..9 is a passive macro statement used when traps are defined using the material statement rather than doping. It defines the standard
deviation when the trap levels follow a gaussian model. This statement applies to traps with the label "i".

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further destddevs.
22.728 traplevel_stddev_2

See traplevel__stddev__1.
22.729 traplevel_stddev_3

See traplevel__stddev_1.
22.730 traplevel_stddev_4

See traplevel__stddev_1.
22.731 traplevel_stddev_5

See traplevel__stddev__1.
22.732 traplevel_stddev_6

See traplevel \(\qquad\) stddev \(\qquad\) 1.

\subsection*{22.733 traplevel_stddev__7}

See traplevel stddev \(\qquad\) 1.

\subsection*{22.734 traplevel_stddev_8}

See traplevel \(\qquad\) stddev_ 1.

\subsection*{22.735 traplevel_stddev_9}

See traplevel__stddev_1.

\subsection*{22.736 traplevel_tail_1}
traplevel_tail_i,i=1..9 is a passive macro statement used when traps are defined using the material statement rather than doping. It defines the characteristic decay constant ( \(L\) in \(e^{-E / L}\) ) when the trap levels follow an exponential decay model.
This statement applies to traps with the label "i".
The parameters for this statement are the same as for all other material statements.
See material__par in section 22.456 for examples and further details.

\subsection*{22.737 traplevel_tail_2}

See traplevel_tail__1.

\subsection*{22.738 traplevel_tail_3}

See traplevel__tail__1.

\subsection*{22.739 traplevel_tail_4}

See traplevel__tail__1.

\subsection*{22.740 traplevel_tail_5}

See traplevel__tail__1.
22.741 traplevel_tail_6

See traplevel _tail_ 1.

\subsection*{22.742 traplevel_tail_7}

See traplevel_tail__1.

\subsection*{22.743 traplevel_tail__8}

See traplevel__tail_1 1.

\subsection*{22.744 traplevel_tail_9}

See traplevel \(\qquad\) 1.

\subsection*{22.745 tunneling}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline direction & char & x,[y],z \\
\hline carrier & char & [electron], hole \\
\hline barrier_type & char & [propagation_matrix] \\
\hline trans_broad & char & [no], rectangle, lorentzian \\
\hline x1_label & char & [void] \\
\hline y1_label & char & [void] \\
\hline x2_label & char & [void] \\
\hline y2_label & char & [void] \\
\hline local_correction & char & [yes],no \\
\hline miniband_model & char & yes,[no] \\
\hline miniband_period_y1_label & char & \\
\hline miniband_period_y2_label & char & \\
\hline save__miniband & char & [miniband__data.txt] \\
\hline adjust_emission_point & char & [yes] \\
\hline zplane_from_label & char & \\
\hline zplane_to_label & char & \\
\hline zdir_x1_label & char & \\
\hline zdir_x2_label & char & \\
\hline zdir_y1_label & char & \\
\hline zdir_y2_label & char & \\
\hline point_ll & realx2 & {\([\mu m\) ] } \\
\hline point_ur & realx2 & {\([\mu m]\)} \\
\hline
\end{tabular}
\begin{tabular}{||l|l|l||}
\hline broad__width & real & {\([1].\left(k_{B} T\right)\)} \\
\hline scale_tunnel_coef & real & {\([1]\).} \\
\hline adjust_barrier & real & {\([0].(\mathrm{eV})\)} \\
\hline miniband_upper_range & real & {\([0.5](\mathrm{eV})\)} \\
\hline upper_range_above_peak & real & {\([0.2](\mathrm{eV})\)} \\
\hline zdir_xrange & realx2 & {\([\mu \mathrm{m}]\)} \\
\hline zdir_yrange & realx2 & {\([\mu \mathrm{m}]\)} \\
\hline miniband_period_y1 & real & {\([\mu \mathrm{m}]\)} \\
\hline miniband_period_y2 & real & {\([\mu \mathrm{m}]\)} \\
\hline mesh_multiply & intg & {\([2]\)} \\
\hline energy_points & intg & {\([3000]\)} \\
\hline miniband_number & intg & {\([2]\)} \\
\hline miniband_fd_mesh & intg & {\([100]\)} \\
\hline miniband_k_points & intg & {\([20]\)} \\
\hline zplane_from & intg & {\([1]\)} \\
\hline zplane_to & intg & {\([5]\)} \\
\hline exclude_materi(i=1..5) & intg & \\
\hline fly_to_contacts & intgx2 & \\
\hline
\end{tabular}
tunneling enables the intraband quantum tunneling transport mechanism. This covers a variety of models including the standard theories of Sec. 9.2 and miniband transport[144, 145]. As of the 2013 version, this command is also used to enable non-equilibrium Green's function (NEGF) transport in conjunction with the negf__model command.

\section*{Parameters}
- direction is the direction of the tunneling current.
- carrier is the type of carrier concerned.
- barrier_type is the type of barrier being tunneled through. Several models are available depending on the shape of the potential profile:
- "rectangle" (default): barrier profile should have steep edges on both sides.
- "triangle": one side of the barrier should be much steeper than the other.
- "smooth_wkb": smooth barrier profile
- "propagation_matrix": general-purpose model, more accurate but slower than the others.
- local__correction is used to indicate whether a mesh-dependent quantum tunneling correction is applied to all local mesh points. If set to no, the tunneling current is calculated at the top of the barrier and is assumed to be uniform across the whole rectangle region. The local mesh correction method is recommended for relatively smooth potential profiles while non-local correction works better for thin and high tunneling barriers.
- trans_broad is used to indicate if and what type of energy level broadening is used when using the "propagation_matrix" method. The profile of the broadened level may in take rectangle or Lorentzian shape.
- point_ll, point_ur are upper left and lower right corner points of the area being considered for tunneling. The area must be large enough to cover the potential barrier and must be at least a few times the mean free path of the tunneling carrier. However, it should not be so large as to affect carrier transport in areas unrelated to quantum tunneling.
- x1_label,y1_label,x2_label,y2_label are position labels equivalent to point_ll and point_ur.
- adjust_emission_point triggers a downhill search for the bottom of the potential profile in order to set the tunneling energy range; if disabled, the energy range is set using the start/end points of the tunneling region. It is recommended to disable this setting if dealing with a potential profile consisting mostly of quantum wells.

This parameter is new as of the 2013 version and replaces the use of manual "barrier" labels.
- broad__width is the broadening of tunneling energy level in units of \(k_{b} T\), where \(k_{b}\) is the Boltzmann constant and \(T\) is the temperature.
- scale_tunnel__coef provides a way to artificially scale the tunneling coefficient.
- adjust_barrier works when local__correction=no and is used to adjust the barrier height used to compute the carrier density at the top of the barrier. Please note that this parameter only affects the carrier concentration at the top of the barrier (thus the magnitude of tunneling current) but does not affect the potential profile used to calculate the tunneling transparency.
- mesh_multiply is a multiplication factor used to over-sample the electrical mesh along the path of the tunneling current. It is used in the propagation matrix method to get more accurate results.
- energy __points is the number of energy divisions used in evaluation of tunneling current when using the propagation matrix method.
- fly_to_contacts, when used, takes the tunneling current and applies it directly to the electrode current of the specified pair, bypassing the local mesh. This may be used to represent hot carriers flying over a depleted area where thermalized carriers would be unable to support the needed current flow.
- miniband_model would enable the mini-band transport model[144, 145] through the tunneling region.
- miniband_period_y1_label and miniband__period_y2_label are position labels equivalent to miniband__period_y1 and miniband__period__y2.
- save_miniband saves the miniband data to a file.
- miniband__period__y1 and miniband__period_y2 are positions used to define the beginning and ending of a period for the miniband model.
- miniband_upper_range defines an upper range within which we search the energy solution of the miniband.
- miniband_number is the number of minibands to be solved and used in optical/transport modeling.
- miniband_fd__mesh is the finite difference mesh number within a period of the miniband.
- miniband__k_points is the number of \(k\)-points to be solved for the miniband structure.
- upper_range__above__peak extends the tunneling energy range some distance above the peak of the potential profile. Note that the default non-zero value automatically double-counts some carriers since thermionic emission can occur within this range; use a zero value to go back to the pre- 2013 behavior.
- zplane_from zplane_to allow the tunneling to take place between two zmesh planes. Instead of plane numbers, labels may be used in zplane_from_label and zplane_to_label.
Optionally, the lateral range of the tunneling between these two planes may be restricted using the absolute coordinates of zdir_xrange and zdir_yrange or the position labels in zdir_x1__label, zdir_x2__label,zdir_y1__label and zdir_y2_label.
- exclude_materi(i=1..5) may be used to tell the software to omit quantum tunneling from certain materials in the simulation.

\section*{Position Labels}

In this statement, various absolute coordinates defining boundaries can be replaced by equivalent position labels for the convenience of the user. These labels must be predefined using the x__position, y__position or define__vertical__position commands.

It is also possible to use higher-level commands such as layer__position and column_position in the .layer file. These will automatically generate the correct position labels when the file is processed so the user never needs to figure out the exact coordinate of a position label. Also, any changes in the layer file will automatically result in matching changes to the position labels.

\section*{Examples}
```

tunneling point_ll=(0., 2.49) point_ur=(0.5 2.6) \&\&
barrier_type=triangle
tunneling point_ll=(0., 4.7) point_ur=(0.5 4.95) \&\&
barrier_type=triangle carrier=hole

```

\subsection*{22.746 tunnel_junc}
\begin{tabular}{|c|c|c|}
\hline parameter & data type & values [defaults] \\
\hline x_start_label & char & \\
\hline x_end_label & char & ก \\
\hline y_start_label & char & - \\
\hline y_end_label & char & O \\
\hline set_n_side & char & [void],up,down,left,right \\
\hline use_physical_model & char & [no] \\
\hline region_label & char & \\
\hline direction & char & \([\mathrm{xy}], \mathrm{z}\) \\
\hline zplane_start_label & char & \\
\hline zplane_end_label & char & \\
\hline type2_quantum_well & char & [no] \\
\hline ignore_forward_current & char & [no] \\
\hline physical_model & char & [zener], silicon_pat, kane_direct, kane_indirect \\
\hline xrange & realx2 & [-1.e9 1.e9] (um) \\
\hline yrange & realx2 & [-1.e9 1.e9] (um) \\
\hline equiv_mobility & real & [0.01] \(\left(\mathrm{m}^{2} / \mathrm{V} / \mathrm{s}\right)\) \\
\hline tun_mass & real & \\
\hline type2_qw_mob_scale & real & [1.0] \\
\hline silicon_holemass_fac & real & [1.] \\
\hline scale_tj_current & real & [1.] \\
\hline zseg_num & intg & [1] \\
\hline silicon_dir & intg & [001], 011111 \\
\hline
\end{tabular}
tunnel_junc is used to define an interband tunneling region. Unlike the zener model which converts the tunneling current into a local generation term, this model is a non-local approach and the tunneling current goes out from one mesh point and into a remote point. This model therefore bypasses the normal "fluid-like" approach of Drift-Diffusion theory.

The default model for the tunneling current simply assumes some equivalent mobility coefficient which is used to exchange electron and holes on either side of the junction. This method is very numerically stable but may miss some important features of the device such as the peak current and negative resistance of the tunnel junction.

More accurate models (use_physical_model and physical_model) may also be used to compute the equivalent mobility. This is most often used in multi-junction devices such as solar cells where the individual tunneling junctions are forwardbiased. However, this physical model may have trouble in reverse-biased junctions
and calculate a zero mobility which would completely block the current across the tunnel junction. In such a case, the default equivalent mobility model may be used to restore the current flow.

Note that since the tunneling is defined between two mesh points only, it is very important to define the tunneling range properly so that it is representative of the whole junction. Ideally, the end points will be some distance away from the junction itself where the carrier density is high but the band profile is relatively flat. However, the points should also not be too far apart since tunneling is a short-range process: inverting some exponentials can cause NaN (not a number) or divide by zero errors if the wave function decays too much. Selecting points that do not meet this criteria may result in an inaccurate evaluation of the overall tunneling current in the device.

\section*{Parameters}
- x__start__label, x_end__label, y_start_label and y__end_label are position labels which define the tunneling range in the xy plane. When not used, the software will default to the absolute coordinates defined in xrange and yrange.
For tunneling in the z direction, zplane_start_label and zplane__end_label should be used.
- set_n_side is used to select the direction of the electron-to-hole tunneling. If void, the software will examine the doping profile to determine the most likely choice. With a properly defined tunneling range and doping profile, the default setting is usually sufficient. However, this may need to be set to define the position of the electron well in type II QW structures.
- use__physical_model tells the software to use one of the physical models to estimate the equivalent tunneling mobility. The exact model used is set by physical_model and can take one of the following values:
- zener defines the Zener tunneling model described in Sec. 9.3.
- silicon_pat defines a phonon-assisted tunneling model for silicon derived by Schenk[146, 147].
- kane_direct is similar to the Zener model above but uses a slightly different field dependence model[148].
- kane_indirect is also similar to the Zener model above and uses yet another slightly different field dependence model[148].

Trap-assisted tunneling may also be defined using trap__assisted__tunneling. This will supplement the tunneling current calculated by the above physical models.
- region_label is a user-defined label defining the tunneling region. It must be accompanied by a matching st:nonlocal__transp_region statement.
- direction determines whether the tunneling direction is within a mesh plane (xy) or across multiple mesh planes (z).
- equiv__mobility is the equivalent mobility for the transport of carriers across the junction when the physical models are not used. This will determine the slope of the I-V curve of the junction.
- type2_quantum_well is used to activate a special tunneling model for MQW/superlattice regions with type II band alignment. See type2__qw_setting for additional details regarding this model.
- ignore_forward_current can be used to artificially ignore the forward current to improve convergence in cases where the tunnel junction is reverse-biased (e.g. power applications).
- tun_mass is the Zener interband tunneling mass to be set by the user. If it is not specified, the combined effective mass is used as in the following formula: \(2 m_{e} m_{h} /\left(m_{e}+m_{h}\right)\).
- type2__qw_mob__scale can be used when type2_quantum__well=yes to scale the effective mobility on a per-junction basis. An additional parameter also exists in type2__qw_setting to scale the mobility for the whole simulation project.
- silicon_holemass_fac can be used to artificially scale the hole mass in the phonon-assisted silicon model.
- scale_tj_current can be used to artificially scale the tunneling current.
- zseg_num is the z-segment number in a 3D structure.
- silicon_dir is the silicon crystal orientation in the phonon-assisted model.

\section*{Examples}
tunnel_junc y_start_label=y1 y_end_label=y2 equiv_mobility=0. 02
\$ The labels y1 and y2 are predefined positions.

\subsection*{22.747 two_photon_carr}

This material statement is used to defined the optical loss due to free carriers generated by the two-photon absorption process[149]. This statement is used in passive regions and an alternate method of defining this term is also found in passive__carr__loss. For active regions, equivalent parameters are available in active_reg and set__active_reg.

The two_photon_carr statement defines the propagation power loss coefficient \(\gamma\) in Eq. 22.137. This term should not be seen as a separate single-step three-photon loss term but as a side effect of the two-photon absorption process described by \(\beta\) in the same equation[149].
In Eq. 22.137, the units of \(\gamma * S^{2}\) must be in \(m^{-} 1\) so that \(\gamma\) is given in \(m^{5}\). However, if one follows the form of Eq. 22.137 given in [149], \(\gamma\) is sometimes given in units of \(m^{3} / W^{2}\) so that \(\frac{d \phi}{d z}\) and \(\gamma \phi^{3}\) are both in \(W / m^{3}\). Following the same approach used for the \(\beta\) coefficient, a conversion factor of \(\left(\hbar \omega v_{g}\right)^{2}\) may be used to convert this kind of value to the Crosslight convention.

Alternatively, we can also rewrite the relationship between \(\beta\) and \(\gamma\) given in [149] to reflect our choice of units:
\[
\begin{equation*}
\gamma=\frac{\sigma}{2} \tau \beta v_{g} \tag{22.136}
\end{equation*}
\]
where \(\sigma\) is the total free-carrier absorption cross-section (usually defined using elec__carr__loss and hole_ccarr__loss) in \(m^{2}, \tau\) is the carrier lifetime, \(v_{g}\) is the group velocity and \(\beta\) is in \(m^{2}\).

Eq. 22.136 shows that if both free carrier losses and two__photon_loss are defined for a material, then a consistent value of two__photon__carr should also be defined for this material. Conversely, two__photon_carr should be zero if either of these terms is neglected in the model.
The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.748 two_photon_loss}

This material statement is used to defined the optical loss due to the two-photon absorption process[149] in passive regions and an alternate method of defining this term is also found in passive__carr_loss. For active regions, equivalent parameters are available in active__reg and set__active_reg.

The two_photon_loss statement defines the propagation power loss coefficient \(\beta\) in the following equation:
\[
\begin{align*}
\frac{d S}{d z} & =-\alpha S-\beta S^{2}-\gamma S^{3} \\
& =\left(-\alpha-\beta S-\gamma S^{2}\right) S \\
& =-\alpha^{\prime}(S) S \tag{22.137}
\end{align*}
\]
where \(S\) is the local photon density in \(m^{-3}\). For the \(\gamma\) term, see two__photon_ccarr.
In the software, \(\beta\) is implemented as an absorption coefficient that depends on the local photon density. \(\alpha^{\prime}(S)\) is thus used to compute the stimulated recombination and generation terms in the drift-diffusion equation and additional derivatives in \(\frac{\partial \alpha}{\partial S}\) are used to define the Jacobian. Since \(\alpha\) and \(\beta S\) must have the same units and \(\alpha\) is in \(m^{-1}, \beta\) must be given in \(m^{2}\).
In reference [149], an alternate form of Eq. 22.137 which depends on the photon flux \(\phi\) in \(W / m^{2}\) is used so in that reference, \(\beta\) is given in \(m / W\). These units can be converted to the convention used by PICS3D by noting that by definition, the photon flux and photon density are related by the group velocity and photon energy:
\[
\begin{equation*}
\phi=\hbar \omega v_{g} S \tag{22.138}
\end{equation*}
\]

Using the above relationship in Eq. 22.137, it is trivial to show that a scaling factor of \(\hbar \omega v_{g}\) exists between the two definitions of \(\beta\). From reference [149] \(\beta \approx 1.5 \times\) \(10^{-10} \mathrm{~m} / W\). Assuming a group refractive index of 3.6 and an emission wavelength of \(1.3 \mu \mathrm{~m}\), the equivalent value \(\beta\) used in PICS3D should therefore be on the order of \(1.9 \times 10^{-21} \mathrm{~m}^{2}\).

The parameters for this statement are the same as for all other material statements. See material_par in section 22.456 for examples and further details.

\subsection*{22.749 type2_qw_setting}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline use_average_field & char & yes, \([\mathrm{no}]\) \\
\hline mean_free_path & real & {\([0.1](\mathrm{um})\)} \\
\hline bulk_radiative_coef & real & {\([1 \mathrm{e}-19]\left(\mathrm{m}^{3} / \mathrm{s}\right)\)} \\
\hline tau_trap & real & {\([1 \mathrm{e}-9](\mathrm{s})\)} \\
\hline mobility_scale & real & {\([1.0]\)} \\
\hline qw_period & intg & \\
\hline dos_scale_ref_period & intg & \\
\hline
\end{tabular}

This statement sets the parameters for the tunneling model when used in a type II QW photodetector It is used in conjunction with tunnel_junc with the parameter type2_quantum_well=yes.
The model is derived from [150] which deals with quantum cascade lasers with a tunneling-assisted transition. This paper presents a rate equation in (2) and a conversion to current density in (10). APSYS uses a similar equation except that the transitions considered are between conduction and valence subbands rather then between different conduction subbands.

\section*{Parameters}
- use__average_field uses the average field to compute the long-range tunneling rather than local values which may quickly flucutate.
- mean_free_path is the mean free path of the carriers in \(\mu m\).
- bulk_radiative__coef is an effective spontaneous emission coefficient for the superlattice.
- tau_trap is an effective trap lifetime for the superlattice.
- mobility_scale is a global scaling factor applied to the effective mobility of all type II tunneling regions.
- qw_period is the number of quantum well periods in the project. It is used in conjunction with dos_scale_ref_period to scale the 1D DOS. This allows more carriers per energy unit to participate in the tunneling in larger devices.
- dos__scale_ref_period is the reference number of periods used to scale the 1D DOS. If this parameter is used, qw_period must also be defined; otherwise, no scaling is done. This parameter can be used to account for the change in responsivity with increased number of periods.

\section*{Examples}
\$ mean-free-path mainly affect longer range tunneling current.
type2_qw_setting mean_free_path=0.4 bulk_radiative_coef=3.e-19
22.750 unified_schottky_local_tunneling
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline scale_tunnel_mass & real & {\([1]\).} \\
\hline max_range & real & {\([0.01]\)} \\
\hline scale_current & real & {\([1]\).} \\
\hline
\end{tabular}
unified_schottky_local__tunneling converts the non-local tunneling integral into a local carrier generation rate[151, 152].

This simplified approach has the advantages of being convenient and easy to define but the artificial generation of holes may have unphysical effects.

\section*{Parameters}
- scale_tunnel__mass is an artificial scaling coefficient for the tunneling mass.
- max_range defines a region around the top of the barrier that is used for the carrier generation.
- scale_current is an artificial scaling coefficient for the tunneling current.

\subsection*{22.751 use__bulk_affinity}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline all_material & char & {\([\) yes] } \\
\hline macro_name & char & \\
\hline mater_label & char & \\
\hline mater & intg & {\([1]\)} \\
\hline
\end{tabular}
use__bulk__affinity is an active layer macro statement used to define the band offset of the quantum well. It directs the program to use bulk material affinity to define band offsets of the active layers.

This statement overrides all other band offset declarations including band__offset and band_discont.

\section*{Parameters}
- all_material lets all active layer materials to use bulk affinity as band offsets.
- macro_name indicates all materials with this macro name are affected.
- mater is the material number affected. It is not used if macro_name is already set.
- mater_label may be used instead of mater if a label has previously been defined as an alias.

\section*{Examples}
use_bulk_affinity all_material=yes

\subsection*{22.752 use_bulk_bandgap}

This command would force the program to take the bandgap of the bulk macro if there is a conflict between active and bulk macros.

\subsection*{22.753 use_bulk_property}

This command would force the program to take the material parameters of the bulk macro if there is a conflict between active and bulk macros.

This command affects bandgap, affinity and effective masses.

\subsection*{22.754 use_macrofile}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline macroj \((\mathrm{j}=1,2, \ldots)\) & char & {\([\) void] } \\
\hline
\end{tabular}

The statement use__macrofile is used to override or to add to the default macro files crosslight.mac and more.mac. The simulator will check macro files loaded by this statement before going to the default macros. More than one macro files can be loaded this way
- macroj \((\mathrm{j}=1,2, \ldots)\) is the user-defined macro file.

Example(s):
use_macrofile macro1=mydata.mac

\subsection*{22.755 user_defined_mobility}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline carrier_type & char & [electron], hole \\
\hline dependence & char & [parallel_field], total_field \\
\hline curve_control & char & \begin{tabular}{l} 
[vertical_field] total_field, elec- \\
trode__voltage
\end{tabular} \\
\hline data_type & char & [mobility], velocity, current \\
\hline filek (k=1...9) & char & [my_mob_data_file] \\
\hline spline_smooth & char & [no] \\
\hline mater_label & char & \\
\hline scale_column1 & real & {\([1]\).} \\
\hline scale_column2 & real & {\([1]\).} \\
\hline scale_curve_para & real & {\([1]\).} \\
\hline curve_parak \((\mathrm{k}=1 . . .9)\) & real & \\
\hline mater & intg & {\([1]\)} \\
\hline electrode & intg & {\([2]\)} \\
\hline
\end{tabular}

The user_defined_mobility command is used to import user-defined mobility into Crosslight simulation software. Whenever this command is used for a material, it will override whatever default mobility model or previously defined mobility model it may have had.

The user supplied mobility model is imported as a 2-column data file to define the mobility versus field relationship. Other forms such as velocity and current can also be used; the software will convert the data into mobility before using it. One may use several data files to define several regimes of the mobility.

\section*{Parameters}
- carrier_type is the type of carrier being defined.
- dependence defines whether the mobility depends on the field component parallel to the current flow, or on the total local field magnitude.
- curve_control is the parameter used to switch between data files. The program automatically linearly interpolate between different data files as necessary.
- data_type is the type of data being imported in the 2nd column (mobility, velocity, or current) of the data files.
- filek \((\mathrm{k}=1 . . .9)\) are the file names for the imported data. The data should be in SI units or scaled back into SI units using scale_column1 and scale_column2.
- spline_smooth determines whether spline smoothing is applied to the userdefined data. By default, a simple linear interpolation method is used.
- scale_curve__para is a scaling factor for curve__parak below.
- curve_parak is the value of the control parameter used to switch between data files.
- mater is the number assigned to the material affected by this command. If a label alias has previously been assigned to this material, mater_label may be used instead.
- electrode is the electrode number if control parameter is based on electrodevoltage.

\section*{Examples}
```

user_defined_mobility carrier_type=electron \&\&
curve_control=electrode_voltage data_type=velocity \&\&
curve_para1=4.5 \&\&
file1=mobdata1.txt \&\&
curve_para2=9. \&\&
file2=mobdata2.txt \&\&
curve_para3=13.5 \&\&
file3=mobdata3.txt \&\&
mater=1 electrode=2

```

The above example allows the import of velocity versus parallel field data in 3 different data files. These data files are used for 3 different voltages (4.5, 9 and 13.5 volts) of electrode number 2 . The program would interpolate if the electrode voltage falls between these curve parameters.

The content of each file should be similar to the following:
\(0.0 \quad 0.1\)
1.e5 0.081
1.e6 0.02
1.e7 0.02
22.756 use_sor
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline print_sor & char & [noprint] \\
\hline wave_tol & real & {\([1 . \mathrm{e}-7]\)} \\
\hline beta_tol & real & {\([1 . \mathrm{e}-7]\)} \\
\hline omega & real & {\([1.5]\)} \\
\hline omegab & real & {\([1.5]\)} \\
\hline max_iter & intg & {\([5000]\)} \\
\hline update & intg & {\([15]\)} \\
\hline
\end{tabular}
use__sor instructs the software to use the SOR iterative method to find the solution of lateral modes. This statement was previously defined as sor__par.

The initial guess to the SOR method is either a uniform field profile based on the mode solver limits in init__wave or the result of the optical_field command.

\section*{Application Notes}

The SOR method is considered obsolete and the user is strongly encouraged to migrate to either optical_field or direct_eigen, depending on the structure.

\section*{Parameters}
- print_sor controls the printing of the SOR iterations.
- wave_tol is the tolerance for the wave-amplitude. Note that the wave amplitude is normalized to the order of 1 inside the SOR method.
- beta_tol is the tolerance for the eigenvalue, which is also normalized to the order of 1 inside the SOR method.
- omega is the initial relaxation parameter used for the wave amplitude iteration. This parameter is adaptive during the iteration procedure.
- omegab is the initial relaxation parameter used for the eigenvalue. This parameter is also adaptive during iteration.
- max_iter is the maximum number of iterations. If it is zero, the initial guess is not refined.
- update is the interval of iterations at which the eigenvalue is updated inside the SOR method.

\section*{Examples}
```

use_sor max_iter=0000

```
use_sor max_iter=5000 print_sor=noprint

\subsection*{22.757 valj__mass__para \((\mathrm{j}=1 . .3)\)}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

This statement is used in active macros to define the relative valence band valley mass in a direction parallel to the quantum well. It is used for general complex strained macros; the most common applications are for strained silicon, SiGe and II-VI lead salt materials.

The mass defined in this statement can also be modified by non-parabolic terms with the valj__para__e_dep__mass1 and valj__para__e_dep__mass2 statements:
\[
\begin{aligned}
m(E) & =a+b E+c E^{2} \\
E(k) & =\frac{\hbar^{2} k^{2}}{2 m_{0} m(E)}
\end{aligned}
\]
\(j\) is a placeholder value that must be the same in all three statements: it refers to the number \((j=1 . .3)\) of the valley being defined.

\section*{Parameters}

The parameters for this statement are the same as for all other material statements and are discussed under material__par in Sec. 22.456.

\section*{Examples}
```

layer_type type=general_cx_strain valley_c1=4 valley_v1=4 \&\&
optic_trans_valley_pair1=(1 1)
\$ Define band gap as a bulk_xfunc1, to be referred to later by other functions
ext_func1 variation=function
function(x,temper)
0.17+0.057*x-0.095*x**2+sqrt(4.e-4+2.56e-7*temper**2)
end_function
val1_mass_para value=0.05
val1_para_e_dep_mass1 variation=function
function(x)
em_parab=0.05;
egt=ext_func1;
2.*em_parab/egt
end_function

```

Which is equivalent to \(m(E)=0.05+0.1 \frac{E}{E_{g}}\) in the notation above.

\section*{References}
- Khodr \& al., "Effects of band nonparabolicity ...", IEEE JQE, VOL. 32, NO. 2, Feb. 1996

\subsection*{22.758 valj__mass__perp \((\mathrm{j}=1 . .3)\)}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

This statement is used in active macros to define the relative valence band valley mass in a direction perpendicular to the quantum well. It is used for general complex
strained macros; the most common applications are for strained silicon, SiGe and II-VI lead salt materials.

The mass defined in this statement can also be modified by non-perpbolic terms with the valj__perp__e__dep__mass1 and valj__perp_e__dep__mass2 statements:
\[
\begin{aligned}
m(E) & =a+b E+c E^{2} \\
E(k) & =\frac{\hbar^{2} k^{2}}{2 m_{0} m(E)}
\end{aligned}
\]
\(j\) is a placeholder value that must be the same in all three statements: it refers to the number \((j=1 . .3)\) of the valley being defined.

\section*{Parameters}

The parameters for this statement are the same as for all other material statements and are discussed under material__par in Sec. 22.456.

\section*{Examples}
```

layer_type type=general_cx_strain valley_c1=4 valley_v1=4 \&\&
optic_trans_valley_pair1=(1 1)
\$ Define band gap as a bulk_xfunc1, to be referred to later by other functions
ext_func1 variation=function
function(x,temper)
0.17+0.057*x-0.095*x**2+sqrt (4.e-4+2.56e-7*temper**2)
end_function
val1_mass_perp value=0.05
val1_perp_e_dep_mass1 variation=function
function(x)
em_parab=0.05;
egt=ext_func1;
2.*em_parab/egt
end_function

```

Which is equivalent to \(m(E)=0.05+0.1 \frac{E}{E_{g}}\) in the notation above.

\section*{References}
- Khodr \& al., "Effects of band nonparabolicity ...", IEEE JQE, VOL. 32, NO. 2, Feb. 1996
22.759 valj_para_e_dep_mass1 \((\mathrm{j}=1 . .3)\)
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

This statement modifies valj__mass__para and adds a linear energy dependent term to the electron mass. \(j\) is a placeholder used to identify the valley \((j=1 . .3)\).
22.760 valj__para__e__dep__mass2 ( \(\mathrm{j}=1 . .3\) )
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

This statement modifies valj__mass_para and adds a quadratic energy dependent term to the electron mass. \(j\) is a placeholder used to identify the valley \((j=1 . .3)\).
22.761 valj_perp_e_dep_mass1 ( \(\mathrm{j}=1 . .3\) )
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

This statement modifies valj__mass_perp and adds a linear energy dependent term to the electron mass. \(j\) is a placeholder used to identify the valley \((j=1 . .3)\).

\subsection*{22.762 valj_perp_e_dep_mass2 (j=1..3)}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline (see) material_par & & \\
\hline
\end{tabular}

This statement modifies valj__mass__perp and adds a quadratic energy dependent term to the electron mass. \(j\) is a placeholder used to identify the valley \((j=1 . .3)\).

\subsection*{22.763 val1_valley_prop1}
valj__valley__propk are a set of active layer macro statements: j and k are placeholder values that indicate the valley subband valley number \((\mathrm{j}=1 . .3)\) and the property number ( k ). It is otherwise the same as cond1__valley__prop1.

\subsection*{22.764 val2_valley_prop1}

See val1__valley__prop1.

\subsection*{22.765 val2_valley_prop1}

See val1__valley_prop1.

\subsection*{22.766 val_bandj_edge ( \(\mathrm{j}=2,3\) )}
\begin{tabular}{|l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline (see) material_par & & \\
\hline
\end{tabular}

The material statement val__bandj__edge is an active layer macro statement used to define the 2 nd or 3 rd valence band valley with respect to the highest valence band valley, in unit of eV. It is used for general_cx_strain type of macro, or general complex strain macro.

The parameters for this statement are the same as for all other material statements. The use of these parameters and related examples are given under material_par in section 22.456 .
22.767 vcsel_cavity_region
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline radius_from & real & {\([-1 . \mathrm{e} 89](\mu \mathrm{m})\)} \\
\hline radius_to & real & {\([1 . \mathrm{e} 89](\mu \mathrm{m})\)} \\
\hline gaussian_tail & real & {\([2].(\mu \mathrm{m})\)} \\
\hline gain_reduc_range & real & {\([0.0](\mu \mathrm{m})\)} \\
\hline gain_gaussian_tail & real & {\([0.5](\mu \mathrm{m})\)} \\
\hline
\end{tabular}
vcsel_cavity__region defines a new independent optical region in a VCSEL structure. It is used in conjunction with begin_cavity.

\section*{Parameters}
- radius_from and radius__to partition the optical mode (which is calculated over the entire VCSEL) and assigns it to the new cavity.
- gaussian_tail extends the partitioned mode past the radius_from and radius_to coordinates with a Gaussian tail to prevent a sharp cut-off; the value of this parameter is equal to the standard deviation of the Gaussian distribution.
- gain_reduc_range reduces the optical gain at the edges of the partition to account for the influence of the Gaussian tail from neighboring cavities; the reduction is fixed over this range.
- gain_gaussian_tail serves the same purpose as gain_reduc_range but reduces the optical gain following a Gaussian tail distribution instead of a fixed amount. This tail points towards the inside of the partition, like the gaussian_tail from a neighboring cavity; the value of this parameter is equal to the standard deviation of the Gaussian distribution.

\section*{Examples}
```

begin_cavity cavity_num=1
vcsel_model index_core=3.2 index_cladding=1.0 \&\&
core_radius =9.5 bessel_order=0
init_wave backg_loss=500 init_wavel=0.83 wavel_range=(0.75, 0.90) \&\&
photon_fac=1.e9
vcsel_cavity_region radius_from=0 radius_to=5

```
```

multimode mode_num=2
end_cavity
begin_cavity cavity_num=2
vcsel_model index_core=3.2 index_cladding=1.0 \&\&
core_radius =9.5 bessel_order=0
init_wave backg_loss=500 init_wavel=0.83 wavel_range=(0.75, 0.90) \&\&
photon_fac=1.e9
vcsel_cavity_region radius_from=5 radius_to=9.5
multimode mode_num=2
end_cavity

```

\subsection*{22.768 vcsel_model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline use_eim & char & {\([\) no],yes } \\
\hline rectangle_system & char & {\([\mathrm{no}]\)} \\
\hline rect_symetric_x & char & {\([\) yes \(]\)} \\
\hline propagation_dir & char & {\([\mathrm{y}], \mathrm{z}\)} \\
\hline rect_lateral_model & char & {\([\) eim], bessel } \\
\hline independent_stw & char & yes, \([\) no \(]\) \\
\hline eim_stw_method & char & \begin{tabular}{l}
{\([\) min_loss \(]\),} \\
min_abs__loss
\end{tabular} \\
\hline index_core & real & {\([3.5]\)} \\
\hline index_cladding & real & {\([2.0]\)} \\
\hline core_radius & real & \\
\hline photon_fac & real & {\([1 . e-3]\)} \\
\hline eim_zero & real & \((u m)\) \\
\hline rect_core_xrange & real & (um) \\
\hline rect_core_zrange & real & (um) \\
\hline rect_core_origin & realx2 & {\([0.0].(\mathrm{um})\)} \\
\hline zdir_x_ref & real & {\([0.0]\) (um) } \\
\hline zdir_y_ref & real & {\([0.0]\) (um) } \\
\hline ydir_x_center & real & {\([0.0]\) (um) } \\
\hline ydir_z_center & real & {\([0.0]\) (um) } \\
\hline bessel_order & intg & {\([0]\)} \\
\hline add_r_division & intg & {\([1]\)} \\
\hline rect_x_order & intg & {\([1]\)} \\
\hline rect_y_order & intg & {\([1]\)} \\
\hline long_ref_zseg & intg & \\
\hline
\end{tabular}
vcsel__model is used to activate the Vertical Cavity Surface Emitting Laser (VCSEL) model in the .sol file.

\section*{Parameters}
- use_eim activates the effective index method model for the VCSEL simulation environment. By default, this parameter is set to no and the fiber-like EIM model is used.
- rectangle_system turns on the rectangle/cartersian coordinate system for VCSEL simulation.
- rect_symetric__x indicates whether only half of a symmetric device is simulated to save mesh. If so, the symmetric axis is assumed to be located at \(\mathrm{x}=0\).
- propagation_dir defines the optical propagation (longitudinal) direction in 3D simulations with multiple mesh planes. In almost all cases, this should be left to the default setting of \(y\). As of the 2016 version of the software, convergence using multiple mesh planes stacked along the propagation direction of \(z\) still has not been demonstrated and should be considered experimental.
- index_core and index_cladding are the refractive indices of the core and cladding regions in the fiber-like EIM method. These parameters are effective only if use_eim=no.
- core_radius is the radius of the core region in the fiber-like EIM method. This parameter is effective only if use_eim=no. Please note that this parameter should not be confused with the identically-named parameter in the vcsel_section and outer_section commands: the radius defined in those two commands are used only for the EIM model (use_eim=yes).
- photon_fac is the photon factor used to normalize the cavity photon number for VCSELs for the round-trip gain equation. It multiplies the parameter of the same name defined in init__wave so that the default scaling of the cavity photon number is different for edge-emitting and VCSEL cavities. As such, either of these parameters can be used if the user wishes to modify the default scaling.
- eim_zero is the radius outside of which the EIM wave function is forced to be zero. It is used only when the EIM model is activated by the parameter use_eim above.
- rect_lateral__model is used in 3D simulations that use a cartesian coordinate system but which may also have bent shapes to form a cylindrical shape. It specifies wether the software will use the EIM model or Bessel functions for the modes.
- rect_core__xrange and rect_core_zrange specify the dimensions of the high index core in the x and z directions, respectively when rectangular/cartesian coordinates are used in a 3D simulation and propagation_dir \(=y\). rect_core_origin is similar and defines the origin (lower left corner) of the rectangular high index core.
- ydir__x_center and ydir_z__center are used to define the center of the x-z plane (i.e. the origin of the Bessel functions) when rect_lateral__model=bessel. zdir__x_ref and zdir_y_ref serve the same function when propagation__dir=z (experimental).
- bessel_order is the order of the Bessel function used to model the wave function in the modified effective index method. Higher order means higher order lateral modes.
- add_r_division is used for the EIM model (use_eim=yes). When this model is activated, add_r__division controls the number of divisions in the lateral direction used to evaluate the effective index. More precisely, the software will use a 1D transfer matrix at various vertical cut lines to establish \(n(r, z)\) profiles, each line representing a local standing wave profile. At each \(r\) value, a single standing wave effective index is selected to provide a \(n(r)\) profile which is then used to establish the lateral mode profile.

The position of these cut lines is determined by an initial rough division of the device into columns, as seen in Fig. 22.32; these are normally defined in the .layer file through the vcsel_section command and the resulting outer_section statement. These divisions may be further refined if they exceed the value of \(\Delta R\) :
\[
\begin{equation*}
\Delta R=\frac{R_{m}-R_{0}}{\text { add_r_division }} \tag{22.139}
\end{equation*}
\]
- eim_stw__method controls how the local standing wave profile is determined in the EIM model described above. For each \(r\) position, an 1D eigenvalue problem is solved for \(z\) and a single standing wave profile is selected based on the following effective index criteria:
- min_loss picks the mode with the smallest loss coefficient
- max_loss picks the mode with the largest gain coefficient


Figure 22.32: Schematics of the cut lines in the VCSEL EIM model.
- min_abs_loss picks the mode with the smallest absolute gain/loss coefficient
- rect__x_order and rect__y_order define the number of modes solved for in each direction for 3D simulations with rectangular/cartersian coordinates.
- long_ref_zseg is used in 3D simulations with multiple mesh planes. It defines which z-segment serves as a reference for the optical section statements. All other z -segments are mapped onto this reference segment.
- independent__stw works with add__r_division and the EIM model. By default, the software will calculate the standing wave (STW) pattern only once to save on time; enabling this option will evaluate the STW for every cut line which results in a slower but more accurate simulation. It is recommended to enable this option in devices where there is a strong lateral variation of the index profile (e.g. oxide-confined VCSELs).

\section*{Examples}

Simple example using fiber-like model:
```

vcsel_model index_core=3.2 index_cladding=1.0 \&\&
core_radius =7.5 bessel_order=0

```

Simple example using EIM model settings inherited from .layer file:
```

vcsel_model bessel_order=0 use_eim=yes

```

A rectangular-shaped VCSEL:
vcsel_model index_core=3.2 index_cladding=1.0 rectangle_system=yes

\subsection*{22.769 vcsel_section}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline vcsel_type & char & \\
\hline grating_model & char & [kappa]layer,layer0 \\
\hline active & char & [no],yes \\
\hline dbr_period_index_profile & char & \\
\hline dbr_period_from_macro & char & [no],yes \\
\hline layerk,k=1..9 & real & {\([0.096 \mathrm{e}-6](\mathrm{m})\)} \\
\hline indexj,j=1..9 & real & \\
\hline core_radius & real & (um) \\
\hline mesh_points & intg & {\([10]\)} \\
\hline remove_from_cavity & intg & {[]} \\
\hline section_index & real & \\
\hline outer_indexi,i=1..9 & real & {[]} \\
\hline
\end{tabular}
vcsel_section is used to describe physical properties of a layer region used in a VCSEL. While it used exclusively in the .layer file, this statement defines optical properties which are different than the electrical/geometrical settings defined in other .layer commands. When the .layer file is processed, the information included in this statement will be included in a .vcsel file which must be included in the main .sol input file.

\section*{Parameters}
- vcsel_type defines a label for the VCSEL section which is used in other statements such as layer.
- active is used to indicate if a VCSEL section is active (i.e. has an optical gain). This parameter is also used to locate the active region and compute the standing wave enhancement factor.
- dbr__period_index__profile may be used to give the name of a text file that contains the refractive index profile for a single DBR period instead of directly
using the layerk and indexj values. This method makes it simple to define a graded index profile for the DRB period.
- dbr_period_from_macro instructs the software to adjust the thickness of the overall DBR for the optical mesh (c.f. section statement in the .vcsel output file) to match the refractive index values of the individual materials inside the DBR period.

Note that this parameter requires defining the individual components of the DBR using vertical__dbr_layer__mater instead of directly using the layerk and indexj values. Graded composition profiles may be defined using the latter statement.

We also note that the overall electrical thickness for that layer must match the previously-defined optical thickness; this is set in the layer statement.
- grating_model defines the grating model for the optical propagation in that section; see section and the parameter of the same name for more information.
- layerk, \(\mathrm{k}=1 . .9\) are the different DBR layer thicknesses (in meters) used in this section, with the appropriate grating_model setting. The refractive index of the DBR layers is likewise defined using indexj,j=1..9. See section for more information on DBR settings.
- outer_indexi,i=1..9 is used to determine the refractive index outside the VCSEL in the fiber-like effective index model. If the electrical layer is subdivided into multiple optical sub-sections (e.g. a DBR mesa in the first column, with air outside), a separate value must be provided for each of those subsections.

When the .layer file is processed, the outer index settings are transferred to the outer_section statement for use in the .sol file.
- core_radius is used as part of the VCSEL EIM model (see vcsel__model). It defines the radius of a particular region for mode calculations and tells the simulator that this section is terminated by an outside insulator layer (e.g. air). In complex devices, multiple VCSEL section declarations with different core radius settings may be used to define different effective index profiles in different columns of the device; in that case, core_radius should be set to the same value as the column width, as seen in Fig. 22.32.

When the .layer file is processed, the core radius settings are transferred to the outer_section statement for use in the .sol file.
- mesh_points is the number of longitudinal mesh points used in the optical propagation model for this section.
- section__index is identical to index1 above.
- remove_from_cavity removes that particular section from existence for the given optical cavity number.

This statement may be used in the multicavity model (see begin_cavity statement)and produces a remove_section statement for used in the .sol file.

\section*{Examples}

A standard definition using older syntax. Under this model, the refractive index values for the DBR are fixed for the entire simulation.
```

vcsel_section vcsel_type=n-dbr \&\&
grating_model=2layers active=no \&\&
layer1 =0.122e-6 layer2 =0.112e-6 \&\&
index1 = 3.17 index2 = 3.46 \&\&
mesh_points=15

```

A similar definition using negative index numbers. Under this model, only the absolute difference in refractive index values is used for the DBR index step, with the average refractive index in the layer taken from the macros according to injection/thermal conditions. For more explanation of negative index numbers, please see the section statement.
```

vcsel_section vcsel_type=n-dbr \&\&
grating_model=2layers active=no \&\&
layer1 =0.122e-6 layer2 =0.112e-6 \&\&
index1 = -3.17 index2 = -3.46 \&\&
mesh_points=15

```

A more modern declaration style, with all index values taken from the material macros. The electrical mesh still consists of an "average" material.
```

vcsel_section vcsel_type=n-dbr \&\&
dbr_period_from_macro=yes \&\&
active=no mesh_points=10
\$ this is the effective medium
layer_mater macro_name=algaas var1=0.625 column_num=1 var_symbol1=x
\$ let's define a DBR period using macro like this (use column 1 only)
\$ (also possible to define grading within a DBR period)

```
```

vertical_dbr_layer_mater macro_name=algaas var_symbol1=x var1=0.25 \&\&
thick=0.0595
vertical_dbr_layer_mater macro_name=algaas var_symbol1=x var1=1. \&\&
thick=0.0706
layer d=3.7729 n=15 r=0.9 \&\&
n_doping1=2.e24 vcsel_type=n-dbr

```

\subsection*{22.770 vectorial_wave}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mode & char & {\([\mathrm{te}] \mathrm{tm}\)} \\
\hline
\end{tabular}

The statement vectorial__wave is used to turn on the vectorial wave solver. Please note that this statement only affects the wave distribution. It does not affect the optical evaluation. You should also set the polarization in active_reg for the TE or TM mode.
- mode is the polarization mode and may take te or tm.
```

Example:
vectorial_wave mode=te

```

\subsection*{22.771 vertical_dbr_layer_mater}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline macro_name & char & \\
\hline var_symbol1 & char & \\
\hline var_symbol2 & char & \\
\hline var_symbol3 & char & \\
\hline var_symbol4 & char & \\
\hline var_symbol5 & char & \\
\hline var_symbol6 & char & \\
\hline var_symbol7 & char & \\
\hline var_symbol8 & char & \\
\hline var_symbol9 & char & \\
\hline mater_lib & char & \\
\hline var1 & real & {\([-9999]\).} \\
\hline var2 & real & {\([-9999]\).} \\
\hline var3 & real & {\([-9999]\).} \\
\hline var4 & real & {\([-9999]\).} \\
\hline var5 & real & {\([-9999]\).} \\
\hline var6 & real & {\([-9999]\).} \\
\hline var7 & real & {\([-9999]\).} \\
\hline var8 & real & {\([-9999]\).} \\
\hline var9 & real & {\([-9999]\).} \\
\hline grade_from & real & {\([-9999]\).} \\
\hline grade_to & real & {\([-9999]\).} \\
\hline thick & real & {\([-9999]\).} \\
\hline grade_var & intg & {\([0]\)} \\
\hline grade_points & intg & {\([5]\)} \\
\hline & & \\
\hline
\end{tabular}

This command is used to define VCSEL DBR layers using material macros instead of index values. It only defines the optical part of the model (VCSEL sections).

\section*{Parameters}

Most of the parameters are the same as in the layer__mater statement as both commands define material compositions. Size information for the DBR is given by:
- thick is the thickness of the DBR layer.
- grade_points is the number of points used to sample the grading within the DBR layer.

\section*{Examples}
```

vcsel_section vcsel_type=n-dbr \&\&
dbr_period_from_macro=yes \&\&
active=no mesh_points=10
\$ this is the effective medium
layer_mater macro_name=algaas var1=0.625 column_num=1 var_symbol1=x
\$ let's define a DBR period using macro like this (use column 1 only)
\$ (also possible to define grading within a DBR period)
vertical_dbr_layer_mater macro_name=algaas var_symbol1=x var1=0.25 \&\&
thick=0.0595
vertical_dbr_layer_mater macro_name=algaas var_symbol1=x var1=1. \&\&
thick=0.0706
layer d=3.7729 n=15 r=0.9 \&\&
n_doping1=2.e24 vcsel_type=n-dbr

```

\subsection*{22.772 view_dipole}
\begin{tabular}{|l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & {\([\) void \(]\)} \\
\hline mode & char & {\([\mathrm{te}] \mathrm{tm}\)} \\
\hline gamma_subband & intg & {\([1]\)} \\
\hline
\end{tabular}
view_dipole plots the dipole moments in a k.p theory.
- data_file is the file to which the graphic data is written in ASCII format.
- mode denotes the polarization.
- conc_range is the electron concentration range in the well.
- gamma_subband is the Gamma subband used in the optical transition.

\section*{Example(s)}
```

view_dipole gamma_subband=1

```

\subsection*{22.773 view_ganvalence}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & {\([\) [void] } \\
\hline data_file2 & char & [void] \\
\hline matrix_6x6 & char & yes,[no] \\
\hline direction & char & {\([\mathrm{x}], \mathrm{y}, \mathrm{z}\)} \\
\hline region & char & [well],barrier,barrier2 \\
\hline
\end{tabular}
view_ ganvalence is used in the .gain file to plot the active region basic bulk band structure (ie., HH, LH, CH) for wurtzite GaN-based structure along with parabolic fit

\section*{Parameters}
- data_file is the data file to which the band structure data is to be saved. If plot_device=data_file in plot__data, data_file 2 may be used to specify a second data file in which to save the data.
- matrix_6x6 determines if the full \(6 \times 6\) wurtizte Hamiltonian is used.
- direction is the direction of the wave vector used to plot the band structure.
- region is used to specify if the band structure for well or barrier is to be plotted.

\section*{Examples}
view_ganvalence region=well

\subsection*{22.774 view_zincblende_valence}

This statement and its parameters are analogous to view_ganvalence. However, it applies to cubic zincblende materials so a different Hamiltonian is solved.

\subsection*{22.775 view_kpsubband}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline data_file & char & [void] \\
\hline include_data & char & {\([\) void \(]\)} \\
\hline versus_q & char & {\([\) no \(]\)} \\
\hline mqw_complex & intg & {\([1]\)} \\
\hline
\end{tabular}
view_kpsubband is used in the .gain file to plot the quantum well subbands \(\left(E\left(k_{t}\right)\right)\) from k.p theory.
- data_file is a text file which is used to save a copy of the band structure data.
- include_data includes data files from other subband calculations for the purpose of comparison. The format is a column-wise list of \(k_{t}\) and energy \(E\); data from different subbands are separated by an empty line.
- mqw_complex is used to select which MQW is being plotted if there are multiple quantum-confined regions in the simulation.
- versus_q changes the axis of the plot and is used only if periodic boundary conditions have been defined in modify_qw. In that case, different energy dispersion relations can be calculated: as normal, vs. the in-plane wave vector \(k_{t}\) or vs. the periodicity coefficient \(q\).
The periodicity coefficient is defined in the interval \(\left[0, \frac{\pi}{L}\right]\) and covers the entire range of possible periodic boundaries [66]:
\[
\begin{equation*}
\Psi(L)=\Psi(0) e^{i q L} \tag{22.140}
\end{equation*}
\]

\subsection*{22.776 view_kpwave}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline versus_q & char & {\([\) no \(]\)} \\
\hline kt & char & {\([1]\)} \\
\hline
\end{tabular}
view__kpsubband is used in the .gain file to plot wave functions \(\left(E\left(k_{t}\right)\right)\) from k.p theory. As of the 2015 version, this is only available for the newer version of the zincblende k.p solver.
- versus_q changes the axis of the plot and is used only if periodic boundary conditions have been defined in modify__qw. In that case, different energy dispersion relations can be calculated: as normal, vs. the in-plane wave vector \(k_{t}\) or vs. the periodicity coefficient \(q\).
The periodicity coefficient is defined in the interval \(\left[0, \frac{\pi}{L}\right]\) and covers the entire range of possible periodic boundaries[66]:
\[
\begin{equation*}
\Psi(L)=\Psi(0) e^{i q L} \tag{22.141}
\end{equation*}
\]
- kt controls which wave functions are being plotted. This value ranges from 1 (at zone center) to the number of k.p points specified in modify_qw.

\subsection*{22.777 view_macro}
view__macro is a programmer-only command used to evaluate macros with external tools.

\subsection*{22.778 view_vtkfile}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline vtkfile & char & \\
\hline dimension & char & {\([2 \mathrm{~d}], 3 \mathrm{~d}\)} \\
\hline
\end{tabular}
view__vtkfile is used in the post-processing stage to visualize FDTD data stored in the VTK file format with the help of an external viewer called Paraview.

\section*{Parameters}
- vtkfile is the filename containing the FDTD data.
- dimension tells the viewer to expect 2D or 3D data.

\subsection*{22.779 virtual_time_setting}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline element_name & char & {[], Vcc, I1 } \\
\hline scan_num & intg & {\([2]\)} \\
\hline
\end{tabular}
virtual_time_setting modifies a particular scan statement so that when the virtual_time variable is used, only one particular current or voltage source in the minispice external circuit is modified.
If this statement is omitted, virtual_time modifies all SPICE source devices simultaneously during the scan.

\section*{Parameters}
- element__name is the SPICE device name that will be modified during the scan
- scan__num sets which scan statement is altered by this command

\subsection*{22.780 vplot__xy}
\begin{tabular}{||l|l|l|}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & (see list) \\
\hline data_file & char & \\
\hline mater_boundary & char & {\([\) yes]no } \\
\hline point_ll & realx2 & \((\mu m)\) \\
\hline point_ur & realx2 & \((\mu m)\) \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline z & real & (micron) \\
\hline maxvector_scale & real & {\([1]\).} \\
\hline grid_sizes & intgx2 & {\([20,20]\)} \\
\hline
\end{tabular}
vplot_xy is a post-processor statement used to plot structural data on a 2D plane. Unlike plot_2d, this command can only plot vector fields.

Other related commands exist and should be used depending on the 2D/3D nature of the original simulation results. The following rules apply:
- 2D simulations: use plot 2d
- 3D cylindrical simulations with one mesh plane: use plot__2d
- xy plane from a 3D simulation: use cplot_xy for contour plots of scalar variables, splot_xy for 3D surface plots of scalar variables or vplot_xy for vector variables.
- xyz plane from a 3D simulation: use cplot__xyz for contour plots of scalar variables, splot_xyz for 3D surface plots of scalar variables or vplot_xyz for vector variables.

\section*{Parameters}

With the exception of the z-position and contour plot-related parameters that do not apply, all parameters are the same as in plot__2d.
- \(\mathbf{z}\) is the position on the \(\mathbf{z}\)-axis for the 2 D plot. If necessary, the variable data will be interpolated from neighboring mesh planes.

\section*{Examples}
```

vplot_xy variable=elec_curr z=50. grid_sizes=(35, 35) \&\&

```
    xrange \(=(0.1 .5)\) yrange \(=(1.11 .9)\)

\subsection*{22.781 vplot__xyz}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline variable & char & (see list) \\
\hline data_file & char & \\
\hline xy_from & realx2 & \((\mu m)\) \\
\hline xy_to & realx2 & \((\mu m)\) \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline z_min & real & (micron) \\
\hline z_max & real & (micron) \\
\hline maxvector_scale & real & {\([1]\).} \\
\hline grid_sizes & intgx2 & {\([35,35]\)} \\
\hline
\end{tabular}
vplot_xyz is a post-processor statement used to plot structural data on a 2 D plane. Unlike plot_2d, this command can only plot vector fields.
Other related commands exist and should be used depending on the 2D/3D nature of the original simulation results. The following rules apply:
- 2D simulations: use plot \(2 d\)
- 3D cylindrical simulations with one mesh plane: use plot__2d
- xy plane from a 3D simulation: use cplot_xy for contour plots of scalar variables, splot_xy for 3D surface plots of scalar variables or vplot_xy for vector variables.
- xyz plane from a 3D simulation: use cplot_xyz for contour plots of scalar variables, splot_xyz for 3D surface plots of scalar variables or vplot_xyzfor vector variables.

\section*{Parameters}

This statement is similar to vplot_xy and varies only in the way it defines the plotting plane. As such, most of the parameters are also similar to those in plot__2d.
- \(x y\) _from and \(x y\) _to define the ( \(x, y\) ) corners of the plotting plane.
- \(\mathbf{z} \_\)min and \(\mathbf{z} \_\)max define the z coordinates of the corners of the plotting plane.

\section*{Examples}
```

vplot_xyz variable=elec_curr \&\&
xy_from=(0.5 0.) xy_to=(0.5 3.)

```

\subsection*{22.782 wave_boundary}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline x1_label & char & [void \(]\) \\
\hline y1_label & char & [void] \\
\hline x2_label & char & {\([\) void \(]\)} \\
\hline y2_label & char & {\([\) [void \(]\)} \\
\hline point_ll & realx2 & {\([0.0].(\mu m)\)} \\
\hline point_ur & realx2 & {\([1.1].(\mu m)\)} \\
\hline fld_center & realx2 & \((\mu m)\) \\
\hline n__ubdata & realxn & \\
\hline n_lbdata & realxn & \\
\hline ubdata_num & intg & {\([0]\)} \\
\hline lbdata_num & intg & {\([0]\)} \\
\hline
\end{tabular}

The statement wave_boundary sets the boundary condition for the optical wave equations. Use of this statement overrides the corresponding parameters in in statement init_wave. This statement can be generated by the graphic user interface and appears in the .doping file.
- x1__label y1_label x2__label y2__label user pre-defined labels to specify point_ll, point__ur parameters, respectively. The labels must be predefined using \(x\) __position, \(y \_\)position or define__vertical__position command. They may be predefined in the .layer file relative to a specific layer so that there is no need to find out the absolute coordinates.
- point_ll and point__ur are lower-left and upper-right points of the window within which the wave equation is solved (see also Fig. 22.13). This window must be less than or equal to the full device size defined in the .geo input file. In some cases, this window must be reduced in size because only a limited number of lateral modes are needed. In gain guided devices, the lasing mode is not the highest index mode. Since PICS3D searches the optical mode starting from the highest mode index, there may be many non-lasing modes within the window. In the current version, PICS3D can only solve up to 10 modes. Since the number of non-lasing, high index modes increases with size of the window, the user should carefully adjust the window size for gain guided structures so that the lasing mode is included within the 10 modes.
- fld__center is the estimated optical mode center. Note that this information is only used to initialize the wave function and may or may not coincide with the optical field center in the final solution.
- n__ubdata and n_lbdata are window specifications. By default, the window for the wave equation is specified by "point_ll" and "point_ur" to be a rectangular window. Now it is possible to override the upper and lower borders with the parameters n__ubdata, n_lbdata, ubdata_num and lbdata_num where n__ubdata (for upper boundary data) is used to specify the upper boundary points (xi, yi) in the format
n_ubdata \(=(x 1\) y1 x2 y2 x3 y3 ...)
where the prefix n_ should be equal to the number of data values in the bracket (or half of the points in 2D space). The related parameter for this statement, ubdata_num, must match the number of data value in \(\mathbf{n} \_\mathbf{u b d a t a}\).
```

init_wave ... \&\&
ubdata_num=8 8_ubdata=(0. 3.16 0.773 3.16 1.5 2.16 6. 2.16)

```
is used to describe a non-planar metal boundary for the wave equation. Similarly, n_lbdata and lbdata_num are used to describe the lower boundary.
```

Example(s)
wave_boundary point_ll=(0., 0.0) point_ur=(3.5, 3.0) \&\&
fld_center=(0.5, 1.5)

```

\subsection*{22.783 waveguide__input}

This command is identical to \(3 \mathrm{~d} \_\)amplifier__model. It exists only for historical reasons where separate models in PICS3D were used for semiconductor optical amplifiers (SOAs) and electro-absorbing modulators (EAMs). This is no longer necessary now that the equations are fully coupled with the round-trip gain method and the same model can handle both kinds of devices.

Note that for completely passive photo-absorbing waveguides, an additional flag is needed to properly use the bulk absorption coefficient in the simulation. Please see 3d__amplifier__model for details.

\subsection*{22.784 wurtzite__offset__model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline use_strained_bandgap & char & {\([\) yes \(]\)} \\
\hline bulk_strain_exist & char & {\([\mathrm{no}]\)} \\
\hline use_hh_as_bandgap & char & {\([\mathrm{yes}]\)} \\
\hline
\end{tabular}

The this command is used to control various aspects of the band offset model for wurtzite materials; to understand it properly, a few key aspects of the band alignment rules in Crosslight should be reviewed:
- 1 Bulk layers (active and passive) directly define the conduction band position using the affinity statement. No strain shifts are applied to this value unless they are deliberately included the affinity declaration (macro file).
For passive layers, only a single band is ever used for transport so all valence bands are combined, with a reduced mass accounting for the \(\mathrm{HH}, \mathrm{LH}\) and CH bands. The valence band edge is thus positioned as \(E_{v}=E_{c}+E_{g}\).

For bulk active layers, all of the valence band edges are explicitly considered so using the effective bandgap for each valley, the valence bands are positioned as \(E_{v, i}=E_{c}+E_{g, i}\).
- 2 Quantum wells position the conduction band relative to the barrier based on the band_ooffset value; this can be overridden by certain commands such as use__bulk__affinity and band__discont. Various authors define the band offset in different ways which may or may not include the strain; see Sec. 10.1 for more information on this topic.

For a quantum well, each band valley is considered separately and the valence band edges are given by \(E_{v, i}=E_{c}+E_{g, i}\). Valence band mixing through \(k\). \(p\) is available as an option but only affects momentum matrix elements and dispersion relations.

\section*{Parameters}
- use__strained__bandgap determines whether or not the strained bandgap is used inside the band offset calculations for quantum wells.
- bulk_strain_exist uses the strained bandgap in bulk and bulk active layers to position the valence band(s).
- use__hh_as_bandgap controls whether the HH band is used as the single band edge for transport in passive layers. If this is turned off, the smallest bandgap will be used as the band edge. This parameter will affect hole transport by changing the effective barrier height in the thermionic emission model.

\section*{Examples}

Recommended setting to model a strained electron blocking layer of AlGaN in a LED; adjustment of the affinity macro to include the hydrostatic shift is also required.
wurtzite_offset_model bulk_strain_exist=yes use_hh_as_bandgap=no

\subsection*{22.785 x_position}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline label & char & [void] \\
\hline x & real & \\
\hline
\end{tabular}
\(\mathbf{x} \_\)position is used by the program to refer to a x-coordinate using a label.

\section*{Parameters}
- label is a position label at a specific x-coordinate in microns.
- \(\mathbf{x}\) is the x -coordinate of the point.

\section*{Examples}
x_position label=mid_mqw x=0.0051

This example labels a x-position \(0.0051 \mu \mathrm{~m}\) as "id_mqw" for use in other statements.
22.786 y_position
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline label & char & {\([\) void \(]\)} \\
\hline y & real & \\
\hline
\end{tabular}
y_position is used by the program to refer to a y-coordinate using a label.

\section*{Parameters}
- label is a position label at a specific y-coordinate in microns.
- \(\mathbf{y}\) is the y -coordinate of the point.

\section*{Examples}
y_position label=mid_mqw y=0.0051

This example labels a y-position \(0.0051 \mu \mathrm{~m}\) as "id_mqw" for use in other statements.

\subsection*{22.787 young_modulus}
young_modulus defines Young's modulus for the acoustic wave propagation model in SAWAVE.

The parameters for this statement are the same as for all other material statements. See material__par in section 22.456 for examples and further details.

\subsection*{22.788 z_structure}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline link_taper_contact & char & [yes] (no) \\
\hline cylindrical & char & {\([\) no] yes } \\
\hline uniform_zseg_from & real & (um) \\
\hline uniform_zseg_to & real & (um) \\
\hline uniform_length & real & (um) \\
\hline taper_length & real & {\([0\).\(] (um)\)} \\
\hline xp1_size & real & {\([0\).\(] (um)\)} \\
\hline xp2_size & real & {\([0\).\(] (um)\)} \\
\hline mesh_ratio & real & {\([1]\).} \\
\hline shift_center & real & {\([0].(u m)\)} \\
\hline cylindrical_origin & real & {\([0].(\mathrm{um})\)} \\
\hline single_plane_zdim & real & (um) \\
\hline zseg_num & intg & {\([1]\)} \\
\hline zplanes & intg & {\([1]\)} \\
\hline
\end{tabular}

The statement \(\mathbf{z} \_\)structure is used to define the electrical mesh structure in the z-direction for a particular region (z-segment) with uniform material composition and which share the same material parameters.

Note that many taper commands previously defined here have been relocated to the taper__between_segments statement.

We also note that electrical current may or may not flow between mesh planes: this setting is controlled in \(3 \mathrm{~d} \_\)_solution__method. This setting may be of interest in edge-emitting lasers where the mesh planes are coupled by the round-trip propagation of the light and longitudinal current flow is negligible.

A more complete discussion on the 3D modeling scheme used by Crosslight software tools may also be found in Sec. 6.3.

\section*{Parameters}
- link_taper_contact indicates whether contacts in different segments are joined together if there is tapering between segments. This statement takes effect only when two electrodes have the same contact number.

This parameter only takes effect when the current is not allowed to flow between xy planes. For details, see 3d__solution__method. If the current is allowed to flow between planes, then the connection is mandatory.
- cylindrical would set the current segment to be in cylindrical system.
- uniform_zzeg_from and uniform_zseg_to are used to specify the positions of the uniform segment along the longitudinal direction. These two positions can be the same, in which case the length of the segment is zero. This is not uncommon when using tapers.

Note that taper connections are made in the space between two uniform segments: there may therefore be gaps between the "from" and "to" values of two successive segments. However, the first and last segments of the device must always be uniform segments, even if their length is zero.
- zseg_num is the z-segment number.
- uniform_length defines the length of the uniform segment; this will override the uniform_zseg_from and uniform_zseg_to if need be. In general, only one declaration style for segment lengths should be used, in order to simplify the input.
- xp1_size and xp2_size are small offsets applied to the mesh plane position at the beginning and end, respectively, of the segment. This is needed to properly define heterojunctions since mesh points can only belong to one material number in the Crosslight discretization scheme.
- mesh_ratio controls the distribution of mesh planes in the z-segment. See Fig. 22.22 for details.
shift_center is a related parameter which applies for negative mesh ratios and symmetric mesh distributions. This parameter is used to adjust the center of the distribution.
- cylindrical_origin is the origin of the cylindrical system, if applicable.
- zplanes is the number of mesh planes (longitudinal mesh) in the z-segment; to properly define a 3 D volume, at least 2 mesh planes must normally be present.

A single mesh plane inside a segment may be used in only 2 cases:
- in the case of tapers, where a single mesh plane with zero thickness is used to sample the longitudinal properties of the device at a specific position. In this case, multiple segments are expected, in order to define a 3 D volume using multiple mesh planes from these different segments.
- if single__plane_zdim or taper_length are used to define the segment length. In this case, the material properties are uniform in the segment and the 3D volume is obtained by extruding the 2D mesh plane with this length.

\section*{Examples}

The first example is a standard edge-emitting DFB laser, electrically uniform with 7 mesh planes:
```

3d_solution_method 3d_flow=yes z_connect=no

```
z_structure uniform_length=500.0 zplanes=7 zseg_num=1
load_mesh mesh_inf=inp13.msh

However, this particular DFB laser has a \(\frac{\lambda}{4}\) phase shift in the middle so optically, this electrical segment is split into two optical sections:
```

\$ Quarter-wave phase shift: 90 degrees=0.5*pi
section length=250e-6 kappa_real=2e3 \&\&
sec_num=1 mesh_points=10 phase_shift=0.5
section length=250e-6 kappa_real=2e3 \&\&
sec_num=2 mesh_points=10

```

The second example defines a taper between \(\mathrm{z}=0\) and \(\mathrm{z}=200 \mathrm{~m}\) followed by a uniform segment. There is no mesh inside the taper region but mesh triangles are projected along taper lines inside the finite volume discretization of the Drift-Diffusion equations. Additional segments (with their own layer, .geo and .msh files) inside the taper regions would enhance the accuracy of this simulation by more accurately sampling the lateral variation in the structure.
```

3d_solution_method 3d_flow=yes z_connect=yes
z_structure uniform_zseg_from=0. uniform_zseg_to=0. \&\&
zseg_num=1 zplanes=1
taper_between_segments from_segment=1 xpoint_from=1 xpoint_to=6
z_structure uniform_zseg_from=200. uniform_zseg_to=400. \&\&

```
```

 zseg_num=2 zplanes=2
 load_mesh mesh_inf=gaas2e1.msh zseg_num=1
load_mesh mesh_inf=gaas2e2.msh zseg_num=2

```

\subsection*{22.789 zdir_cx}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline type & char & {\([\) well \(]\), barrier } \\
\hline xy_ref & realx2 & {\([1.2].(\mu m)\)} \\
\hline zseg & intg & \\
\hline mater & intg & 1 \\
\hline
\end{tabular}
zdir_cx is used to define a complex MQW region in the z direction.

\section*{Parameters}
- type identifies the current z-segment as being either the barrier or well of the complex MQW region.
- mater is the material number for the quantum-coupled region on this plane. If this statement is used in the .layer file where materials is not available, the quantum coupled region is identified with the ( \(\mathrm{x}, \mathrm{y}\) ) coordinates of xy _ref instead.
- zseg is the z-segment number where this commands applies; it may be generated automatically for the .sol if this statement is originally defined in the .layer file.

\section*{Examples}
```

begin_zdir_complex num_segment= 9
zdir_cx zseg= 16 type=barrier mater= 3
zdir_cx zseg= 17 type=barrier mater= 3
zdir_cx zseg= 18 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 19 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 20 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 21 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4
zdir_cx zseg= 22 type=well xy_ref= 0.1000E+01 0.5000E-01 mater= 4

```
```

zdir_cx zseg= 23 type=barrier mater= 3
zdir_cx zseg= 24 type=barrier mater= 3
end_zdir_complex

```

\subsection*{22.790 zdir_light_source}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline shape & char & {\([\) rectangle \(]\), circle } \\
\hline xrange & realx2 & {\([-1 . \mathrm{e} 81 . \mathrm{e} 8](\mu \mathrm{m})\)} \\
\hline yrange & realx2 & {\([-1 . \mathrm{e} 81 . \mathrm{e} 8](\mu \mathrm{m})\)} \\
\hline gaussian_tail & real & {\([0.1](\mu \mathrm{m})\)} \\
\hline circle_center & realx2 & {\([0.00 .0](\mu m)\)} \\
\hline circle_radius & real & {\([1.0](\mu m)\)} \\
\hline
\end{tabular}

This statement is used in conjunction with light__power to define an optical pumping source that is roughly perpendicular to the xy mesh planes in a 3D simulation.
zdir_light_source light source specifies only the profile of the input light. All other properties are controlled by light__power just like in a 2D simulation.

\section*{Parameters}
- shape is the shape of the light spot on the device. Within that spot, the power density is uniform.
- xrange and yrange determine the extend of the light spot in the rectangle model.
- gaussian_tail describes how quickly the light decays when outside the light spot. This is modeled in the same way as the decay in the doping statement.
- circle_center and circle_radius determine the extend of the light spot in the circle model.

\section*{Examples}
light_power spectrum_file=solar.am0 light_dir=+z
zdir_light_source shape=circle gaussian_tail=0.1 \&\& circle_center=(65. 65.) circle_radius=60.

\subsection*{22.791 zener}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline balance_zero_bias & char & [yes] \\
\hline tun_mass & real & \\
\hline xrange & realx2 & \\
\hline yrange & realx2 & \\
\hline
\end{tabular}
zener is used to activate the interband tunneling (or Zener tunneling as in Zener diodes) model. Since this statement is useful for heavily doped reverse junctions, it may be useful to use this statement together with the impact ionization model.

Note that this model converts the tunneling current into a local generation term: the formula involved is only applicable for a reverse junction and does not model the negative resistance that can occur under forward bias.

For forward-biased tunnel junctions, see the tunnel_junc statement. A full discussion on theory can also be found in Sec. 9.3.

\section*{Parameters}
- balance_zero__bias balances out the tunneling current with thermal current at zero bias. This may be set to "no" in some cases for the purpose of achieving convergence at low bias voltages.
- tun_mass is the Zener interband tunneling mass to be set by the user. If it is not specified, the combined effective mass is used as in the following formula: \(2 m_{e} m_{h} /\left(m_{e}+m_{h}\right)\).
- xrange and yrange define the tunneling range using absolute coordinates.

\section*{Examples}
```

\$ Just one word:
zener
\$ This will enable the interband tunneling model to
\$ use the standard combined effective mass.

```

\subsection*{22.792 zero_doping}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline mater_label & char & \\
\hline mater & intg & {\([1]\)} \\
\hline macro_name & char & {\([\) void] } \\
\hline
\end{tabular}

The statement zero_doping forces the doping to be zero in a particular material.

\section*{Parameters}
- mater is the material number affected by this statement. This parameter is ignored if macro__name is used.
- mater_label may be used instead of mater if a label has previously been defined as an alias.
- macro_name indicates all materials using this macro name be set to zero doping impurities.

\subsection*{22.793 zincblende_offset_model}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline use_strained_bandgap & char & {\([\) yes \(]\)} \\
\hline partition_hydro_term & char & {\([y e s]\)} \\
\hline
\end{tabular}

The this command is used to control various aspects of the band offset model for zincblende materials; to understand it properly, a few key aspects of the band alignment rules in Crosslight should be reviewed:
- 1 Bulk layers (active and passive) directly define the conduction band position using the affinity statement. No strain shifts are applied to this value unless they are deliberately included the affinity declaration (macro file).

For passive layers, only a single band is ever used for transport so all valence bands are combined, with a reduced mass accounting for the HH and LH bands. The valence band edge is thus positioned as \(E_{v}=E_{c}+E_{g}\).

For bulk active layers, all of the valence band edges are explicitly considered so using the effective bandgap for each valley, the valence bands are positioned as \(E_{v, i}=E_{c}+E_{g, i}\).
- 2 Quantum wells position the conduction band relative to the barrier based on the band__offset value; this can be overridden by certain commands such as use__bulk_affinity and band__discont. Various authors define the band offset in different ways which may or may not include the strain; see Sec. 10.1 for more information on this topic.

For a quantum well, each band valley is considered separately and the valence band edges are given by \(E_{v, i}=E_{c}+E_{g, i}\). Valence band mixing through \(k\). \(p\) is available as an option but only affects momentum matrix elements and dispersion relations.

\section*{Parameters}
- use_strained_bandgap determines whether or not the strained bandgap is used inside the band offset calculations for quantum wells.
- partition_hydro__term controls whether or not the hydrostatic shift is split between the conduction and valence band. If this option is disabled, the hydrostatic shift is applied on the valence band alone.

\subsection*{22.794 zplane_label}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline \hline \begin{tabular}{l} 
label \\
hline nearest_z
\end{tabular} & char & real
\end{tabular}

This statement is used to mark a specific z coordinate for later use. Unlike zplane__position, the coordinate must explicitly match the position of a mesh plane.

\section*{Parameters}
- label defines a variable name that can be reused in other commands to refer to this position.
- zplane is the z-mesh plane number where the labeled is applied. This number can also be found automatically by specifying a numeric value in nearest_z; the software will attempt to locate the mesh plane closest to this position.

\subsection*{22.795 zplane_position}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline label & char & \\
\hline location & char & {\([\) top \(]\)} \\
\hline delta_z_from_bottom & real & {\([-9999].(\mu \mathrm{m})\)} \\
\hline delta_z_from_top & real & {\([-9999].(\mu m)\)} \\
\hline
\end{tabular}

This statement is similar to layer__position and is used to mark a specific z coordinate for later use. Unlike zplane_label, the position defined by this statement does not need to match that of a z-mesh plane which makes it useful for plotting purposes.
All the parameters from this statement are analogous to those of layer__position. The main difference is that all positions are defined relative to the preceding z_structure statement.

\subsection*{22.796 zsegment_setting}
\begin{tabular}{||l|l|l||}
\hline parameter & data type & values [defaults] \\
\hline \hline limit_gain & char & {\([\) no] } \\
\hline zseg_num & intg & {\([1]\)} \\
\hline
\end{tabular}
zsegment_setting is used to set some model parameters for a specific z-segment.
- limit_gain indicates whether optical gain is limited by the gain interpolation table and disallow any extrapolation. This parameter affects package PICS3D only.
- zseg_num is the z-segment affected by this command.

\section*{Part VI}

\section*{APPENDICES}


\section*{Appendix A}

\section*{WAVE EQUATION FOR PERFECTLY MATCHED LAYER}

We shall derive the wave equation for the PML starting from the Maxwell equations:
\[
\begin{array}{r}
\nabla \cdot \varepsilon[\Lambda] \vec{E}=0 \\
\nabla \cdot \mu[\Lambda] \vec{H}=0 \\
\nabla \times \vec{E}=-j \omega \mu[\Lambda] \vec{H} \\
\nabla \times \vec{H}=j \omega \varepsilon[\Lambda] \vec{E} \tag{A.1}
\end{array}
\]

Based on the 3rd and 4th equations above, we obtain the wave equation in the following form:
\[
\begin{equation*}
[\Lambda]^{-1} \nabla \times[\Lambda]^{-1} \nabla \times \vec{E}-k^{2} \vec{E}=0 \tag{A.2}
\end{equation*}
\]

Using \(a, b, c\) to define the \([\Lambda]\) tensor, we can make the following expansion and derivation:
\[
\begin{aligned}
{[\Lambda]^{-1} \nabla \times[\Lambda]^{-1} \nabla \times \vec{E} } & =\frac{1}{a}\left[\frac{1}{c}\left(\frac{\partial^{2} E_{y}}{\partial x \partial y}-\frac{\partial^{2} E_{x}}{\partial y^{2}}\right)-\frac{1}{b}\left(\frac{\partial^{2} E_{x}}{\partial z^{2}}-\frac{\partial^{2} E_{z}}{\partial x \partial z}\right)\right] \vec{i} \\
& +\frac{1}{b}\left[\frac{1}{a}\left(\frac{\partial^{2} E_{z}}{\partial y \partial z}-\frac{\partial^{2} E_{y}}{\partial z^{2}}\right)-\frac{1}{c}\left(\frac{\partial^{2} E_{y}}{\partial x^{2}}-\frac{\partial^{2} E_{x}}{\partial x \partial y}\right)\right] \vec{j} \\
& +\frac{1}{c}\left[\frac{1}{b}\left(\frac{\partial^{2} E_{x}}{\partial x \partial z}-\frac{\partial^{2} E_{z}}{\partial x^{2}}\right)-\frac{1}{a}\left(\frac{\partial^{2} E_{z}}{\partial y^{2}}-\frac{\partial^{2} E_{y}}{\partial y \partial z}\right)\right] \vec{k}(\text { A.3 })
\end{aligned}
\]

For anisotropic PML with interface normal to x-axis, the coefficients should be re-
lated by \(c=b=1 / a\). We may simplify the above equation as follows:
\[
\begin{align*}
{[\Lambda]^{-1} \nabla \times[\Lambda]^{-1} \nabla \times \vec{E} } & =\left[\left(\frac{\partial^{2} E_{y}}{\partial x \partial y}-\frac{\partial^{2} E_{x}}{\partial y^{2}}\right)-\left(\frac{\partial^{2} E_{x}}{\partial z^{2}}-\frac{\partial^{2} E_{z}}{\partial x \partial z}\right)\right] \vec{i} \\
& +\left[\left(\frac{\partial^{2} E_{z}}{\partial y \partial z}-\frac{\partial^{2} E_{y}}{\partial z^{2}}\right)-\frac{1}{c^{2}}\left(\frac{\partial^{2} E_{y}}{\partial x^{2}}-\frac{\partial^{2} E_{x}}{\partial x \partial y}\right)\right] \vec{j} \\
& +\left[\frac{1}{c^{2}}\left(\frac{\partial^{2} E_{x}}{\partial x \partial z}-\frac{\partial^{2} E_{z}}{\partial x^{2}}\right)-\left(\frac{\partial^{2} E_{z}}{\partial y^{2}}-\frac{\partial^{2} E_{y}}{\partial y \partial z}\right)\right] \vec{k}(A \tag{A.4}
\end{align*}
\]

It is useful to consider the following expression:
\[
\begin{align*}
\frac{1}{c} \nabla(\nabla \cdot[\Lambda] \vec{E}) & =\nabla\left(\frac{1}{c^{2}} \frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{x}}{\partial z}\right) \\
& =\vec{i} \frac{\partial}{\partial x}\left(\frac{1}{c^{2}} \frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{x}}{\partial z}\right) \\
& +\vec{j} \frac{\partial}{\partial y}\left(\frac{1}{c^{2}} \frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{x}}{\partial z}\right) \\
& +\vec{k} \frac{\partial}{\partial z}\left(\frac{1}{c^{2}} \frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{x}}{\partial z}\right) \tag{A.5}
\end{align*}
\]

Based on the first Maxwell equation, the above equation should be zero. Thus, we may subtract it from Eq. A. 4 so that the cross terms may be canceled out. We obtain the following:
\[
\begin{align*}
{[\Lambda]^{-1} \nabla \times[\Lambda]^{-1} \nabla \times \vec{E} } & =-\left(\frac{1}{c^{2}} \frac{\partial^{2} E_{x}}{\partial x^{2}}+\frac{\partial^{2} E_{x}}{\partial y^{2}}+\frac{\partial^{2} E_{x}}{\partial z^{2}}\right) \vec{i} \\
& -\left(\frac{1}{c^{2}} \frac{\partial^{2} E_{y}}{\partial x^{2}}+\frac{\partial^{2} E_{y}}{\partial y^{2}}+\frac{\partial^{2} E_{y}}{\partial z^{2}}\right) \vec{j} \\
& -\left(\frac{1}{c^{2}} \frac{\partial^{2} E_{z}}{\partial x^{2}}+\frac{\partial^{2} E_{z}}{\partial y^{2}}+\frac{\partial^{2} E_{z}}{\partial z^{2}}\right) \vec{k} \tag{A.6}
\end{align*}
\]

Or simply:
\[
\begin{equation*}
[\Lambda]^{-1} \nabla \times[\Lambda]^{-1} \nabla \times \vec{E}=-\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \vec{E} \tag{A.7}
\end{equation*}
\]

The wave equation in the PML can be thus written in the following form:
\[
\begin{equation*}
\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \vec{E}+k^{2} \vec{E}=0 \tag{A.8}
\end{equation*}
\]

\section*{Appendix B}

\section*{MATERIAL PARAMETERS}

\section*{B. 1 Introduction}

Most material parameters implemented in the simulation software are well established data taken from Refs. such as [1], [153] and [154]. They are specified outside the program in the form of input statements. Since there are a large number of semiconductor parameters for a device, these material statements are collected together as macros.

To ensure a rapid update of the most recent material parameters, the material macro library is in a simple editable text format. Should the user have better knowledge of the material parameters than those listed in the macro library, he/she is encouraged to revise the library or override the parameters in the macro by re-issuing an input material statement after the macros have been loaded. It is also possible to define an entirely new macro in a separate text file in the simulation directory: the program can make use of this custom macro file with the use_macrofile statement.

In this appendix, we only provide a full listing of a few typical material macro parameters for the purpose of illustration. For a full listing of all macros, consult the "crosslight.mac" and "more.mac" files in the installation directory. These files are the default macro database and should usually not be edited by the user since they affect all simulations. Instead, use custom macro files or override input statements as described above.

A full list of macros is also visible when using the LayerBuilder and GeoEditor GUI programs to define the materials in a particular layer or polygon.
Note that certain macros, especially for ternary/quaternary III-V materials, are designed for the case where the material is lattice-matched to a particular substrate (GaAs or \(\operatorname{InP}\) ). Make sure to read the header section of each macro to ensure you are using the correct macro and material parameters for your simulation.

\section*{B. 2 Rules for macros}

The rules for macros are detailed in the header of the crosslight.mac file. For the sake of convenience, here is a copy.
\$ IMPORTANT: Please do not use any invisible characters such as tabs in macro \(\$ * * * * * * * * * * * * * * * * * * M A T E R I A L ~ M A C R O ~ O * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\)

Copyright (c) 1995-present Crosslight Software Inc..
All rights reserved.
What Is A Macro

A macro is a collection of input statements (or commands).
A statement starts with a keyword followed by parameters
specified with "=".
A statement for material parameters overrides a
previous statement with the same keyword.
To make changes of the parameters in a macro, just re-issue
the statement with different parameters after the macro call
in the input file. You can also change the parameters in the macro directly.

For example, if you are unhappy with the bandgap in gaas macro,
you can do the following:
load_macro name=gaas mater=\#m
band_gap value=1.425 mater=\#m

\section*{Two Types of Macros}

For device simulation, you may need two types of macros:
1) Bulk material macros. These are given lower case macro names such as "algaas". They are referred to by "load_macro" in the input files. You must specify bulk material macro for all material layers. They specify general material parameters such as bandgap, mobility, index, etc.
2) Active layer macros. These are given mixed case macro names such as "AlGaAs". These are only needed for active layers in a laser diode or quantum well layers in other devices. Quantum subbands and/or optical processes are considered in these layers.

If there are overlaps with 1), the parameters (such as bandgap) in active layer macros will override those in 1). Active layer macro with prefix cx- (such as cx-InGaAsP/InP) are "complex active layers" which may be used to define active or quantum regions of complex structures.

You must use both "bulk material macro" and "active layer macro" if you have an active region or a quantum region.

\section*{Syntax}
```

Comments start with "\$". A line to be continued terminates

```
with "\&\&". Symbol definition within a function terminates with ";".
A statement starts with a keyword followed by parameters
specified with "=". Space, ",", "(", ")", "[", "]", "\{" and
"\}" with a statement are ignored by the program. The length
of a statement line must not exceed 80 characters. The tab key is
not to be used in any statements.
A math function is declared using variation=function and
followed in the next few lines by
function(var1, var2, var3,...)
for logical_expression_1
complete_function_definition_1
for logical_expression_2
complete_function_definition_2
for logical_expression_3
complete_function_definition_3
...
for else
complete_function_definition_N
end_function
The logical_exression takes the format
expr1<expr2 or expr1<expr2<expr3
It also supports one of | (logical OR) or \& (logical AND) operator.
to use "for else" as a case indicator. The following lines are legal:
function( \(\mathrm{x}, \mathrm{y}, \mathrm{xl}\) am)
for 1.24/xlam<bulk_xfunc1
complete_function_definition_1
```

for 0.5<y
complete_function_definition_2
for y>0.1\&xlam<0.8
complete_function_definition_3
for x<0.8|xlam<0.8
complete_function_definition_4
for else
complete_function_definition_5
end_function
Please note that ">" really means "greater than or equal". Similarly
"<" means "less than or equal". For continuous
numerical functions, there is no difference between "greater than or equal"
and simply "greater than".
The case indicator above separates the function into branches
of complete function definitions (like having different functions).
Within each branch of complete function definition, a set of
new and more convenient logical switches can be used in the following form
if(expression1) then
else if(expression2) then
else if(expression3) then
...
else
endif
The "then" word is optional, so is the "if" following the "else".
The program looks for expressions within the
bracket. The following format is equivalent to the above.
if(expression1)
else (expression2)
else (expression3)
else
endif
It is also possible to use an if-else-endif branching within another
if-else-endif. The hierarchy may reach 99 and within
each hierarchy, there can be 29 branches.
For example the following complicated logical branches are

```
```

supported:
if(adfa.eq.k) then
some_definition_lines
if(5<x*y)
some_definition_lines
else if(wavelength>1.9)
some_definition_lines
endif
some_definition_lines
else if (bulk_xfunc1>2.5) then
some_definition_lines
endif
Please note that a complete function definition can not
exceed 3000 characters. If you need to construct a function
with many logical branches of long math expressions,
it is recommended that you use the conventional
"for" logical branching method.
The logical expressions in "for" and "if-then-else" must
not exceed 80 characters. The math expressions follow the
same syntax as for function definition detailed as follows.
For a function definition, there can be more than one
math expressions. The "=" symbol is used to define intermediate
variables. Expression without "=" is interpreted as the returned
function value and causes the evaluation procedure to exit the function.
All expressions should be separated by ";" or "end-of-line".
An expression longer than }80\mathrm{ characters will be jointed
by the next line regardless of existence of "\&\&" at the end of the line.
The mathematical operators +, -, *, /, **
follow those of C/FORTRAN [** means pow() or power() in C] languages.
All intrinsic mathematic functions appearing in the
FORTRAN language, such as sin(), cos(),
sqrt(), log(), log10(), exp(), etc., can be used without modification.
Tables

```
```

In addition to analytical functions, parameters can also be specified
by numerical tables expressed in the form of an n-dimensional matrix:
para(j1,j2,...,jn). The index in each dimension corresponds to an
independent variable (such as composition or temperature).
The change of such a variable with the index is not necessarily of equal
interval but must be in ascending order. The table must be presented in
a column-wise manner and the left most index changes the fastest.
Blank lines may be inserted anywhere inside the table. For example:
electron_mass variation=table
table(x,y)
x(1) y(1) matrix(1,1)
x(2) y(1) matrix(2,1)
x(3) y(1) matrix(3,1)
x(1) y(2) matrix(1,2)
x(2) y(2) matrix(2,2)
x(3) y(2) matrix(3,2)
end_table
Units
Dimensions are in micron meters. Band parameters and
potentials are in eV or volts. All others are in MKS units.
For example mobility is in m^2/(volt*sec), band_gap in eV
and dopant concentration in 1/m^3.
Symbol Definition
max_electron_mob Maximum dopant dependent elec. mobility.
min_electron_mob
electron_ref_dens
alpha_n
max_hole_mob
Corresponding symbol for holes.
min_hole_mob
hole_ref_dens
alpha_p
tau_energy
lifetime_n

```

Maximum dopant dependent elec. mobility. Minimum dopant dependent elec. mobility.
Reference impurity density in Dopant dependent elec. mobility function exponent in dopant dependent elec. mobility function.
Corresponding symbol for holes.
...
...

Energy relaxation time in hydrodynamic model. Minority n-carrier (electron) life time.
```

Deep trap specification will override this.
Minority p-carrier (hole) life time.
Deep trap specification will override this.
Radiative recombination constant.
Obvious.
Special Symbols, Temperature, Doping, etc.
"temper" is reserved as a variable for the lattice temperature
when constructing a material macro. The unit is degrees Kelvin.
If you use any other symbol for temperature within a macro,
it may not work for the thermal modeling option.
Please note that in a simulation
involving setting the environmental temperature, it is not
sufficient to set the temperature parameter in a material
macro. You must also use the "temperature" statement.
The temperature parameter in a macro is used to evaluate the
material properties (such as bandgap) at a particular temperature,
while the "temperature" statement is used to model the
carrier statistics at that temperature.
Similarly, "doping_n", "doping_p", and "trap_1", "trap_2", ..., "trap_9"
are reserved variable symbols in a function definition. The units are
in 1/m**3. "wavelength" is another reserved variable with unit of
micron meters.

is used together with a symbol to denote a numerical value

to be supplied by the user. For example, in
load_macro name=gaas mater=\#m
\#m is used to mean a numerical value denoting the material
number in a device. For example, if your device has GaAs bulk
material as material number 2, then the above statement should be
written as
load_macro name=gaas mater=2
Macro Styles and Function Formats
An advanced feature of Crosslight Software macro is its ability

```
to define mathematical functions external to the simulation program. Such functions are evaluated dynamically at run-time.

Currently, there are two kinds of macros with different formats of functions: a) the older "fix-arguement-style" macros and b) the more recent "free-arguement-style" macros. The older macros are included here for compatibility reason and the newer formats are highly recommended. The two formats are explained as follows.
a) Fix-Arguement-Style Macros

The rules for function variables/arguements are rather strict. If a function is used for a physical quantity (presented as a statement), there should be exactly the same number of of function variables as that used in the "load_macro" or "get_active_layer" statement. For example, if you use (x,temper) as the variables in "load_macro", all functions within the macro must have these two variables even if all of them do not use the two variables. When calling such a macro, the following can be used:
load_macro name=algaas.temp var1=0.3 var2=300
Since all functions of such a style have the same number of arguments, the program knows which value supplied belongs to which argument in a function. Please note that when calling these kinds of macros, the user must supply all values of the arguments even if they are reserved symbols such as "temper", "doping_n", etc.
b) Free-Argument-Style Macros

The use of free-style format is more based on the need of variables. A function passes and uses as many function arguments as it needs. For example, the bandgap can pass and use both the composition and temperature as (x,temper). But for the effective mass, only the composition is needed and passed as (x). The evaluation of such a macro is based on symbol matching, i.e., the user must specify both the symbol and the value of the symbol when calling the macro, such as in the following call.
load_macro name=algaas.temp var1=0.3 var2=300 \&\&
var_symbol1=x var_symbol2=temper

The user may skip the specification of reserved internal arguments such as "temper", "doping_n", etc., because the program already knows their values. For example, the following may be used instead of the above.
load_macro name=algaas.temp var1=0.3 var_symbol1=x

\section*{Searching For a Macro}

The macro files can contain both the older and newer style macros with the same macro name. The search of the correct version depends on how the macro is called. If a macro does not require any user-supplied macro variables, the simulator will use the first macro it encounters in the search. For macro requiring user-supplied variables (or function arguments), if "var_symbol" is not specified in a macro call, older style macro is assumed and user must strictly align all variables in a macro call. The user is encouraged to convert to the newer style because all future new macros will be created and maintained in the newer free-style.

Please also note that the older style (fix-argument-style) may be regarded as a special case of free-style macro with many un-used function variables listed in all macro functions. Or in another word the older macro can be loaded also with a complete listing of "var_symbol". In fact when the program detects a "load_macro" or "get_active_layer" without any "var_symbol", it will search all the macro functions and supply the necessary "var_symbol". In the case of a macro call fits more than one macros in the macro library, the simulator will always use the first one it encounters.

For the free-style macros to be recognized by the graphic user interface (GUI) such as LayerBuilder and GeoEditor, it must be labeled as [free-style] in the remarks before the macro. Otherwise, it will be treated as an older style macro.

\section*{Mobility Parameter Specifications}

In Crosslight device simulator, the dopant dependent low field mobility takes the following form:
mu_low_field=mu_min+(mu_max-mu_min)/(1+(total_doping/ref_dens) \(* * a l p h a)\)

The current version of the simulator supports two versions of parameter specifications. The older version is to specify the following four parameters for electrons: max_electron_mob, min_electron_mob, electron_ref_dens, and alpha_n. The program computes the above for each mesh point and average them in mid-point between two nodes. Then the mid-point quantities of the above is used in the dopant dependent formula at every iteration.

To speed up the computation, a more efficient version of parameter specification is to directly evaluate the dopant dependence for for statement of "electron_mobility", as in the following example.
electron_mobility variation=function
function(doping_n,doping_p,trap_1)
mu_max=0.14;
mu_min=0.0055;
ref_dens=1.07d23;
alpha=0.73;
total_doping=doping_n+doping_p+trap_1;
mu_min+(mu_max-mu_min)/(1+(total_doping/ref_dens) \(* * a l p h a)\)
end_function

Speed-up is achieved because we need to evaluate the formula once only at the time of processing the macro data.

The two versions of parameters specification are equivalent in theory but may result in some difference if the mesh is rough because of the non-linearity of the dopant dependent formula. Also, difference in number of trap types may also make a difference. The older version of specification automatically takes into account all trap densities while the user need to explicitly specify the number of traps to be used in the dopant dependent formula.
use_macro_file macro1=my_old_macro1 macro2=my_old_macro2

The simulation software will first search macros in the above statement before searching the default crosslight.tab/more.tab. Please note that that included macros must be placed in the same directory as the input files.
```

\$
\$
\$ For quaternary material such as In(1-x)Ga(x)As(y)P(1-y), experimental
\$ data for arbitrary (x,y) normally do not exist. However, data are available
\$ for ternaries [such as In(1-x)Ga(x)As] and for the lattice matched line:
\$ fm(xm,ym)=0. Therefore, any reasonable interpolation scheme must
\$ satisfy experimental data for all the ternaries and at the matched line.
\$
\$ Crosslight macros use the following interpolation scheme:
\$
\$ Let us take the bandgap as an example:
\$ Given bandgap of matched line (xm,ym): Eg0_match(ym)
\$ and measured ternary bandgaps, we interpolate as follows.
\$ If (x,y) is within the left side of the matched line (xm,ym):
\$
\$ Eg0=Eg0_bilin(x,y)+(x/xm)*(Eg0_match(y)-Eg0_bilin(xm,y))
\$
\$ If (x,y) is within the right side of the matched line (xm,ym):
\$
\$ Eg0=Eg0_bilin(x,y)+[(1-x)/(1-xm)]*(Eg0_match(y)-Eg0_bilin(xm,y))
\$
\$ where Eg0_bilin(x,y) is bi-linear interpolation from ternaries as proposed
\$ in the paper of Adachi,
\$ [Adachi,S. "Material parameters of In(1-x)Ga(x)As(y)P(1-y) and related
\$ binaries." J. Appl. Phys. Vol. 53 No. 12, Dec. 1982, pgs 8775-92.]
\$
\$ The Crosslight formula ensures that the unstrained bandgap
\$ agrees with experiment at ternaries and at the matched line (xm,ym).
\$ For any other composition, we draw horizontal line across
\$ (x,y) and linearly interpolate given the three known points:
\$ (0,y), (xm,y), (1,y)
\$
\$ Supported Intrinsic Math Functions
\$
\$ Math functions are directly taken from Fortran90 and accuracy of
\$ double precision is already used. Please note that the following
\$ symbols are reserved for math functions and these should not be used
\$ for user-defined variables. Also, version 2009 and later supports
\$ multiple variable instrinsic functions, such as atan2(x1,x2)
\$ and max(x1,x2,...).
\$
\$ function-symbol equivalent double-precision version remark
\$ log
dlog

```

```

\$ Crosslight macro system supports user-defined external and internal
\$ functions. User-defined external function uses names like
\$ bulk_xfunck (k=1,...,9) for bulk macros and ext_funck (k=1,...,9)
\$ for active_layers.
\$ They can be defined in the same way as other predefined functions
\$ such as for band_gap and affinity, and supports symbolic math expressions
\$ and tables. The advantage is that they can be repeatedly used in
\$ defining other quantities. For example, one may define a temperature
\$ dependent external function and repeatedly use it in band_gap, affinity,
\$ mobility and other physical variables which may use the same temperature
\$ dependent function.
\$
\$ The other type of function is "internal function", in the form of
\$ intern_funck (k=1,...,9). These are more flexible and are treated
$\$$ in a manner as the math intrinsic functions such as sin() and cos().
\$ They are user-defined within the same macro and can use both math
\$ expression and tables. The function arguements are completely independent
$\$$ of variables passed when loading a macro. The difference between
\$ user-defined internal and external functions are as follows:
\$ Function arguements for external functions must be passed from macro
\$ loading. For example, the argument "x" is passed through
\$ load_macro name=algaas mater= 1 \&\&
\$ var_symbol1=x var1= 0.7100E+00
\$ Also, temperature, doping concetration and other reserved variables are
\$ automatically passed to it. The user has no way of changing the
\$ input arguements. For internal functions, the input arguements
\$ are supplied when being used within a function definition. The input
\$ arguements may or may not be related to macro loading. Also, user
\$ may operate on the input variables before passing it as internal
\$ a function arguement.
\$

```


\section*{B. 3 Zincblende passive macro}

A typical passive macro for a zincblende material \(\left(\mathrm{Al}_{x} \mathrm{Ga}_{1-x} \mathrm{As}\right)\) is listed here.
```

\$************************************
\$ macro algaas
\$ for bulk Al(x)Ga(1-x)As
\$ Lattice matched to GaAs
\$ [free-style]

```
```

\$ Temperature dependent version of macro algaas
\$ Renamed from algaas.temp
\$ Typical use:
\$ load_macro name=algaas var1=\#x mater=\#m \&\&
\$ var_symbol1=x
\$ parameter_range x=[lll
\$ parameter_range temper=[77 600]
\$ parameter_range doping_n=[1.e20 1.e26]
\$ parameter_range doping_p=[1.e20 1.e26]
\$ parameter_range trap_1=[1.e18 1.e24]
\$************************************
begin_macro algaas
material type=semicond band_valleys=(1 1) \&\&
el_vel_model=n.gaas hole_vel_model=beta
dielectric_constant variation=function
function(x)
13.1 - 3 * x
end_function
electron_mass variation=function
function(x)
for 0.<x<0.45
0.067 + 0.083 * x
for 0.45<x<1.
0.85-0.14 * x
end_function
hole_mass variation=function
function(x)
((0.087 + 0.063 * x) ** (3 / 2)
+(0.62 + 0.14*x) ** (3 / 2)) ** (2 / 3)
end_function
band_gap variation=function
function(x,temper)
for 0.<x<0.45
shift=-5.5e-4 * temper**2 /(temper+225)+9.4285712E-02 ;
1.424 + 1.247* x +shift
for 0.45<x<1.
shift=-5.5e-4 * temper**2 /(temper+225)+9.4285712E-02 ;
1.9 + 0.125 * x + 0.143 *x * x +shift
end_function

```
```

affinity variation=function
function(x,temper)
for 0<x<0.45
offset=0.6;
shift=-5.5e-4 * temper**2 /(temper+225)+9.4285712E-02 ;
4.07 - 0.748 * x-offset*shift
for 0.45<x<1.
offset=0.6;
shift=-5.5e-4 * temper**2 /(temper+225)+9.4285712E-02 ;
3.7964 - 0.14 * x-offset*shift
end_function
electron_mobility variation=function
function(x,temper,doping_n,doping_p,trap_1)
for 0<x<0.45
fac=(300/temper)**2.3;
mu_max=0.85 * exp(-18.516 * x ** 2)*fac;
mu_min=0;
ref_dens=1.69d23;
alpha=0.436;
total_doping=doping_n+doping_p+trap_1;
mu_min+(mu_max-mu_min)/(1+(total_doping/ref_dens)**alpha)
for 0.45<x<1.
fac=(300/temper)**2.3;
mu_max=0.02*fac;
mu_min=0;
ref_dens=1.69d23;
alpha=0.436;
total_doping=doping_n+doping_p+trap_1;
mu_min+(mu_max-mu_min)/(1+(total_doping/ref_dens)**alpha)
end_function
hole_mobility variation=function
function(x,temper,doping_n,doping_p,trap_1)
dope=1.e22 ;
tfac1=(temper/300)**2.3 ;
tfac2=(temper/300)**1.5 ;
fac=1/(tfac1 + 1.6e-24*dope*tfac2);
mu_max=(0.04 - 0.048 * x + 0.02 * x * x)*fac;
mu_min=0;
ref_dens=2.75d23;
alpha=0.395;

```
```

total_doping=doping_n+doping_p+trap_1;
mu_min+(mu_max-mu_min)/(1+(total_doping/ref_dens)**alpha)
end_function
beta_n value=2.
electron_sat_vel variation=function
function(x,temper)
for 0<x<0.45
fac=(300/temper)**2.3;
0.77e5 * (1 - 0.44 * x)*fac
for 0.45<x<1.
fac=(300/temper)**2.3;
8.e4*fac
end_function
beta_p value=1.
hole_sat_vel variation=function
function(temper)
dope=1.e22 ;
tfac1=(temper/300)**2.3 ;
tfac2=(temper/300)**1.5 ;
fac=1/(tfac1 + 1.6e-24*dope*tfac2);
1.d5*fac
end_function
norm_field value=4.e5
tau_energy value=1.e-13
radiative_recomb value=1.d-16
auger_n value=1.5e-42
auger_p value=1.5e-42
lifetime_n value=1.e-7
lifetime_p value=1.e-7
real_index variation=function
function(x)
3.65-0.73*x
end_function
absorption value=0.
thermal_kappa value=46.
end_macro algaas

```

\section*{B. 4 Zincblende active macro}

A typical active macro for a zincblende material \(\left(\mathrm{Al}_{x} \mathrm{Ga}_{1-x} \mathrm{As}\right)\) is listed here. This is a QW macro with the barrier and well having a different \(\mathrm{Al} \%\) : note how the parameters depend on both the well and barrier compositions. Parameters from this macro will override values defined in the passive macros for the well and barriers if there is a conflict.
```

\$ ***
\$ acitve layer macro : Al (xw) Ga(1-xw) As/Al(xb)Ga(1-xb)As
\$ [free-style]
\$ xw, xb=Al comp. in well, barrier, temper=well temperature
\$ Typical use:
\$ get_active_layer name=AlGaAs/AlGaAs mater=\#m \&\&
\$ var1=\#xw var2=\#xb var_symbol1=xw var_symbol2=xb
\$ parameter_range xw=[0}01
\$ parameter_range xb=[00 1]
\$ parameter_range temper=[77 600]
\$ **
\$
begin_active_layer AlGaAs/AlGaAs
\$
layer_type type=unstrained_well valley_gamma=1 valley_l=4 \&\&
valley_hh=1 valley_lh=1
\$
eg0_well variation=function
function(xw,temper)
for 0.<xw<0.45
shift0=-5.5d-4*300.**2/(300.+225.) ;
shift=-5.5d-4*temper**2/(temper+225.) ;
1.424+1.247*xw+shift-shift0
for 0.45<xw<1.
shift0=-5.5d-4*300.**2/(300.+225.) ;
shift=-5.5d-4*temper**2/(temper+225.) ;
1.9+.125*xw+0.143*xw**2+shift-shift0
end_function
\$
lband_well value=0.28
\$
eg0_bar variation=function
function(xb,temper)
for 0.<xb<0.45
shift0=-5.5d-4*300.**2/(300.+225.) ;

```
```

shift=-5.5d-4*temper**2/(temper+225.) ;
1.424+1.247*xb+shift-shift0
for 0.45<xb<1.
shift0=-5.5d-4*300.**2/(300.+225.) ;
shift=-5.5d-4*temper**2/(temper+225.) ;
1.9+.125*xb+0.143*xb**2+shift-shift0
end_function
\$
lband_bar value=0.28
\$
\$ revised jun04
\$delta_so_well value=0.366
delta_so_well variation=function
function(xw,xb,temper)
0.343-0.0628*xw
end_function
delta_so_bar variation=function
function(xw,xb,temper)
0.343-0.0628*xb
end_function
\$
band_offset value=0.6
\$
mass_gamma_well variation=function
function(xw)
0.067+0.083*xw
end_function
\$
mass_gamma_bar variation=function
function(xb)
0.067+0.083*xb
end_function
\$
mass_l_well variation=function
function(xw)
0.56+0.1*xw
end_function
\$
mass_l_bar variation=function
function(xb)
0.56+0.1*xb
end_function

```
```

\$
gamma1_well variation=function
function(xw)
g1ga=6.9 ;
g1al=3.45 ;
g1ga*(1.-xw)+g1al*xw
end_function
\$
gamma2_well variation=function
function(xw)
g2ga=2.2 ;
g2al=0.68 ;
g2ga*(1.-xw)+g2al*xw
end_function
\$
gamma3_well variation=function
function(xw)
g3ga=2.9 ;
g3al=1.29 ;
g3ga*(1.-xw)+g3al*xw
end_function
\$
a_well variation=function
function(xw)
dhga=-9.8 ;
dhal=-9.8 ;
dhga* (1. - xw) +dhal*xw
end_function
\$
b_well variation=function
function(xw)
duga=-1.76 ;
dual=-1.76 ;
duga*(1.-xw)+dual*xw
end_function
\$
c11_well variation=function
function(xw)
c11ga=11.9 ;
c11al=12.02 ;
c11ga*(1.-xw)+c11al*xw
end_function
\$

```
```

c12_well variation=function
function(xw)
c12ga=5.38 ;
c12al=5.70 ;
c12ga*(1.-xw)+c12al*xw
end_function
\$
gamma1_bar variation=function
function(xb)
g1ga=6.9 ;
g1al=3.45 ;
g1ga*(1.-xb)+g1al*xb
end_function
\$
gamma2_bar variation=function
function(xb)
g2ga=2.2 ;
g2al=0.68 ;
g2ga*(1.-xb)+g2al*xb
end_function
\$
gamma3_bar variation=function
function(xb)
g3ga=2.9 ;
g3al=1.29 ;
g3ga*(1.-xb)+g3al*xb
end_function
\$
a_bar variation=function
function(xb)
dhga=-9.8 ;
dhal=-9.8 ;
dhga*(1.-xb)+dhal*xb
end_function
\$
b_bar variation=function
function(xb)
duga=-1.76 ;
dual=-1.76 ;
duga*(1.-xb)+dual*xb
end_function
\$
c11_bar variation=function

```
```

function(xb)
c11ga=11.9 ;
c11al=12.02 ;
c11ga*(1.-xb)+c11al*xb
end_function
\$
c12_bar variation=function
function(xb)
c12ga=5.38 ;
c12al=5.70 ;
c12ga*(1.-xb)+c12al*xb
end_function
\$
kane_para_f_well variation=function
function(xw)
gaas=-1.94;
alas=-0.48;
(1-xw)*gaas+xw*alas
end_function
kane_para_f_bar variation=function
function(xb)
gaas=-1.94;
alas=-0.48;
(1-xb)*gaas+xb*alas
end_function
lattice_constant value=5.65325
\$
end_active_layer AlGaAs/AlGaAs

```

\section*{B. 5 Wurtzite passive macro}

This section shows the passive macro of a common wurtzite material \(\left(\operatorname{In}_{x} \mathrm{Ga}_{1-x} \mathrm{~N}\right)\).
Note how the strain parameters are critical.
```

\$***
\$ [free-style]
\$ macro ingan
\$ Bulk In(x)Ga(1-x)N parameters

```
```

\$ Contributors: Peter Mensz, Khalid Shahzad (and maybe) others.
\$ Changed by Kehl Sink 6/10/99
\$ changed by Joachim Piprek 12/2/99 + 1/7/00
\$ revised By zqli 05/2005 for band gap and bowing
\$ InN band gap of 0.71 is from T Matsuoka et al.
\$ Appl. Phys. Lett., 12, 1246(2002)
\$ revised jul07
\$ 1) use unstrained offset 2) include temper. 3) reduce lifetime
\$ Typical use:
\$ load_macro name=ingan var1=\#x mater=\#m var_symbol1=x
\$ parameter_range x=[0 1]
\$ parameter_range temper=[77 600]
\$ ***
begin_macro ingan
material type=wurtzite band_valleys=(1 1) \&\&
el_vel_model=beta hole_vel_model=beta
\$

\$$$
$ bowing=3. & band-structure parameters
$ according to JAP Vol }89\mathrm{ No 11 pp 5815-5875
$ modified by George Xiao on Aug. 29, 2006
$$\$

\$
\$---wurtzite parameters-----------
\$---These are the same as in corresponding Active Layer Macro
\$---Please see references therein

```
lattice_base value=3.189
lattice_c_base value=5.185
lattice_bulk variation=function
function( x , temper)
3.189* (1-x) \(+3.545 * x\)
end_function
lattice_c_bulk variation=function
function(x)
gan=5.185;
inn=5.718;
\(\operatorname{gan} *(1-x)+i n n * x\)
end_function
\$
egO_bulk variation=function
function(x,temper)
eg0gan=3.507-9.09d-4*temper**2/(830+temper) ;
```

eg0inn=0.735-2.45d-4*temper**2/(624+temper);
bowing=3.0;
(1.0-x)*eg0gan+eg0inn*x-bowing*x*(1-x)
end_function
\$
delta1_bulk variation=function
function(x,temper)
gan=0.019;
inn=0.041;
gan+(inn-gan)*x
end_function
\$
delta2_bulk variation=function
function(x,temper)
gan=0.0047;
inn=0.00033;
gan+(inn-gan)*x
end_function
\$
delta3_bulk variation=function
function(x,temper)
gan=0.0047;
inn=0.00033;
gan+(inn-gan)*x
end_function
\$
mass_gamma_bulk variation=function
function(x)
gan=0.20;
inn=0.12;
gan+(inn-gan)*x
end_function
\$
tmass_gamma_bulk variation=function
function(x)
gan=0.20;
inn=0.12;
gan+(inn-gan)*x
end_function
\$
a1_bulk variation=function
function(x,temper)
inn=-8.21;

```
```

gan=-6.56;
gan+(inn-gan)*x
end_function
\$
a2_bulk variation=function
function(x,temper)
inn=-0.68;
gan=-0.91;
gan+(inn-gan)*x
end_function
\$
a3_bulk variation=function
function(x,temper)
inn=7.57;
gan=5.65;
gan+(inn-gan)*x
end_function
\$
a4_bulk variation=function
function(x,temper)
inn=-5.23;
gan=-2.83;
gan+(inn-gan)*x
end_function
\$
a5_bulk variation=function
function(x,temper)
inn=-5.11;
gan=-3.13;
gan+(inn-gan)*x
end_function
\$
a6_bulk variation=function
function(x,temper)
inn=-5.96;
gan=-4.86;
gan+(inn-gan)*x
end_function
\$
c33_bulk variation=function
function(x,temper)
gan=398;
inn=224;

```
```

gan+(inn-gan)*x
end_function
\$
c13_bulk variation=function
function(x,temper)
gan=106;
inn=92;
gan+(inn-gan)*x
end_function
c11_bulk variation=function
function(x,temper)
gan=390;
inn=271;
gan+(inn-gan)*x
end_function
c12_bulk variation=function
function(x,temper)
gan=145;
inn=124;
gan+(inn-gan)*x
end_function
c44_bulk variation=function
function(x,temper)
gan=105;
inn=46;
gan+(inn-gan)*x
end_function
\$
\$ GaN values for def. pot.
\$
d1_bulk variation=function
function(x,temper)
gan=-3.0;
inn=-3.0;
gan+(inn-gan)*x
end_function
\$
d2_bulk variation=function
function(x,temper)

```
```

gan=3.6;
inn=3.6;
gan+(inn-gan)*x
end_function
\$
d3_bulk variation=function
function(x,temper)
gan=8.82;
inn=8.82;
gan+(inn-gan)*x
end_function
\$
d4_bulk variation=function
function(x,temper)
gan=-4.41;
inn=-4.41;
gan+(inn-gan)*x
end_function
d5_bulk variation=function
function(x,temper)
gan=-4.00;
inn=-2.33;
gan+(inn-gan)*x
end_function
d6_bulk variation=function
function(x,temper)
gan=-4.00;
inn=-2.33;
d5=gan+(inn-gan)*x;
d3=8.82;
(d3+4*d5)/sqrt(2)
end_function
\$
\$a_bulk value=-4.08
\$ac_bulk value=-8.61
\$
a_bulk variation=function
function(x,temper)
gan=-8.16;
inn=-3.5;

```
```

gan+(inn-gan)*x
end_function
\$
ac_bulk variation=function
function(x,temper)
gan=-4.08;
inn=-3.5;
gan+(inn-gan)*x
end_function
\$
\$---end of wurtzite parameters-----------
\$
dielectric_constant variation=function
function(x,temper)
gan=9.5;
inn=15;
gan+(inn-gan)*x
end_function
\$
\$ k.p theory: unstrained ref. bandgap=eg0+delta1+delta2
\$
affinity variation=function
function(x,temper)
gan=4.07;
eg0gan=3.507-9.09d-4*temper**2/(830+temper);
eg0inn=0.735-2.45d-4*temper**2/(624+temper);
bowing=3.0;
egx=(1.0-x)*eg0gan+eg0inn*x-bowing*x*(1-x);
\$
delta1_gan=0.019;
delta1_inn=0.041;
delta1_x=delta1_gan+(delta1_inn-delta1_gan)*x;
\$
delta2_gan=0.0047;
delta2_inn=0.00033;
delta2_x=delta2_gan+(delta2_inn-delta2_gan)*x;
\$
\$egx_ref=egx+delta1_x+delta2_x;
\$eg0gan_ref=eg0gan+delta1_gan+delta2_gan;
egx_ref=egx;
eg0gan_ref=eg0gan;
off=0.67;
gan-(egx_ref-eg0gan_ref)*off

```
```

end_function
\$
max_electron_mob variation=function
function(x,temper)
684.d-4*(300/temper)**1.5
end_function
min_electron_mob variation=function
function(x,temper)
386.d-4*(300/temper)**1.5
end_function
electron_ref_dens value=1.d23
alpha_n value=1.37
beta_n value=1.
electron_sat_vel value=1.d5
norm_field value=2.1e7
\$ from [7]
max_hole_mob value=2.0d-4
min_hole_mob value=2.0d-4
hole_ref_dens value=2.75d23
alpha_p value=0.395
beta_p value=1.
hole_sat_vel value=1.d5
\$
tau_energy value=1.d-13
\$
lifetime_n value=1.e-7
lifetime_p value=1.e-7
\$ adjusted 1/7/00
radiative_recomb value=0.2d-16
auger_n value=1.d-46
auger_p value=1.d-46
\$
\$real_index value=2.7
\$for x<0.3
real_index variation=function
function(x,temper)
gan=2.5067;
inn=3.4167;
gan+(inn-gan)*x
end_function
absorption value=0.
\$ rough estimate for thin layers:

```
```

thermal_kappa value=10.
\$
end_macro ingan

```

\section*{B. 6 Wurtzite active macro}

This section lists a typical wurtzite active layer: InGaN well grown on an InGaN barrier. The parameters for wurtzite semiconductors are substantially different from those of zincblende structure due to the complex coupling of the three valence bands. Many terms are needed to define the valence band Hamiltonian and various strain effects.

Since the whole structure is often grown on sapphire, it is also unclear exactly what the base lattice size should be. Thus the user is required to investigate this issue based on information of the growth on sapphire. In many cases, a thick GaN buffer layer is also used and the base lattice will be that of GaN.
```

\$ ***
\$ Version 2005
\$ active layer macro for
\$ quantum well system of In(xw)Ga(1-xw)N/In(xb)Ga(1-xb)N
\$ xw=In composition in well, xb=In composition in barrier,
\$ temper=well temperature
\$
\$ [free-style]
\$ revised by J. Piprek 9/9/2001
\$ revised By zqli 05/2005 for band gap and bowing
\$ InN band gap of 0.71 is from T Matsuoka et al.
\$ Appl. Phys. Lett., 12, 1246(2002)
\$ Strained quantum well grown on strained quantum barrier.
\$ The substrate is assumed to be lattice matched to GaN
\$ Typical use:
\$ get_active_layer name=InGaN/InGaN mater=\#m \&\&
\$ var1=\#xw var2=\#yw var_symbol1=xw var_symbol2=yw
\$ parameter_range xw=[0 1]
\$ parameter_range xb=[0 1]
\$ parameter_range temper=[77 600]
\$ ***
\$
begin_active_layer InGaN/InGaN
layer_type type=wurtzite_well valley_gamma=1 \&\&
valley_hh=1 valley_lh=1 valley_ch=1

```
```

\$

\$$$
$ bowing=3. & band-structure parameters
$ according to JAP Vol }89\mathrm{ No 11 pp 5815-5875
$ modified by George Xiao on Sept. 14, 2006
$$\$

\$
\$ Lattice constant of InN is 3.548
\$ Lattice constant of GaN is 3.189
\$
\$ We need to compute the strain based on lattice constant
\$ of the substrate
\$
lattice_constant value=3.189
lattice_c_constant value=5.185
\$
lattice_well variation=function
function(xw,xb)
3.189*(1-xw)+3.545*xw
end_function
\$
lattice_bar variation=function
function(xw,xb)
3.189*(1-xb)+3.545*xb
end_function
lattice_c_well variation=function
function(xw,xb)
gan=5.185;
inn=5.718;
gan*(1-xw)+inn*xw
end_function
lattice_c_bar variation=function
function(xw,xb)
gan=5.185;
inn=5.718;
gan*(1-xb)+inn*xb
end_function
\$
\$ --- energy parameters
\$

```
```

\$eg0_well variation=function
\$function(xw,temper)
\$eg0GaN=3.35564150943396;
\$bowing=3.8;
\$eg300=(1.0-xw)*eg0GaN+1.89*xw-bowing*xw*(1-xw);
\$eg300-6.e-4*(temper-300.)
\$end_function
\$
eg0_well variation=function
function(xw,xb,temper)
eg0GaN=3.507-9.09d-4*temper**2/(830+temper);
egOInN=0.735-2.45d-4*temper**2/(624+temper);
bowing=3;
\$bowing=1.4;
(1.0-xw)*eg0GaN+eg0InN*xw-bowing*xw*(1-xw)
end_function
\$
\$eg0_bar variation=function
\$function(xb,temper)
\$egOGaN=3.35564150943396;
\$bowing=3.8;
\$eg300=(1.0-xb)*eg0GaN+1.89*xb-bowing*xb*(1-xb);
\$eg300-6.e-4*(temper-300.)
\$end_function
\$
eg0_bar variation=function
function(xw, xb,temper)
eg0GaN=3.507-9.09d-4*temper**2/(830+temper);
egOInN=0.735-2.45d-4*temper**2/(624+temper);
bowing=3;
\$bowing=1.4;
(1.0-xb)*eg0GaN+eg0InN*xb-bowing*xb*(1-xb)
end_function
\$
band_offset value=0.67
\$
delta_so_well variation=function
function(xw,xb)
gan=0.014;
inn=0.001;
gan+(inn-gan)*xw
end_function
\$

```
```

delta_so_bar variation=function
function(xw,xb)
gan=0.014;
inn=0.001;
gan+(inn-gan)*xb
end_function
\$
delta1_well variation=function
function(xw,xb)
gan=0.019;
inn=0.041;
gan+(inn-gan)*xw
end_function
\$
delta1_bar variation=function
function(xw,xb)
gan=0.019;
inn=0.041;
gan+(inn-gan)*xb
end_function
\$
delta2_well variation=function
function(xw,xb)
gan=0.0047;
inn=0.00033;
gan+(inn-gan)*xw
end_function
\$
delta2_bar variation=function
function(xw,xb)
gan=0.0047;
inn=0.00033;
gan+(inn-gan)*xb
end_function
\$
delta3_well variation=function
function(xw,xb)
gan=0.0047;
inn=0.00033;
gan+(inn-gan)*xw
end_function
\$
delta3_bar variation=function

```
```

function(xw,xb)
gan=0.0047;
inn=0.00033;
gan+(inn-gan)*xb
end_function
\$
\$ ----conduction band masses
\$
mass_gamma_well variation=function
function(xw,xb)
gan=0.20;
inn=0.12;
gan+(inn-gan)*xw
end_function
\$
mass_gamma_bar variation=function
function(xw,xb)
gan=0.20;
inn=0.12;
gan+(inn-gan)*xb
end_function
\$
tmass_gamma_well variation=function
function(xw,xb)
gan=0.20;
inn=0.12;
gan+(inn-gan)*xw
end_function
\$
tmass_gamma_bar variation=function
function(xw,xb)
gan=0.20;
inn=0.12;
gan+(inn-gan)*xb
end_function
\$
a1_well variation=function
function(xw,xb)
inn=-8.21;
gan=-6.56;
gan+(inn-gan)*xw
end_function
\$

```
```

a2_well variation=function
function(xw,xb)
inn=-0.68;
gan=-0.91;
gan+(inn-gan)*xw
end_function
\$
a3_well variation=function
function(xw,xb)
inn=7.57;
gan=5.65;
gan+(inn-gan)*xw
end_function
\$
a4_well variation=function
function(xw,xb)
inn=-5.23;
gan=-2.83;
gan+(inn-gan)*xw
end_function
\$
a5_well variation=function
function(xw,xb)
inn=-5.11;
gan=-3.13;
gan+(inn-gan)*xw
end_function
\$
a6_well variation=function
function(xw,xb)
inn=-5.96;
gan=-4.86;
gan+(inn-gan)*xw
end_function
\$
a1_bar variation=function
function(xw,xb)
inn=-8.21;
gan=-6.56;
gan+(inn-gan)*xb
end_function
\$
a2_bar variation=function

```
```

function(xw,xb)
inn=-0.68;
gan=-0.91;
gan+(inn-gan)*xb
end_function
\$
a3_bar variation=function
function(xw,xb)
inn=7.57;
gan=5.65;
gan+(inn-gan)*xb
end_function
\$
a4_bar variation=function
function(xw,xb)
inn=-5.23;
gan=-2.83;
gan+(inn-gan)*xb
end_function
\$
a5_bar variation=function
function(xw,xb)
inn=-5.11;
gan=-3.13;
gan+(inn-gan)*xb
end_function
\$
a6_bar variation=function
function(xw,xb)
inn=-5.96;
gan=-4.86;
gan+(inn-gan)*xb
end_function
\$
c33_well variation=function
function(xw,xb)
gan=398;
inn=224;
gan+(inn-gan)*xw
end_function
\$
c33_bar variation=function
function(xw,xb)

```
```

gan=398;
inn=224;
gan+(inn-gan)*xb
end_function
\$
c13_well variation=function
function(xw,xb)
gan=106;
inn=92;
gan+(inn-gan)*xw
end_function
\$
c13_bar variation=function
function(xw,xb)
gan=106;
inn=92;
gan+(inn-gan)*xb
end_function
c11_well variation=function
function(xw,xb)
gan=390;
inn=271;
gan+(inn-gan)*xw
end_function
c11_bar variation=function
function(xw,xb)
gan=390;
inn=271;
gan+(inn-gan)*xb
end_function
c12_well variation=function
function(xw,xb)
gan=145;
inn=124;
gan+(inn-gan)*xw
end_function
c12_bar variation=function
function(xw,xb)
gan=145;

```
```

inn=124;
gan+(inn-gan)*xb
end_function
c44_well variation=function
function(xw,xb)
gan=105;
inn=46;
gan+(inn-gan)*xw
end_function
c44_bar variation=function
function(xw,xb)
gan=105;
inn=46;
gan+(inn-gan)*xb
end_function
\$
\$a_well value=-8.16
\$ac_well value=-4.08
\$a_bar value=-8.16
\$ac_bar value=-4.08
\$d1_well value=-0.89
\$d1_bar value=-0.89
\$d2_well value=4.27
\$d2_bar value=4.27
\$d3_well value=5.18
\$d3_bar value=5.18
\$d4_well value=-2.59
\$d4_bar value=-2.59
\$a_well value=-3.5
\$ac_well value=-4.9
\$a_bar value=-3.5
\$ac_bar value=-4.9
\$
a_well variation=function
function(xw,xb)
gan=-8.16;
inn=-3.5;
gan+(inn-gan)*xw
end_function
\$

```
```

ac_well variation=function
function(xw,xb)
gan=-4.08;
inn=-1.75;
gan+(inn-gan)*xw
end_function
az_well variation=function
function(xw,xb)
gan=-8.16;
inn=-3.5;
gan+(inn-gan)*xw
end_function
\$
acz_well variation=function
function(xw,xb)
gan=-4.08;
inn=-1.75;
gan+(inn-gan)*xw
end_function

```
```

\$

```
$
a_bar variation=function
a_bar variation=function
function(xw,xb)
function(xw,xb)
gan=-8.16;
gan=-8.16;
inn=-3.5;
inn=-3.5;
gan+(inn-gan)*xb
gan+(inn-gan)*xb
end_function
end_function
$
$
ac_bar variation=function
ac_bar variation=function
function(xw,xb)
function(xw,xb)
gan=-4.08;
gan=-4.08;
inn=-3.5;
inn=-3.5;
gan+(inn-gan)*xb
gan+(inn-gan)*xb
end_function
end_function
az_bar variation=function
az_bar variation=function
function(xw,xb)
function(xw,xb)
gan=-8.16;
gan=-8.16;
inn=-3.5;
inn=-3.5;
gan+(inn-gan)*xb
```

gan+(inn-gan)*xb

```
```

end_function
\$
acz_bar variation=function
function(xw,xb)
gan=-4.08;
inn=-3.5;
gan+(inn-gan)*xb
end_function
\$
\$d1_well value=-3.7
\$d1_bar value=-3.7
\$d2_well value=4.5
\$d2_bar value=4.5
\$d3_well value=8.2
\$d3_bar value=8.2
\$d4_well value=-4.1
\$d4_bar value=-4.1
\$
d1_well variation=function
function(xw,xb)
gan=-3.0;
inn=-3.0;
gan+(inn-gan)*xw
end_function
\$
d1_bar variation=function
function(xw,xb)
gan=-3.0;
inn=-3.0;
gan+(inn-gan)*xb
end_function
\$
d2_well variation=function
function(xw,xb)
gan=3.6;
inn=3.6;
gan+(inn-gan)*xw
end_function
\$
d2_bar variation=function
function(xw,xb)
gan=3.6;

```
```

inn=3.6;
gan+(inn-gan)*xb
end_function
\$
d3_well variation=function
function(xw,xb)
gan=8.82;
inn=8.82;
gan+(inn-gan)*xw
end_function
\$
d3_bar variation=function
function(xw,xb)
gan=8.82;
inn=8.82;
gan+(inn-gan)*xb
end_function
\$
d4_well variation=function
function(xw,xb)
gan=-4.41;
inn=-4.41;
gan+(inn-gan)*xw
end_function
\$
d4_bar variation=function
function(xw,xb)
gan=-4.41;
inn=-4.41;
gan+(inn-gan)*xb
end_function
d5_well variation=function
function(xw,xb)
gan=-4.00;
inn=-2.33;
gan+(inn-gan)*xw
end_function
d5_bar variation=function
function(xw,xb)
gan=-4.00;
inn=-2.33;

```
```

gan+(inn-gan)*xb
end_function
d6_well variation=function
function(xw,xb)
d5_gan=-4.00;
d5_inn=-2.33;
d5=d5_gan+(d5_inn-d5_gan)*xw;
d3=8.82;
(d3+4*d5)/sqrt(2)
end_function
d6_bar variation=function
function(xw,xb)
d5_gan=-4.00;
d5_inn=-2.33;
d5=d5_gan+(d5_inn-d5_gan)*xb;
d3=8.82;
(d3+4*d5)/sqrt(2)
end_function
\$
end_active_layer InGaN/InGaN

```

\section*{Appendix C}

\section*{MODIFIED \\ SCHARFETTER-GUMMEL FORMULA FOR HOT ELECTRONS}

\section*{C. 1 Current Flow in Hydrodynamic Model}

The expression for hot electron current flow has been derived by Azoff [2][3]. Here we use a very initiative and less rigorous approach to derive the expression for hot electron current flow to gain insight into how it relates to the corresponding model in the conventional drift-diffusion model. We give all the details so that our user can check all the steps.

Our purpose is to convert our expression of current flow so that the spatial variation in the electron temperature (or electron energy) can be taken into account. We start by defining a ratio to indicate the effect of Fermi-Dirac statistics.
\[
\begin{equation*}
\gamma_{F} / k T=\ln \left\{\frac{F_{1 / 2}\left[\left(E_{f n}-E_{c}\right) / k T\right]}{\left.\exp \left(E_{f n}-E_{c}\right) / k T\right]}\right\} \tag{C.1}
\end{equation*}
\]

We recall that the electron concentration is given by
\[
\begin{equation*}
n=N_{c} F_{1 / 2}\left[\left(E_{f n}-E_{c}\right) / k T\right] \tag{C.2}
\end{equation*}
\]
or in terms of the \(\gamma_{F}\) constant we just introduced,
\[
\begin{equation*}
n=\exp \left[\ln \left(N_{c}\right)\right] \exp \left(\gamma_{F} / k T\right) \exp \left[\left(E_{f n}-E_{c}\right) / k T\right] \tag{C.3}
\end{equation*}
\]
or
\[
\begin{equation*}
k T \ln (n)=k T \ln \left(N_{c}\right)+\gamma_{F}+\left(E_{f n}-E_{c}\right) \tag{C.4}
\end{equation*}
\]

We choose the vacuum as the zero energy and express the conduction band in terms of the potention and the electron affinity.
\[
\begin{equation*}
E_{c}=-\psi-\chi \tag{C.5}
\end{equation*}
\]

Then we have
\[
\begin{equation*}
k T \ln (n)=k T \ln \left(N_{c}\right)+\gamma_{F}+E_{f n}+\psi+\chi \tag{C.6}
\end{equation*}
\]
or
\[
\begin{equation*}
E_{f n}=k T \ln (n)-k T \ln \left(N_{c}\right)-\gamma_{F}-\psi-\chi \tag{C.7}
\end{equation*}
\]

A well known formula in drift and diffusion theory relates the current flow to the quasi-Fermi level:
\[
\begin{equation*}
J_{n} q / \mu_{n}=n \nabla E_{f n} \tag{C.8}
\end{equation*}
\]
where
\[
\begin{equation*}
E_{f n}=k T \ln (n)-k T \ln \left(N_{c}\right)-\gamma_{F}-\psi-\chi \tag{C.9}
\end{equation*}
\]

We split this into drift and diffusion parts:
\[
\begin{gather*}
J_{n} q / \mu_{n}[d r i f t]=n \nabla\left[-k T \ln \left(N_{c}\right)-\gamma_{F}-\psi-\chi\right]  \tag{C.10}\\
J_{n} q / \mu_{n}[d i f f]=n \nabla[k T \ln (n)] \tag{C.11}
\end{gather*}
\]
or
\[
\begin{equation*}
J_{n} q / \mu_{n}[d i f f]=\nabla[k T n] \tag{C.12}
\end{equation*}
\]

We recall that the density of states is given by
\[
\begin{equation*}
N_{c}=M_{x} 2.5 \times 10^{25}\left(\frac{m_{c} k T}{k m_{0} 300 .}\right)^{3 / 2} \tag{C.13}
\end{equation*}
\]
where \(M_{x}\) is the number of band valleys (or degeneracy) in k -space. The drift part under constant electron temperature is rewritten as
\[
\begin{align*}
J_{n} q / \mu_{n}[d r i f t] & =n \nabla\left[-k T \ln \left(N_{c}\right)-\gamma_{F}-\psi-\chi\right]  \tag{C.14}\\
& =-n k T(3 / 2) \nabla \ln \left(m_{c}\right)-n \nabla\left[\gamma_{F}+\psi+\chi\right] \tag{C.15}
\end{align*}
\]

Here we have neglected the effect of temperature gradient to the drift part. We also assume that the temperature gradient contributes an extra diffusion term \(n \nabla(k T)\). Therefore the diffusion current is proportional to the gradient of \((k T n)\) instead of \(n\) alone:
\[
\begin{equation*}
J_{n} q / \mu_{n}[d i f f]=\nabla[k T n] \tag{C.16}
\end{equation*}
\]

To avoid confusion with lattice temperature, we use \(T_{e}\) to denote electron carrier temperature. Our final results are
\[
\begin{equation*}
J_{n} q / \mu_{n}=-n \nabla\left[\gamma_{F}+\psi+\chi\right]-n k T_{e}(3 / 2) \nabla \ln \left(m_{c}\right)+\nabla\left[k T_{e} n\right] \tag{C.17}
\end{equation*}
\]
which is the same as that derived by Azoff [2][3] from Boltsman equation.
We define the electron energy as \(w=(3 / 2) k T_{e}\) and we have the following final result for current flow:
\[
\begin{equation*}
J_{n} q / \mu_{n}=-n \nabla\left[\gamma_{F}+\psi+\chi\right]-n w \nabla \ln \left(m_{c}\right)+(2 / 3) \nabla[w n] \tag{C.18}
\end{equation*}
\]

\section*{C. 2 Discretization for Hot Electron Current}

In the conventional drift-diffusion model, the discretization of the current flow on a grid is best handled by the formula derived by Scharfetter and Gummel (SG-formula) in 1969 [11]. For hot electron model, the discretization formula must be modified to relfect the spatial variation of electron temperature. Following Azoff [3], we derive the new discretization as follwos.

We consider two grid points along the x-direction and express the current flow as follows:
\[
\begin{equation*}
(3 / 2) J_{n} q / \mu_{n}=-(3 / 2) n \frac{\partial}{\partial x}\left[\gamma_{F}+\psi+\chi\right]-(3 / 2) n w \frac{\partial}{\partial x} \ln \left(m_{c}\right)+\frac{\partial}{\partial x}[w n] \tag{C.19}
\end{equation*}
\]

We assume that the electric field between mesh points is constant. The electron temperature may be different between the two points, but we assume that the temparture variation is smooth enough so that \(\frac{\partial w}{\partial x}\) and \(\frac{\partial \ln (w)}{\partial x}\) may be regarded as constants. We re-write the current:
\((3 / 2) J_{n} q / \mu_{n}=\frac{\partial w}{\partial x} n\left\{-(3 / 2) \frac{\partial}{\partial x}\left[\gamma_{F}+\psi+\chi\right]-(3 / 2) w \frac{\partial}{\partial x} \ln \left(m_{c}\right)\right\}\left(\frac{\partial w}{\partial x}\right)^{-1}+\frac{\partial}{\partial x}[w n]\)
or
\[
\begin{equation*}
(3 / 2) J_{n} q / \mu_{n}=\frac{\partial w}{\partial x} n \alpha+\frac{\partial}{\partial x}[w n], \tag{C.20}
\end{equation*}
\]
where \(\alpha\) is a position independent parameter based on our previous assumptions,
\[
\begin{align*}
\alpha= & \left\{(3 / 2) \frac{\partial}{\partial x}\left[-\gamma_{F}-\psi-\chi\right]-(3 / 2) w \frac{\partial}{\partial x} \ln \left(m_{c}\right)\right\}\left(\frac{\partial w}{\partial x}\right)^{-1}  \tag{C.22}\\
= & \left\{(3 / 2) \frac{\partial}{\partial x}\left(-\gamma_{F}-\psi-\chi\right)\left(\frac{\partial w}{\partial x}\right)^{-1}\right. \\
& -(3 / 2) \frac{\partial}{\partial x} \ln \left(m_{c}\right)\left(\frac{\partial}{\partial x} \ln (w)\right)^{-1} \tag{C.23}
\end{align*}
\]

We apply the basic assumption of the original SG-formula that the electron current is constant between two grid piints. Using \(w^{\alpha}\) as an integration factor on Eq. (C.21), we obtain
\[
\begin{align*}
& (3 / 2) J_{n} q / \mu_{n}=w^{-\alpha}\left[\frac{\partial w}{\partial x} n \alpha w^{\alpha}+\frac{\partial}{\partial x}(w n) w^{\alpha}\right]  \tag{C.24}\\
& (3 / 2) J_{n} q / \mu_{n}=w^{-\alpha}\left[\frac{\partial w}{\partial x} n \alpha w^{\alpha}+\frac{\partial w}{\partial x} n w^{\alpha}+\frac{\partial n}{\partial x} w^{\alpha+1}\right]  \tag{C.25}\\
& (3 / 2) J_{n} q / \mu_{n}=w^{-\alpha}\left[\frac{\partial w}{\partial x} n(\alpha+1) w^{\alpha}+\frac{\partial n}{\partial x} w^{\alpha+1}\right]  \tag{C.26}\\
& (3 / 2) J_{n} q / \mu_{n}=w^{-\alpha}\left[\frac{\partial}{\partial x} w^{\alpha+1} n+\frac{\partial}{\partial x} n w^{\alpha+1}\right]  \tag{C.27}\\
& (3 / 2) J_{n} q / \mu_{n}=w^{-\alpha} \frac{\partial}{\partial x}\left(w^{\alpha+1} n\right) \tag{C.28}
\end{align*}
\]

We assume \(w\) is a linear function between the two grid points so that
\[
\begin{equation*}
w=w_{a} x+w_{b} \tag{C.29}
\end{equation*}
\]

We re-write the equation as
\[
\begin{equation*}
(3 / 2) J_{n} q / \mu_{n} w^{\alpha} d x=d\left(w^{\alpha+1} n\right) \tag{C.30}
\end{equation*}
\]

We integrate from point 1 to point 2 and get:
\[
\begin{align*}
& (3 / 2) J_{n} q / \mu_{n}\left[\frac{w^{\alpha+1}}{(1+\alpha) w_{a}}\right]_{1}^{2}=\left[w^{\alpha+1} n\right]_{1}^{2}  \tag{C.31}\\
J_{n} q / \mu_{n}= & \frac{(2 / 3)\left[w^{\alpha+1} n\right]_{1}^{2}}{\left[\frac{w^{\alpha+1}}{(1+\alpha) w_{a}}\right]_{1}^{2}}  \tag{C.32}\\
= & (2 / 3)\left(x_{2}-x_{1}\right)^{-1} \frac{\left(w_{2}-w_{1}\right)\left[w^{\alpha+1} n\right]_{1}^{2}}{\left[\frac{w^{\alpha+1}}{(1+\alpha)}\right]_{1}^{2}}  \tag{C.33}\\
= & (2 / 3)\left(x_{2}-x_{1}\right)^{-1} \frac{\left(w_{2}-w_{1}\right)\left(w_{2}^{\alpha+1} n_{2}-w_{1}^{\alpha+1} n_{1}\right)(1+\alpha)}{w_{2}^{\alpha+1}-w_{1}^{\alpha+1}}  \tag{C.34}\\
J_{n} q / \mu_{n}= & (2 / 3)\left(x_{2}-x_{1}\right)^{-1}\left(w_{2}-w_{1}\right)(1+\alpha) \frac{w_{2}^{\alpha+1} n_{2}-w_{1}^{\alpha+1} n_{1}}{w_{2}^{\alpha+1}-w_{1}^{\alpha+1}}  \tag{C.35}\\
= & (2 / 3)\left(x_{2}-x_{1}\right)^{-1}\left(w_{2}-w_{1}\right)(1+\alpha) \\
& {\left[\frac{w_{2}^{\alpha+1} n_{2}}{w_{2}^{\alpha+1}-w_{1}^{\alpha+1}}+\frac{w_{1}^{\alpha+1} n_{1}}{w_{1}^{\alpha+1}-w_{2}^{\alpha+1}}\right] } \tag{C.36}
\end{align*}
\]

We obtain our result:
\[
\begin{equation*}
J_{n} q / \mu_{n}=(2 / 3)\left(x_{2}-x_{1}\right)^{-1}\left(w_{2}-w_{1}\right)(1+\alpha)\left[\frac{n_{1}}{1-\left(w_{2} / w_{1}\right)^{\alpha+1}}+\frac{n_{2}}{1-\left(w_{1} / w_{2}\right)^{\alpha+1}}\right] \tag{C.37}
\end{equation*}
\]

Furthermore, we wish to use the lattice temperature \(k T_{L}\) as the unit for \(W=w / k T_{L}\) so that the equilibrium electron temperature is \(W_{0}=3 / 2\). We obtain:
\[
\begin{align*}
J_{n}= & \mu_{n}\left(\frac{k T_{L}}{q}\right)(2 / 3)\left(x_{2}-x_{1}\right)^{-1}\left(W_{2}-W_{1}\right)(1+\alpha) \\
& {\left[\frac{n_{1}}{1-\left(W_{2} / W_{1}\right)^{\alpha+1}}+\frac{n_{2}}{1-\left(W_{1} / W_{2}\right)^{\alpha+1}}\right] }  \tag{C.38}\\
= & \mu_{n} v_{t}(2 / 3)\left(x_{2}-x_{1}\right)^{-1}\left(W_{2}-W_{1}\right)(1+\alpha) \\
& {\left[\frac{n_{1}}{1-\left(W_{2} / W_{1}\right)^{\alpha+1}}+\frac{n_{2}}{1-\left(W_{1} / W_{2}\right)^{\alpha+1}}\right] } \tag{C.39}
\end{align*}
\]
where \(v_{t}=k T_{L} / q\) is the lattice thermal voltage.

\section*{C. 3 Hot Electron Current with Equal Energy}

When the electron energy at the two points are equal or nearly equal, some approximation can be made. This is important in numerical simulation to avoid floating point problem when the carrier temperature of the adjacent points are nearly equal. We start from our basic equation before any discretization:
\[
\begin{equation*}
J_{n} q / \mu_{n}=-n \nabla\left(\gamma_{F}+\psi+\chi\right)-n w \nabla \ln \left(m_{c}\right)+(2 / 3) \nabla(w n) \tag{C.40}
\end{equation*}
\]

When \(w\) can be considered constant (but not necessarily equal to the lattice temperature), we have
\[
\begin{gather*}
J_{n} q / \mu_{n}=-n \nabla\left[\gamma_{F}+\psi+\chi\right]-n(3 / 2) k T_{e} \nabla \ln \left(m_{c}\right)+k T_{e} \nabla n  \tag{C.41}\\
J_{n} q /\left(k T_{e} \mu_{n}\right)=-n \nabla\left[\gamma_{F}+\psi+\chi+(3 / 2) k T_{e} \nabla \ln \left(m_{c}\right)\right] / k T_{e}+\nabla n \tag{C.42}
\end{gather*}
\]

Again, we apply the basic assumption of the SG-formula that the current is constant between two points. Then we obtain a differential equation in the x-direction of the form:
\[
\begin{equation*}
a=-b n+\frac{d n}{d x} \tag{C.43}
\end{equation*}
\]
where
\[
\begin{gather*}
J_{n} q /\left(k T_{e} \mu_{n}\right)=-n \nabla\left[\gamma_{F}+\psi+\chi+(3 / 2) k T_{e} \nabla \ln \left(m_{c}\right)\right] / k T_{e}+\nabla n  \tag{C.44}\\
a=J_{n} q /\left(k T_{e} \mu_{n}\right)  \tag{C.45}\\
b=\nabla\left[\gamma_{F}+\psi+\chi+(3 / 2) k T_{e} \nabla \ln \left(m_{c}\right)\right] / k T_{e} \tag{C.46}
\end{gather*}
\]

Solving the simple differential equation from \(x_{1}\) to \(x_{2}\), we have
\[
\begin{align*}
& a=1 /\left(x_{2}-x_{1}\right) b\left(x_{2}-x_{1}\right)\left[n_{2}-n_{1} \exp \left[b\left(x_{2}-x_{1}\right)\right]\right] /\left[\exp \left[b\left(x_{2}-x_{1}\right)\right]-1\right]  \tag{C.47}\\
& \qquad \begin{aligned}
a\left(x_{2}-x_{1}\right)= & b\left(x_{2}-x_{1}\right) n_{2} /\left[\exp \left[b\left(x_{2}-x_{1}\right)\right]-1\right] \\
& -b\left(x_{2}-x_{1}\right) n_{1} \exp \left[b\left(x_{2}-x_{1}\right)\right] /\left[\exp \left[b\left(x_{2}-x_{1}\right)\right]-1\right] \\
= & b\left(x_{2}-x_{1}\right) n_{2} /\left[\exp \left[b\left(x_{2}-x_{1}\right)\right]-1\right] \\
& -b\left(x_{2}-x_{1}\right) n_{1} /\left[1-\exp \left[b\left(x_{1}-x_{2}\right)\right]\right] \\
= & b\left(x_{2}-x_{1}\right) n_{2} /\left[\exp \left[b\left(x_{2}-x_{1}\right)\right]-1\right] \\
& -b\left(x_{1}-x_{2}\right) n_{1} /\left[\exp \left[b\left(x_{1}-x_{2}\right)\right]-1\right]
\end{aligned} \\
& a=\frac{1}{x_{2}-x_{1}}\left[n_{2} B\left[b\left(x_{2}-x_{1}\right)\right]-n_{1} B\left[b\left(x_{1}-X_{2}\right)\right]\right]
\end{align*}
\]
where B() is the Bernouli function. Substituting \(a\) and \(b\) from Eqs. (C.45) and (C.46)
\[
\begin{gather*}
J_{n} q /\left(k T_{e} \mu_{n}\right)=\frac{1}{x_{2}-x_{1}}\left[n_{2} B\left(\eta_{2}^{h}-\eta_{1}^{h}\right)-n_{1} B\left(\eta_{1}^{h}-\eta_{2}^{h}\right)\right]  \tag{C.50}\\
J_{n}=V_{t e} \frac{\mu_{n}}{x_{2}-x_{1}}\left[n_{2} B\left(\eta_{2}^{h}-\eta_{1}^{h}\right)-n_{1} B\left(\eta_{1}^{h}-\eta_{2}^{h}\right)\right] \tag{C.51}
\end{gather*}
\]

This is to be compared with the cool electron expression:
\[
\begin{equation*}
J_{n}=V_{t} \frac{\mu_{n}}{x_{2}-x_{1}}\left[\left(n_{2} B\left(\eta_{2}-\eta_{1}\right)-n_{1} B\left(\eta_{1}-\eta_{2}\right)\right]\right. \tag{C.52}
\end{equation*}
\]

It is most convenient to relate the \(\eta^{h}\) to \(\eta\)
\[
\begin{align*}
\eta^{h}= & {\left[\gamma_{F}+\psi+\chi+k T_{L} \ln \left(N_{c}\right)\right] / k T_{e} } \\
& +(3 / 2) \nabla \ln \left(m_{c}\right)-\ln \left(N_{c}\right) T_{L} / T_{e}  \tag{C.53}\\
= & {\left[\gamma_{F}+\psi+\chi+k T_{L} \ln \left(N_{c}\right)\right] / k T_{L}\left(T_{L} / T_{e}\right) } \\
& +(3 / 2) \nabla \ln \left(m_{c}\right)-\ln \left(N_{c}\right) T_{L} / T_{e}  \tag{C.54}\\
= & \eta\left(T_{L} / T_{e}\right)+(3 / 2) \ln \left(m_{c}\right)-\ln \left(N_{c}\right) T_{L} / T_{e} \tag{C.55}
\end{align*}
\]

Using the unitless \(W\) :
\[
\begin{align*}
\eta^{h}= & \eta 1.5\left(k T_{L} / 1.5 k T_{e}\right) \\
& +(3 / 2) \ln \left(m_{c}\right)-1.5 \ln \left(N_{c}\right)\left(k T_{L} / 1.5 k T_{e}\right)  \tag{C.56}\\
= & \eta 1.5 / W+(3 / 2) \ln \left(m_{c}\right)-1.5 \ln \left(N_{c}\right) / W \tag{C.57}
\end{align*}
\]

Similarly
\[
\begin{gather*}
V_{t e}=k T_{e} / q  \tag{C.58}\\
V_{t e}=1.5 k T_{e} k T_{L} /\left(1.5 k T_{L} q\right)  \tag{C.59}\\
V_{t e}=\left(1.5 k T_{e} / k T_{L}\right) / 1.5\left(k T_{L} / q\right)  \tag{C.60}\\
V_{t e}=W / 1.5 V_{t} \tag{C.61}
\end{gather*}
\]

\section*{Appendix D}

\section*{GREEN'S FUNCTION AND SPONTANEOUS EMISSION}

This chapter starts from the Maxwell equation to establish some notations. Then we recall some basic theories of partial differential equations. Finally, we derive the theories for spontaneous recombination noise power which is critical for our understanding of linewidth and mode spectrum.

\section*{D. 1 Maxwell Equations}

The four fundamental equations of Maxwell are as follows:
\[
\begin{align*}
\nabla \cdot \mathbf{D} & =\rho  \tag{D.1}\\
\nabla \cdot \mathbf{B} & =0  \tag{D.2}\\
\nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t} & =0  \tag{D.3}\\
\nabla \times \mathbf{H}-\frac{\partial \mathbf{D}}{\partial t} & =\mathbf{J} \tag{D.4}
\end{align*}
\]

The notations are defined as follows,
- \(\mathbf{D}\) is the electrical displacement vector in coulombs/meter \({ }^{2}\).
- \(\mathbf{B}\) is the magnetic induction in webers \(/\) meter \(^{2}\).
- \(\mathbf{E}\) is the electric field intensity in volts/meter.
- \(\mathbf{H}\) is the magnetic field in ampere/meter.
- \(\rho\) is the free charge density in coulombs/meter \({ }^{3}\).
- \(\mathbf{J}\) is the current density in coulombs/meter \({ }^{2}\).

With the introduction of the polarization vector \(\mathbf{P}\) and the magnetization vector \(\mathbf{M}\), it is possible to eliminate the vectors \(\mathbf{D}\) and \(\mathbf{H}\) from the fundamental equations by substituting:
\[
\begin{align*}
\mathbf{D} & =\epsilon_{0} \mathbf{E}+\mathbf{P}  \tag{D.5}\\
\mathbf{H} & =\frac{\mathbf{B}}{\mu_{0}}-\mathbf{M} \tag{D.6}
\end{align*}
\]

Then we re-write the Maxwell equations in the following form:
\[
\begin{align*}
\nabla \cdot \mathbf{E} & =\frac{1}{\epsilon}(\rho-\nabla \cdot \mathbf{P})  \tag{D.7}\\
\nabla \cdot \mathbf{B} & =0  \tag{D.8}\\
\nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t} & =0  \tag{D.9}\\
\nabla \times \mathbf{B}-\epsilon_{0} \mu_{0} \frac{\partial \mathbf{E}}{\partial t} & =\mu_{0}\left(\mathbf{J}+\frac{\partial \mathbf{P}}{\partial t}+\nabla \times \mathbf{M}\right) . \tag{D.10}
\end{align*}
\]

In our applications, no magnetization is involved. This allows us to set the \(\mathbf{M}\) to be zero in the above equations. The Maxwell equations can be simplified further if we concentrate on the Fourier component at the optical frequency, also referred to as \(\mathbf{E}_{\omega}\) elsewhere in the book. Using a time dependent factor of \(\exp (-j \omega t)\) for all the variables, we obtained the following expressions for the last two equations of the Maxwell equation set:
\[
\begin{align*}
\nabla \times \mathbf{E}+j \omega \mathbf{B} & =0  \tag{D.11}\\
\nabla \times \mathbf{B}-j \omega \epsilon_{0} \mu_{0} \mathbf{E} & =\mu_{0}(\mathbf{J}+j \omega \mathbf{P}) . \tag{D.12}
\end{align*}
\]

In a waveguiding structure, we can consider the free current \(\mathbf{J}\) to be zero at the optical frequencies. The polarization vector can be decomposed into two components as follows:
\[
\begin{equation*}
\mathbf{P}=\epsilon_{0}\left(\epsilon_{r}-1\right) \mathbf{E}+P_{s p} \tag{D.13}
\end{equation*}
\]
where the first term is the polarization induced by the electric field which includes the usual effects from the dielectric constants and also effects like loss and gain. The second term is polarization induced by spontaneous emission of photons associated with radiative recombination of electron-hole pairs. Such a spontaneous emission process is random and not directly related to the external electric field intensity. As a results, we expect the second term to have a zero mean in both the spatial and time domain.
Elimination of the \(\mathbf{B}\) vector from the Maxwell equations results in the following
\[
\begin{equation*}
-\nabla \times \nabla \times \mathbf{E}+\omega^{2} \epsilon_{0} \epsilon_{r} \mu_{0} \mathbf{E}=-\mu_{0} \omega^{2} \mathbf{P}_{\mathbf{s p}} \tag{D.14}
\end{equation*}
\]

With the assumption \(\nabla \cdot \mathbf{E}=0\), we finally arrived at the vector wave equation we use most often in our applications,
\[
\begin{equation*}
\nabla^{2} \mathbf{E}+\omega^{2} \epsilon_{0} \epsilon_{r} \mu_{0} \mathbf{E}=-\mu_{0} \omega^{2} \mathbf{P}_{\mathrm{sp}} \tag{D.15}
\end{equation*}
\]

Using the speed of light \(c_{0}=1 / \sqrt{\epsilon_{0} \mu_{0}}\) the wave equation can be written in a more familiar form:
\[
\begin{equation*}
\nabla^{2} \mathbf{E}+\frac{\omega^{2}}{c_{0}^{2}} \epsilon_{r} \mathbf{E}=\mathbf{F}_{\omega} . \tag{D.16}
\end{equation*}
\]

The right hand side term is also called the Langevin force \(F_{\omega}\) :
\[
\begin{equation*}
F_{\omega}=-\mu_{0} \omega^{2} \mathbf{P}_{\mathrm{sp}} \tag{D.17}
\end{equation*}
\]

\section*{D. 2 Conventions}

In this work we shall assume the oscillating field takes the form \(\exp (-j \omega t)\). As a result, the forward (or right going) wave propagates with a factor \(\exp (+j k z)\) and backward (or left going) wave with factor \(\exp (-j k z)\). Under such a convention, a loss material has positive imaginary wave number \(k^{\prime \prime}\) where \(k=k^{\prime}+j k^{\prime \prime}\). Any time dependence quantities can be expanded in Fourier component with \(\exp (-j \omega t)\) and we assume that the real field can be expressed as
\[
\begin{equation*}
E(t)=\int_{0}^{\infty} E_{\omega} \exp (-j \omega t) d \omega+c . c . \tag{D.18}
\end{equation*}
\]
where c.c. is used to denote the complex conjugate. Using this notation, the field with single frequency can be written as
\[
\begin{equation*}
E(t)=E_{\omega} \exp (-j \omega t)+E_{\omega}^{*} \exp (j \omega t) \tag{D.19}
\end{equation*}
\]

In some cases, we adopt the bracket notation from quantum mechanics such that
\[
\begin{align*}
\phi(\mathbf{r}) & =|\phi>=| n>  \tag{D.20}\\
\phi^{*}(\mathbf{r}) & =<\phi|=| n>  \tag{D.21}\\
<\psi \mid \phi> & =<n \mid n>=\int \psi^{*} \phi d \mathbf{r} \tag{D.22}
\end{align*}
\]

\section*{D. 3 Basic Wave Equation}

For simplicity we are only concerned with the scalar field in the optical frequency domain \(\omega\). The scalar wave equation is written as:
\[
\begin{equation*}
\nabla^{2} E_{\omega}+\frac{\omega^{2}}{c_{0}^{2}} \epsilon_{r} E_{\omega}=F_{\omega} \tag{D.23}
\end{equation*}
\]

In a wave guide environment, it common to solve the above wave equation by separating variables in the field (we drop the subscript \(\omega\) and it is understood that we deal with single frequency):
\[
\begin{equation*}
E(x, y, z)=Z(z) \phi(x, y) \tag{D.24}
\end{equation*}
\]
or simply
\[
\begin{equation*}
E(x, y, z)=E(z) \phi(x, y) \tag{D.25}
\end{equation*}
\]

We assume that there is a orthogonal and complete set of transverse modes \(\phi_{n}(x, y)\) satisfying
\[
\begin{equation*}
\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\omega^{2}}{c_{0}^{2}} \epsilon_{r}(\mathbf{r})\right] \phi_{n}(x, y)=\frac{\omega^{2}}{c_{0}^{2}} n_{e f f}^{2}(z) \phi_{n}(x, y) \tag{D.26}
\end{equation*}
\]
where the z-dependent effective index \(n_{e f f}(z)^{2}\) is also used to define the z-dependent wave number (or propagation constant):
\[
\begin{equation*}
k(z)=\frac{\omega}{c_{0}} n_{e f f}(z) \tag{D.27}
\end{equation*}
\]

We notice that the lateral solution \(\mid \phi_{n}>\) may still be z-dependent. However, if the z -dependence is weak compared with the x -y dependence, we can treat it as a parameter and evade the differential operator \(\frac{\partial}{\partial z}\). For this reason we temporarily hide its z -dependence here.

It is well known that solution to Eq. (D.26) has nice properties such as orthogonality and completeness. The orthogonality is
\[
\begin{equation*}
\int \phi_{n} \phi_{m}=<\phi_{n} \phi_{m}>=\delta_{n m}<\phi_{n} \phi_{m}> \tag{D.28}
\end{equation*}
\]

And the completeness is
\[
\begin{equation*}
\sum_{n} \frac{\phi_{n}(x, y) \phi_{n}\left(x_{s}, y_{s}\right)}{<\phi_{n} \phi_{n}>}=\delta\left(x-x_{s}\right) \delta\left(y-y_{s}\right) . \tag{D.29}
\end{equation*}
\]

For an arbitrary solution for \(\phi(x, y)\), we expand it in terms of the complete set of \(\phi_{n}\)
\[
\begin{equation*}
\left|\phi>=\sum_{n} A_{n}\right| \phi_{n}> \tag{D.30}
\end{equation*}
\]
where
\[
\begin{equation*}
A_{n}=\frac{<\phi_{n} \mid \phi>}{<\phi_{n} \mid \phi_{n}>} \tag{D.31}
\end{equation*}
\]

Using this expansion, we are able to rewrite the wave equation as follows:
\[
\begin{array}{r}
E(z)\left(\frac{\partial^{2}}{x^{2}}+\frac{\partial^{2}}{y^{2}}\right)\left|\phi>+\left|\phi>\frac{\partial^{2}}{z^{2}} E(z)+\frac{\omega^{2}}{c_{0}^{2}} \epsilon_{r} E(z)\right| \phi>=F\right. \\
E(z)\left(\frac{\partial^{2}}{x^{2}}+\frac{\partial^{2}}{y^{2}}\right)\left(\sum_{n} A_{n} \mid \phi_{n}>\right)+\left\lvert\, \phi>\frac{\partial^{2}}{z^{2}} E(z)+\frac{\omega^{2}}{c_{0}^{2}} \epsilon_{r} E(z)\left(\sum_{n} A_{n} \mid \phi_{n}>\right)=F\right. \\
\left\lvert\, \phi>\frac{\partial^{2}}{z^{2}} E(z)+E_{z}\left[\left(\frac{\partial^{2}}{x^{2}}+\frac{\partial^{2}}{y^{2}}\right)\left(\sum_{n} A_{n} \mid \phi_{n}>\right)+\frac{\omega^{2}}{c_{0}^{2}} \epsilon_{r}\left(\sum_{n} A_{n} \mid \phi_{n}>\right)\right]=F\right. \\
(\mathrm{D} .33 \\
\left\lvert\, \phi>\frac{\partial^{2}}{z^{2}} E(z)+E(z)\left[\left(\frac{\partial^{2}}{x^{2}}+\frac{\partial^{2}}{y^{2}}\right)\left(\sum_{n} A_{n} \mid \phi_{n}>\right)+\frac{\omega^{2}}{c_{0}^{2}} \epsilon_{r}\left(\sum_{n} A_{n} \mid \phi_{n}>\right)\right]=F\right.  \tag{D.36}\\
(\mathrm{D} .34 \\
\\
\left\lvert\, \phi>\frac{\partial^{2}}{z^{2}} E(z)+\left(\sum_{n} A_{n} k^{2} \phi_{n}\right) E(z)=F\right.
\end{array}
\]

Let us multiply the above equation by \(<\phi_{n} \mid\) and obtain
\[
\begin{align*}
<\phi_{n}\left|\phi>\frac{\partial^{2}}{z^{2}} E_{z}+A_{n} k^{2}<\phi_{n}\right| \phi_{n}>E_{z} & =<\phi_{n} \mid F>  \tag{D.37}\\
<\phi_{n}\left|\phi>\frac{\partial^{2}}{z^{2}} E_{z}+A_{n} k^{2}<\phi_{n}\right| \phi_{n}>E_{z} & =<\phi_{n} \mid F>  \tag{D.38}\\
<\phi_{n}\left|\phi>\frac{\partial^{2}}{z^{2}} E_{z}+k^{2}<\phi_{n}\right| \phi>E_{z} & =<\phi_{n} \mid F>.  \tag{D.39}\\
\frac{\partial^{2}}{z^{2}} E_{z}+k^{2} E_{z} & =\frac{<\phi_{n} \mid F(x, y, z)>}{<\phi_{n} \mid \phi>}  \tag{D.40}\\
\frac{\partial^{2}}{z^{2}} E_{z}+k^{2} E_{z} & =f(z) \tag{D.41}
\end{align*}
\]
where
\[
\begin{equation*}
f(z)=\frac{<\phi_{n} \mid F(x, y, z)>}{<\phi_{n} \mid \phi>} \tag{D.42}
\end{equation*}
\]

We have finally reduced the 3 -variable equation to a single variable differential equation. If we are lucky enough to find the solution for \(E_{z}\), our final solution for the
three dimensional equation can be written as
\[
\begin{equation*}
E_{z}(z)\left[\sum_{n} A_{n}(z) \phi_{n}(x, y ; z)\right] \tag{D.43}
\end{equation*}
\]

Here we have explicitly show the dependence of the lateral solution to z. One good example of z-dependent solution is beam propagation in a tapered wave guiding structure.

\section*{D. 4 The Green's Function}

A well know technique for solving partial differential equation is the Green's function method. The basic idea is that for a differential equation of the form
\[
\begin{equation*}
\mathcal{L}(Z)=f(z) \tag{D.44}
\end{equation*}
\]
where \(\mathcal{L}\) is a linear differential operator. The solution can be written as
\[
\begin{equation*}
Z(z)=\int f\left(z_{s}\right) g\left(z, z_{s}\right) d z_{s} \tag{D.45}
\end{equation*}
\]
where \(g\left(z, z_{s}\right)\) is the Green's function satisfying
\[
\begin{equation*}
\mathcal{L}(Z)=\delta\left(z-z_{s}\right) \tag{D.46}
\end{equation*}
\]

The interpretation of the Green function technique is simple enough: If we can find a solution due to a single point solution located at \(z_{s}\), the solution due to a continuous distribution of sources \(f(z)\) is just the superposition of all the solutions from the points sources contained in \(f(z)\).

The Green's function technique is ideal for the analysis of our waveguiding system because the the spontaneous noise can be considered as a random ensemble of point sources. The Green's function allows us to give a compact formal solution in terms of the noise. Note that the formal solution is all we need here because it is impossible to write down an analytical expression for random noise.

\section*{D. 5 Longitudinal Green's Function}

Our final goal is to find the solution to the Green's function in Eq. (D.41). Several derivation steps should be taken before we arrive at the solution of the Green's function. We consider the following ordinary differential equation:
\[
\begin{equation*}
\mathcal{L}(Z)=\left(\frac{d^{2}}{d z^{2}}+k^{2}(z)\right) Z(z)=f(z) \tag{D.47}
\end{equation*}
\]

The longitudinal Green's function is just a special case of the above equation with \(f(z)=\delta\left(z-z_{s}\right)\).

\section*{D.5.1 The Wronskian}

It is convenient to introduce the Wronskian from functions \(Z_{1}(z)\) and \(Z_{2}(z)\) :
\[
\begin{align*}
W & =\left|\begin{array}{ll}
Z_{1}(z) & Z_{1}^{\prime}(z) \\
Z_{2}(z) & Z_{2}^{\prime}(z)
\end{array}\right|  \tag{D.48}\\
& =Z_{1}(z) Z_{2}^{\prime}(z)-Z_{2}(z) Z_{1}^{\prime}(z) \tag{D.49}
\end{align*}
\]
where we have used ' to denote the derivative with respect to z .
We notice a couple of interesting properties of the Wronskian. First the Wronskian can be used to test the dependency of two functions. If the two functions \(Z_{1}\) and \(Z_{2}\) are dependent on each other, i.e., if they are proportional to each other, then the Wronskian is zero everywhere. If the Wronskian differs from zero for any range of of values of \(z\), then \(Z_{1}\) is a completely different function from \(Z_{2}\) and the two functions are said to be independent.

The second properties of the Wronskian is that, if \(Z_{1}\) and \(Z_{2}\) are two independent solutions of the homogeneous equation \(\mathcal{L}(\mathcal{Z})=\prime\), then the Wronskian should be independent of \(z\), or in another word,
\[
\begin{align*}
\frac{d W}{d z} & =Z_{1} Z_{2}^{\prime \prime}-Z_{2} Z_{1}^{\prime \prime}  \tag{D.50}\\
& =Z_{1}\left[-k^{2}(z) Z_{2}\right]-Z_{2}\left[-k^{2}(z) Z_{1}\right]  \tag{D.51}\\
& =0 \tag{D.52}
\end{align*}
\]

If \(W\) is not zero but a constant independent of \(z\), and if we already find one solution \(Z_{1}\) to the homogeneous equation \(\mathcal{L}(Z)=0\), then we can use the Wronskian to find another independent solution to the homogeneous equation as follows,
\[
\begin{align*}
W & =Z_{1}(z) Z_{2}^{\prime}(z)-Z_{2}(z) Z_{1}^{\prime}(z)  \tag{D.53}\\
& =Z_{1}^{2} \frac{d}{d z}\left(\frac{Z_{2}}{Z_{1}}\right)  \tag{D.54}\\
Z_{2}(z) & =W Z_{1}(z) \int_{z_{0}}^{z} \frac{d u}{Z_{1}^{2}(u)} . \tag{D.55}
\end{align*}
\]

\section*{D.5.2 Solution of Inhomogeneous Equation}

Let us try to find a solution to the inhomogeneous equation Eq. (D.47) by setting \(Z(z)=u(z) v(z)\) in \(\mathcal{L}(Z)=f(z)\), obtaining
\[
\begin{equation*}
v \mathcal{L}(u)+u v^{\prime \prime}+2 u^{\prime} v^{\prime}=f(z) . \tag{D.56}
\end{equation*}
\]

If now we set \(u\) equal to one of the solutions \(Z_{1}\) of the homogeneous equation, \(\mathcal{L}(Z)=0\), we obtain
\[
\begin{equation*}
v^{\prime \prime}+2\left(Z_{1}^{\prime} / Z_{1}\right) v^{\prime}=f(z) / Z_{1} \tag{D.57}
\end{equation*}
\]

On the other hand, we already know that the second solution from is related to first by the Wronskian by the following [see Eq. (D.55)]
\[
\begin{equation*}
\frac{d}{d z}\left(\frac{Z_{2}(z)}{Z_{1}(z)}\right)=\frac{W}{Z_{1}^{2}(z)} \tag{D.58}
\end{equation*}
\]

Taking another derivative, we have
\[
\begin{align*}
\frac{d}{d z^{2}}\left(\frac{Z_{2}(z)}{Z_{1}(z)}\right) & =\frac{W}{Z_{1}^{2}(z)}  \tag{D.59}\\
& =\left(\frac{W}{Z_{z}^{2}}\right)^{\prime}  \tag{D.60}\\
& =-2 \frac{W Z_{1}^{\prime}}{Z_{1}^{3}} \tag{D.61}
\end{align*}
\]

Using Eq. (D.58) so that
\[
\begin{equation*}
\left(Z_{2} / Z_{1}\right)^{\prime \prime}+2\left(Z_{1} / Z_{1}\right)\left(Z_{2} / Z_{1}\right)^{\prime}=0 \tag{D.62}
\end{equation*}
\]

Multiplying this equation by \(v^{\prime}\) and Eq. (D.57) by \(\left(Z_{2} / Z_{1}\right)^{\prime}\) and subtracting so that the second term on both equations cancel out, we obtain
\[
\begin{align*}
\left(\frac{Z_{2}}{Z_{1}}\right)^{\prime} v^{\prime \prime}-v^{\prime}\left(\frac{Z_{2}}{Z_{1}}\right)^{\prime \prime} & =\left[\left(\frac{Z_{2}}{Z_{1}}\right)^{\prime}\right]^{2} \frac{d}{d z}\left[\frac{v^{\prime}}{\left(Z_{2} / Z 1\right)^{\prime}}\right]  \tag{D.63}\\
& =\left(\frac{f(z)}{Z_{1}}\right)\left(\frac{Z_{2}}{Z_{1}}\right)^{\prime}  \tag{D.64}\\
& =\left(\frac{f(z)}{Z_{1}}\right)\left(\frac{W}{Z_{1}^{2}}\right) \tag{D.65}
\end{align*}
\]

By now, we have reduced our original second order inhomogeneous equation \(\mathcal{L}(Z)=\) \(f(z)\) to a simple first order inhomogeneous equation
\[
\begin{equation*}
\frac{d}{d z}\left[\frac{v^{\prime}}{\left(Z_{2} / Z_{1}\right)^{\prime}}\right]=\frac{f Z_{1}}{W} \tag{D.66}
\end{equation*}
\]

Integrating this first order equation, we obtain
\[
\begin{equation*}
v^{\prime}=\left[\frac{d}{d z}\left(\frac{Z_{2}}{Z_{1}}\right)\right] \int \frac{f Z_{1}}{W} d z \tag{D.67}
\end{equation*}
\]
or by adding another term on both side of the above equation
\[
\begin{equation*}
v^{\prime}+\frac{f Z_{2}}{W}=\frac{d}{d z}\left[\left(\frac{Z_{2}}{Z_{1}}\right) \int \frac{f Z_{1}}{W} d z\right] \tag{D.68}
\end{equation*}
\]

Integration of the above equation gives our final solution:
\[
\begin{align*}
Z & =v Z_{1}  \tag{D.69}\\
& =Z_{1} \int_{z}^{z_{2}} \frac{f Z_{2} d z}{W}+Z_{2} \int_{z_{1}}^{z} \frac{f Z_{1} d z}{W} \tag{D.70}
\end{align*}
\]
where \(z_{1}\) and \(z_{2}\) are constants used to fit boundary conditions. It is interesting to note that \(z_{1}\) and \(z_{2}\) can be regarded as the starting and ending points along the longitudinal direction and \(Z_{1}\) and \(Z_{2}\) may be regarded as solutions to the homogeneous equation satisfying the boundary condition at \(z_{1}\) and \(z_{2}\). To be more specific, we examine Eq. (D.70) in more details. If we take the limit of \(z->z_{1}\), the second term goes to zero and the first one is proportional to \(Z_{1}\). Similarly if \(z->z_{2}\), then the first term is zero and the second term is proportional to \(Z_{2}\). Therefore, if \(Z_{1}\) and \(Z_{2}\) satisfy the boundary conditions at \(z=z_{1}\) and \(z=z_{2}\), respectively, then we have found a solution to the inhomogeneous equation which satisfies all boundary conditions.

In the case of Green's function, we set \(f(z)=\delta\left(z-z_{s}\right)\) and obtain:
\[
\begin{align*}
& g\left(z, z_{s}\right)=Z_{1} \int_{z}^{z_{2}} \frac{\delta\left(z-z_{s}\right) Z_{2} d z}{W}+Z_{2} \int_{z_{1}}^{z} \frac{\delta\left(z-z_{s}\right) Z_{1} d z}{W}  \tag{D.71}\\
& g\left(z, z_{s}\right)=\left[Z_{1}(z) Z_{2}\left(z_{s}\right) \theta\left(z_{s}-z\right)+Z_{2}(z) Z_{1}\left(z_{s}\right) \theta\left(z-z_{s}\right)\right] / W \tag{D.72}
\end{align*}
\]

\section*{D. 6 Green's Function for an AR Coated Waveguide}

We consider a simple example of an unending waveguide (or a traveling wave amplifier with perfect anti-reflection AR coatings). This example has special significance because we need to use the result to derive a more general relation between spontaneous emission power and the diffusion coefficient.

We need to choose \(Z_{1}\) and \(Z_{2}\) to construct the Green's function and the Wronskian. For such a waveguide with perfect AR coating, the boundary condition at the two facets are waves traveling out of the device.
\[
\begin{align*}
& Z_{1}=\exp (-j k z)  \tag{D.73}\\
& Z_{2}=\exp (+j k z) \tag{D.74}
\end{align*}
\]

The Wronskian is
\[
\begin{equation*}
W_{n}=2 j k \tag{D.75}
\end{equation*}
\]
and the Green's function is
\[
\begin{align*}
g\left(z, z_{s}\right) W_{n} & =Z_{1}(z) Z_{2}\left(z_{s}\right) \theta\left(z_{s}-z\right)+Z_{2}(z) Z_{1}\left(z_{s}\right) \theta\left(z-z_{s}\right)  \tag{D.76}\\
& =\exp \left[-j k\left(z-z_{s}\right)\right] \theta\left(z_{s}-z\right)+\exp \left[-j k\left(z-z_{s}\right)\right] \theta\left(z-z_{s}\right) \\
& =\exp \left[-j k\left(z-z_{s}\right)\right] \theta\left(z_{s}-z\right)+\exp \left[j k\left(z-z_{s}\right)\right] \theta\left(z-z_{s}\right)  \tag{D.77}\\
& =\exp \left(j k\left|z-z_{s}\right|\right) \tag{D.79}
\end{align*}
\]

Let us try to find the solution of the wave equation in this waveguide if we assume the driving noise term is uncorrelated and has a \(\delta\) function like correlation:
\[
\begin{equation*}
<f(z) f^{*}\left(z^{\prime}\right)>=f_{0} \delta\left(z-z^{\prime}\right) \tag{D.80}
\end{equation*}
\]
where \(<>\) is used denote ensemble average and
\[
\begin{equation*}
f_{0}(z)=\left|\frac{<\phi_{n} \mid F(x, y, z)>}{<\phi_{n} \mid \phi>}\right|^{2} \tag{D.81}
\end{equation*}
\]

The field \(E_{z}\) can be expressed as a function of the Green's function:
\[
\begin{align*}
E(z) & =\int f\left(z_{s}\right) g\left(z, z_{s}\right) d z_{s}  \tag{D.82}\\
& =\int \frac{f\left(z_{s}\right) \exp \left(j k\left|z-z_{s}\right|\right)}{W_{n}} d z_{s}  \tag{D.83}\\
& =\int \frac{f\left(z_{s}\right) \exp \left(j k\left|z-z_{s}\right|\right)}{2 j k} d z_{s} \tag{D.84}
\end{align*}
\]

Since \(f(z)\) is used to represent noise, it is not possible to express \(E_{z}\) analytically. However, we can consider the average field amplitude due to the noise:
\[
\begin{align*}
& <E_{z}(z) E_{z}^{*}(z)> \\
= & \int_{0}^{L} \int_{0}^{L}<f\left(z_{s}\right) f^{*}\left(z_{s}^{\prime}\right) g\left(z, z_{s}\right) g^{*}\left(z, z_{s}^{\prime}\right) d z_{s} d z_{s}^{\prime}  \tag{D.85}\\
= & \int_{0}^{L} \int_{0}^{L} \frac{<f\left(z_{s}\right) f^{*}\left(z_{s}^{\prime}\right)>\exp \left(j k\left|z-z_{s}\right|-j k^{*}\left|z-z_{s}^{\prime}\right|\right)}{4|k|^{2}} d z_{s} d z_{s}^{\prime}  \tag{D.86}\\
= & \int_{0}^{L} \frac{f_{0} \delta\left(z_{s}-z_{s}^{\prime}\right) \exp \left(j k\left|z-z_{s}\right|-j k^{*}\left|z-z_{s}^{\prime}\right|\right)}{4|k|^{2}} d z_{s} d z_{s}^{\prime}  \tag{D.87}\\
= & f_{0} \int_{0}^{L} \frac{\exp \left(-2 k^{\prime \prime}\left|z-z_{s}\right|\right)}{4|k|} d z_{s}  \tag{D.88}\\
= & f_{0} \int_{0}^{z} \frac{\exp \left[-2 k^{\prime \prime}\left(z-z_{s}\right)\right]}{4|k|} d z_{s}+f_{0} \int_{z}^{L} \frac{\exp \left[+2 k^{\prime \prime}\left(z-z_{s}\right)\right]}{4|k|} d z_{s}  \tag{D.89}\\
= & \frac{f_{0}}{4|k|^{2}}\left\{\int_{0}^{z} \exp \left[-2 k^{\prime \prime}\left(z-z_{s}\right)\right] d z_{s}+\int_{z}^{L} \exp \left[+2 k^{\prime \prime}\left(z-z_{s}\right)\right] d z_{s}\right\} \\
= & \frac{f_{0}}{4|k|^{2}}\left\{\frac{1}{2 k^{\prime \prime}}\left\{1-\exp \left[-2 k^{\prime \prime} z\right]\right\}+\frac{1}{2 k^{\prime \prime}}\left\{1-\exp \left[-2 k^{\prime \prime}(L-z)\right]\right\}\right\}  \tag{D.90}\\
= & \frac{f_{0}}{8|k|^{2} k^{\prime \prime}}\left\{\left\{1-\exp \left[-2 k^{\prime \prime} z\right]\right\}+\left\{1-\exp \left[-2 k^{\prime \prime}(L-z)\right]\right\}\right\} \tag{D.92}
\end{align*}
\]

If we plot the above quantity as a function of the relative distance \(z_{r}=z / L\), we will have the following interesting observations. In a gain medium, we define \(g_{r}=-2 k^{\prime \prime} L\) and
\[
\begin{equation*}
<E_{z}(z) E_{z}^{*}(z)>\frac{4|k|^{2}}{f_{0}}=\frac{1}{g_{r}}\left\{\exp \left[g_{r} z_{r}\right]-1\right\}+\frac{1}{g_{r}}\left\{\exp \left[g_{r}\left(1-z_{r}\right)\right]-1\right\} \tag{D.93}
\end{equation*}
\]

Similarly in the case of a loss material, we set \(\alpha_{r}=\alpha L=2 k L\) and obtain
\[
\begin{equation*}
<E_{z}(z) E_{z}^{*}(z)>\frac{4|k|^{2}}{f_{0}}=\frac{1}{\alpha_{r}}\left\{1-\exp \left[-\alpha_{r} z_{r}\right]\right\}+\frac{1}{\alpha_{r}}\left\{1-\exp \left[-\alpha_{r}\left(1-z_{r}\right)\right]\right\} \tag{D.94}
\end{equation*}
\]

We plot the amplitude of the field due to the noise in Fig D.1. It shows that for a gain medium, the noise field amplitude (or the noise power) gets amplified and shows a maximum value at both side of the device, while a lossy material attenuates the noise field and has minimum amplitudes at both ends.
In the following sections, we need to estimate the pure effect of spontaneous emission. This requires the elimination of boundary condition and any amplification effect. A


Figure D.1: The relative wave intensity of wave in a AR coated waveguide with gain (solid) and loss (dash). The relative gain \(\left(g_{r}\right)\) and loss \(\left(\alpha_{r}\right)\) are set at 0.5 each.
long and lossy waveguide is regarded to have this pure effect at one end. Consider \(\mathrm{z}=\mathrm{L}\) and L being large, we have
\[
\begin{equation*}
<E_{z}(z) E_{z}^{*}(z)>=\frac{f_{0}}{8|k|^{2} k^{\prime \prime}} \tag{D.95}
\end{equation*}
\]
or
\[
\begin{equation*}
<E_{z}(z) E_{z}^{*}(z)>=\frac{2 D_{F F}(z)}{8|k|^{2} k^{\prime \prime}} \tag{D.96}
\end{equation*}
\]

\section*{D. 7 Diffusion Coefficient of the Langevin Forces}

The driving noise term \(F\) appearing on the right hand side of wave equation is random in nature and uncorrelated over time or distance. Our starting point is that the ensemble average
\[
\begin{align*}
& <F_{\omega}(\mathbf{r}) F_{\omega^{\prime}}\left(\mathbf{r}^{\prime}\right)>=0  \tag{D.97}\\
& <F_{\omega}^{*}(\mathbf{r}) F_{\omega^{\prime}}^{*}\left(\mathbf{r}^{\prime}\right)>=0 \tag{D.98}
\end{align*}
\]
and the correlation function is of \(\delta\) function like:
\[
\begin{equation*}
<F_{\omega}(\mathbf{r}) F_{\omega^{\prime}}^{*}\left(\mathbf{r}^{\prime}\right)>=2 D_{F F^{*}}(\mathbf{r}) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\left(\omega-\omega^{\prime}\right) \tag{D.99}
\end{equation*}
\]
where the coefficient \(2 D_{F F^{*}}(\mathbf{r})\) was introduced by C. H. Henry [80] and was called "diffusion coefficient". For convenience we drop the delta function in \(\omega\) and always use the same frequency for all the field quantities. The driving noise term can be expressed as
\[
\begin{gather*}
f(z)=\frac{<\phi_{n} \mid F(x, y, z)>}{<\phi_{n} \mid \phi>}  \tag{D.100}\\
f\left(z^{\prime}\right)^{*}=\frac{<F\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \mid \phi_{n}>,}{<\phi \mid \phi_{n}>}  \tag{D.101}\\
<f(z) f\left(z^{\prime}\right)^{*}>
\end{gather*} \begin{aligned}
& =\left\langle\frac{<\phi_{n}\left(\mathbf{r}_{x y}\right)\left|F(\mathbf{r})><F\left(\mathbf{r}^{\prime}\right)\right| \phi_{n}\left(\mathbf{r}_{x y}^{\prime}\right)>}{<\phi_{n} \mid \phi>}\right\rangle  \tag{D.102}\\
& =\left\langle\frac{\left\langle\phi_{n}\left(\mathbf{r}_{x y}\right)\right|<F\left(\mathbf{r}_{n}^{\prime}\right)|F(\mathbf{r})>| \phi_{n}\left(\mathbf{r}_{x y}^{\prime}\right)>}{\left|<\phi_{n}\right| \phi>\left.\right|^{2}}\right\rangle  \tag{D.103}\\
& \left.=\frac{<\phi_{n}\left(\mathbf{r}_{x y}\right)\left|2 D_{F F^{*}}(\mathbf{r}) \delta\left(\mathbf{r}^{\prime}-\mathbf{r}\right)\right| \phi_{n}\left(\mathbf{r}_{x y}^{\prime}\right)>}{\left|<\phi_{n}\right| \phi>\left.\right|^{2}}\right\rangle  \tag{D.104}\\
& =\frac{<\phi_{n}\left(\mathbf{r}_{x y}\right)\left|2 D_{F F^{*}}\right| \phi_{n}\left(\mathbf{r}_{x y}\right)>}{\left|<\phi_{n}\right| \phi>\left.\right|^{2}} \delta\left(z-z^{\prime}\right)  \tag{D.105}\\
& =f_{0}(z) \delta\left(z-z^{\prime}\right) \tag{D.106}
\end{aligned}
\]

In order to determine the diffusion coefficient, we wish to evaluate the emitted optical power within \(\Delta \omega\) from the bulk photon energy density as follows:
\[
\begin{equation*}
S_{\omega} \hbar \omega=2 \varepsilon_{0} n n_{g}<|E(z)|^{2}>|\phi(x, y)|^{2} \tag{D.107}
\end{equation*}
\]

The linear energy density is as follows
\[
\begin{equation*}
s_{\omega} \hbar \omega=2 \varepsilon_{0} n n_{g}<|E(z)|^{2}>\int d x d y|\phi(x, y)|^{2} \tag{D.108}
\end{equation*}
\]
or
\[
\begin{equation*}
s_{\omega} \hbar \omega=2 \varepsilon_{0} n n_{g}<|E(z)|^{2}> \tag{D.109}
\end{equation*}
\]

From the result of the previous section
\[
\begin{equation*}
s_{\omega} \hbar \omega=2 \varepsilon_{0} n n_{g} \frac{2 D_{F F}(z)}{8|k|^{2} k^{\prime \prime}} \tag{D.110}
\end{equation*}
\]

The power emitted is just the above times \(v_{g}\) :
\[
\begin{equation*}
P_{n}=v_{g} 2 \varepsilon_{0} n n_{g} \frac{2 D_{F F}(z)}{8|k|^{2} k^{\prime \prime}} \tag{D.111}
\end{equation*}
\]
\[
\begin{gather*}
P_{n}=-v_{g} 2 \varepsilon_{0} n n_{g} \frac{2 D_{F F}(z)}{4|k|^{2} g}  \tag{D.112}\\
P_{n}=-c_{0} \varepsilon_{0} n \frac{2 D_{F F}(z)}{2|k|^{2} g} \tag{D.113}
\end{gather*}
\]

Please note the minus sign comes in because \(-g=2 k^{\prime \prime}\).
Now let us derive the optical power from a completely different view point. When the photons are in equilibrium with the environment, the average noise power within \(\Delta \omega\) can be expressed in terms of the mode occupation number \(\left\langle n_{\omega}\right\rangle\) :
\[
\begin{equation*}
P_{n} \Delta \omega=\sum_{n} v_{g n} \hbar \omega<n_{\omega}>\Delta \omega D_{1}(E) \tag{D.114}
\end{equation*}
\]
where \(D_{1}(E)\) is the 1D mode density (modes per unit energy per unit length) which is derived as follows.

The mode spacing is
\[
\begin{equation*}
\Delta k_{z}=\frac{2 \pi}{L_{z}} \tag{D.115}
\end{equation*}
\]

Therefore the mode number per unit length per unit \(\omega\) is \(D_{1}(E)=\frac{1}{2 \pi} \frac{d k}{d \omega}\). To a good approximation, the group velocity may be used:
\[
\begin{equation*}
\frac{d k}{d \omega}=1 / v_{g} \tag{D.116}
\end{equation*}
\]

This gives a power
\[
\begin{equation*}
P_{n}=\hbar \omega<n_{\omega}>/(2 \pi) \tag{D.117}
\end{equation*}
\]

Comparison of the two different expressions of optical power, we finally obtain the following relation for the diffusion coefficient:
\[
\begin{equation*}
2 D_{F F}(z)=-|k|^{2} \hbar \omega g<n_{\omega}>/\left(\pi c_{0} \varepsilon_{0} n\right) \tag{D.118}
\end{equation*}
\]
or, if we neglect the imaginary part of the refractive index in \(|k|\),
\[
\begin{equation*}
2 D_{F F}(z)=-\frac{\hbar \omega^{3} n^{\prime}(z) g(z)<n_{\omega}>}{\pi c_{0}^{3} \varepsilon_{0}} \tag{D.119}
\end{equation*}
\]

Please note that a difference of factor \((2 \pi)^{2}\) than that from Ref. [80] is due to the use of different unit system.

According to Henry [80], the mode occupation number is given by
\[
\begin{equation*}
<n_{\omega}>=-n_{s p}=\frac{1}{\exp \left(\frac{\hbar \omega-e V_{F}}{k T}\right)-1} \tag{D.120}
\end{equation*}
\]

Using the well-known relation between optical gain and spontaneous emission, we can also use an alternative (or more convenient) form for the diffusion coefficient in terms of bulk spontaneous recombination rate.
\[
\begin{equation*}
g=\frac{r_{s p}(E)}{v_{g} D(E)}\left\{1-\exp \left[\left(\hbar \omega-e V_{F}\right) / k T\right]\right\} \tag{D.121}
\end{equation*}
\]
where
\[
\begin{align*}
D(E) & =\frac{\pi k^{2} \Delta k}{\pi^{3} \Delta E}  \tag{D.122}\\
& =\left(\frac{n}{\hbar c}\right)^{3} \frac{E^{2}}{\pi^{2}} \tag{D.123}
\end{align*}
\]
is the photon mode density. Thus, the product \(g n_{\text {sp }}\) be re-written as
\[
\begin{equation*}
g n_{s p}=\frac{r_{s p}(E)}{v_{g} D(E)} \tag{D.124}
\end{equation*}
\]

Using the above for the n-th lateral mode, we have
\[
\begin{array}{r}
2 D_{F F}(z)=|k|^{2} E<\phi_{n}\left|r_{s p}\right| \phi_{n}>/\left(D(E) v_{g} \pi c_{0} \varepsilon_{0} n\right) \\
2 D_{F F}(z)=n^{2} \omega^{2} E<n\left|r_{s p}\right| n>\pi^{2} \hbar^{3} c_{0}^{3} /\left(n^{3} E^{2} v_{g} \pi c_{0}^{3} \varepsilon_{0} n\right) \\
2 D_{F F}(z)=(\hbar \omega)<n\left|r_{s p}(E)\right| n>\pi \hbar /\left(n^{2} v_{g} \varepsilon_{0}\right) \tag{D.127}
\end{array}
\]

Please note that \(r_{s p}(E)\) must be in units of rate per volume per energy interval.

\section*{Appendix E}

\section*{THEORY OF POWER SPECTRUM}

It has been shown in Ref. [106] that near lasing the Wronskian is independent of the position \(z\) and is only a function of frequency. Thus we can expand it over a complex omega plane as follows:
\[
\begin{equation*}
\frac{1}{W} \approx \sum_{i} \frac{1}{\frac{d W\left(\omega_{i}\right)}{d \omega}\left(\omega-\omega_{i}\right)} \tag{E.1}
\end{equation*}
\]

Let us derive the photon density in terms of the electric field. According to Landau and Lifschitz [155], the energy density, \(U\), of a dispersive medium can be written as
\[
\begin{equation*}
U=\varepsilon_{0} \frac{\partial}{\partial \omega}\left(\varepsilon^{\prime} \omega\right) E^{2}+\varepsilon_{0}\left(\varepsilon^{\prime}\right) E^{2} \tag{E.2}
\end{equation*}
\]
where \(\varepsilon^{\prime}\) is the real part of the dielectric constant at the optical frequencies. We go on and derive the following:
\[
\begin{equation*}
U=2 \varepsilon_{0} n^{\prime} \omega \frac{\partial n^{\prime}}{\partial \omega} E^{2}+\varepsilon_{0} n^{\prime 2} E^{2}+\varepsilon_{0} \varepsilon^{\prime} E^{2} \tag{E.3}
\end{equation*}
\]
which can be expressed in terms of the group index as follows:
\[
\begin{align*}
U & =2 \varepsilon_{0} \omega \frac{\partial n^{\prime}}{\partial \omega} E^{2}+2 \varepsilon_{0} n^{\prime} E^{2}  \tag{E.4}\\
& =2 \varepsilon_{0} n^{\prime} n_{g} E^{2} \tag{E.5}
\end{align*}
\]
where
\[
\begin{equation*}
n_{g}=n^{\prime}+\omega \frac{\partial n^{\prime}}{\partial \omega} \tag{E.6}
\end{equation*}
\]

Using the Fourier transform of the electric field, we write down our expression of photon density as
\[
\begin{equation*}
S(\omega)=\frac{U}{\hbar \omega}=\frac{2 \varepsilon_{0} n^{\prime} n_{g}}{\hbar \omega}\left|E_{\omega}(z) \phi(x, y)\right|^{2} \tag{E.7}
\end{equation*}
\]

Integration over \(\mathrm{x}-\mathrm{y}\) leads to the linear photon density:
\[
\begin{equation*}
s_{l}(\omega, z)=\frac{2 \varepsilon_{0} n^{\prime} n_{g}}{\hbar \omega}\left|E_{\omega}(z)\right|^{2} \tag{E.8}
\end{equation*}
\]

We recall that the spectrum of the electric field can be repressed in terms of the Green's function as follows:
\[
\begin{equation*}
E_{\omega}(z)=\frac{\int_{0}^{l} g\left(z, z^{\prime}\right) f_{\omega}\left(z^{\prime}\right) d z^{\prime}}{W(\omega)} \tag{E.9}
\end{equation*}
\]

We perform the spatial integral
\[
\begin{align*}
s_{l}(\omega, z) & =\frac{2 \varepsilon_{0} n^{\prime}(z) n_{g}}{\hbar \omega}\left|E_{\omega}(z)\right|^{2} \\
& =\frac{2 \varepsilon_{0} n^{\prime}(z) n_{g}}{\hbar \omega|W(\omega)|^{2}} \int_{0}^{l} g\left(z, z^{\prime}\right)^{*} f_{\omega}^{*}\left(z^{\prime}\right) d z^{\prime} \int_{0}^{l} g\left(z, z^{\prime \prime}\right) f_{\omega}\left(z^{\prime \prime}\right) d z^{\prime \prime} \\
& =\frac{2 \varepsilon_{0} n^{\prime}(z) n_{g}}{\hbar \omega|W(\omega)|^{2}} \int_{0}^{l} \int_{0}^{l} g\left(z, z^{\prime}\right)^{*} g\left(z, z^{\prime \prime}\right) f_{\omega}^{*}\left(z^{\prime}\right) f_{\omega}\left(z^{\prime \prime}\right) d z^{\prime} d z^{\prime \prime} \tag{E.10}
\end{align*}
\]

We take the ensemble average of the above to obtain:
\[
\begin{align*}
s_{l}(\omega, z) & =\frac{2 \varepsilon_{0} n^{\prime}(z) n_{g}}{\hbar \omega|W(\omega)|^{2}} \int_{0}^{l} \int_{0}^{l} g\left(z, z^{\prime}\right)^{*} g\left(z, z^{\prime \prime}\right)<f_{\omega}^{*}\left(z^{\prime}\right) f_{\omega}\left(z^{\prime \prime}\right)>d z^{\prime} d z^{\prime \prime} \\
& =\frac{2 \varepsilon_{0} n^{\prime}(z) n_{g}}{\hbar \omega|W(\omega)|^{2}} \int_{0}^{l} \int_{0}^{l} g\left(z, z^{\prime}\right)^{*} g\left(z, z^{\prime \prime}\right) 2 D_{\omega}\left(z^{\prime}\right) \delta\left(z^{\prime}-z^{\prime \prime}\right) d z^{\prime} d z^{\prime \prime} \\
& =\frac{2 \varepsilon_{0} n^{\prime}(z) n_{g}}{\hbar \omega|W(\omega)|^{2}} \int_{0}^{l}\left|g\left(z, z^{\prime}\right)\right|^{2} 2 D_{\omega}\left(z^{\prime}\right) d z^{\prime} \tag{E.12}
\end{align*}
\]

Let us transform the Wronskin as follows:
\[
\begin{align*}
\frac{1}{|W(\omega)|^{2}} & =\sum_{i} \sum_{j} \frac{1}{\frac{d W^{*}\left(\omega_{i}\right)}{d \omega}\left(\omega-\omega_{i}^{*}\right)} \frac{1}{\frac{d W\left(\omega_{j}\right)}{d \omega}\left(\omega-\omega_{j}\right)} \\
& =\sum_{i} \frac{1}{\left|\frac{d W\left(\omega_{i}\right)}{d \omega}\right|^{2}\left(\omega-\omega_{i}^{*}\right)\left(\omega-\omega_{i}\right)} \\
& =\sum_{i} \frac{1}{\left|\frac{d W\left(\omega_{i}\right)}{d \omega}\right|^{2}\left[\left(\omega-\omega_{r e, i}\right)^{2}+\omega_{i m, i}^{2}\right]} \tag{E.13}
\end{align*}
\]

Please note that we have dropped the cross terms of \(\frac{1}{\left(\omega-\omega_{i}\right)\left(\omega-\omega_{j}\right)^{*}}\) because these are normally much smaller than the sqared terms.

Using and \(n^{\prime}\) and \(n\) interchangeably and combining Eq. (E.12) and Eq. (E.13), we obtain
\[
\begin{equation*}
s_{l}(\omega, z)=\frac{2 \epsilon_{0} n(z) n_{g}}{\hbar \omega}\left[\sum_{i} \frac{1}{\left|\frac{d W\left(\omega_{i}\right)}{d \omega}\right|^{2}\left[\left(\omega-\omega_{r e, i}\right)^{2}+\omega_{i m, i}^{2}\right]}\right] \int_{0}^{l}\left|g\left(z, z^{\prime}\right)\right|^{2} 2 D_{\omega}\left(z^{\prime}\right) d z^{\prime} \tag{E.14}
\end{equation*}
\]
where \(\omega_{r e, i}\) and \(\omega_{i m, i}\) are the real and imaginary parts of a pole respectively. \(\epsilon_{0}, n\) and \(n_{g}\) are the vacuum permitivity, refractive index and group index, respectively. \(D_{\omega}(z)\) is the diffusion coefficient of the Langevin force \(f_{\omega}(z)\) [106]. The above expression shows that the spectrum of the photon density is a sum of Lorentzian lines centered at \(\omega_{r e, i}\), with peak intensity proportional to \(1 / \omega_{i m, i}^{2}\).
We integrate over z and obtain the modal spectrum:
\[
\begin{align*}
I_{\omega} & =\int_{0}^{l} s_{l}(\omega, z) d z \\
& =\frac{4 \pi \epsilon_{0}}{\hbar \omega} \sum_{i}\left[\left|\frac{d W\left(\omega_{i}\right)}{d \omega}\right|^{-2} \int_{0}^{l} \int_{0}^{l} n(z) n_{g}\left|g\left(z, z^{\prime}\right)\right|^{2} 2 D_{\omega}\left(z^{\prime}\right) d z^{\prime} d z\right] \\
& \times \frac{(2 \pi)^{-1}}{\left[\left(\omega-\omega_{r e, i}\right)^{2}+\omega_{i m, i}^{2}\right]} \tag{E.15}
\end{align*}
\]

The term related to the Wronskian has been worked out in Ref. [106] as
\[
\begin{equation*}
\frac{d W\left(\omega_{i}\right)}{d \omega}=2 \int_{0}^{l} k(z) Z_{L}(z) Z_{R}(z) \frac{\partial k\left(\omega_{i}, z\right)}{\partial \omega} d z \tag{E.16}
\end{equation*}
\]

Near the material gains peak, to a good approximation we obtain
\[
\begin{equation*}
\frac{\partial k}{\partial \omega}=\frac{1}{v_{g}} \tag{E.17}
\end{equation*}
\]

Assuming the system is near threshold, both \(Z_{L}(z)\) and \(Z_{R}(z)\) reduce to a common solution \(Z_{0, i}(z)\) where the label i indicates wave function at frequency \(\omega_{i}\) :
\[
\begin{equation*}
\frac{d W\left(\omega_{i}\right)}{d \omega}=\frac{2}{v_{g}} \int_{0}^{l} k(z) Z_{0, i}^{2}(z) d z \tag{E.18}
\end{equation*}
\]

The Green's function is reduced to a simpler form:
\[
\begin{equation*}
g\left(z, z^{\prime}\right)=Z_{0}(z) Z_{0}\left(z^{\prime}\right) \tag{E.19}
\end{equation*}
\]
where \(Z_{0}(z)\) is understood as \(Z_{0, i}\).
We have arrived at the following spectrum
\[
\begin{align*}
I_{\omega} & =\frac{4 \pi \epsilon_{0}}{\hbar \omega} \sum_{i} \frac{\int_{0}^{l} \int_{0}^{l} n(z) n_{g}\left|Z_{0}(z)\right|^{2}\left|Z_{0}\left(z^{\prime}\right)\right|^{2} 2 D_{\omega}\left(z^{\prime}\right) d z^{\prime} d z}{\left|\frac{2 \omega}{c^{2}} \int_{0}^{l} n(z) n_{g} Z_{0}^{2}(z) d z\right|^{2}} \\
& \times \frac{(2 \pi)^{-1}}{\left[\left(\omega-\omega_{r e, i}\right)^{2}+\omega_{i m, i}^{2}\right]} \tag{E.20}
\end{align*}
\]

From Appendix D, we recall that the diffusion constant is related to the optical gain by
\[
\begin{equation*}
2 D_{F F}(z)=\frac{\hbar \omega^{3} n(z) g(z) n_{s p}}{\pi c^{3} \varepsilon_{0}} \tag{E.21}
\end{equation*}
\]

We thus obtain:
\[
\begin{align*}
I_{\omega} & =\frac{4 \pi \epsilon_{0}}{\hbar \omega} \frac{\hbar \omega^{3}}{\pi c^{3} \varepsilon_{0}} \sum_{i} \frac{\int_{0}^{l} \int_{0}^{l} n(z) n_{g}\left|Z_{0}(z)\right|^{2}\left|Z_{0}\left(z^{\prime}\right)\right|^{2} n\left(z^{\prime}\right) g\left(z^{\prime}\right) n_{s p} d z^{\prime} d z}{\left|\frac{2 \omega}{c^{2}} \int_{0}^{l} n(z) n_{g} Z_{0}^{2}(z) d z\right|^{2}} \\
& \times \frac{(2 \pi)^{-1}}{\left[\left(\omega-\omega_{r e, i}\right)^{2}+\omega_{i m, i}^{2}\right]} \tag{E.22}
\end{align*}
\]
which may be written in our final form of the spectrum:
\[
\begin{align*}
I_{\omega} & =c \sum_{i} \frac{\left[\int_{0}^{l} n(z) n_{g}\left|Z_{0}(z)\right|^{2} d z\right]\left[\int_{0}^{l}\left|Z_{0}\left(z^{\prime}\right)\right|^{2} n\left(z^{\prime}\right) g\left(z^{\prime}\right) n_{s p} d z^{\prime}\right]}{\left|\int_{0}^{l} n(z) n_{g} Z_{0}^{2}(z) d z\right|^{2}} \\
& \times \frac{(2 \pi)^{-1}}{\left[\left(\omega-\omega_{r e, i}\right)^{2}+\omega_{i m, i}^{2}\right]} \tag{E.23}
\end{align*}
\]

Introducing the parameter \(R_{s p, i}\) :
\[
\begin{equation*}
R_{s p, i}=c \frac{\left[\int_{0}^{l} n(z) n_{g}\left|Z_{0}(z)\right|^{2} d z\right]\left[\int_{0}^{l}\left|Z_{0}\left(z^{\prime}\right)\right|^{2} n\left(z^{\prime}\right) g\left(z^{\prime}\right) n_{s p} d z^{\prime}\right]}{\left|\int_{0}^{l} n(z) n_{g} Z_{0}^{2}(z) d z\right|^{2}} \tag{E.24}
\end{equation*}
\]
which is also referred to as the rate of spontaneous emission into the \(i^{\text {th }}\) mode. The spectrum may be written as
\[
\begin{equation*}
I_{\omega}=\frac{(2 \pi)^{-1} R_{s p, i}}{\left[\left(\omega-\omega_{r e, i}\right)^{2}+\omega_{i m, i}^{2}\right]} \tag{E.25}
\end{equation*}
\]

Integrating over all frequencies, we get the total number of photons in the cavity \(I_{p, i}\) in the \(i^{\text {th }}\) mode:
\[
\begin{equation*}
I_{p, i}=\frac{R_{s p, i}}{2 \omega_{i m, i}} \tag{E.26}
\end{equation*}
\]
which agrees with results from other works in the literature (see, e.g., Ref. [106]).
In the above formulas, \(Z_{0}(z)=Z_{0, i}(z)\) is the solution to the homogeneous scalar wave equation at \(\omega=\omega_{i}, v_{g}\) the group velocity, \(g(z)\) the modal gain, and \(n_{s p}(z)\) the inversion parameter. The expression (E.24) agrees completely with results in Ref. [106].

\section*{Application notes on SMSR}

The side-mode suppression ratio (SMSR) is often used to determine whether or not a laser is single-mode. Based on the above derivations, two definitions of SMSR may be used.

Based on the photon number (integrated over all frequencies):
\[
\begin{equation*}
S M S R_{i j}=\frac{I_{p, i}}{I_{p, j}}=\frac{R_{s p, i}}{R_{s p, j}} \omega_{i m, j} \omega_{i m, i} \tag{E.27}
\end{equation*}
\]

Based on the peaks of the power spectrum (at \(\omega=\omega_{r e, i}\) for each mode):
\[
\begin{equation*}
S M S R_{i j}=\frac{I_{\omega_{i}}}{I_{\omega_{j}}}=\frac{R_{s p, i}}{R_{s p, j}}\left(\frac{\omega_{i m, j}}{\omega_{i m, i}}\right)^{2} \tag{E.28}
\end{equation*}
\]

On a \(\log\) scale, the two definitions therefore differ by a factor of 2 , all other values being equal. The first definition is used in the \(r t g \_s m s r\) variable of plot__scan; the RTG power spectrum of gain_spectrum may be used to measure the second.
We also note that the side mode suppression ratio may be strongly affected by how the population inversion factor is defined inside the Green's function model; depending on the choice of intern_spon_par in material__3d, the spontaneous emission in each mode may be replaced by \(R_{s p, a v}=\sum_{i}^{N} R_{s p, i} / N\).

\section*{Appendix F}

\section*{NOMENCLATURE}
A
\(a_{0}, a\)
\(B\)
\(B_{1}, B_{2}, B_{z}\)
\(B_{k}\)
\(b\)
\(C_{n}, C_{p}\)
\(c_{n j}, c_{p j}\)
\(c\)
\(c_{11}, c_{12}\)
\(D_{c}, D_{v}\)
\(E_{D}, E_{A}\)
\(E_{i}^{0}, E_{j}^{0}, E_{i j}^{0}\)

\(E, E_{i j}\)
\(E_{f n}, E_{f p}\)
\(E_{g}\)
\(E_{g 0}\)
\(\Delta E_{P F}\)
\(\delta E_{h y}\)
\(\delta E_{s h}\)
\(F\)
\(F_{l}\)
\(F_{0 n}, F_{0 p}\)

\(F_{1 / 2}\)

Coefficient for band-gap narrowing effects.
Lattice constants of GaAs \(\left(a_{0}\right)\) and InGaAs \((a)\).
Radiative recombination coefficient.
Complex wave amplitudes of the optical wave propagating from right to left in a laser.
Constant used in mathematical fittings.
Shear deformation potential.
Auger recombination coefficients, for electrons (n) and holes (p). Electron (n), hole (p) capture coefficients of the \(j\) th deep trap.
Velocity of light in vacuum.
Elastic constants.
Density of states of the conduction and valence band.
Shallow donor (D) and acceptor (A) levels.
Energy minimums of the \(i\) th and the \(j\) th levels, and the difference between them, . The \(i\) refers to the valence band sub-band levels and \(j\) refers to the conduction band sub-band levels.
Photon energy and energy difference between the \(i\) th and \(j\) th levels.
Quasi-Fermi energies of electrons (n) and holes (p).
Bandgap.
Unstrained bandgap.
Shift in ionization energy of a dopant due to Poole-Frenkel effect.
Hydrostatic strain energy.
Energy associated with shear strain.
Electric field intensity.
Lorentzian shape function.
Threshold electric field used in the electron (n) and hole (p) mobility models.
\(F_{1 / 2}\)
\begin{tabular}{|c|c|}
\hline \(f_{D}, f_{A}\) & Occupancy of the donor (D) and acceptor (A) levels. \\
\hline \(f_{t j}\) & Occupancy of the \(j\) th deep trap level. \\
\hline \(f_{i}, f_{j}\) & Fermi functions for the \(i\) th and the \(j\) th level. \\
\hline \(f_{i}^{\prime}, f_{j}^{\prime}\) & Integrated Fermi functions for the \(i\) th and the \(j\) th levels. \\
\hline \(g\) & Interband local gain. \\
\hline \(g_{i j}, g\) & Local gain due to transition between the \(i\) th and the \(j\) th levels, and the local gain of the material. \\
\hline \(g_{d}, g_{a}\) & Degeneracies of the shallow donor (d) and acceptor (a). \\
\hline \(H_{i j}\) & Hamiltonian matrix element between the \(i\) th and the \(j\) th states. \\
\hline \(h(x)\) & step function of variable x. \\
\hline \(h, \hbar\) & Plank's constants. \\
\hline \(I_{1}, I_{2}\) & The integrals needed to evaluate the quantum well gain and spontaneous emission rate. \\
\hline \(J_{n}, J_{p}\) & Electron (n) and hole (p) current flux densities. \\
\hline \(J_{s n}, J_{s p}\) & Electron (n) and hole (p) current flux densities on the surface. \\
\hline \(J_{h n}, J_{h p}\) & Electron (n) and hole (p) current flux densities across the heterojunction. \\
\hline \(J_{\text {source }}\) & Current flux source. \\
\hline \(k\) & Boltzmann constant. \\
\hline \(L\) & Laser cavity length. \\
\hline \(L()\) & Lines shape function for gain broadening. \\
\hline \(m_{0}\) & Electron mass \\
\hline \(m_{i}, m_{j}, m_{i j}\) & Relative effective masses of the \(i\) th and the \(j\) th level and the reduced effective mass between the \(i\) th and the \(j\) th level. Their relation is defined by \(1 / m_{i j}=1 / m_{i}+1 / m_{j}\). Indices i and j refer here to quantum well sub-bands. \\
\hline \(m_{n}, m_{p}\) & Bulk effective masses for electrons (n) and holes (p). \\
\hline \(m_{e}, m_{h}\) & The same as \(m_{n}\) and \(m_{p}\), respectively. \\
\hline \(m_{b n}, m_{b p}\) & Bulk effective masses for electrons (n) and holes (p) on the barrier side of the heterojunction. \\
\hline & Relative effective mass of the L-band used in the quantum level calculation. \\
\hline \(m_{v x}, m_{v y}, m_{v z}\) & Effective hole masses in the \(\mathrm{x}, \mathrm{y}\) and z direction. \\
\hline \(M_{0}, M_{i j}, M_{l h}\), & Momentum matrix elements for bulk material, between the \(i\) th \\
\hline \(M_{h h}\) & and the \(j\) th states, involving light- and heavy-hole transitions, respectively. \\
\hline \(N\) & Total number of grid points in the simulation space. Also used for the total number of longitudinal layers. \\
\hline \(N_{b}\) & Number of grid points associated with a boundary of interest. \\
\hline \(N_{D}, N_{A}\) & Doping density of shallow donors (D) and shallow acceptors (A). \\
\hline \(N_{t j}\) & Density of the \(j\) th deep trap. \\
\hline \(n\) & Electron concentration or density. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(n_{b}\) & Electron concentration or density on the barrier side of the hetero-junction. \\
\hline \(n_{b 0}\) & Electron concentration or density on the barrier side of the hetero-junction when its quasi-Fermi level coincides with that on the other side. \\
\hline \(n_{s}\) & Electron concentration or density on the surface. \\
\hline \(\bar{n}\) & Real part of refractive index. \\
\hline \(n_{i}\) & Intrinsic carrier density. \\
\hline \(n_{2 D}\) & The surface concentration of a quantum well, equal to the bulk density times the layer thickness. \\
\hline \(N_{r n}, N_{r p}\) & Reference doping density in electron (n) and hole (p) mobility equations. \\
\hline \(P_{i j}\) & Probability of a transition from the \(i\) th to the \(j\) th level. \\
\hline \(p\) & Hole concentration or density. \\
\hline \(p_{b}\) & Hole concentration or density on the barrier side of the heterojunction. \\
\hline \(p_{b 0}\) & Hole concentration or density on the barrier side of the heterojunction when its quasi-Fermi level coincides with that on the other side. \\
\hline \(p_{s}\) & Hole concentration or density on the surface. \\
\hline \(Q_{\text {em }}^{j}\) & Energy density of the \(j\) th emitted longitudinal mode. \\
\hline \(Q_{c a v}^{j}\) & Energy density of the \(j\) th longitudinal mode within the laser cavity. \\
\hline \(q\) & Electronic charge. \\
\hline \(R_{n}^{t j}, R_{p}^{t j}\) & Electron (n) and hole (p) recombination rates per unit volume through the \(j\) th deep trap. \\
\hline \(R_{s p}, R_{s p}^{b}, R_{s p}^{q w}\) & Spontaneous recombination rate per unit volume, also called the radiative recombination rate, and the same quantity in bulk (b) and in the quantum well \((q w)\). \\
\hline \(r_{s p}^{q w}\) & Frequency dependent spontaneous recombination rate for the quantum well. \\
\hline \(R_{s}\) & Resistance associated with a boundary condition. \\
\hline \(R_{s t}\) & Stimulated recombination rate per unit volume. \\
\hline \(R_{\text {au }}\) & Auger recombination rate per unit volume. \\
\hline \(r_{m}, r_{m}^{e f f}\) & Single facet reflectivity and effective reflectivity of a laser. \\
\hline \(T\) & Absolute temperature. \\
\hline \(T_{\text {scat }}\) & The scattering kernel for carrier-carrier scattering. \\
\hline \(t\) & Thickness of the quantum well. \\
\hline \(V\) & Electrical potential. \\
\hline \(V_{s}\) & Electrical potential on the surface. \\
\hline \(V_{\text {applied }}\) & Applied electrical potential. \\
\hline \(v\) & Volume. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\bar{v}_{n}, \bar{v}_{p}\) & Average thermal velocity of electrons (n) and holes (p). The average is taken over all three dimensions. \\
\hline \(\bar{v}_{n}^{\text {therm }}, \bar{v}_{p}^{\text {therm }}\) & Average thermal velocity of electrons (n) and holes (p). The average is taken only over the dimensional of interest. \\
\hline \(\bar{v}_{b n}^{\text {therm }}, \bar{v}_{b p}^{\text {therm }}\) & Average thermal velocity of electrons (n) and holes (p) located on the barrier side of the heterojunction. The average is taken only over the dimensional of interest. \\
\hline \(v_{s n}, v_{s p}\) & Saturation velocity for electrons (n) and holes (p). \\
\hline W & Carrier energy. \\
\hline \(W_{n}\) & Electron energy. \\
\hline & Hole energy. \\
\hline \(W_{j}^{e}, W_{i}^{h}\) & Effective width of the wave functions for electron and hole in the jth and ith subbands, respectively. \\
\hline \(x, y\) & Spatial coordinates used in the model. The \(x\)-axis is parallel to the quantum well. \(x\) is also used elsewhere as the Al composition in AlGaAs or the In composition in InGaAs. \\
\hline \(\alpha \alpha_{q w}\) & Local loss coefficient due to loss other than interband recombination, and local loss in the quantum well. \\
\hline \(\alpha_{\text {in }}\) & Internal loss defined as the weighted average of the local loss \(\alpha\). \\
\hline \(\alpha_{n}, \alpha_{p}\) & Constants used in doping dependent mobility functions for electrons (n) and holes (p). \\
\hline \(\alpha_{f n}, \alpha_{f p}\) & Coefficients of the free carrier absorption for electrons (n) and holes (p) in the quantum well. \\
\hline \(\alpha_{0}\) & Absorption coefficient for regions outside the quantum well. \\
\hline \(\beta, \beta_{1}, \beta_{2}\) & Complex eigenvalues of the wave equation and its real (1) and imaginary (2) parts. They are also considered effective indices. \\
\hline \(\alpha_{\text {em }}\) & Optical loss coefficient due to emission of light in the lasing mode. \\
\hline \(\alpha_{e m j}\) & Optical loss coefficient due to emission of light in the jth longitudinal mode. \\
\hline \(\beta_{p}\) & Constant used in the hole mobility equation. \\
\hline \(\Delta\) & Spin-orbit splitting of the valence band energy. \\
\hline \(\Delta_{i j}^{a}\) & Transition energy shift term in the Asada broadening model. \\
\hline \(\delta\) & Constant. Value is 1 for deep donors and 0 for deep acceptors when used to represent electrical charge. Also used as a \(\delta\)-function. \\
\hline \(\epsilon_{0}\) & Dielectric constant \\
\hline \(\epsilon_{d c}\) & Relative DC or low frequency dielectric constant. \\
\hline \(\epsilon, \epsilon_{1}, \epsilon_{2}\) & Complex optical dielectric constant and its real (1) and imaginary (2) parts. \(\epsilon\) is also used, under a completely context, for non-linear gain coefficient. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\epsilon_{2}^{g}, \epsilon_{2}^{\alpha}\) & Imaginary parts of the dielectric constant corresponding to gain due to interband transition and loss due to other mechanisms, respectively. \\
\hline \(\varepsilon\) & Strain. \\
\hline \(\Gamma\) & Energy level broadening parameter, or the half width of the Lorentzian broadening function. \\
\hline \(\Gamma_{0}\) & The maximum energy level broadening parameter, or the half width of the Lorentzian broadening function. \\
\hline \(\Gamma_{a}\) & The energy level broadening parameter, or the half width of the Lorentzian broadening function, as used in the Asada's broadening model. \\
\hline \(\gamma_{1}, \gamma_{2}, \gamma_{3}\) & Luttinger numbers. \\
\hline \(\gamma\) & Constant relating the optical wave amplitude to electric field. \\
\hline \(\gamma_{n}, \gamma_{p}\) & Adjustable constants for the electron (n) and hole (p) thermionic emission model, used to account for tunneling and other effects. \\
\hline \(\gamma_{h n}, \gamma_{h p}\) & Adjustable constants for the electron (n) and hole (p) thermionic emission model for heterojunctions, used to account for tunneling and other effects. \\
\hline \(\chi\) & Affinity. \\
\hline \(\chi\) & Affinity of a reference material. \\
\hline \(\lambda\) & Optical wavelength. \\
\hline \(\lambda_{j}\) & Optical wavelength of the jth longitudinal mode. \\
\hline \(\mu_{n}, \mu_{p}\) & Mobility of electrons (n) and holes (p). \\
\hline \(\mu_{0 n}, \mu_{0 p}\) & Low field electron (n) and hole (p) mobilities. \\
\hline \(\mu_{1 n}, \mu_{1 p}\) & Minimum electron (n) and hole (p) mobilities. \\
\hline \(\mu_{2 n}, \mu_{2 p}\) & Maximum electron (n) and hole (p) mobilities. \\
\hline \(\nu\) & Function used in the Fermi-Direct statistics. \\
\hline \(\rho_{i}, \rho_{j}, \rho_{i j}\) & Density of states for the \(i\) th and the \(j\) th levels, and the reduced density of states for transition between the \(j\) th and the \(i\) th levels. \\
\hline \[
\begin{aligned}
& \phi_{n}, \phi_{p} \\
& \phi_{b}
\end{aligned}
\] & Quasi-Fermi potential for electrons (n) and holes (p). Schottky barrier height. \\
\hline \(\rho_{i}^{0}, \rho_{j}^{0}, \rho_{i j}^{0}\) & Constants for the two-dimensional density of states for the \(i\) th and the \(j\) th levels, and reduced density of states for transition between the \(i\) th and the \(j\) th levels. For example \(\rho_{i}^{0}=m_{i} / \pi \hbar^{2} t\) \\
\hline \(\sigma_{n j}, \sigma_{p j}\) & Electron (n) and hole (p) capture cross sections of the \(j\) th deep trap. \\
\hline \(\tau\) & Intra-band scattering lifetime. \\
\hline \(\tau_{n j}, \tau_{p j}\) & Electron (n) and hole (p) life time due to the \(j\) th trap. \\
\hline \(\tau_{h}, \tau_{v}\) & Hole-hole scattering life time for the Asada gain broadening model. \(\tau_{h}=2 \tau_{v}\). \\
\hline \(\omega\) & Angular frequency of the optical wave. \\
\hline
\end{tabular}
```

\omega
\xi Function used in the Fermi-Dirac statistics.
\zeta, \zetan, \zetap
the shear strain energy for a different context.
< > Average with | W |}\mp@subsup{}{}{2}\mathrm{ as weight.

```

\section*{Appendix G}

\section*{POST-PROCESSING \& PLOTTING VARIABLES}

\section*{G. 1 Bias-dependent Variables}

Bias-dependent variables refer to quantities characterizing the whole device rather than a local value at a particular mesh point. They can be plotted using plot__scan or analyzed using commands such as fourier__power.

Table G.1: Bias-dependent variables available for plotting
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Definition } \\
\hline \hline all_mode_power & \begin{tabular}{l} 
Emitted laser power for all lateral modes in units \\
of mW (LASTIP) \\
\\
1
\end{tabular} \\
\hline all_mode_micav_power & \begin{tabular}{l} 
Emitted microcavity laser power for all lateral \\
modes (PICS3D). Units in W/m for 2D and W \\
for 3D.
\end{tabular} \\
\hline bottom_led_power & \begin{tabular}{l} 
LED power emitted from the bottom of the de- \\
vice.
\end{tabular} \\
\hline bottom__led_power_te & \begin{tabular}{l} 
LED power emitted from the bottom of the device \\
(TE mode).
\end{tabular} \\
\hline bottom_led_power_tm & \begin{tabular}{l} 
LED power emitted from the bottom of the device \\
(TM mode).
\end{tabular} \\
\hline & \multicolumn{1}{|c|}{ Continued on next page } \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Starting with the 2012 version, this value is no longer scaled by a factor of two to account for implied symmetry
}

Table G. 1 - continued from previous page
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Definition } \\
\hline \hline current_i & \begin{tabular}{l} 
Total current (sum of electron, hole and displace- \\
ment current) at electrode i.
\end{tabular} \\
\hline disp_curr_i & \begin{tabular}{l} 
Displacement current (time derivative of the dis- \\
placement vector) at electrode i.
\end{tabular} \\
\hline effective_index & \begin{tabular}{l} 
Real effective refractive index for a waveguide de- \\
vice.
\end{tabular} \\
\hline efficiency & \begin{tabular}{l} 
Laser emission power efficiency (or slope effi- \\
ciency) (LASTIP).
\end{tabular} \\
\hline elec_curr__i & Electron current at electrode i \\
\hline hole_curr_i & Hole current at electrode i. \\
\hline laser_current_i & \begin{tabular}{l} 
Total injection current into a laser diode; this \\
value is multiplied by the device length to con- \\
vert the current into mA (LASTIP)
\end{tabular} \\
\hline laser_power & \begin{tabular}{l} 
Emitted laser power for a single mode in units of \\
mW (LASTIP)
\end{tabular} \\
\hline led_curr_effi & \begin{tabular}{l} 
LED luminosity/current efficiency (cd/A) \\
(APSYS).
\end{tabular} \\
\hline led_effi & LED internal quantum efficiency (APSYS). \\
\hline led_effx1 & Similar to led_effz1. \\
\hline led_effx2 & Similar to led_effz1. \\
\hline led_effy1 & Similar to led_effz1. \\
\hline led_effy2 & Similar to led_effz1. \\
\hline led_effz1 & \begin{tabular}{l} 
LED power extraction efficiency from facet 1 (i.e., \\
left or bottom facet) facing the z-direction based \\
on the (cubic) broad-area LED model. This result \\
may be different from that calculated from the ray \\
tracing model.
\end{tabular} \\
\hline led_power_te & \begin{tabular}{l} 
Similar to led_effz1 above. \\
\hline led_effz2
\end{tabular} \begin{tabular}{l} 
Total amount of emitted optical power from all \\
facets of an LED (APSYS) in the (cubic) broad- \\
area LED model. This may be different from \\
the optical power calculated from the ray tracing \\
model.
\end{tabular} \\
\hline led_power & \begin{tabular}{l} 
Total amount of emitted optical power (TE mode) \\
from all facets of an LED (APSYS) in the (cu- \\
bic) broad-area LED model. This may be differ- \\
ent from the optical power calculated from the ray \\
tracing model.
\end{tabular} \\
\hline & \\
\hline
\end{tabular}

Table G. 1 - continued from previous page
\begin{tabular}{|c|c|}
\hline Variable & Definition \\
\hline led_power_tm & Total amount of emitted optical power (TM mode) from all facets of an LED (APSYS) in the (cubic) broad-area LED model. This may be different from the optical power calculated from the ray tracing model. \\
\hline led_spon_power & Total power generated from spontaneous emission events inside a LED (APSYS). \\
\hline led_spon_power_te & Total power (TE mode) generated from spontaneous emission events inside a LED (APSYS). \\
\hline led_spon_power_tm & Total power (TM mode) generated from spontaneous emission events inside a LED (APSYS). \\
\hline light & Incident light power to a photodetector, modulator, SOA or any other light-sensitive device. \\
\hline micav_laser_power & Emitted microcavity laser power for specified mode (PICS3D). Units in \(\mathrm{W} / \mathrm{m}\) for 2 D and W for 3D. \\
\hline more__bias_vari(i=1..9) & Special variable created by using various statements such as bias__output__near__point. \\
\hline pd_efficiency & External quantum efficiency of a photodetector \({ }^{2}\). \\
\hline pd_responsivity & Responsivity of a photodetector \({ }^{2}\). \\
\hline peak_gain & Peak model gain in a waveguide device with lateral mode and active layer(s). It is the modal gain at peak wavelength. \\
\hline rtg_left_power & Left power emission in RTG model (PICS3D). \\
\hline rtg_left_power_allmode & All-mode left power emission in RTG model (PICS3D). \\
\hline rtg_photon_num & Photon number in RTG model (PICS3D). \\
\hline rtg_photon_num_allmode & All-mode photon number in RTG model (PICS3D). \\
\hline rtg_right_power & Left facet power emission in RTG model (PICS3D). \\
\hline rtg_right_power_allmode & Right facet power emission in RTG model (PICS3D). \\
\hline rtg_surf_power & Surface emitting power (for 2nd order grating) in RTG model (PICS3D). \\
\hline rtg_surf_power_allmode & All-mode surface emitting power (for 2nd order grating) in RTG model (PICS3D). \\
\hline & Continued on next page \\
\hline
\end{tabular}

\footnotetext{
\({ }^{2}\) This term does not include dark current effects
}

Table G. 1 - continued from previous page
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Definition } \\
\hline \hline rtg_wavelength & \begin{tabular}{l} 
Wavelength in RTG model (PICS3D). \\
\hline rtg_wave_phase
\end{tabular} \\
\hline \begin{tabular}{l} 
Phase shift of input wave in RTG model \\
(PICS3D).
\end{tabular} \\
\hline rtg_2facet_power & 2-facet power for a particular mode (PICS3D). \\
\hline rtg_2facet_power_allmode & All-mode power for a particular mode (PICS3D). \\
\hline rtg_efficiency & \begin{tabular}{l} 
External quantum efficiency for laser device \\
(PICS3D).
\end{tabular} \\
\hline rtg_ase_left & \begin{tabular}{l} 
Amplified spontaneous emission from the left facet \\
for a particular longitudinal mode (PICS3D).
\end{tabular} \\
\hline rtg_ase_left_allmode & \begin{tabular}{l} 
Amplified spontaneous emission from the left facet \\
for all modes (PICS3D).
\end{tabular} \\
\hline rtg_ase_right & \begin{tabular}{l} 
Amplified spontaneous emission from the \\
right facet for a particular longitudinal mode \\
(PICS3D).
\end{tabular} \\
\hline rtg_ase_right_allmode & \begin{tabular}{l} 
Amplified spontaneous emission from the right \\
facet for all modes (PICS3D).
\end{tabular} \\
\hline rtg_ase_2facet_allmode & \begin{tabular}{l} 
Amplified spontaneous emission from both facets \\
for all modes (PICS3D).
\end{tabular} \\
\hline rtg_ase_efficiency & \begin{tabular}{l} 
External quantum efficiency for amplified sponta- \\
neous emission source (PICS3D).
\end{tabular} \\
\hline rtg_smsr & \begin{tabular}{l} 
Side mode suppression ratio (PICS3D). This is \\
based on the photon number of each mode, as \\
defined in Appendix E.
\end{tabular} \\
\hline rtg_wave_phase & \begin{tabular}{l} 
Phase change of input wave at exit for a modula- \\
tor/SOA (PICS3D).
\end{tabular} \\
\hline sum_space_charge & Sum of space charge over a region. \\
\hline temp_max & Maximum temperature in device. \\
\hline time & \begin{tabular}{l} 
Time in picoseconds used in a transient simula- \\
tion.
\end{tabular} \\
\hline top_led_power & LED power emitted from the top of the device . \\
\hline top_led_power_te & \begin{tabular}{l} 
LED power (TE mode) emitted from the top of \\
the device .
\end{tabular} \\
\hline top_led_power_tm & \begin{tabular}{l} 
LED power (TM mode) emitted from the top of \\
the device .
\end{tabular} \\
\hline total_joule_heat & Integrated total Joule heat. \\
\hline total_optic_heat & Total heat due to optical absorption. \\
\hline total_peltier_heat & Integrated total Peltier heat. \\
\hline total_recomb_heat & Integrated total Thomson heat. \\
\hline total_thomson_heat & antaed on next page \\
\hline
\end{tabular}

Table G. 1 - continued from previous page
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Definition } \\
\hline \hline tunneling_enhancement & \begin{tabular}{l} 
Maximum tunneling enhancement/increase to the \\
classical drift-diffusion current.
\end{tabular} \\
\hline volt_res_i & \begin{tabular}{l} 
The voltage at boundary i in a mixed-mode sim- \\
ulation, including the external resistor.
\end{tabular} \\
\hline voltage_i & Voltage at electrode i. \\
\hline wavelength & \begin{tabular}{l} 
Laser emission wavelength at peak modal gain \\
(LASTIP).
\end{tabular} \\
\hline wavelength_scan & Wavelength of the optical pump. \\
\hline \hline
\end{tabular}

\section*{G. 2 Scalar Variables}

Scalar variables are structural quantities defined for every mesh point of the device. They depend on also depend on bias but are only printed at certain data sets, as defined in the scan statement. These quantities may be plotted using statements such as plot__1d and plot__2d.

Table G.2: Scalar variables available for plotting
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Definition } \\
\hline \hline absorption & \begin{tabular}{l} 
background optical absorption not including \\
gain/loss from active layers.
\end{tabular} \\
\hline acceptor_conc & acceptor concentration. \\
\hline acceptor_conc2 & acceptor concentration (level2). \\
\hline all_conc & both electron and hole. \\
\hline all_heat & all heat sources. \\
\hline band & energy band. (for plot_1d and lplot_xy) \\
\hline bulk_bandgap & \begin{tabular}{l} 
bandgap of bulk material; in a QW region, the \\
heavy hole bandgap is used even if the light hole \\
bandgap is smaller.
\end{tabular} \\
\hline bulk_elec_conc & bulk elec. concentration in QW system. \\
\hline bulk_hole_conc & bulk hole concentration in QW system. \\
\hline central_area & local surface area around mesh point. \\
\hline \multicolumn{6}{|c|}{ Continued on next page } \\
\hline
\end{tabular}

\footnotetext{
\({ }^{3}\) The definitions voltage_i and volt_res_i switched in v. 2015 due to various improvements in the mixed-mode model.
}

Table G. 2 - continued from previous page
\begin{tabular}{|c|c|}
\hline Variable & Definition \\
\hline ch_val_band & crystal field hole valence band edge for wurtzite structures. \\
\hline compact_iqe & localized photon conversion efficiency: \(\frac{R_{s} p(x, y, z)}{J(x, y, z)}\). \\
\hline cond_band & conduction band. \\
\hline disp_curr_mag & magnitude of displacement current. \\
\hline disp_curr_x & displacement current x-component. \\
\hline disp_curr_y & displacement current y-component. \\
\hline disp_curr_z & displacement current z-component. \\
\hline donor_conc & donor concentration. \\
\hline donor_conc2 & donor concentration (level2). \\
\hline efb_cond_band & conduction band in effective QW miniband model. \\
\hline efb__val_band & valence band in effective QW miniband model. \\
\hline efm_cond_band & conduction band in effective bulk medium model. \\
\hline efm_val_band & valence band in effective bulk medium model. \\
\hline elec_conc & electron concentration. \\
\hline elec_curr_mag & magnitude of electron current. \\
\hline elec_curr_x & electron current x-component. \\
\hline elec_curr_y & electron current y-component. \\
\hline elec_curr_z & electron current z-component. \\
\hline elec_diff & magnitude of the electron concentration gradient \(|\nabla n|\). \\
\hline elec_diff_gain & electron differential gain ( \(\mathrm{cm}^{2}\) ) . \\
\hline elec_imref & electron IMREF. \\
\hline elec_mobility & average nodal electron mobility. \\
\hline exciton_dipole_source & exciton dipole source density. \\
\hline exciton_singlet & singlet exciton density. \\
\hline exciton_triplet & triplet exciton density. \\
\hline fdfd_efield_r & optical field component \(E_{r}\) from microcavity vectorial mode solver. \\
\hline fdfd_efield_z & optical field component \(E_{z}\) from microcavity vectorial mode solver. \\
\hline fdfd_hfield_phi & optical field component \(H_{\phi}\) from microcavity vectorial mode solver. \\
\hline field_mag & electrical field magnitude. \\
\hline field_x & electric field x -component. \\
\hline field_y & electric field y-component. \\
\hline heat_flux_density_mag & heat flux magnitude. \\
\hline heat_flux_density_x & heat flux x-component. \\
\hline & Continued on next page \\
\hline
\end{tabular}

Table G. 2 - continued from previous page
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c}{ Variable } & \\
\hline \hline heat_flux_density_y & heat flux y-component. \\
\hline heat_flux_density_z & heat flux z-component. \\
\hline hole_conc & hole concentration. \\
\hline hole_curr_mag & magnitude of hole current. \\
\hline hole_curr_x & hole current x-component. \\
\hline hole_curr_y & hole current y-component. \\
\hline hole_curr_z & hole current z-component. \\
\hline hole_diff_gain & hole differential gain (cm²). \\
\hline hole_imref & hole IMREF. \\
\hline hole_mobility & average nodal hole mobility. \\
\hline impact_alpha_n & electron impact ionization coefficient. \\
\hline impact_alpha_p & hole impact ionization coefficient. \\
\hline impact_ionization & total impact ionization rate. \\
\hline incident_power & same as optical_energy. \\
\hline index_change & refractive index change from equilibrium value. \\
\hline interband_pumping & optically pumped interband absorption. \\
\hline interface_length & \begin{tabular}{l} 
equivalent interface length around mesh point; \\
this value only considers ALL mesh triangle edges \\
touching something other than the material num- \\
ber of local the mesh point.
\end{tabular} \\
\hline Joule heat source. \\
\hline joule_heat & \begin{tabular}{l} 
reference valence band edge for wurtzite struc- \\
tures.
\end{tabular} \\
\hline kpref_val_band & lattice temperature. \\
\hline lattice_temp & light hole valence band edge. \\
\hline lh_val_band & acceptor concentration in linear scale. \\
\hline linear_acceptor_conc & \begin{tabular}{l} 
bulk elec. concentration in QW system (linear \\
scale).
\end{tabular} \\
\hline linear_bulk_elec & \begin{tabular}{l} 
bulk hole concentration in QW system (linear \\
scale).
\end{tabular} \\
\hline linear_bulk_hole & donor concentration in linear scale. \\
\hline electron concentration in linear scale. \\
\hline linear_donor_conc & Heat source linear in current. \\
\hline linear_elec_conc & hole concentration in linear scale. \\
\hline linear_heat & same as rec_elec_conc but in linear scale. \\
\hline linear_hole_conc & same as rec_hole_conc but in linear scale. \\
\hline linear_rec_elec subband elec. concentration (linear scale). \\
\hline linear_rec_hole & local optical gain. \\
\hline linear_subb_elec & linear_subb__hole
\end{tabular}

Table G. 2 - continued from previous page
\begin{tabular}{|c|c|}
\hline Variable & Definition \\
\hline lower_elec_imref & IMREF of the lower electron state in the splitstate model \\
\hline lower_hole_imref & IMREF of the lower hole state in the split-state model \\
\hline lower_elec & electron concentration in the lower state in the split-state model \\
\hline lower_hole & hole concentration in the lower state in the splitstate model \\
\hline magnetic_field_mag & magnitude of flux density ( \(B\) ) pseudo-vector. \\
\hline magnetic_field_x & x-component of magnetic flux density \((B)\) pseudovector. \\
\hline magnetic_field_y & y-component of magnetic flux density ( \(B\) ) pseudovector. \\
\hline magnetic_field_z & z-component of magnetic flux density \((B)\) pseudovector. \\
\hline magnetic_potential_mag & magnitude of magnetic vector potential \((A)\). \\
\hline magnetic_potential_x & x-component of magnetic vector potential \((A)\). \\
\hline magnetic_potential_y & y-component of magnetic vector potential \((A)\). \\
\hline magnetic_potential_z & z-component of magnetic vector potential \((A)\). \\
\hline material_num & internal material number. \\
\hline negative_fix_charge & negative fixed space charge. \\
\hline negf_elec_diff & same as elec_diff but for NEGF transport. \\
\hline occup_trap & occupancy of trap. \\
\hline optic_heat & optical heat source. \\
\hline optical_energy & relative energy distribution scaled to incident light energy density. \\
\hline optical_gen & optical generation rate induced by incident light. \\
\hline optical_gen_led & optical generation rate in resonant-cavity model, induced by trapped spontaneous emission. \\
\hline outer_interface_length & equivalent interface length around mesh point; this value only considers only the mesh triangle edges touching the outer edges of the simulation domain. \\
\hline peltier_heat & Peltier heat source. \\
\hline polar_vector & Total polarization vector; sum of spontaneous and strain-induced polarization. \\
\hline piezo_stress_xx & Piezoelectric stress component in SAWAVE simulation. \\
\hline & Continued on next page \\
\hline
\end{tabular}

Table G. 2 - continued from previous page
\begin{tabular}{|c|c|}
\hline Variable & Definition \\
\hline piezo_stress_xy & Piezoelectric stress component in SAWAVE simulation. \\
\hline piezo_stress_xz & Piezoelectric stress component in SAWAVE simulation. \\
\hline piezo_stress_yy & Piezoelectric stress component in SAWAVE simulation. \\
\hline piezo_stress_yz & Piezoelectric stress component in SAWAVE simulation. \\
\hline piezo_stress_zz & Piezoelectric stress component in SAWAVE simulation. \\
\hline piezo_vector & Strain-induced polarization vector. \\
\hline piezo_vector_external & Polarization vector due to external stress. \\
\hline positive_fix_charge & positive fixed space charge. \\
\hline potential & potential. \\
\hline qdot_electron & electron concentration in the embedded quantum dot \\
\hline qdot_hole & hole concentration in the embedded quantum dot \\
\hline radiation_heat & radiation heat source term. \\
\hline real_index & real index. \\
\hline rec_elec_conc & electron concentration participated in recombination only as opposed to that in transport. \\
\hline rec_hole_conc & hole concentration participated in recombination only as opposed to that in transport. \\
\hline recomb_aug & Auger recombination rate. \\
\hline recomb_heat & recombination heat source. \\
\hline recomb_rad & radiative recombination rate (TE+TM). \\
\hline recomb_rad_te & radiative recombination rate (TE). \\
\hline recomb_rad_tm & radiative recombination rate (TM). \\
\hline recomb_srh & SRH recombination rate. \\
\hline recomb_st & stimulated recombination rate. \\
\hline space_charge & net space charge. \\
\hline spatial_grad_thermal_power_n & magnitude of spatial gradient of electron thermoelectric power \(\nabla P_{n}\); this terms controls the combined Peltier and Thomson heat. \\
\hline spatial_grad_thermal_power_p & magnitude of spatial gradient of hole thermoelectric power \(\nabla P_{p}\) this terms controls the combined Peltier and Thomson heat. \\
\hline stress_xx & normal stress in x direction. \\
\hline stress_xy & shear stress (xy). \\
\hline & Continued on next page \\
\hline
\end{tabular}

Table G. 2 - continued from previous page
\begin{tabular}{|c|c|}
\hline Variable & Definition \\
\hline stress_xz & shear stress (xz). \\
\hline stress_yy & normal stress in y direction. \\
\hline stress_yz & shear stress (yz). \\
\hline stress__zz & normal stress in z direction. \\
\hline subb_elec_conc & QW subband elec. concentration. \\
\hline subb_hole_conc & QW subband hole concentration. \\
\hline temp_grad__thermal_power_n & magnitude of temperature-driven gradient for electron thermoelectric power \(\left(\frac{\partial P_{n}}{\partial T} \nabla T\right)\). \\
\hline temp_grad_thermal_power_p & magnitude of temperature-driven gradient for hole thermoelectric power \(\left(\frac{\partial P_{p}}{\partial T} \nabla T\right)\). \\
\hline thermal__power__ & electron thermoelectric power \(\left(P_{n}\right)\) \\
\hline thermal__power_p & hole thermoelectric power \(\left(P_{p}\right)\) \\
\hline thomson__heat & Thomson heat source. \\
\hline total__curr__mag & magnitude of total current. \\
\hline total_curr_x & total current x-component. \\
\hline total_curr_y & total current y-component. \\
\hline total_curr_z & total current z-component. \\
\hline trap_conc & trap concentration. \\
\hline trapped__elec__conc & trapped electron concentration \\
\hline trap_level & trap level. \\
\hline tunnel_enhancement & enhancement factor applied to drift-diffusion current in the tunneling and NEGF models. \\
\hline val_b band & valence (also heavy hole) band edge. \\
\hline wave_2ndwavel & SOA Traveling Wave (2nd wavelength). \\
\hline wave_real_part & Real part of the optical mode. Note that the optical wave is normalized to within a complex constant; only the spatial difference is significant. \\
\hline wave_imag_part & Imaginary part of the optical mode. See above comment for normalization. \\
\hline wave__intensity & relative wave intensity. \\
\hline wave_intensity__all_modes & wave intensity of all modes. \\
\hline
\end{tabular}

\section*{G. 3 Vectorial Variables}

Vectorial variables, like scalar variables, are structural quantities defined at every mesh point of the device. The corresponding vector field may be plotted using
statements such as plot__2d and vplot_xy:

Table G.3: Vectorial variables available for plotting
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Definition } \\
\hline \hline elec_curr & electron current \\
\hline hole_curr & hole current \\
\hline disp_curr & displacement current \\
\hline elec_field & electric field (static) \\
\hline total_curr & total current \\
\hline flowline_curr & flowline plot of total current \\
\hline \hline
\end{tabular}

\section*{Appendix H}

\section*{SUPPORTED EXAMPLES}

\section*{H. 1 APSYS Examples}
```

\apsys_examples\A_tutorial
[title] Simulation of a camel diode: A tutorial.
[structure] Silicon camel diode.
[comment] Basic simulation procedures using APSYS.

```
\apsys_examples \(\backslash\) basic_silicon\bjt_3d
[title] Full 3D simulation of BJT.
[structure] 3D structure of BJT with edge effect.
[comment] The edge effect makes significant difference.
\apsys_examples\basic_silicon\diode
[title] Turn-on characteristics of pn junction diode.
[structure] Simple p-n junction diode.
[comment] Set up of transient simulation.
```

\apsys_examples\basic_silicon\hot_carrier
[title] Hot electron simulation.
[structure] N-type MOS transistor.
[comment] Different I-V is obtained if energy dep. mobility is used.
\apsys_examples\basic_silicon\impact_mos
[title] Impact ionization effect in MOS.
[structure] N-type MOS transistor.
[comment] Break down effect due to impact ionization.

```
\apsys_examples\basic_silicon\jfet_temperature
[title] JFET simulation.
[structure] Silicon JFET.
[comment] Set up of simulation at different temperatures.
------------------------
\apsys_examples\basic_silicon\jfet_trap
[title] Deep level traps in JFET.
[structure] Silicon JFET with deep traps.
[comment] Deep trap model at low temperature.
\apsys_examples \(\backslash\) basic_silicon\mini_bjt
[title] Small size BJT.
[structure] Silicon bipolar junction transistor.
[comment] Show how to generate a family of I-V curves.
\apsys_examples \(\backslash\) basic_silicon\npn_indium
[title] NPN silicon BJT with indium doped base
[structure] \(\mathrm{N}-\mathrm{P}-\mathrm{N}\) with boron and indum doped base.
[comment] Show how to use two p dopings with different ionization energies.
```

\apsys_examples \backslash basic_silicon\SOI_impact

```
[title] Impact ionization in SOI.
[structure] SOI with gate length of 1.6 um and poly gate.
[comment] Switch to current control before snap back in I-V curve.
\apsys_examples \basic_silicon\TFT_3D
[title] 3D Simulation of a-SI TFT device.
[structure] Strip cell with mirror symmetry in \(x\)-direction and \(z\)-direction.
[comment] Show how to simulate 3D a-Si TFT by Csuprem and apsys.
```

\apsys_examples\basic_silicon\thermal_npn
[title] Thermal analysis of a BJT.
[structure] Silicon NPN BJT
[comment] Substantial difference when self-heating effect is included.

```
\(\qquad\)
\apsys_examples\basic_silicon\thyristor
[title] Simulation of forward I-V characteristics of a thyristor
[structure] silicon \(\mathrm{p}-\mathrm{n}-\mathrm{p}-\mathrm{n}\)
[comment] Use of special convergence techniques to get the S-shape I-V curve
-------------------------
\apsys_examples\CCD_CIS \CCD
[title] Simplified CCD structure
[structure] Silicon CCD detector
[comment] Basic simulation procedures using APSYS.
------------------------
\apsys_examples \CCD_CIS\PD_CIS
[title] 2D CMOS image sensor with photodiode
[structure] 0.2 um CMOS with .layer format.
[comment] Demonstration of how clock cycle is controlled in CCD/CIS
\apsys_examples \CCD_CIS\PG_CIS
[title] CIS with a photogate
[structure] PG+TX-MOS+Reset-MOS
[comment] Classic design of CIS based on photogate as light integrator
\apsys_examples \EAM\CQW_modulator
[title] Simulation of a vertical coupled quantum well modulator.
[structure] InGaAs/InAlAs CQW modulator.
[comment] Detailed analysis and comparison with experiments
\apsys_examples \EAM\franz_keldysh
[title] Franz-Keldysh in Bulk DH Device.
[material] Bulk InGaAsP at 1.3 micron bandgap.
[structure] 1D p-n junction EAM
\apsys_examples \EAM Mach-Zehnder-2D
[title] 2D analysis of InP based MQW Mach-Zehnder modulator
[structure] MQW ridge waveguide
[keywords] Quantum confined Stark effect (QCSE), Pockels' effect, index change
------------------------
\apsys_examples \EAM \QCSE
[title] Electro-Absorption modulator simulation.
[structure] SQW EAM of AlGaAs.
[comment] Use of "self_consistent" needed to update potential profile.
\apsys_examples \(\backslash E A M \backslash Q W\) _exciton
[title] Exciton model for Electro-Absorption Modulator spectrum
[structure] SQW EAM of AlGaAs.
[comment] Use of "self_consistent" and "exciton".
\apsys_examples \(\backslash E S D\) impact
[title] Electrostatic discharge (ESD) simulation
[structure] A simple silicon diode
[comment] Basic ESD simulation procedures using APSYS.
\apsys_examples\ESD\self_heating
[title] Electrostatic discharge (ESD) thermal simulation [structure] A simple silicon diode [comment] Basic ESD simulation procedures using self-heating.
```

\apsys_examples\FDTD\2d_lense
[title] FDTD simulation of 2D lense structure
[device] 2D lense shape with light incidence from top
[comment] Illustrates focusing effect

```
\apsys_examples\FDTD\2d_slab
[title] FDTD material absorption in a simple 2D slab
[device] Simple silicon slab with light incidence from top
[comment] Illustrates basic parameter setting for FDTD modeling
\apsys_examples \FDTD\3D_lense_PD3x3
[title] FDTD material absorption in a simple 2D slab
[device] Simple silicon slab with light incidence from top
[comment] Illustrates basic parameter setting for FDTD modeling
------------------------
\apsys_examples \(\backslash\) FDTD \(\backslash 3 D\) _lense_PD3x3
[title] 3D micro lense simulation by FDTD
[structure] 3D lense constructure by multiple segments
[comment] use of MEEP package
------------------------
\apsys_examples \(\backslash F D T D \backslash 3 D \_p y r a m i d \_c e l l\)
[title] 3D textured thinfilm cell simulation using FDTD
[structure] muc-Si cell with pyramid texture
[comment] Use of mesh plane bending to obtain 3D texture
\apsys_examples\FDTD\box3d_FDTD
[title] FDTD interface to APSYS
[structure] Simple 3D box of silicon with an Al contact pad
[comment] Illustrates use of FDTD interface through a simple 3D box
\apsys_examples\FDTD\inside_src
[title] FDTD with inside light source
[structure] silicon device
[remark] place light source inside of device
\apsys_examples \(\backslash F D T D \backslash L e n s e \_P D \_F D T D ~\)
[title] Lensed photodetector simulation using FDTD
[structure] Silicon PD with lense with SiO2 AR coating
[comment] Start from .layer and use GeoEditor to construct lense
```

\apsys_examples \backslash FDTD\thick_glass
[title] FDTD simulation with light source through thick glass
[structure] p-i-n silicon solar cell with 3 mm glass layer.
[comment] Demo of FDTD simulation of solar cell with thick glass cover.
\apsys_examples \HBT\hbt_ingaas
[title] Simulations of compound semiconductor HBT.
[structure] InGaAs/InP.
[comment] Basic procedures of HBT simulation.

```
\apsys_examples \(\backslash H B T \backslash h b t 0 \_t u n n e l\)
[title] InGaAs/InP HBT models.
[structure] HBT based in InGaAs/InP material.
[comment] Effect of tunneling in HBT simulation.
\apsys_examples \HBT\sige_hbt
[title] SiGe HBT simulation.
[structure] SiGe HBT.
[comment] Set up of DC and AC simulation for SiGe HBT.
\apsys_examples \(\backslash H B T \backslash s i g e \_h b t 2\)
[title] Analysis of SiGe HBT Performance
[structure] Selective-epitaxial SiGe
[comment] Study of bandgap narrowing effects in SiGe HBT.
\apsys_examples \(\backslash H E M T\) _and_FET \(\backslash \mathrm{GaAs}\) _HEMT \(\backslash\) hemt3d
[title] GaN/AlGaN HEMT 3D structure with tapered barrier layer
[structure] GaN/AlGaN HEMT with deep level traps.
[comment] Use of y_taper_line to set up taper in 3D HEMT application
\apsys_examples \HEMT_and_FET\GaAs_HEMT\impact_ionization
[title] AlGaAs HEMT simulation with selfconsistent method.
[structure] GaAs/AlGaAs HEMT with 2D gas system.
[comment] Use of "complex MQW" to define the 2D gas.
\apsys_examples \HEMT_and_FET\GaAs_HEMT\MM_HEMT
[title] Metamorphic InAlAs/InGaAs/GaAs HEMT.
[structure] Metamorphic InAlAs/InGaAs/GaAs HEMT with delta doping.
[comment] Heavily doped layer as the so-called delta-doping layer.
\apsys_examples \HEMT_and_FET\GaN_HEMT\AlGaNGaN_HEMT_Brkdwn
[title] High breakdown voltage AlGaN/GaN HEMT.
[structure] AlGaN/GaN HEMT with magnesium doping layer under 2-DEG channel. [comment] Including the following features;
\apsys_examples \(\backslash H E M T\) _and_FET \(\backslash G a N \_H E M T \backslash A 1 G a N-h e m t ~\)
[title] AlGaN HEMT simulation using piezo surface charge and substrate trap. [structure] GaN/AlGaN HEMT with 2D gas system.
[comment] Piezo surface charge and substrate trap are varied to fit experiment.
\(\qquad\)
\apsys_examples \HEMT_and_FET\GaN_HEMT\HEMT_gate_leakage
[title] Simulation of gate leakage in GaN HEMT
[structure] GaN/AlGaN/GaN/Schottky
[comment] To study condition for gate leakage
\apsys_examples \HEMT_and_FET\GaN_HEMT\HEMT_nano
[title] Nano scale AlGaN HEMT simulation
[structure] GaN/AlGaN QW HEMT
[comment] Demonstrate the set up of a D-mode AlGaN HEMT
------------------------
\apsys_examples \(\backslash H E M T\) _and_FET\GaN_HEMT\HEMT_nano_emode
[title] Enhancement mode nano scale AlGaN HEMT simulation
[structure] GaN/AlGaN QW HEMT
[comment] Demonstrate the use of local adjustment of polarization charges
----------------------------
\apsys_examples \HEMT_and_FET\GaN_HEMT\HEMT_selfcs
[title] AlGaAs HEMT simulation with selfconsistent method.
[structure] GaAs/AlGaAs HEMT with 2D gas system.
[comment] Use of "complex MQW" to define the 2D gas.
\apsys_examples \(\backslash H E M T\) _and_FET\GaN_HEMT\hemt_suprem_quantum
[title] Process and device simulation of GaN-HEMT with quantum effects
[structure] GaN/AlGaN HEMT with CSuprem simulation
[purpose] To provide a template for CSuprem and APSYS simulation of HEMT
\apsys_examples \HEMT_and_FET\GaN_HEMT\hot_traps \no_traps
[title] GaN/AlGaN HEMT hot-carrier effects
[structure] GaN/AlGaN HEMT with \(p(-)\) substate
[comment] Purpose is to compare with similar cases with deep level traps.
\apsys_examples \(\backslash H E M T\) _and_FET \(\backslash G a N \_H E M T \backslash h o t \_t r a p s \backslash t r a p s ~\)
[title] GaN/AlGaN HEMT hot-carrier trapping effects
[structure] GaN/AlGaN HEMT with deep level traps.
[comment] Deep level traps in substrate and SiN passivated surface
\apsys_examples \(\backslash H E M T\) _and_FET\other_FET\broken_gap_FET
[title] GaSb/InGaAs broken bandgap FET
[structure] GaSb/InGaN TJ at source
[comment] Use of equivalent mobility to model broken gap TJ
-------------------------
\apsys_examples \(\backslash H E M T\) and_FET\other_FET\GTFET
[title] Simulation of a Green Tunnel Field Effect
Transistor (GTFET) with large turn-of swing
[model] Tunnel junction with PAT
\apsys_examples \HEMT_and_FET\other_FET\PAT_in_TFET
[title] Tunnelling Junction FET simulation
[structure] vertical silicon FET
[remark] Demonstration of phonon-assisted and trap-assisted tunnelling
------------------------
\apsys_examples \(\backslash H E M T\) and_FET\other_FET\Sb_FET
[title] Sb based HEMT simulation
[structure] AlSb/InAs/AlSb/AlGaSb layers
[comment] demonstration of setting up a Sb based HEMT
```

\apsys_examples \LED_GaN_MQW\2d\AlGaN_block

```
[title] Compare AlGaN blocking layer design with and without supperlattice [structure] GaN based MQW system with AlGaN SL blocking layer
[comment] Use of Piezo charge and quantum tunneling in blocking layer
\apsys_examples \LED_GaN_MQW\2d\AlGaN_block\no_sl
[title] AlGaN blocking layer design (I): no superlattice
[structure] GaN based MQW system with AlGaN blocking layer
[comment] Use of Piezo charge and quantum tunneling in blocking layer
--------------------------
\apsys_examples \LED_GaN_MQW\2d\AlGaN_block\with_sl
[title] AlGaN blocking layer design (II): with superlattice
[structure] GaN based MQW system with AlGaN SL blocking layer
[comment] Use of Piezo charge and quantum tunneling in blocking layer
-------------------------
\apsys_examples \LED_GaN_MQW\2d\complex_well
[title] Use of complex macros to engineer QW of LED
[structure] GaN/AlGaN based MQW system.
[comment] We compare different ways to define a non-symmetric QW
------------------------
\apsys_examples \LED_GaN_MQW\2d\deep_wells\non_seq_trap
[title] InGaN MQW LED with deep wells.
[structure] GaN based MQW system with AlGaN blocking layer
[comment] IQE roll-off even for deep wells and high EBL
\apsys_examples \LED_GaN_MQW\2d\deep_wells\non_sequential [title] InGaN MQW LED with deep wells.
[structure] GaN based MQW system with AlGaN blocking layer
[comment] IQE roll-off even for deep wells and high EBL
```

\apsys_examples\LED_GaN_MQW\2d\deep_wells\q_trap
[title] InGaN MQW LED with deep wells.
[structure] GaN based MQW system with AlGaN blocking layer
[comment] IQE roll-off even for deep wells and high EBL
\apsys_examples\LED_GaN_MQW\2d\dome
[title] Epoxy domed LED simulation
[structure] GaN LED with epoxy dome.
[comment] Demonstration of setting up ray tracing with dome-packaging.

```
\apsys_examples \(\backslash L E D \_G a N \_M Q W \backslash 2 d \backslash I n G a N\)
[title] Piezo and thermal effects in LED.
[structure] GaN based MQW system.
[comment] L-I curves would role off due to thermal effect
\apsys_examples\LED_GaN_MQW\2d\triangle_well
[title] Triangle quantum well in LED modeled as graded complex layers.
[material] InGaN/GaN with graded InGaN
[comment] To show how to construct a triangle well using cx-InGaN
------------------------
\apsys_examples \LED_GaN_MQW\2d\tunnel_junction
[title] use tunnel junction as p-contact in LED.
[structure] GaN based MQW system.
[comment] demonstrate how to use TJ in LED
\apsys_examples \(\backslash L E D \_G a N \_M Q W \backslash 2 d \backslash t u n n e l \_j u n c t i o n \backslash w i t h \_T J\)
[title] use tunnel junction as p-contact in LED.
[structure] GaN based MQW system.
[comment] demonstrate how to use TJ in LED
\apsys_examples\LED_GaN_MQW\2d\tunnel_junction\without_TJ
[title] use tunnel junction as p-contact in LED.
[structure] GaN based MQW system.
[comment] This project has turned off TJ model to use as a reference
\apsys_examples \LED_GaN_MQW\3d_fancy\circle
[title] 3D simulation of LED with circular contacts
[structure] geometry defined by circulr masks
[purpose] templates for simulating devices with complicated geometry
```

\apsys_examples\LED_GaN_MQW\3d_fancy\interdigi
[title] Simulation of an LED with interdigital electrodes
[structure] LED with interdigital electrodes
[comment] Demonstrate how to set up complicated eletrodes using .layer
\apsys_examples\LED_GaN_MQW\3d_fancy\spiral
[title] 3D simulation of LED with spiral-shaped contacts
[structure] geometry defined by mask data
[purpose] templates for simulating devices with complicated geometry

```
\apsys_examples\LED_GaN_MQW\3d_fancy\star
[title] 3D simulation of LED with star shaped contacts
[structure] geometry defined by mask data
[purpose] templates for simulating devices with complicated geometry
------------------------
\apsys_examples \LED_GaN_MQW\3d_wellxz\LED_maskeditor
[title] LED IQE simulation 2010
[stucture] MQW InGaN/GaN LED with EBL
[remark] IQE sensitive to band offset
------------------------
\apsys_examples \LED_GaN_MQW\3d_wellxz\LED_maskeditor
[title] LED simulation set up using MaskEditor/CSuprem
[stucture] MQW InGaN/GaN LED with EBL
[remark] Use of Csuprem / MaskEditor for mesh
\apsys_examples \LED_GaN_MQW\3d_wellxz\side_contact3d
[title] 3D AlGaN/AlGaN MQW LED simulation with ray-tracing
[structure] AlGaN/AlGaN MQW emitting at 0.34 micron.
[comment] Use of self-consistency model in multiple segment 3D structure
\apsys_examples \LED_GaN_MQW barrier_emit
[title] LED barrier emission
[structure] InGaN/GaN MQW.
[comment] Study of barrier emission spectrum
\apsys_examples \LED_GaN_MQW\IQE_droop
[title] LED IQE simulation 2010
[stucture] MQW InGaN/GaN LED with EBL
[remark] IQE sensitive to band offset
```

\apsys_examples\LED_GaN_MQW\LED_external_stress \reference
[title] LED IQE simulation 2010

```
[stucture] MQW InGaN/GaN LED with EBL
[remark] IQE sensitive to band offset
\apsys_examples \(\backslash L E D_{-} G a N_{-} M Q W \backslash L E D_{-} e x t e r n a l_{-} s t r e s s \backslash w i t h \_s t r e s s\)
[title] LED IQE simulation 2010
[stucture] MQW InGaN/GaN LED with EBL
[remark] IQE sensitive to band offset
\apsys_examples\LED_GaN_MQW\mplane_LED
[title] InGaN/GaN QW mplane LED simulation using full k.p theory
[material] InGaN/GaN
[device] InGaN/GaN LD
```

\apsys_examples\LED_GaN_MQW\selfconsistent_onetime
[title] New method of selfconsistent simulation
[stucture] MQW InGaN/GaN LED with EBL
[remark] Three stages of simulation to achieve selfconsistency

\apsys_examples\LED_GaN_MQW\split_local_trapping
[title] Introducing split QW state local carrier trapping model

```

This directory contains examples to demo. the new split-QW state local
```

\apsys_examples\LED_GaN_MQW\split_local_trapping\AlGaN_local
[title] Split state model in LED with AlGaN blocking layer
[structure] GaN based MQW system with AlGaN blocking layer
[comment] Use of split state model

```
\apsys_examples\LED_GaN_MQW\split_local_trapping \AlGaN_nonlocal
[title] Split state model in LED with AlGaN blocking layer
[structure] GaN based MQW system with AlGaN blocking layer
[comment] Use of split state model
\apsys_examples\LED_GaN_MQW\split_local_trapping\GaAs_local
[title] Demonstrate of local split state trapping model.
[structure] Simple MQW GaAs/AlGaAs LED
[comment] Use of large tau causes IQE droop, even in GaAs LED.
\apsys_examples\LED_GaN_QDOT\QD_4sizes
[title] InGaN based LED with quantum dots.
```

[structure] MQW-QDOT InGaN/AlGaN LED.
[comment] Procedures of simulation
\apsys_examples\LED_GaN_QDOT\QD_life
[title] Non-radiative lifetime effect in InGaN LED with quantum dots.
[structure] MQW-QD InGaN/AlGaN LED.
[comment] Study of carrier lifetime within QD effect.

```
\apsys_examples \LED_general\BCLED\OneStage
[title] OneStage bipolar cascade LED LED.
[material] InGaAs/GaAs MQW
[structure] tunnel junction is used.
\apsys_examples \(\backslash L E D\) _general \(\backslash\) BCLED \(\backslash\) PIN
[title] PIN LED.
[material] InGaAs/GaAs MQW
[structure] Simple PIN structure.
\apsys_examples \LED_general\dome2d_rt3d
[title] 3D Ray Tracing structure w/dome
[structure] Simple InGaAlP/GaAs LED with external
dome structure to enhance extraction efficiency
------------------------
\apsys_examples \LED_general\led_absorption_each_well
[title] Extraction of absorption spectrum for each well in MQW LED
[stucture] MQW InGaN/GaN LED with EBL
[remark] Use of output_more_spectrum and plot_more_spectrum
\apsys_examples \LED_general\pumped_led
[title] GaN based LED with optical pumping.
[structure] MQW GaN LED.
[comment] Demo of MQW LED simulation with incident light.
\apsys_examples \LED_general\RT_TE_TM
[title] Simulation TE/TM raytracing in a LED
[structure] InGaN LED
[comment] shows how to plot both TE and TM from LED
\apsys_examples\LED_general\Textured_LED
[title] Simulation of a LED with textured surface.
[structure] MQW LED with star-shaped contact.
[comment] A simulation by cooperation of Csuprem,Apsys,FDTD and RT3D.
\apsys_examples\LED_general\tunnel_spectrum\no_sl
[title] AlGaN blocking layer design (I): no superlattice
[structure] GaN based MQW system with AlGaN blocking layer
[comment] Use of Piezo charge and quantum tunneling in blocking layer
------------------------
\apsys_examples\LED_general\tunnel_spectrum\with_sl
[title] AlGaN blocking layer design (II): with superlattice
[structure] GaN based MQW system with AlGaN SL blocking layer
[comment] Use of Piezo charge and quantum tunneling in blocking layer
\(\qquad\)
\apsys_examples\mixed_mode\MOSFET
[title] Mixmode simulation of external circuit including a MOSFET
[structure] Simple meshed silicon resistor connected to a test.cir file.
[comment] CuteSpice command drives the circuit simulator capatible with SPICE
-------------------------
\apsys_examples\NAND_flash_memory
[title] 2D simulation of multi-cell NAND flash memory
[structure] 50nmx50nm multi-cell flash memory line
[remark] real device simplified to two select gates and 4 pass gates
\apsys_examples \nanowire\nanowire_bulk
[title] A simple cylindrical bulk nanowire of InGaN/GaN
[material] wurtzite bulk active layer of InGaN used
[comment] For more complicated 3D nanowire structure SemiCrafter is recommended
\apsys_examples\nanowire\nanowire_mqw
[title] Modeling nanowire with multiple crystal orientation.
[structure] InGaN/GaN/ZnO with ZnO as growth template
[remark] Use of new type of 3D taper: symmetric polygon
```

```
\apsys_examples\nanowire\nanowire_mqw_ito
[title] Modeling nanowire with multiple crystal orientation.
[structure] InGaN/GaN/ZnO with ZnO as growth template
[remark] Use of new type of 3D taper: symmetric polygon
\(\qquad\)
\apsys_examples \(\backslash n a n o w i r e \backslash n a n o w i r e \_m u l t i p l a n e ~\)
[title] Modeling nanowire with multiple crystal orientation.
[structure] InGaN/GaN/ZnO with ZnO as growth template
[remark] Use of new type of 3D taper: symmetric polygon
\(\qquad\)
\apsys_examples\NEGF\FINFET_3D_SUPREM_NEGF
[title] 3D process and NEGF device simulation of FINFET [device] FINFET
[structure] Si on SiO2, with nitride spacer
```

```
\apsys_examples \(\backslash N E G F \backslash N E G F \_n m o s\)
[title] NEGF quantum ballistic transport model of NMOS
[structure] Nano scale MOSFET
[purpose] To demonstrate the set up of NEGF method with drift-diffusion solver
\apsys_examples \nonplanar_layer
[title] Setting up non-planar layer structure in simulation
[structure] GaAs/AlGaAs quantum well device
[comment] Use of modify_layer_height in .layer demonstrated
\apsys_examples \OLED\AMOLED_yang
[title] OLED in AMOLED application
[structure] m-MTDATA/alpha-NPD/Alq3/LiF/Al/Ag
[comment] Comparison with published experimental data
-------------------------
\apsys_examples \OLED\bilayer
[title] Bilayer OLED simulation
[material] NPB/Alq3 OLED
[demo] Use of metal on OLED to form microcavity; multiple active layers
\apsys_examples \OLED\DCM_micro
[title] Microcavity analysis of an OLED with exciton diffusion model
[structure] Alq3/DCM:Alq3/TPD/ITO
[comment] To perform both electrical and optical analysis of an OLED stack
--------------------------
\apsys_examples \(\backslash 0 L E D \backslash E L \_a b s \_s p e c t r a\)
[title] EL/Absorption Spectrum Model for Organic Light-Emitting Diode
[structure] Single active layers of Alq3 and Alq3:DCM
[comments] Use of Frenkel exciton model to generate EL/absorption spectrum
------------------------
\apsys_examples \OLED\EL_fit
[title] Fitting EL Spectrum of Organic Materials
[structure] Active layers of organic semiconductors
[comment] Explain the procedures involved in fitting to experimental EL data
\apsys_examples \OLED\PIN_OLED
[title] Low-voltage electrolumiscent device
[structure] PIN Organic LED w/Alq3 active region
[comment] Reasonable agreement with experimental I-V and L-V curves
\apsys_examples \OLED\pumped_oled
[title] Opticalled pumped OLED
[structure] TPD/CBP/F8BT/SiO2
[comment] Optical pumping to generate exciton only, not free carriers.
```

\apsys_examples\OLED\RC-OLED
[title] OLED with resonant cavity effect
[structure] CuPc/TPD/Alq3/LiF
[comment] For the study of micro cavity effect in OLED
\apsys_examples\OLED\tandem
[title] Tandem OLED with resonant cavity effect
[structure] Stacks of NPB, Alq3, DCJTB:Alq3, n-doped Alq3 and p-doped NPB
[comment] Use of tunnel junction to connect series of OLED

```
\apsys_examples \OLED\tandem2
[title] Tandem OLED with multple active layers.
[structure] Stacks of NPB, Alq3, C545T:Alq3, n-doped Alq3 and p-doped NPB
[comment] Use of tunnel junction to connect series of OLED
\apsys_examples\OLED\trilayer
[title] Trilayer OLED simulation
[material] NPB/Alq3/Alq3:DCM
[demo] Multiple active layers in OLED
------------------------
\apsys_examples\OLED\triplet_diff
[title] Simulation of a WOLED with exciton diffusion model
[structure] ITO/NPD/BCzVBi:CBP/CBP/PQIr:CBP/Ir(ppy)3:CBP/CBP/BCzVbi:CBP/BPhen
[comment] To demonstrate white OLED simulation with triplet diffusion
\apsys_examples\OLED\triplet_diff \no_biex
[title] Simulation of a WOLED with exciton diffusion model
[structure] ITO/NPD/BCzVBi:CBP/CBP/PQIr:CBP/Ir(ppy)3:CBP/CBP/BCzVbi:CBP/BPhen
[comment] This example turns off biexciton quenching.
\apsys_examples \OLED \(\backslash\) triplet_diff \(\backslash\) no_el_transfer
[title] Simulation of a WOLED with exciton diffusion model
[structure] ITO/NPD/BCzVBi:CBP/CBP/PQIr:CBP/Ir(ppy)3:CBP/CBP/BCzVbi:CBP/BPhen
[comment] This example turns off dopant-dopant energy transfer.
\apsys_examples\OLED\triplet_diff \(\backslash\) ref
[title] Simulation of a WOLED with exciton diffusion model
[structure] ITO/NPD/BCzVBi:CBP/CBP/PQIr:CBP/Ir(ppy)3:CBP/CBP/BCzVbi:CBP/BPhen
[comment] To demonstrate white OLED simulation with triplet diffusion
```

\apsys_examples \other $\backslash 3 D_{\text {_stacking } \backslash x y p l a n e _a t t a c h m e n t ~}^{\text {ata }}$
[title] Attachment of multiple 3D object in mesh generation
[structure] Multiple 3D domain (M3DD)
[comment] Use 3d_attachment command to construct complicated 3D mesh
\apsys_examples\other\amplifier
[title] Guided wave amplifier on y-z plane.
[structure] MQW InGaAsP/InP structure at 1.55 um .
[comment] Transient simulation of traveling wave amplifier.
\apsys_examples \other\angled_interface
[title] Modeling angled interface
[device] InGaN based MQW
[comment] Angled cosine factor may be used to modify fixed charge.
\apsys_examples \other\bulk_exciton
[title] Bulk GaAs absorption spectrum simulation using exciton model
[material] bulk GaAs QW at 0.83 um.
[comment] Manybody/exciton model as compared with experiment

\apsys_examples \other\Esaki_junction
[title] Esaki tunnel junction
[structure] Ge tunnel junction
[comment] Based on 1957 paper in PhysRev.
\apsys_examples \other\HB_Varactor
[title] Simulation of a heterostructure barrier varactor.
[structure] AlGaAs/GaAs symmetrical heterostructure barrier varactor
[comment] Use of self-consistent, tunneling, complex-MQW models.
\apsys_examples\other\import_gen_rate
[title] Simulation of Photodetector with Imported Optical Gen. Rate
[structure] Ridge waveguide SQW PD.
[comment] Direct use of carrier generation rate from 3rd party software
\apsys_examples \other $\backslash I n N _$non_parabolic_surface
[title] Simulation of a InN solar cell
[structure] Mg-doped InN layer with an electrolyte layer
[comment] Space-charge output
\apsys_examples\other\jdos_tail
[title] Adding tail states in joint density of states

```
[structure] 1D quantum well and bulk active layers.
[comment] Study of tail states, JDOS and shape of gain/PL spectrum.
------------------------
\apsys_examples\other\laser_heat
[title] Thermal transient simulation of laser lift-off process
[structure] Copper, GaN, amorphase GaN and sapphire
[comment] High power laser pulse is used to heat up GaN/sapphire interface
\(\qquad\)
\apsys_examples \other\lead_salt \bulk_leadsalt
[title] Bulk lead-salt active layer with non-parabolic band model
[structure] lead-salt PbSrSe
[comment] Use of generic-bulk macro for lead-salt
```

\apsys_examples\other\lead_salt\lead_salt_cx_mqw
[title] Lead-salt MQW quantum well gain/spontaneous emisson model
[structure] complex MQW lead-salt emitting at 5 um.
[comment] Use of generic-complex-mqw macro for lead-salt
\apsys_examples\other\lead_salt\lead_salt111
[title] Lead-salt MQW quantum well grown in 111 model
[structure] complex MQW lead-salt PbSrSe
[comment] Use of generic-complex-mqw macro for lead-salt
\apsys_examples\other\mesfet
[title] Simulation of GaAs MESFET.
[structure] GaAs MESFET.
[comment] Set up of a basic MESFET simulation.
\apsys_examples\other\miniband\basic_nin
[title] Use of mini-band transport model for superlattice in GaN-based lasers
[material] InGaN/AlGaN
[structure] 2D LD model
-_----------------------
\apsys_examples\other\QWIP\QWIP_ydir
[title] Simulation of GaAs/AlGaAs QWIP
[structure] GaAs/AlGaAs QWIP with 40 wells.
[comment] Basic simulation procedures using APSYS.
\apsys_examples\other\QWIP\QWIP_zdir_no_fdtd
[title] 3D Simulation of GaAs/AlGaAs QWIP with well on xy-plane
[structure] GaAs/AlGaAs QWIP with 40 wells with well on xy-plane.
[comment] Basic simulation procedures using APSYS.

```
```

\apsys_examples\other\radiation_heavy_ion
[title] Radiation model for heavy ion strikes
[structure] 1-um nMOSFET
[comment] command radiation_heavy_ion demonstrated
\apsys_examples\other\RTD\RTD_selfcons
[title] RTD simulation using tunneling model with self-consistent treatment.
[structure] 1D RTD with two barriers.
[comment] Simultanous use of self-consistent MQW and tunneling model.

```
\apsys_examples\other\schottky_tunnel
[title] Study of tunneling effects in a Schottky diode.
[structure] 1D Schottky diode.
[comments] Demo of tunneling effect in Schottky contact.
\apsys_examples \other\STL_import
[title] 3D mesh import using the STL format
[structure] p-i-n silicon solar cell.
[comment] A simple example of STL file import procedure
\apsys_examples \other\STL_import\STL_organizer_sample
[Title] How to use the STL_organizer program
[content] Program files and documents
[comment] A character user interface program
\apsys_examples \other\trap_emission
[title] Trap emission model
[structure] GaN and AlGaN bulk HEMT-like structure
[purpose] To demonstrate trap emission via optical pumping
\apsys_examples \other \(\backslash \mathrm{ZnO}\)
[title] \(\mathrm{ZnO} / \mathrm{MgZnO}\) material model
[structure] \(\mathrm{ZnO} / \mathrm{MgZnO} \mathrm{QW}\)
[comment] Setting up wurtzite macro for \(\mathrm{ZnO} / \mathrm{MgZnO} \mathrm{MQW}\)
--------------------------
\apsys_examples \PhCLED\InGaN
[title] PhCLED of InGaN/GaN
[structure] GaN based MQW system.
[comment] Air holes are used on top to enhanced extraction.
\apsys_examples\PhCLED\with_DBR
[title] Modeling InGaAs/AlGaAs PhCLED/RCLED
[structure] Cylindrical RCLED with DBR and air hole photonic crystal
[comment] PhC. air holes are used to enhance light extraction
```

```
\apsys_examples \(\backslash\) photo_sensitive \(\backslash\) APD_GB
[title] 2D simulation of InGaAsP/InP APD.
[structure] InGaAsP/InP APD.
[comment] Gain-bandwidth calculation using impulse transient simulation.
-------------------------
[title] 2D simulation of InGaAsP/InP APD.
[structure] InGaAsP/InP APD.
[comment] gain-bandwidth study
\apsys_examples \(\backslash\) photo_sensitive \(\backslash\) APD_GB \(\backslash\) apd2
[title] 2D simulation of InGaAsP/InP APD.
[structure] InGaAsP/InP APD.
[comment] gain-bandwidth study
------------------------
\apsys_examples \(\backslash\) photo_sensitive \(\backslash\) APD_GB \(\backslash a p d 3\)
[title] 2D simulation of InGaAsP/InP APD.
[structure] InGaAsP/InP APD.
[comment] gain-bandwidth study
\apsys_examples \(\backslash\) photo_sensitive\CIGS
[title] CIGS detector simulation
[structure] \(\mathrm{Cu}[\operatorname{In}(1-\mathrm{x}) \mathrm{Ga}(\mathrm{x})] \mathrm{Se} 2\) based detector.
[comment] Dark current simulation
------------------------
\apsys_examples\photo_sensitive\diffraction
[title] Single Slit Driffraction in Photo-sensitive Devices
[structure] MSM with 0.8 um inlet slit for light power.
[comment] Shows how to set up a single slit diffraction model.
------------------------
\apsys_examples\photo_sensitive\extern_optics
[title] 2D Simulation of Photodetector with External Light Profile
[structure] Ridge waveguide SQW PD.
[comment] Use of different forms of external optical field profile
\apsys_examples \(\backslash\) photo_sensitive \(\backslash g a a s \_a p d ~\)
[title] A simple 1D example of GaAs/AlGaAs APD
[structure] GaAs/AlGaAs.
[comment] Use of bandgap_reduction technique.
\apsys_examples \(\backslash\) photo_sensitive\GaN_PD\GaN_APD
[title] 1D simulation of separated-absorption-multipliation(SAM) GaN APD.
[structure] p-GaN/i-GaN(multiplication layer)/n-GaN/i-GaN(absorption layer)/n-GaN <--
------------------------
\apsys_examples\photo_sensitive\GaN_PD\GaN_PIN
[title] 1D simulation of p-i-n GaN APD.
[structure] p-GaN/i-GaN/n-GaN.
[comment] BV and transient simulation for GaN APD is demonstrated.
\apsys_examples\photo_sensitive\inp_apd
[title] 2D simulation of InGaAsP/InP APD.
[structure] InGaAsP/InP APD.
[comment] DC and AC simulation with bandgap_reduction technique.
\apsys_examples \(\backslash p h o t o \_s e n s i t i v e \backslash k w o n \_g a a s \_a p d ~\)
[title] A 1D example of GaAs/AlGaAs/GaAs APD for GBP study
[structure] GaAs/AlGaAs/GaAs.
[comment] Use of bandgap_reduction technique.
\apsys_examples\photo_sensitive\msm_ac
[title] MSM PD simulation - AC photo-response analysis.
[structure] MSM with 0.5 um epi GaAs/AlGaAs/SI-GaAs.
[comment] AC response analysis for external light input.
------------------------
\apsys_examples \photo_sensitive\msm155
[title] Modeling optical absorption in active regions of PD.
[structure] InGaAs/InAlAs/InP.
[comment] Declaration of active region to allow interband transition model.
\apsys_examples \photo_sensitive\PD_raytrace
[title] Photodetector Ray Tracing simulation of InGaAsP/InP APD.
[structure] InGaAsP/InP APD.
[comment] Use of ray tracing technique to generate photo-carriers.
\apsys_examples \photo_sensitive\PD3D_external
[title] 3D Simulation of Photodetector with External Light Profile
[structure] Tapered ridge waveguide SQW PD.
[comment] Use of different forms of external optical field profile
\apsys_examples\photo_sensitive\PIN_cyl
[title] Cylindrical PIN PD simulation.
[structure] InGaAs/InP PD
[comment] Demo of use of cylindrical coordinate system.
```

\apsys_examples\photo_sensitive\SAGCM_APD
[title] 1D simulation of InP/InGaAs SAGCM APD.
[structure] InP/InGaAs SAGCM APD APD.
\apsys_examples\photo_sensitive\silicon_apd\npip
[title] Basic impact ionization model for silicon.
[structure] Simple silicon pn-junctons.
[comment] Illustrate basic techniques of modeling break-down effects.

```
--------------------------
\apsys_examples \(\backslash\) photo_sensitive \(\backslash\) silicon_apd \(\backslash\) simple
[title] Basic impact ionization model for silicon.
[structure] Simple silicon pn-junctons.
[comment] Illustrate basic techniques of modeling break-down effects.
\apsys_examples\photo_sensitive\surface
[title] Fermi level pinning effect due to surface states.
[structure] MSM PD.
[comment] Surface effects reduces dark current of PD.
------------------------
\apsys_examples\photo_sensitive\UV_PD
[title] GaN Ultra-violet photo-detector using
[structure] Bulk InGaN/AlGaN for 0.28 micron meter wavelength.
[comment] Demo of short wavelength photo-detector.
```

\apsys_examples\photo_sensitive\waveguide_pd
[title] Waveguide photodetector simulation.
[structure] GRINCH-SQW-SCH waveguide PD.
[comment] Optical modes must be solved to compute carrier generation.
\apsys_examples\photo_sensitive\zener_impact
[title] Junction breakdown due to Zener effect and impact ionization.
[structure] Silicon pn-junction.
[comment] Comparison of Zener and impact ionization effects.

```
\apsys_examples\quantum_MOS\FINFET_qw3d
[title] Quantum effects in 3D-FINFET
[structure] FINFET with SiO2 as confining barriers.
[comment] Current injection in FINFET is 3D in nature.
\apsys_examples\quantum_MOS\FINFETs \(\backslash\) FINFET_bulk
[title] FINFET simulation using bulk model
[structure] FINFET with SiO2 as confining barriers.
[comment] For the purpose of comparison with the quantum finfet model.
\apsys_examples\quantum_MOS\FINFETs \(\backslash F I N F E T\) _qw
[title] Quantum effects in FINFET
[structure] FINFET with SiO2 as confining barriers.
[comment] Quantum effects in FINFET are significant.
-------------------------
\apsys_examples \quantum_MOS\FINFETs\simple
[title] Quantum effects in a simple double gate MOSFET
[structure] FINFET with SiO2 as confining barriers.
[comment] Quantum effects in single segment of FINFET is considered.
\apsys_examples \quantum_MOS\mobility_transverse
[title] Comparison of transverse field depedent mobility models.
[structure] Silicon N-MOS ( 80 nm )
[comment] Comparison of models named Intel1, Intel2 and Lombardi
```

```
\apsys_examples \quantum_MOS\mobility_transverse\intel1
[title] Comparison of transverse field depedent mobility models. [structure] Silicon N-MOS (80 nm)
[comment] Comparison of models named Intel1, Intel2 and Lombardi
```

\apsys_examples\quantum_MOS\mobility_transverse\intel2

```
[title] Comparison of transverse field depedent mobility models.
[structure] Silicon N-MOS ( 80 nm )
[comment] Comparison of models named Intel1, Intel2 and Lombardi
\apsys_examples \quantum_MOS\mobility_transverse\lombardi
[title] Comparison of transverse field depedent mobility models.
[structure] Silicon N-MOS ( 80 nm )
[comment] Comparison of models named Intel1, Intel2 and Lombardi
\apsys_examples \quantum_MOS\mobility_transverse \(\backslash\) reference
[title] Comparison of transverse field depedent mobility models. [structure] Silicon N-MOS (80 nm)
[comment] Comparison of models named Intel1, Intel2 and Lombardi
\apsys_examples \quantum_MOS\nmos_highk
[title] Simulation of a high-k MOSFET
[structure] Silicon MOSFET
[comment] Shows how to define new materials using custom
\apsys_examples\quantum_MOS\npoly_experiment
[title] Quantum MOS gate current study
[structure] Silicon N-MOS with \(n+\) polysilicon gate.
[comment] Use of direct tunneling model with quantum confinement in channel.
------------------------
\apsys_examples\quantum_MOS\poly
[title] Quantum effects in MOS with thin gate oxide and poly-gate
[structure] Silicon N-MOS with polysilicon gates
[comment] Quantum effects in MOS are significant.
\apsys_examples\quantum_MOS\qw_mos
[title] Quantum effects in MOS with thin gate oxide
[structure] Silicon N-MOS and P-MOS
[comment] Quantum effects in MOS are significant.
\apsys_examples\quantum_MOS\SGT
[title] Simulation of a surrounding gate transistor.
[structure] cylndrical MOSFET.
[comment] Quantum effects are included using APSYS.
\apsys_examples \quantum_MOS\SGT3d
[title] Full 3D Simulation of a surrounding gate transistor.
[structure] cylndrical MOSFET without rotation symmetry.
[comment] Rotation symmetry broken by gate oxide being non-uniform.
\apsys_examples \quantum_MOS \SONOS \300
[title] Quantum mechanical simulation for a SONOS-EEPROM
[structure] Semiconductor-oxide-nitride-oxide-semiconductor MOSFET
[comment] trapping/detrapping, quantum confinement/tunneling.
\apsys_examples\quantum_MOS \SONOS\450
[title] Quantum mechanical simulation for a SONOS-EEPROM
[structure] Semiconductor-oxide-nitride-oxide-semiconductor MOSFET
[comment] trapping/detrapping, quantum confinement/tunneling.
\apsys_examples\quantum_MOS\uniaxial_SSi
[title] Simulation of uniaxially stress MOSFET
[structure] n-MOSFET and p-MOSFET on 100 wafer with 100 or 110 channel [comment] Both quantum well property and full MOSFET simulation are studied.
\(\qquad\)
\apsys_examples\quantum_MOS\uniaxial_SSi\n_qwell_100
[title] Study of mass induced mobility enhancement under uniaxial strain.
[structure] Strained Si with uniaxial tensile strain.
[comment] A series of preview files are used to conc. average valley mobility
```

```
\apsys_examples \quantum_MOS\uniaxial_SSi\n_qwell_110
[title] Study of mass induced mobility enhancement under uniaxial strain.
[structure] Strained Si with uniaxial tensile strain [110].
[comment] A series of preview files are used to conc. average valley mobility
```

\apsys_examples\quantum_MOS\uniaxial_SSi\nmos_nostrain
[title] Unstrained n-MOSFET as referece for strained silicon modeling
[structure] Silicon N-MOS
[comment] This structure has zero stress and exports data
\apsys_examples\quantum_MOS\uniaxial_SSi\nmos_strain100
[title] Simulation of strained n-MOSFET [100]
[structure] Silicon N-MOS with poly gate
[comment] This structure has 1 GPa tensile stress

```
------------------------
\apsys_examples \(\backslash\) RCLED\70well_noDBR
[title] Thermal simulation 70 pair MQW RCLED
[structure] RCLED of InGaAlP emitting at 600 nm
[comment] Use of current/density dependent lifetime
\apsys_examples \(\backslash R C L E D \backslash A l G a A s\)
[title] Model of resonant cavity LED (RCLED) with multilayer optic module
[structure] Cylindrical RCLED with implanted current confinement regions.
[comment] Note the input of DBR stacks in .sol file
\apsys_examples \(\backslash R C L E D \backslash D B R\) _detuned
[title] Effect of DBR detuning in RCLED
[structure] Cylindrical RCLED with implanted current confinement regions.
[comment] To show that if DBR is detuned, resonance will ocurr at an angle
\apsys_examples \RCLED\InGaAs
[title] Modeling InGaAs/AlGaAs RCLED
[structure] Cylindrical RCLED with DBR and Ag HR coating
[comment] Optical phase of Ag mirror affects resonant wavelength
\apsys_examples \RCLED\long_cavity
[title] InGaN based RCLED at 0.52 um.
[structure] RCLED with long cavity.
[comment] We find many resonant peaks in both wavelenghths and angles
\apsys_examples \RCLED\thermal_70well
[title] Thermal simulation 70 pair MQW RCLED
[structure] RCLED of InGaAlP emitting at 600 nm
[comment] Use of current/density dependent lifetime
\apsys_examples \(\backslash\) RCLED \(\backslash\) thermal_rcled
[title] Thermal simulation of an RCLED
[structure] RCLED with multiple quantum wells.
[comment] Demonstration of rolling off RCLED power at higher temperature
\apsys_examples\sige_proc_device
[title] Process and device simulation of SiGe MOSFET
[strucutre] MOSFET with SiGe pocket
[purpose] To provide a template for strain treatment of SiGe MOSFET
------------------------
\apsys_examples\solar_cell\compound \3D_beam
[title] 3D models of triple junction solar cell powered by focused beam [structure] 3D triple junction solar cell with tunnel junction.
[comment] Use of loop structure to set up 3D planes.
------------------------
\apsys_examples\solar_cell\compound \3D_beam_thermal
[title] 3D models of triple junction solar cell powered by focused beam [structure] 3D triple junction solar cell with tunnel junction.
[comment] Use of loop structure to set up 3D planes.
------------------------
\apsys_examples\solar_cell\compound \(\backslash 3 D_{\text {_ beam_zdir }}\)
[title] 3D focused beam model with beam from z-direction
[structure] 3D triple junction solar cell with tunnel junction.
[comment] Set up cell with junction parallel to \(x\)-y plane.
-------------------
\apsys_examples \solar_cell\compound \CdSe_CZT_CIGS_cell
[title] CsSe-CIGS cell simulation
[material] CdSe - CuInGaSe layers
[remark] provide serveral templates for CIGS based cells.
\apsys_examples\solar_cell\compound \diffraction
[title] triple junction solar cell simulation with diffraction model.
[structure] 2D triple junction solar cell using diffraction model.
[comment] Diffraction model takes into account different wavelengths.
```

\apsys_examples\solar_cell\compound\InGaN_cell
[title] InGaN solar cell
[material] InGaN
[purpose] To provide a working template of InGaN cell

```
```

\apsys_examples\solar_cell\compound\InGaN_Si
[title] InGaN/Si solar cell
[structure] InGaN/Si heterojunction solar cell
[comment] Use of tunneling junction in a special structure
\apsys_examples\solar_cell\compound\inverted
[title] GaInP/GaAs/GaInAs solar cell simulation.
[structure] 2D triple junction solar cell with tunnel junction.
[comment] High efficiency (about 34%) solar cell

```
\apsys_examples\solar_cell\compound \invtTJSCEQE
[title] GaInP/GaAs/GaInAs solar cell simulation for EQE computation.
[structure] 2D triple junction solar cell with tunnel junction.
[comment] Using series Project to compute EQE
\apsys_examples \solar_cell\compound\multi-light-source
[title] triple junction solar cell simulation, multiple light source.
[structure] 2D triple junction solar cell with tunnel junction.
[comment] Demo of multiple light source
-------------------------
\apsys_examples\solar_cell\compound\tj_thermal
[title] triple junction solar cell thermal simulation.
[structure] 2D triple junction solar cell with tunnel junction.
[comment] Setting up thermal boundary conditions.
\apsys_examples\solar_cell\compound \triple_junc
[title] triple junction solar cell simulation.
[structure] 2D triple junction solar cell with tunnel junction.
[comment] Use of equivalent mobility for tunnel junction.
\apsys_examples \solar_cell\Si_simple
[title] Silicon solar cell simulation.
[structure] 1D silicon p-n junction.
[comment] Use of AM15 solar spectrum to achieve accuracy.
\apsys_examples\solar_cell\silicon\EQE_wavelength
[title] Si solar cell for wavelength dependent simulation
    using internal wavelength scan.
\apsys_examples \solar_cell\silicon\import_doping
[title] Silicon solar cell simulation with imported doping profile
[structure] 1D silicon p-n junction.
[comment] Use of AM15 solar spectrum to achieve accuracy.
\apsys_examples\solar_cell\silicon\IQE_wavelength
[title] Computing IQE versus wavelength for solar cell
[structure] silicon \(\mathrm{P}(+) \mathrm{P}(-) \mathrm{N}\) structure
[comment] Using series to scan wavelength
------------------------
\apsys_examples\solar_cell\silicon\LFC_RCC_solar_cell [title] Modeling of RCC solar cell with laser fired contact [structure] Structure by CSuprem, \& combine CSuprem \& APSYS [comment] RUN_all.bat will run all the 4 steps.
\apsys_examples\solar_cell\silicon\LFC_RCC_solar_cell\step01 [title] Modeling of RCC solar cell with laser fired contact [structure] Structure by CSuprem, \& combine CSuprem \& APSYS [comment] RUN_all.bat will run all the 4 steps.
\apsys_examples\solar_cell\silicon\LFC_RCC_solar_cell\step02 [title] Modeling of RCC solar cell with laser fired contact [structure] Structure by CSuprem, \& combine CSuprem \& APSYS [comment] RUN_all.bat will run all the 4 steps.
\apsys_examples\solar_cell\silicon\LFC_RCC_solar_cell\step03 [title] Modeling of RCC solar cell with laser fired contact [structure] Structure by CSuprem, \& combine CSuprem \& APSYS [comment] RUN_all.bat will run all the 4 steps.
\apsys_examples\solar_cell\silicon\LFC_RCC_solar_cell\step04 [title] Modeling of RCC solar cell with laser fired contact [structure] Structure by CSuprem, \& combine CSuprem \& APSYS [comment] RUN_all.bat will run all the 4 steps.
\apsys_examples\solar_cell\silicon\metal_tunnel
[title] Silicon solar cell simulation with Schottky \& tunneling.
[structure] 1D silicon \(\mathrm{p}-\mathrm{n}\) junction.
[comment] Use of tunneling for Schotky effect.
\apsys_examples\solar_cell\silicon\PERT_2coatings
[title] Silicon PERT Cell.
[structure] Passivated emitter, rear totally diffused (PERT).
[comment] PERT Cell with contacts on both sides.
```

\apsys_examples\solar_cell\silicon\photocurrent_life\surf_vel1
[title] Silicon wafer photo-current lifetime calibration
[structure] 2D Si wafer, lightly n-doped
[comment] May be used to calibrate surface recombination velocity

\apsys_examples\solar_cell\silicon\photocurrent_life\surf_vel2
[title] Silicon wafer photo-current lifetime calibration
[structure] 2D Si wafer, lightly n-doped
[comment] May be used to calibrate surface recombination velocity
\apsys_examples\solar_cell\silicon\PIN
[title] Silicon solar cell simulation.
[structure] 1D silicon p-n junction.
[comment] Use of AM15 solar spectrum to achieve accuracy.

\apsys_examples\solar_cell\silicon\poly
[title] Simple PIN-like solar cell based on Si or poly Si.
[structure] 2D silicon PIN strcuture.
[comment] Use of AM15 solar spectrum.
\apsys_examples\solar_cell\silicon\RCC_2coatings
[title] Silicon Rear Contacted cell (RCC) simulation.
[structure] 2D Si RCC structure with double coating layers.
[comment] RCC with double coating layers.
\apsys_examples\solar_cell\silicon\RCC_2D_coating
[title] Silicon Rear Contacted cell (RCC) simulation.
[structure] 2D silicon RCC structure.
[comment] RCC.

```
\apsys_examples \solar_cell\silicon\RCC_flat2d_rt3d
[title] Ray-tracing (RT) technique for comparison.
[structure] RCC structure (x-direction size reduced).
[comment] For comparison with triangle textured case.
-------------------------
\apsys_examples \solar_cell\silicon\RCC_triangle2d_rt3d
[title] Ray-tracing (RT) technique for comparison.
[structure] RCC structure with triangle interface.
[comment] For comparison with flat case. This example uses
\apsys_examples\solar_cell\silicon\RCC_triangle3d_rt3d
[title] Ray-tracing (RT) technique for comparison.
[structure] RCC structure with triangle interface.
[comment] For comparison with flat case. This example uses
\apsys_examples\solar_cell\silicon\temperature_dependent [title] Si solar cell for temp dependent simulation with series Command.
```

\apsys_examples\solar_cell\silicon\wavelength_dependent
[title] Si solar cell for wavelength dependent simulation
with series Command.

```
\apsys_examples\solar_cell\solar_qd_qw \QD
[title] Simulation of quantum dot solar cell
[structure] InAs/GaAs dot in i region of pin structure
[purpose] To demo how effective miniband model is used in QD device
\apsys_examples\solar_cell\thinfilm\3d_tandem_texture
[title] 3D textured thinfilm tandem cell simulation
[structure] a-Si/muc-Si tandem cell with pyramid texture
[comment] Use of mesh plane bending to obtain 3D texture
\apsys_examples\solar_cell\thinfilm\alpha
[title] Simple PIN-like solar cell based on alpha-Si, or amorphous Si.
[structure] 2D silicon PIN strcuture.
[comment] Use of AM15 solar spectrum.
------------------------
\apsys_examples\solar_cell\thinfilm\Si_Tandem_cell
[title] Amorphous/micro-crystal silicon tandem cells
[structure] \(\mathrm{Ag} / \mathrm{ZnO} / \mathrm{muC}-\mathrm{Si}-\mathrm{PIN} / \mathrm{a}-\mathrm{Si} / \mathrm{ITO}\)
[comment] Use of tunneling junction to connect 2 cells back to back
------------------------
\apsys_examples\solar_cell\thinfilm\SiC_TJ_tandem
[title] Amorphous SiC and SiGe triple junction tandem cells
[structure] muC-Si/a-SiGe/a-SiC
[comment] Use of tunneling junction to connect 3 cells back to back
-------------------------
\apsys_examples\solar_cell\thinfilm\SiGe_TJ_tandem
[title] Amorphous SiGe triple junction tandem cells
[structure] a-SiGe/a-SiGe/a-Si
[comment] Use of tunneling junction to connect 3 cells back to back
-------------------------
\apsys_examples\solar_cell\thinfilm\STL_import_solar
[title] STL import example
[structure] p-i-n silicon solar cell.
[comment] A simple example of STL file import procedure
\apsys_examples\solar_cell\thinfilm\tandem_ito_semicon
[title] Amorphous/micro-crystal silicon tandem cells - ITO as semiconductor
[structure] \(\mathrm{Ag} / \mathrm{ZnO} / \mathrm{muC-Si-PIN} / \mathrm{a}-\mathrm{Si} / \mathrm{ITO}\)
[comment] Use of tunneling junction to connect 2 cells back to back
\apsys_examples\tunnel_junc_model\physical_tunnel_junc
[title] Tunneling junction based on non-local physical model
[structure] GaAs tunneling junction
[comment] TJ model in forward bias agrees with experiment
\apsys_examples\tunnel_junc_model\trap_ass_tunnel
[title] Trap assisted tunnelling model
[structure] GaAs p-n junction
[remark] Demo of TAT in TJ simulation
```

-

```
\apsys_examples\tunnel_junc_model\tunnel_junc_IV
[title] Tunneling junction biased on non-local physical model
[structure] GaAs/AlGaAs tunneling junction
[comment] Interband tunneling models are used in both forward and reverse.
------------------------
\apsys_examples\tunnel_junc_model\tunnel_junc_local
[title] Tunneling junction with heterojunction and MQW
[structure] Fused junction InGaAlAs/InP/AlGaAs, Also GaN junction
[comment] Demo. the use of tunneling junction to achieve injection.
\apsys_examples\tunnel_junc_model\zener_impact_local
[title] Simulation of a tunneling junction biased in both directions
[structure] GaAs/AlGaAs tunneling junction
[comment] Both impact ionzation and Zener interband tunneling models are used
\apsys_examples \typeII_PD
[title] Simulation of type II MQW photo detector
[device] Type II MQW of GaAsSB/InGaAsP grown on InP
[remark] Use of type II QW transport model

\section*{H. 2 LASTIP Examples}
\lastip_examples\active_grade\complex
[title] A layered laser diode simulation with graded complex layers.
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure.
[purpose] To demo how to grade a complex coupled MQW structure.
\lastip_examples\active_grade\grade_function
[title] Arbitrary composition grading in graded complex layers.
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure.
[purpose] To demo how to using a composition grading function in .mater
\lastip_examples\active_grade\single_well
[title] A layered laser diode simulation with graded active layer.
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure, with graded active layer.
[purpose] To provide an example on how to grade the active/barrier layers.
--------------------------
\lastip_examples \broad_areas\asymmetric
[title] Asymmetric broad area laser.
[material] InGaAs/GaAs at 0.98 micron.
[structure] An asymmetric broad area laser.
[comment] How to deal with multiple modes in broad area lasers.
\lastip_examples \broad_areas \broad_ingaalp
[title] Simulation of broad area InGaAlP laser.
[material] Strained MQW GaInP/AlGaInP (lambda=0.65-0.71 um)
[structure] Broad area laser.
[purpose] Set up of multiple mode in broad area laser model.
\lastip_examples \(\backslash\) bulk_InGaAsP
[title] 1D/2D bulk DH laser.
[material] Bulk InGaAsP at 1.3 micron.
[structure] 1D/2D bulk channel-substrate waveguide laser.
[comment] For demo of conventional bulk DH laser.
\lastip_examples \complex_MQW\combo
[title] Combination of complex and simple quantum wells.
[material] InGaAsP MQW emisison at 1.5 um .
[structure] MQW with mixed type of barriers. Strain compensated. [comment] To illustrate the use of complex MQW with simple QWs.
```

\lastip_examples \complex_MQW \backslash coupled
[title] Coupled wells.
[material] InGaAsP MQW at 1.55 um emission.
[structure] Complex cx-InGaAsP coupled wells.
[comment] Study of interaction between wells.
\lastip_examples\complex_MQW\step_qw
[title] Optical gain model for step quantum well
[material] InGaAsP QW on GaAs substrate
[structure] A step is formed near the barrier to make a 5 layer QW structure
[comment] Use of inner_bar_gain to calculate optical gain at inner barrier
\lastip_examples\complex_MQW\uneven_bar
[title] Uneven barrier
[material] AlGaAs/AlGaAs QW at 0.83 um
[structure] Complex cx-AlGaAs single well with uneven barrier
[comment] Demo of uneven barrier using complex-MQW feature

\lastip_examples\current_blocking \buryhet
[title] Buried het. laser with irregular shape.
[material] Bulk AlGaAs at 0.8 micron.
[structure] 2D bury het. laser.
[comment] Use of "new_doping" method to treat difficult structure.
\lastip_examples\current_blocking\leaky_mqw
[title] Leakage structure.
[material]QW InGaAsP/InP at 1.6 micron.
[structure] 2D MQW laser.
[comment] Demo of new_doping method in 3-column structure.
\lastip_examples\current_blocking\new_doping
[title] New_doping technique.
[material] Bulk AlGaAs at 0.8 micron.
[structure] 2D bury het. laser.
[comment] To show "new_doping" method for current blocking structure.
\lastip_examples\dual_polar
[title] Dual polarization lasing
[material] InGaAsP wells grown on InP substrate.
[structure] 1D laser, MQW strained well, unstrained barrier.
[purpose] To demo set up of dual polarization simulation.

```
\lastip_examples\gainguide_3e
[title] Three electrode laser.
[material] GaAs/AlGaAs at 0.82 micron.
[structure]3-electrode stripe geometry, gain guided laser.
[comment] Demo of how gain guiding can control the optical beam and modes.
\lastip_examples\GaN_growth_plane\miller_index\mplane_wgpara
[title] InGaN/GaN QW mplane laser diode simulation using full k.p theory [material] InGaN/GaN
[device] InGaN/GaN LD
[comment] Use of k.p gain data import to speed up 2/3 D simulation.
\lastip_examples \GaN_growth_plane\miller_index\mplane_wgperp
[title] InGaN/GaN QW mplane laser diode simulation using full k.p theory [material] InGaN/GaN
[device] InGaN/GaN LD
[comment] Use of k.p gain data import to speed up 2/3 D simulation.
\lastip_examples \GaN_growth_plane\miller_index\semipolar
[title] InGaN/GaN QW mplane laser diode simulation using full k.p theory
[material] InGaN/GaN
[device] InGaN/GaN LD
[comment] Use of k.p gain data import to speed up 2/3 D simulation.
----------------------1
\lastip_examples \GaN_growth_plane\plane_angle\bulk_effective_mass
[title] m-plane InGaN/GaN MQW LD simulation
[material] InGaN/GaN at 0.41 um
[structure] Simplified 1D MQW structure
[comment] To illustrate effect of wurtzite crystal orientation
\lastip_examples \GaN_growth_plane\plane_angle\bulk_effective_mass \phi0
[title] m-plane InGaN/GaN MQW LD simulation
[material] InGaN/GaN at 0.41 um
[structure] Simplified 1D MQW structure
[comment] To illustrate effect of wurtzite crystal orientation
------------------------
\lastip_examples \GaN_growth_plane\plane_angle\bulk_effective_mass \(\backslash p h i 90\) [title] m-plane InGaN/GaN MQW LD simulation
[material] InGaN/GaN at 0.41 um
[structure] Simplified 1D MQW structure
[comment] To illustrate effect of wurtzite crystal orientation
\lastip_examples \GaN_growth_plane\plane_angle\bulk_effective_mass \(\backslash r e f\)
[title] m-plane InGaN/GaN MQW LD simulation
[material] InGaN/GaN at 0.41 um
[structure] Simplified 1D MQW structure
[comment] To illustrate effect of wurtzite crystal orientation
------------------------
\lastip_examples \GaN_growth_plane\plane_angle\mplane_LD
[title] InGaN/GaN QW mplane laser diode simulation using full k.p theory [material] InGaN/GaN
[device] InGaN/GaN LD
[comment] Use of k.p gain data import to speed up 2/3 D simulation.
------------------------
\lastip_examples \GaN_growth_plane\plane_angle \(\backslash m p l a n e \_p a r k\)
[title] InGaN/GaN QW mplane optical gain model
[structure] InGaN/GaN MQW.
[comment] Study of optical gain of arbitrary crystal orientation.
-----------------------------
\(\backslash l a s t i p \_e x a m p l e s \backslash m a n y b o d y \backslash G a A s\)
[title] Manybody gain enhancement effect.
[material] AlGaAs QW at 0.83 um .
[structure] SQW.
[comment] Manybody effect is done under the Pade approximation.
------------------------
\lastip_examples \(\backslash m a n y b o d y \backslash I n G a N\)
[title] InGaN/GaN MQW laser simulation with manybody effect
[material] Simplified InGaN/GaN/AlGaN MQW laser.
[comment] Comparison of manybody gain/PL/index effect on GaN based lasers.
```

\lastip_examples\miniband\basic_nin
[title] Use of mini-band transport model for superlattice in GaN-based lasers
[material] InGaN/AlGaN
[structure] 2D LD model
[purpose] To demonstrate setting up mini-band transport model

\lastip_examples\miniband\LD
[title] Use of mini-band transport model for superlattice in GaN-based lasers
[material] InGaN/AlGaN
[structure] 2D LD model
[purpose] To demonstrate setting up mini-band transport model
\lastip_examples\modulation
[title]Small signal frequency modulation

```
[material] InGaAs/AlGaAs at 0.95 microns.
[structure] 2D laser, GRIN-SCH structure.
[purpose] To compare the LI and modulation of SQW and MQW.
```

\lastip_examples\mqw_ridge\GaAs

```
[title] A classic GRINCH-SCH-SQW laser.
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D/2D ridge waveguide laser, GRIN-SCH-SQW structure.
[purpose] To demo a simple yet representative structure.
```

\lastip_examples\mqw_ridge\ingaalas_inp
[title] InGaAlAl laser.
[material] QW InGaAlAs/InP at 1.3 micron.
[structure] 1D GRIN-SCH-SQW laser.
[comment] An alternative to InGaAsP/InP system.

```
\lastip_examples\mqw_ridge\InGaAs
[title] InGaAs/GaAs: An early strained QW laser.
[material] InGaAs/AlGaAs at 0.98 microns.
[structure] 1D/2D ridge waveguide laser, GRIN-SCH-SQW structure.
[comment] To show one of the early strained QW laser.
\lastip_examples \(\backslash m q w_{-}\)ridge \(\backslash I n G a A s N\)
[title] InGaAsN/GaAs laser.
[material] InGaAsN/GaAs at 1.3 um .
[structure] Ridge waveguide.
[purpose] To provide a convient structure for a new material system.
\lastip_examples \mqw_ridge\qw_InGaAsP
[title] InGaAsP laser for 1.55 application.
[structure] 1D/2D MQW ridge waveguide laser.
[material] MQW strained InGaAsP/InP.
[comment] To provide a good structure of MQW laser at 1.55 emission.
\lastip_examples\mqw_ridge\setup_MQW
[title] Use of SetupLayer for an InGaAsP MQW laser
[material] InGaAsP/InGaAsP/InP at 1.55 microns.
[structure] 1D MQW laser, may be converted to 2D ridge waveguide laser.
[purpose] To provide a tutorial example on how to use SetupLayer program.
\lastip_examples \(\backslash m u l t i{ }^{\prime}\) active
[title] Super lattice with variable QW with.
[material] GaAs/AlGaAs.
[structure] 1D super lattice with different well widths.
[purpose] To show different type of active region in one simulation.
------------------------
\lastip_examples\multicavity\bipolar_cascade
[title] Two color bipolar cascade laser.
[material] InGaAs/GaAs MQW
[structure] Two cavities connected by tunnel junction.
[purpose] To demonstrate the simulation of multi-cavity laser with tunnel junctions.
\lastip_examples\multicavity\side_by_side
[title] Simulation of a multiple cavity laser structure
[material] GaAs/AlGaAs at 0.81 and 0.84 microns.
[structure] 3-column, 2 SQW structures.
[purpose] To show how to set up a 2-cavity laser.
------------------------
\lastip_examples \(\backslash m u l t i m o d e \backslash b u l k 2 d ~\)
[title] Multimode bulk 2D laser simulation.
[material] bulk InGaAsP/InP at 1.3 micron.
[structure] 2D bulk channel-substrate waveguide laser.
[purpose] Demo of multimode solver based on examples/bulk_InGaAsP
------------------------
\lastip_examples \multimode\ingaasp_gaas
[title] Multimode QW InGaAsP/GaAs laser.
[material] QW InGaAsP/GaAs system at 980nm.
[structure] 2D ridge waveguide LD.
[purpose] To provide a convenient example of multimode laser 980nm application.
------------------------
\lastip_examples \(\backslash m u l t i m o d e \backslash k i n k \_e f f e c t ~\)
[title] Lateral model dependent mirror reflectivity and kink effect [material] AlGaAs QW at 0.83 um .
[structure] Ridge waveguide.
[purpose] To set variable mirror reflectivity and study kink effect
\lastip_examples \(\backslash m u l t i m o d e \backslash m s a s\)
[title] MSAS laser with multimode.
[material] AlGaAs at 0.78 um.
[structure] MSAS structure.
[purpose] To demo the power of Arnoldi solver in selecting lateral modes.
```

\lastip_examples\other\chuang_gain
[title] Gain and subbands of InGaN/AlGaN QW.
[material] InGaN/AlGaN
[structure] InGaN/AlGaN QW, 1D.

```
[comment] To compare with Chuang's published data.
```

\lastip_examples\other\ex_import_gain
[title] Export and import of gain data to and from ASCII file
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure.
[purpose] To provide an example on how to export/import gain/index/PL data
\lastip_examples\other\fancy_geo
[title] Flexible device geometry
[material] bulk AlGaAs at 0.8 micron.
[structure] a fancy geometry ridge waveguide laser.
[purpose] demo of fancy geometry and treatment of curved boundary.

```
-------------------------
\lastip_examples\other\farfield
[title] Far field computation.
[structure] non-planar ridge waveguide laser.
[material] bulk AlGaAs at 0.8 micron.
[purpose] Demo of far field computation.
------------------------
\lastip_examples \other\gain_index\index_change
[title] Gain and index change calculations.
[material] GaAs/AlGaAs, bulk AlGaAs.
[structure] Bulk and quantum well laser. 1D.
[comments] study of alpha factor and index change.
\lastip_examples\other\gain_index\landsberg
[title] Gain broadening of Landsberg type.
[structure] Bulk and QW laser.
[material] Bulk and QW InGaAsP/InP.
[purpose] Demo of Landsberg gain broadening.
\lastip_examples \other\mmb_gain
[title] Use of microscopic many-body gain table
[material] InGaAs/AlGaAs at 1. micron.
[structure] 1D laser, GRIN-SCH-SQW structure.
[purpose] To provide a tutorial example on how to import the mmb gain table.
\lastip_examples \(\backslash o t h e r \backslash m m b\) _gain_export
[title] Export of microscopic many-body gain table (Koch gain table)
[material] InGaAs/AlGaAs at 1. micron.
[structure] 1D laser, GRIN-SCH-SQW structure.
[purpose] To convert into general purpose gain table good for thermal model.
```

\lastip_examples\other\parameterize
[title] Parameterization of quantum well optical models
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure.
[purpose] Speed up of simulation using parameterized optical gain/spon/index.

```
\lastip_examples \other \pump_spectrum
[title] Opitcally pumped laser using continuous spectrum.
[material] GaAs/AlGaAs emitting at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure.
[comment] To demonstrate optical pumping using a spectrum.
\lastip_examples \other\pumped_laser
[title] Opitcal pumping.
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure.
[comment] To demonstrate optical pumping in simulation.
------------------------
\lastip_examples\other\quick_LD
[title] A quick laser diode simulation.
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure.
[purpose] To demonstrate how to use the gain preview for a quick laser model
------------------------
\lastip_examples\other\trap
[title] Trap models for semi-insulating layers.
[material] QW InGaAsP/InP at 1.55 micron.
[structure] 2D MQW bury het. laser with semi-insulating blocking layer.
[comment] Deep level trap model with new_doping technique.
\lastip_examples \other\vectorial
[title] Vectorial wave model.
[structure] Bulk buryhet laser.
[material] Bulk AlGaAs at 0.78 um.
[comments] Difference between scalar and vectorial wave model.
\lastip_examples\pml_eeim\eeim_basic
[title] EEIM lateral modes.
[material] GaAs/AlGaAs QW.
[structure] Ridge waveguide.
[comment] To show the basic set up of EEIM simulation.
\lastip_examples \(\backslash p m l \_\)eeim \(\backslash m s a s \_p m l\)
[title] Use of PML in MSAS Structure
[material] Bulk DH structure with buried GaAs loss layer.
[structure] MSAS structure
[comment] To show the use of PML boundary on MSAS.
\lastip_examples\pml_eeim\scowl\PML
[title] Slab coupled optical waveguide laser (SCOWL).
[material] InGaAs/AlGaAs at 0.95 microns.
[structure] 2D laser, GRIN-SCH-MQW structure.
[comment] To demonstrate the use of PML in SCOWL
\lastip_examples\pml_eeim\scowl\without_PML
[title] Slab coupled optical waveguide laser (SCOWL).
[material] InGaAs/AlGaAs at 0.95 microns.
[structure] 2D laser, GRIN-SCH-MQW structure.
[comment] To be used as a reference case without PML
\lastip_examples \(\backslash p m l \_e e i m \ s u b s t r a t e \_l o s s \backslash g a a s 26 a ~\)
[title] Modeling substrate loss using PML.
[material] AlGaAs QW at 0.83 um .
[structure] Ridge waveguide laser with lossy substrate closs to active region. [comment] To illustrate the use of PML to study substrate radiative loss.
\(\qquad\)
\lastip_examples \(\backslash p m l \_e e i m \ s u b s t r a t e \_l o s s \backslash g a a s 26 b ~\)
[title] Modeling substrate loss using PML.
[material] AlGaAs QW at 0.83 um.
[structure] Ridge waveguide laser with lossy substrate closs to active region.
[comment] To be compared with case of gaas26a
\lastip_examples \quantum_cascade\main_project\qcl_1d
[title] 1D macroscopic model of a quantum cascade laser
[material] InGaAlAs/InP
[structure] MQW QCL
[comment] To demonstrate the set up of macroscopic MQW QCL simulation
\(\qquad\)
\lastip_examples\quantum_cascade\main_project\qcl_2d
[title] 2D macroscopic model of a quantum cascade laser
[material] InGaAlAs/InP
[structure] MQW QCL
[comment] To demonstrate the set up of macroscopic MQW QCL simulation
\(\qquad\)
\lastip_examples \quantum_cascade\micro_gain\4wells
[title] Subband structure design for a four wells QCL
[material] InGaAs/InAlAs strain balanced MQW.
[structure] 1D structure with periodic MQW
[purpose] To provide a tutorial example for setting up basic QC Laser
\(\qquad\)
\lastip_examples \quantum_cascade\micro_gain\GaAs
[title] Subband structure design for GaAs QCL
[material] GaAs/AlGaAs MQW QCL at 9um.
[structure] 1D structure with periodic MQW
[purpose] To provide a tutorial example for setting up basic QC Laser
-----------------------
\(\backslash l a s t i p \_e x a m p l e s \backslash q u a n t u m \_c a s c a d e \backslash m i c r o \_g a i n \backslash I n G a A s\)
[title] Subband structure design for quantum cascade laser
[material] InGaAs/InAlAs MQW.
[structure] 1D structure with periodic MQW
[purpose] To provide a tutorial example for setting up basic QC Laser
\lastip_examples \quantum_dots \box_half
[title] Quantum states of half a quantum dot
[material] InGaAs/GaAs
[structure] Half of InGaAs/GaAs quantum dot of box shape
[purpose] To provide a setup example for a half structure of a quantum dot
\lastip_examples \quantum_dots \box_single
[title] Quantum states of a simple quantum dot
[material] InGaAs/GaAs
[structure] InGaAs/GaAs quantum dot of box shape
[purpose] To provide a setup of a 3D quantum dot structure
\lastip_examples \({ }^{2} q u a n t u m \_d o t s \backslash c o l u m n a r\)
[title] Simulation of a self-assembled columnar structure QDOT laser
[material] InGaAs/GaAs/AlGaAs
[structure] Stacked interacting columnar quantum dots
[purpose] To setup example for coupled structure in cylindrical system
\lastip_examples\quantum_dots \columnar\cone2
[title] Quantum states of stacked columnar quantum dots [material] InGaAs/GaAs
[structure] Stacked interacting columnar quantum dots
[purpose] To setup example for coupled structure in cylindrical system
-----------
\lastip_examples\quantum_dots\columnar\cone400
[title] Quantum states of stacked columnar quantum dots

\section*{[material] InGaAs/GaAs}
[structure] Stacked interacting columnar quantum dots
[purpose] To setup example for coupled structure in cylindrical system
```

\lastip_examples\self-consistent\AlGaAs

```
[title] A Simple Self-consistent MQW model
[material] GaAs/AlGaAs
[structure] SQW 1D laser structure.
[purpose] Setting a simple self-consistent 1D model.
\lastip_examples\self-consistent \(\backslash\) InGaAlAs
[title] Self-consistent MQW model
[material] InGaAlAs/InP.
[structure] MQW 1D laser structure.
[purpose] Explain the basic steps of turning on self-consistent model
```

\lastip_examples\self-consistent\InGaN

```
[title] Piezo-electric effect and self-consistent model.
[material] GaN-base wurtzite emitting at blue
[structure] MQW 1D laser structure.
[purpose] Demo the use of "interface" to define the piezo surface charge.
\lastip_examples\self-consistent\nakamura
[title] Room Temperature-CW Operated InGaN MQW Laser Diode
[material] InGaN/GaN/AlGaN.
[comment] Reproduced experiment results of Shuji Nakamura (1997).
\lastip_examples\self-consistent\UV_algan
[title] Piezo-electric effects in a UV-InGaN/AlGaN laser
[material] GaN-based wurtzite
[structure] MQW 1D laser structure.
[purpose] Illustrate the use of "interface" to define the piezo surface charge.
```

\lastip_examples\short_wavelength\GaN\shuji
[title] A Simplified MQW GaN blue LED/LD
[material] InGaN/InGaN MQW.
[structure] N-contact placed on the side.
[comment] Basic set up with no piezo effects included.

\lastip_examples\short_wavelength\ZnSe
[title] Short wavelength ZnSe laser.
[material] QW ZnSe-based laser emitting at blue.

```
[structure] 1D and 2D QW laser.
[comments] Demo of multiple tranverse mode model.
```

\lastip_examples\tau_model
[title] Intraband relaxation time.
[material] AlGaAs QW.
[structure] 1D QW laser.
[purpose] Illustrate the model of scattering tau parameter.
\lastip_examples\temperature\GaAs_temperature
[titel] Temperature performance of AlGaAs QW laser.
[material] GaAs/AlGaAs.
[structure] 1D ridge waveguide laser, GRIN-SCH-SQW structure.
[purpose] To demo temperature capability.
\lastip_examples\temperature\InP_T0
[title] TO of InGaAsP long wavelength laser.
[material] MQW InGaAsP at 1.5 micron.
[structure] 1D MQW structure.
[purpose] Show how to calculate TO.

\lastip_examples\thermal\bulk1d
[title]Thermal effects in bulk InGaAsP laser.
[material]Bulk InGaAsP at 1.3 um.
[structure]Bulk 1D DH InGaAsP laser.
[comment] Demo of simple simulation of self-heating effect.

```
------------------------
\lastip_examples\thermal\external_cir
[title] External thermal circuit.
[material] AlGaAs QW at 0.83 um .
[structure] 1D AlGaAs QW at 0.83 um with external thermal ciruit.
[comment] Use of external thermal circuit as special boundary.
\lastip_examples\thermal\hot_algaas
[title] Thermal effects in AlGaAs QW laser.
[material] AlGaAs QW at 0.83 um .
[structure] 1D and 2D ridge waveguide AlGaAs QW at 0.83 um .
[comment] Demo of basic set up of a thermal simulation.
```

\lastip_examples\thermal\import_gain
[title] Use of imported optical gain for thermal simulation
[material] GaAs/AlGaAs laser at 0.83 micron.
[structure] 1D laser, GRIN-SCH-SQW structure.

```
[purpose] To demo imported gain data for thermal simulation.
```

\lastip_examples\thermal\iso_vs_self
[title] Isothermal versus self-heating simulation.
[material] MQW InGaAsP at 1.5 micron.
[structure] 1D MQW structure.
[purpose] Demo uniform self-heating is equivalent to isothermal simulation.

\lastip_examples\thermal\thermal_bound
[title] Thermal boundaries.
[material] AlGaAs QW.
[structure] Ridge waveguide laser with SiO2 cover cooled to 77K.
[purpose] To demo the set up of pure thermal boundary.

```
```

```
------------------------
\lastip_examples\thermal\thermal_trans
[title]Thermal transient simulation for bulk InGaAsP laser.
[material]Bulk InGaAsP at 1.3 um.
[structure]Bulk 1D DH InGaAsP laser.
[comment] Demo of thermal transient simulation.
------------------------
\lastip_examples\transient\eye_diagram
[title] Calculation of eye diagram
[material] SQW GaAs/AlGaAs
[comments] Generation of eye diagram from transient simulation data.
```

```
\lastip_examples\transient\fourier
[title] Modulation response using Fourier transform technique
[material] SQW GaAs/AlGaAs
[structure] 1D GRIN-SCH-SQW laser.
```

\lastip_examples\transient\trans_bulk
[title] Transient simulation bulk 1D DH laser.
[material] Bulk InGaAsP/InP.
[structure] 1D bulk het. laser.
[comment] Demo of large signal modulation simulation.
\lastip_examples\transient\trans_GaAs
[title] Transient and power spectrum RWD laser.
[material] SQW GaAs/AlGaAs
[comments] Large and small signal analysis of GRIN-SCH-SQW laser modulation.

```
\lastip_examples\tunneling\ingaalp_650nm
[titel] Short wavelength InGaAlP laser
[material] MQW InGaAlP/GaAs emitting at 650 nm.
[structure] 2D non-planar ridge structure.
[comments] Use of tunneling and grading junction to reduce resistance.
```

\lastip_examples\tunneling\schottky_diode
[title] Study of tunneling effects.
[structure] 1D Schottky diode.
[material] Bulk GaAs.
[comments] Demo of tunneling effect in Schottky contact.
\lastip_examples\type2_MQW\GaAsSb
[title] A simple type-II electrically pumped laser of Sb based material
[material] cx-GaAsSb to form type-II QW complex
[structure] 1D laser
[purpose] To provide a simple demonstration of setting up a type-II QW laser.

\lastip_examples\type2_MQW\type2_setup
[title] A simple type-II electrically pumped laser
[material] cx-AlGaAs with artificial band offset to form type-II QW complex
[structure] 1D laser
[purpose] To provide a simple demonstration of setting up a type-II QW laser.
\lastip_examples\valence_mixing \8x8chuang
[title] Comparison of different k.p theory for zincblende quantum well
[material] InGaAsP/InGaAsP at 1.55 microns.
[structure] MQW structure laser.
[purpose] Comparing results and speed of $4 \mathrm{x} 4,6 \mathrm{x} 6$ and $8 \mathrm{x} 8 \mathrm{k} . \mathrm{p}$ theory
\lastip_examples\valence_mixing $\backslash 8 x 8$ compare
[title] Comparison of different k.p theory for zincblende quantum well
[material] GaAs/AlGaAs at 0.82 microns.
[structure] 1D laser, GRIN-SCH-SQW structure.
[purpose] Comparing results and speed of $4 \mathrm{x} 4,6 \mathrm{x} 6$ and $8 \mathrm{x} 8 \mathrm{k} . \mathrm{p}$ theory
\lastip_examples\valence_mixing\compare_chuang
[title] Comparing k.p model with Chuang's data.
[material] Quantum well of InGaAsP grown on InP.
[structure] Single quantum well.
[comment] Study of k.p model accuracy as compared with published data

```
\lastip_examples\valence_mixing\gaas_mixing
[title] k.p model in AlGaAs devices.
[material] Quantum well of AlGaAs/AlGaAs at 0.83 um.
[structure] Single quantum well.
[comment] Study of valence mixing effect in AlGaAs system.
\lastip_examples\valence_mixing\inp15_mixing
[title] Valence mixing effect in strained InGaAsP.
[material] Strained quantum well of InGaAsP/InP at 1.55 um.
[structure] Strained single quantum well.
[comment] Study of valence mixing effect in InGaAsP/InP system.
```


H. 3 PICS3D Examples

```
pics3d_examples\A_tutorial
[title] A tutorial example of PICS3D.
[structure] Bulk DH laser, InGaAsP, DFB grating.
[purpose] To illustrate the set up of a PICS3D simulation.
-----------------------
pics3d_examples\AC_analysis\edge
[title] AC analysis for edge laser for PICS3D.
[structure] Bulk DH laser, InGaAsP, DFB grating.
[purpose] To illustrate the set up of a an AC analysis.
pics3d_examples\AC_analysis\vcsel
[title] AC analysis for a simple VCSEL with finely tuned MQW location.
[structure] Simple VCSEL with MQW.
[comment] AC analysis method is similar to LASTIP
------------------------
pics3d_examples\amplifier_3d\amp2mode
[title] Semiconductor Optical Amplifier (SOA) with multi-lateral mode
[structure] DH InGaAsP/InP 1.3 micron, ridge waveguide
[comment] 2 lateral modes are included in simulation
pics3d_examples\amplifier_3d\BPM_multimode
[title] BPM-SOA 3D model with multimode initialization
[structure] Tapered ridge waveguide quantum well SOA
[comment] Use of multiple lateral mode initial BPM solution
pics3d_examples\amplifier_3d\inp13amp
[title] 3D model of semiconductor optical amplifier (SOA).
[structure] DH InGaAsP/InP 1.3 micron.
[comment] Same as the tutorial exmple except DFB gratings removed.
pics3d_examples\amplifier_3d\transient
[title] 3D traveling wave optical amplifier (SOA).
[structure] DH InGaAsP/InP 1.3 micron.
[comment] Same as the tutorial exmple except DFB gratings removed.
pics3d_examples\blue_LD
[title] A Simplified MQW GaN blue LED/LD
[material] InGaN/InGaN MQW.
[structure] N-contact placed on the side.
------------------------
pics3d_examples\BPM\mask_taper
```

[title] Set up of 3D simulation of tapered structure laser using mask. [structure] AlGaAs SQW laser with ridge width tapered.
[comment] Use of gemerate_mask program to set up structure
\qquad
pics3d_examples $\backslash B P M \backslash$ symmetric_taper
[title] 3D simulation of tapered structure laser using BPM.
[structure] AlGaAs SQW laser with ridge width tapered.
[comment] Use of BPM in two segments with different mesh structures.
pics3d_examples\BPM\taper
[title] 3D simulation of tapered structure laser using BPM.
[structure] AlGaAs SQW laser with ridge width tapered.
[comment] Use of BPM in two segments with different mesh structures.

pics3d_examples \broad_area
[title] Broad area high power laser simulation by PICS3D.
[structure] FP laser with 0.5 mm AlGaAs bulk active layer.
[purpose] To simulate broad area laser PICS3D simulation.

```
pics3d_examples\csuprem_wavegd_stack
```

[title] BPM simulation of stacked taper waveguide
[structure] silicon waveguides with tapers
[comment] Use of taper and taper_range for complex taper structures

pics3d_examples $\backslash D B R \backslash 3 s e c t i o n _t u n a b l e ~$
[title] Multi-Section MQW Tunable DBR Laser Simulation
[structure] MQW, passive phase tuning, passive DBR tuning sections.
[purpose] To illustrate the set up of a multi-sectional DBR laser.

```
pics3d_examples\DBR\fiber_grating
[title] Simulation of fiber-grating DBR laser
[structure] MQW InGaAsP/InP emitting at 1.49 um with fiber-grating section.
[comment] Use of fiber/external-cavity option.
```

pics3d_examples\DBR\sampled_grating
[title] Modeling sampled grating DBR laser.
[structure] InGaAsP MQW laser with sampled DBR grating.
[comment] Use of "ref_pitch" and "pitch" to define complex gratings.

pics3d_examples\DFB_trans
[title] 3D Transient simulation.
[structure] 1D bulk DH laser emitting at 1.3 um.
[purpose] To illustrate the set up of transient simulation.

```
pics3d_examples\EAM_DFB_trans
[title] Two-segment EAM-DFB simulation
[structure] MQW InGaAsP EAM-DFB laser emitting at 1.55 um with multi-section.
[comment] Use of self-consistent MQW in EAM modeling
------------------------
pics3d_examples\edge_LD_transient
[title] Transient simulation for bulk 1D DH laser.
[structure] 1D bulk heterojunction laser.
[comment] Demo of large signal modulation simulation.
pics3d_examples\facet_effect
[title] Simulation of Laser Facet Effect Using 3D-Flow Model
[structure] Multiple segment MQW laser.
[comment] Full 3D laser simulation with material variation in z-direction.
-----------------------
pics3d_examples\grating_2nd
[title] Second order grating DFB laser.
[structure] AlGaAs bulk DH laser at 0.86 um, 2nd order DFB gratings.
[comment] Set up of 2nd order grating; Surface emitting modes.
pics3d_examples\hybrid_laser
[title] Hybrid silicon laser
[structure] InP based 1.3 micron laser grown on top of silicon waveguide
[comment] Structure built on Intel-UCSB announcement with taper added
------------------------
pics3d_examples\mplane_InGaN
[title] 3D simulation of InGaN/GaN LD with PICS3D
[device] MQW InGaN/GaN laser
[comment] Generation and import of m-plane gain data in PICS3D
pics3d_examples\multicavity
[title] Simulation of a multiple cavity laser structure
[material] GaAs/AlGaAs at 0.81 and 0.84 microns.
[structure] 3-column, 2 SQW structures.
pics3d_examples\pa_waveguide\EAM
[title] 3D Electro-Absorption modulator simulation.
[structure] SQW EAM of AlGaAs.
[comment] Use of "self_consistent" and "photo-absorbing waveguide" options.
pics3d_examples\pa_waveguide\franz_keldysh
[title] 3D bulk electro-absorption modulator simulation.
```

[structure] Bulk InGaAsP material operating at 1.32 um as EAM. [comment] Use of Franz-Keldysh model with "photo-absorbing waveguide" option.
\qquad
pics3d_examples\pa_waveguide\waveguide_pd
[title] 3D-Waveguide photodetector
[structure] Bulk DH InGaAsP for 1.3-micron detection.
[comment] Use of C-RTG method for waveguide PD modeling

pics3d_examples ${ }^{\text {pump_laser }}$
[title] 3D Pumped Edge Emitting Laser.
[structure] SQW of GaAs/AlGaAs.
[comment] Use of "light_power" to provide a shorter pump wavelength.

pics3d_examples \backslash ring_laser
[title] Simulation of a ring laser
[material] InGaAsP MQW for 1.55 emission
[structure] A single ring waveguide
pics3d_examples\SLD\2peaks
[title] 3D model of super-luminescent diodes (SLD) emitting with 2 peaks
[structure] SQW SLD of GaAs/AlGaAs with two different SQW
[comment] Use of multiple wavelength to cover wide emissioin range

pics3d_examples\SLD\ase_signal_linewidth
[title] 3D semiconductor optical amplifier modeling with input linewidth
[structure] DH InGaAsP/InP 1.3 micron.
[comment] Demo of signal+ASE spectrum plotting
pics3d_examples\SLD\ase_signal_spec
[title] 3D semiconductor optical amplifier model with input spectrum
[structure] DH InGaAsP/InP 1.3 micron.
[comment] SOA with continuous input power spectrum.

pics3d_examples \SLD\SLD_1mode
[title] 3D model of super-luminescent diodes (SLD)
[structure] Bulk DH InGaAsP/InP 1.3 micron
[comment] Based of 3D SOA with zero input power
pics3d_examples \backslash SLD \backslash SLD_2mode
[title] Super-luminescent diodes (SLD) model with multi-lateral modes
[structure] Bulk DH InGaAsP/InP 1.3 micron, ridge waveguide
[comment] 2 lateral modes are included in simulation

```
pics3d_examples\spiral_laser
[title] Simulation of a spiral laser
[structure] MQW InGaAsP/InP emitting at 1.49 with ring + straight waveguide
[comment] Use of mixed cylindrical and rectangle coordinates.
pics3d_examples\thermal
[title] Thermal simulation of SQW GaAs/AlGaAs laser.
[structure] FP SQW GaAs/AlGaAs laser.
[comment] Please note the mode hopping effects.
pics3d_examples\VCSELS\2mqw
[title] A VCSEL with two MQW regions
[structure] VCSEL with two MQW region joined by tunneling junction
[comment] Higher voltage is required to turn on current
pics3d_examples\VCSELS\DBR_index_profile
[title] A simple VCSEL with imported DBR index profile
[structure] Simple VCSEL with MQW.
[comment] Index profile may contain linearly graded index profile.
pics3d_examples\VCSELS\extern_cavity
[title] A VCSEL with external air-gap cavity
[structure] MQW VCSEL with air-gap mirror
[comment] Threshold depends on both DBR and external mirror
pics3d_examples\VCSELS\GaN_VCSEL
[title] GaN-VCSEL template
[structure] Electrical pumped VCSEL at 0.41 um
[comment] Property senstive to choice of macro and polarization charge
------------------------
pics3d_examples\VCSELS\jim_vcsel
[title] A simple VCSEL with finely tuned MQW location.
[structure] Simple VCSEL with MQW.
[comment] The location of MQW is critical for tuning of wavelength.
-----------------------
pics3d_examples\VCSELS\jim_vcsel_self
[title] A simple VCSEL with finely tuned MQW location.
[structure] Simple VCSEL with MQW. Also 3 layers per period in DBR mirror.
[comment] The location of MQW is critical for tuning of wavelength.
------------------------
pics3d_examples\VCSELS\lambda_as_layer_unit
[title] A simple VCSEL with finely tuned MQW location.
[structure] Simple VCSEL with MQW.
```

[comment] The location of MQW is critical for tuning of wavelength.
pics3d_examples\VCSELS\nonsymmetric
[title] Full 3D multi-mode simulation of non-symmetric VCSEL
[structure] MQW VCSEL with non-symmetric top point contact.
[comment] Demo of multiple segment simulation in cylindrical system.

pics3d_examples\VCSELS\pump_vcsel
[title] Simulation of an optically pumped VCSEL
[structure] Simple VCSEL with MQW.
[comment] Use of shorter wavelength to generate carriers in MQW.
pics3d_examples \VCSELS \backslash rectangle
[title] A simple rectangle VCSEL with finely tuned MQW position.
[structure] Rectangle VCSEL with MQW.
[comment] Comparison of cylindrical with rectangle VCSEL

pics3d_examples\VCSELS\surface_relief
[title] Simulation of surface relieved VCSEL
[structure] MQW VCSEL with outer cavity part relieved.
[comment] Use of multicavity option to treat the relieved outer cavity
pics3d_examples \VCSELS \backslash VCSEL_2mode_trans
[title] Transient simulation of multiple lateral modes for a VCSEL.
[structure] AlGaAs MQW VCSEL.
[comment] Two lateral modes are almost equally pumped to lasing.

pics3d_examples\VCSELS $\backslash V C S E L _2 m o d e s$
[title] Multiple lateral modes for a VCSEL.
[structure] AlGaAs MQW VCSEL.
[comment] Two lateral modes are almost equally pumped to lasing.

pics3d_examples\VCSELS \backslash VCSEL_eim_oxide
[title] Fused junction VCSEL at 1.55 um with oxide layer confinement.
[structure] MQW VCSEL combining AlGaAs and InGaAsP system.
[comment] Use of EIM-VCSEL model.
pics3d_examples\VCSELS\vcsel_macro_DBR
[title] A simple VCSEL with finely tuned MQW location.
[structure] Simple VCSEL with MQW. Also 3 layers per period in DBR mirror.
[comment] The location of MQW is critical for tuning of wavelength.
pics3d_examples \VCSELS $\backslash V C S E L _t h e r m a l _o x i d e ~$
[title] Thermal simulation of VVSEL with oxide layer confinement [structure] MQW VCSEL with oxide layer, DBR with anisotropic properties [comment] Use of tau_model for temp. dependent intraband scattering broadening -------------------------
pics3d_examples \VCSELS \backslash VCSEL_transient
[title] Transient simulation for VCSEL using single lateral mode
[structure] Simple VCSEL with MQW
[comment] To demonstrate the lasing oscillation in VCSEL

Bibliography

[1] S. M. Zse. Physics of semiconductor devices. John Wiley \& Sons, 2nd edition, 1981. ISBN 978-0-471-67324-8.
[2] E.M. Azoff. Energy transport numerical simulation of graded AlGaAs/GaAs heterojunction bipolar transistors. IEEE Trans. ED, 36(4):609-616, 1989. doi:10.1109/16.22464.
[3] E.M. Azoff. Close-form method for solving the steady-state generalised energy-momentum conservation equations. COMPEL, 6(1):25-30, 1987. doi:10.1108/eb010297.
[4] R. A. Smith. Semiconductors. Cambridge University Press, 2nd edition, 1978. ISBN 978-0521218245.
[5] D. Bednarczyk and J. Bednarczyk. The approximation of the fermi-dirac integral $F_{1 / 2}(\eta)$. Physics Letters A, 64:409-410, 1978. doi:10.1016/0375-9601(78)90283-9.
[6] E. F. Schubert. Physical Foundations of Solid-State Devices, chapter 16 - High doping effects. Rensselaer Polytechnic Institute, 2009. URL http://www.rpi. edu/~schubert/.
[7] Valentin O. Turin. A modified transferred-electron high-field mobility model for gan devices simulation. Solid-State Electronics, 49:1678Ü1682, 2005. doi:10.1016/j.sse.2005.09.002.
[8] S.S. Perlman and D.L. Feucht. p-n heterojunctions. Solid State Electronics, 7 (12):911-923, 1964. doi:10.1016/0038-1101(64)90070-X.
[9] R.J. Schuelke and M.S. Lundstrom. Thermionic emission-diffusion theory of isotype heterojunctions. Solid State Electronics, 27(12):1111-1116, 1984. doi:10.1016/0038-1101(84)90051-0.
[10] R.S. Varga. Matrix iterative analysis. Prentice-Hall, 1962. ISBN 9783540663218.
[11] D.L. Scharfetter and H.K. Gummel. Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices, 16(1):64-77, January 1969. doi:10.1109/T-ED.1969.16566.
[12] S.E. Laux. Techniques for small-signal analysis of semiconductor devices. IEEE Trans. Electron Devices, 32:2028-2037, 1985. doi:10.1109/T-ED.1985.22235.
[13] Q. Li and R.W. Dutton. Numerical small-signal AC modeling of deep-level-trap related frequency-dependent output conductance and capacitance for GaAs MESFET's on semi-insulating substrates. IEEE Trans. Electron devices, 38: 1285-1288, 1991. doi:10.1109/16.81618.
[14] D.I. Blokhintsev. Quantum mechanics. D. Reidel Pubslishing Co., 1964. ISBN 978-9027701046.
[15] S.L. Chuang. Efficient band-structure calculation of strained quantum-wells. Phys. Rev. B, 43(12):9649-9661, 1991. doi:10.1103/PhysRevB.43.9649.
[16] S.R. Chinn, P.S. Zory, and A.R. Reisinger. A model for GRIN-SCH-SQW diode lasers. IEEE J. Quantum Electron., 24:2191-2214, November 1988. doi:10.1109/3.8562.
[17] J. Nagle, S. Hersee, M. Krakowski, T. Weil, and C. Weisbuch. Threshold current of single quantum well lasers: The role of the confining layers. Appl. Phys. Lett., 49(20):1325, 1986. doi:10.1063/1.97366.
[18] G. Fuchs, C. Schiedel, A. Hangleiter, V. Harle, and F. Scholz. Auger recombination in strained and unstrained InGaAs/InGaAsP multiple quantum well lasers. Appl. Phys. Lett., 62(4):396-398, 1993. doi:10.1063/1.108941.
[19] S. Colak, R. Eppenga, and M.F.H. Schuurmans. Band mixing effects on quantum well gain. IEEE J. Quantum Well Electron., 23:960-967, 1987. doi:10.1109/JQE.1987.1073466.
[20] R. Eppenga, M.F.H. Schuurmans, and S. Colak. New k.p theory for GaAs/ $\mathrm{Ga}_{1-x} \mathrm{Al}_{x}$ As-type quantum wells. Phys. Rev. B, 36(3):1554-1564, 1987. doi:10.1103/PhysRevB.36.1554.
[21] G. Bastard. Superlattice band structure in the envelope-function approximation. Phys. Rev. B, 24(10):5693-5697, 1981. doi:10.1103/PhysRevB.24.5693.
[22] L.C. Andreani, A. Pasquarello, and F. Bassani. Hole subbands in strained GaAs- $\mathrm{Ga}_{1-x} \mathrm{Al}_{x}$ As quantum wells: Exact solution of the effective-mass equation. Phys. Rev. B, 36:5887-5894, 1987. doi:10.1103/PhysRevB.36.5887.
[23] J.M. Luttinger and W. Kohn. Motion of electrons and holes in perturbed periodic fields. Physical Review, 97(4):869-883, 1955. doi:10.1103/PhysRev.97.869.
[24] J.M. Luttinger. Quantum theory of cyclotron resonance in semiconductors: general theory. Physical Review, 102(4):1030-1041, 1956. doi:10.1103/PhysRev.102.1030.
[25] F. Wooten. Optical properties of solids. Academic Press, 1972. ISBN 0127634509.
[26] M. Yamada, S. Ogita, M. Yamagishi, and K. Tabata. Anisotropy and broadening of optical gain in a GaAs/AlGaAs multiquantum-well laser. IEEE J. Quantum Electron., 21:640-645, June 1985. doi:10.1109/JQE.1985.1072712.
[27] R.H. Yan, S.W. Corzine, L.A. Coldren, and I. Suemune. Corrections to the expression for gain in GaAs. IEEE J. Quantum Electron., 26(2):213-216, 1990. doi:10.1109/3.44950.
[28] E. Zielinski, H. Schweizer, S. Hausser, R. Stuber, M. H. Pilkuhn, and G. Weimann. Systematics of laser operation in GaAs/AlGaAs multiquantum well heterostructures. J. Quantum Electron., 23(6):969-976, 1987. doi:10.1109/JQE.1987.1073463.
[29] E. Zielinski, F. Keppler, S. Hausser, M. H., R. Sauer, and W.T. Tsang. Optical gain and loss processes in GaInAs/InP MQW laser structure. J. Quantum Electron., 25(6):1407-1416, 1989. doi:10.1109/3.29276.
[30] P.T. Landsberg. A contribution to the theory of soft X-ray emission bands of sodium. Proc. Phys. Soc. A, 62(12):806, 1949. doi:10.1088/03701298/62/12/307.
[31] P.T. Landsberg. Electron interaction effects on recombination spectra. Physica Status Solidi B, 15(2):623-626, 1966. doi:10.1002/pssb.19660150223.
[32] R.W. Martin and H.L. Stormer. On the low energy tail of the electron-hole drop recombination spectrum. Solid State Comm, 22(8):523-526, May 1977. doi:10.1016/0038-1098(77)91406-5.
[33] Shun Lien Chuang. Physics of optoelectronic devices. John Wiley \& Sons Inc., 1995. ISBN 9-780471-109396.
[34] G.P. Agrawal and N.K. Dutta. Long wavelength semiconductor lasers. van Nostrand Reinhold, 1986. ISBN 0442209959.
[35] A. Yariv. Optical Electronics. Saunders College Publishing, 4th edition, 1991. ISBN 978-0030702891.
[36] C.H. Henry, R.A. Logan, and K.A. Bertness. Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers. J. Appl. Phys., 52 (7):4457-4461, 1981. doi:10.1063/1.329371.
[37] K. Vahala, L.C. Chiu, S. Margalit, and A. Yariv. On the linewidth enhancement factor α in semiconductor injection lasers. Appl. Phys. Lett., 42:631, 1983. doi:10.1063/1.94054.
[38] W. W. Chow and S. W. Koch. Many-body coulomb effects in room-temperature IIŰVI quantum well semiconductor lasers. Appl.Phys.Lett, 66:3004, 1995. doi:10.1063/1.114258.
[39] H. Haug and S. Schmitt-Rink. Electron theory of the optical properties of laser-excited semiconductors. Progress in Quantum Electronics, 9(1):3, 1984. doi:10.1016/0079-6727(84)90026-0.
[40] H. Haug and S. Schmitt-Rink. Basic mechanisms of the optical nonlinearities of semiconductors near the band edge. JOSA B, 2(7):1135-1142, 1985. doi:10.1364/JOSAB.2.001135.
[41] S. Schmitt-Rink, C. Ell, and H. Haug. Many-body effects in the absorption, gain, and luminescence spectra of semiconductor quantum-well structures. Phys. Rev. B, 33(2):1183Ű1189, 1986. doi:10.1103/PhysRevB.33.1183.
[42] C.F. Hsu, P.S. Zory, C.H. Wu, and M.A. Emmanuel. Coulomb enhancement in InGaAs-GaAs quantum-well lasers. IEEE J. Sel. Top. Quant. Elec., 3(2), 1997. doi:10.1109/2944.605649.
[43] Peter Blood. On the dimensionality of optical absorption, gain, and recombination in quantum-confined structures. IEEE JOURNAL OF QUANTUM ELECTRONICS, 36(3):354, Mar. 2000. doi:10.1109/3.825883.
[44] M. Sugawara, K. Mukai, Y. Nakata, K. Otsubo, and H. Ishilkawa. Performance and physics of quantum-dot lasers with self-assembled columnar-shaped and $1.3-\mu m$ emitting InGaAs quantum dots. IEEE J. Select. Topics in Quant. Electron., 6:462, 2000. doi:10.1109/2944.865101.
[45] A. A. Dikshit and J. M. Pikal. Carrier distribution, gain, and lasing in 1.3- $\mu \mathrm{m}$ InAs InGaAs quantum-dot lasers. IEEE J. Quant. Electron., 40(2):105-112, Feb. 2004. doi:10.1109/JQE.2003.821532.
[46] S. Selberherr. Analysis and simulation of semiconductor devices. SpringerVerlag, 1984. ISBN 0387818006.
[47] A.G. Chynoweth. Ionization rates for electrons and holes in silicon. Phys. Rev., 109(5):1537-1540, 1958. doi:10.1103/PhysRev.109.1537.
[48] C.R. Crowell and S.M. Sze. Temperature dependence of avalanche multiplication in semiconductors. Appl. Phys. Lett., 9(6):242-244, 1966. doi:10.1063/1.1754731.
[49] Thomas Lackner. Avalanche multiplication in semiconductors: A modification of chynoweth's law. Solid-State Electronics, 34(1):33-42, 1991. doi:10.1016/0038-1101(91)90197-7.
[50] Y. Okuto and C. R. Crowell. Threshold energy effect on avalanche breakdown voltage in semiconductor junctions. Solid-State Electronics, 18(2):161-168, 1975. doi:10.1016/0038-1101(75)90099-4.
[51] B. Jayant Baliga. Fundamentals of Power Semiconductor Devices. Springer, 1st edition, 2008. ISBN 0387473130.
[52] R. Van Overstraeten and H. De Man. Measurement of the ionization rates in diffused silicon p-n junctions. Solid State Electronics, 13(5):583-608, 1970. doi:10.1016/0038-1101(70)90139-5.
[53] W.N. Grant. Electron and hole ionization rates in epitaxial silicon at high electric fields. Solid State Electronics, 16(10):1189-1203, 1973. doi:10.1016/0038-1101(73)90147-0.
[54] A.A. Grinberg, M.S. Shur, R.J. Fischer, and H. Morkoc. An investigation of the effect of graded layers and tunneling on the performance of AlGaAs/GaAs heterojunction bipolar transistors. IEEE Trans. Electron Device, 31:1758-1765, 1984. doi:10.1109/T-ED.1984.21784.
[55] A. Yariv. An introduction to theory and applications of quantum mechanics. John Wiley \& Sons, 1982. ISBN 978-0471060536.
[56] F.A. Padovani and R. Stratton. Field and thermionic-field emission in schottky barriers. Solid-State Electronics, 9(7):695-707, 1966. doi:10.1016/0038-1101(66)90097-9.
[57] A. Messiah. Quantum mechanics, page 242. John-Wiley \& Sons, Inc., 1958. ISBN 9780486409245.
[58] E.O. Kane. Zener tunneling in semiconductors. Phys. Chem. Solids, 2:181-188, 1960. doi:10.1016/0022-3697(60)90035-4.
[59] C.B Duke. Tunneling in Solids, volume 10 of Solid state physics: advances in research and applications. Academic Press, 1969. ISBN 9780126077704.
[60] J.L Moll. Physics of Semiconductors, chapter 12. McGraw-Hill, 1964.
[61] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan. Band parameters for iiiŰv compound semiconductors and their alloys. Journal of Applied Physics, 89(11): 5815-5875, 2001. doi:10.1063/1.1368156.
[62] Shun Lien Chuang. Optical gain of strained wurtzite GaN quantum - well lasers. IEEE JQE, 32(10):1791-1800, October 1996. doi:10.1109/3.538786.
[63] S. L. Chuang and C. S. Chang. k. p method for strained wurtzite semiconductors. Phys. Rev. B, 54(4):2491-2504, July 1996. doi:10.1103/PhysRevB.54.2491.
[64] S. L. Chuang and C. S. Chang. Effective - mass hamiltonian for strained wurtzite GaN and analytical solutions. Appl. Phys. Lett., 68(12):1657-1659, 1996. doi:10.1063/1.115896.
[65] Seoung-Hwan Park, Doyeol Ahn, and Shun-Lien Chuang. Electronic and optical properties of a- and m-plane wurtzite InGaNUGaN quantum wells. IEEE Journal of Quantum Electronics, 43(12):1175 - 1182, 2007. doi:10.1109/JQE.2007.905009.
[66] Peng-Fei Qiao, Shin Mou, and Shun Lien Chuang. Electronic band structures and optical properties of type-ii superlattice photodetectors with interfacial effect. Optics express, 20(3):2319-2334, 2012. doi:10.1364/OE.20.002319.
[67] M. Asada. Intraband relaxation time in quantum well lasers. IEEE J. Quantum Electronics, 25(9):2019-2026, September 1989. doi:10.1109/3.35228.
[68] M. Asada. Intraband relaxation effect on optical spectra. In P. S. Zory, editor, Quantum Well Lasers, pages 97-130. Academic Press, Inc., 1983. ISBN 9780127818900.
[69] B. Romero, J. Arias, I. Esquivias, and M. Cada. Simple model for calculating the ratio of the carrier capture and escape times in quantum-well lasers. Appl. Phys. Lett., 76(12):1504-1506, 2000. doi:10.1063/1.126077.
[70] M. Grupen and K. Hess. Simulation of carrier transport and nonlinearities in quantum-well laser diodes. IEEE J. Quant. Electronics, 34(1):120, Jan. 1998. doi:10.1109/3.655016.
[71] C. S. Xia, W. D. Hu, C. Wang, Z. F. Li, X. S. Chen, W. Lu, Z. M. Simon Li, and Z. Q. Li. Simulation of InGaN/GaN multiple quantum well light-emitting diodes with quantum dot model for electrical and optical effects. Optical and Quantum Electronics, 38:1077-1089, 2006. doi:10.1007/s11082-006-9029-5.
[72] B. F. Levine. Quantum-well infrared photodetectors. J. Appl. Phys, 74:R1R81, Oct. 1993. doi:10.1063/1.354252.
[73] G.K. Wachutka. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling. IEEE Trans. CAD, 9(11):11411149, 1990. doi:10.1109/43.62751.
[74] A. Marshak and K. van Vilet. Electrical current in solids with position dependent band structure. Solid State Electron., 21(2):417-427, 1978. doi:10.1016/0038-1101(78)90272-1.
[75] L. Liou, J. Ebel, and C Huang. Thermal effects on the characteristics of $\mathrm{AlGaAs} / \mathrm{GaAs}$ heterojunction bipolar transistors using two dimensional numerical simulation. IEEE Trans. Elec. Dev., 40(1):35-43, 1993. doi:10.1109/16.249421.
[76] R. Stratton. Semiconductor current flow equations (diffusion and degeneracy). IEEE Trans. Elec. Dev., 19:1288-1292, 1972. doi:10.1109/T-ED.1972.17592.
[77] M. Stern. Finite difference analysis of planar optical waveguides. In W.P. Huang, editor, Progress In Electromagnetics Research, volume 10, pages 123186. EMW Publishing, 1995.
[78] G. R. Hadley, D. Botez, and L. J. Mawst. Modal discrimination in leaky-mode (antiguided) arrays. IEEE J. Quantum Electronics, 27(4):921-930, April 1991. doi:10.1109/3.83327.
[79] Z. S. Sacks, D.M. Kingsland, R. Lee, and Jin-Fa Lee. A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans. Antennas Propagat., 43(12):1460-1463, Dec. 1995. doi:10.1109/8.477075.
[80] C. H. Henry. Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers. J. Lightwave Technol., 4(3): 288-297, March 1986. doi:10.1109/JLT.1986.1074715.
[81] R.F. Kazarinov and C.H. Henry. Second-order distributed feedback lasers with mode selection provided by first-order radiation losses. IEEE Journal of Quantum Electronics, 21(3):144-153, 1985. doi:10.1109/JQE.1985.1072627.
[82] Pochi Yeh. Optical Waves in Layered Media. Wiley Interscience, 1988. ISBN 978-0471828662.
[83] H. Angus MacLeod. Thin-Film Optical Filters. IoP, 3rd edition, 2001. ISBN 978-0750306881.
[84] M. Bulsara. Strained silicon joins the drive to keep CMOS chips on course. Compound Semiconductor magazine, September 2002.
[85] B. M. Haugerud, L. A. Bosworth, and R. E. Belford. Elevated-temperature electrical characteristics of mechanically strained Si devices. J. App. Phys., 95 (5):2792-2796, 1 March 2004. doi:10.1063/1.1644637.
[86] B. M. Haugerud, L. A. Bosworth, and R. E. Belford. Mechanically induced strain enhancement of metal-oxide-semiconductor field effect transistors. J. App. Phys., 94(6):4102-4107, 15 March 2003. doi:10.1063/1.1602562.
[87] M.V. Fischetti and S.E. Laux. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys., 80:22342252, 1996. doi:10.1063/1.363052.
[88] C.G. Van De Walle and Richard M. Martin. Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Phys. Rev. B, 34(8):5621-5634, 15 Oct. 1986. doi:10.1103/PhysRevB.34.5621.
[89] Soline Richard, Frederic Aniel, Guy Fishman, and Nicolas Cavassilas. Energyband structure in strained silicon: A 20-band $k \cdot p$ and Bir-Pikus Hamiltonian model. J. Appl. Phys., 94(3):1794, 1 Aug. 2003. doi:10.1063/1.1587004.
[90] M.A. Herman. Silicon-based heterostructures: strained-layer growth by molecular beam epitaxy. Cryst. Res. Technol., 34:583-595, May-June 1999. doi:10.1002/(SICI)1521-4079(199906)34:5/6<583::AID-CRAT583>3.0.CO;2X.
[91] K. Ismail and B.S. Meyerson. $\mathrm{Si} / \mathrm{SiGe}$ quantum wells: fundamentals to technology. J. Mater. Sci.: Materials in Electronics, 6:306, 1995. doi:10.1007/BF00125885.
[92] M. M. Rieger and P. Vogl. Electronic-band parameters in strained $\operatorname{Si}(1-x) \mathrm{Ge}(x)$ alloys on $\operatorname{Si}(1-y) \mathrm{Ge}(\mathrm{y})$ substrates. Phys. Rev. B, 48(19):14276-287, 15 Nov. 1993. doi:10.1103/PhysRevB.48.14276.
[93] Shinichi Takagi, Judy L. Hoyt, Jeffrey J. Welser, and James F. Gibbons. Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor field-effect transistors. J. Appl. Phys., 80(3):1567-1577, 1 Aug. 1996. doi:10.1063/1.362953.
[94] B.K. Ridley. Quantum process in semiconductors. Oxford Univ. Press, 4th edition, 1999. ISBN 9780198505792.
[95] K. Seeger. Semiconductor Physics : An Introduction. Springer, 7th edition, 1999. ISBN 9783540657866.
[96] N.W. Ashcroft and N.D. Mermin. Solid State Physics. Brooks Cole, 1976. ISBN 9780030839931.
[97] M. T. Currie, C. W. Leitz, T. A. Langdo, G. Taraschi, E. A. Fitzgerald, and D. A. Antoniadis. Carrier mobilities and process stability of strained Si nand p-MOSFETs on SiGe virtual substrates. J. Vac. Sci. Technol. B, 19(6): 2268-2279, Nov/Dec. 2001. doi:10.1116/1.1421554.
[98] B. Ryhstaller, S.A. Carter, S. Barth, H. Riel, and W. Riess. Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes. J. Appl. Phys., 89(8):4575-4586, 15 April 2001. doi:10.1063/1.1352027.
[99] P. Langevin. L’ionization des gaz. Ann. Chem. Phys., 28:289, 1903.
[100] I. Vragovic, R. Scholz, and M. Schreiber. Model calculation of the optical properties of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) thin films. Europhysics Letters, 57(2):288-294, 2002. doi:10.1209/epl/i2002-00574-3.
[101] M. Hoffmann and Z. G. Soos. Optical absorption spectra of the holstein molecular crystal for weak and intermediate electronic coupling. Phys. Rev. B, 66: 024305, 2002. doi:10.1103/PhysRevB.66.024305.
[102] M. Hoffmann, Z. G. Soos, and K. Leo. Absorption spectra and band structure of mixed frenkel-charge-transfer vibronic states in one-dimensional molecular crystals. Nonlinear Optics, 29(4-6):227-237, 2002.
[103] M.H. Hennessy, Z.G. Soos, R.A. Pascal Jr., and A. Girlando. Vibronic structure of PTCDA stacks: the excitonÜphonon-charge-transfer dimer. Chem. Phys., 245:199-212, 1999. doi:10.1016/S0301-0104(99)00082-8.
[104] M. Hoffmann, K. Schimidt, T. Fritz, T. Hasche, V.M. Agranovich, and K. Leo. The lowest energy Frenkel and charge-transfer excitons in quasi-onedimensional structures: application to MePTCDI and PTCDA crystals. Chem. Phys., 258:73-96, 2000. doi:10.1016/S0301-0104(00)00157-9.
[105] Z.G. Soos, M.H. Hennessy, and G. Wen. Frenkel and charge transfer states of conjugated polymers and molecules. Chem. Phys., 227:19-32, 1998. doi:10.1016/S0301-0104(97)00307-8.
[106] B. Tromborg, H. Olesen, and X. Pan. Theory of linewidth for multi-electrode laser diodes with spatially distributed noise sources. IEEE J. Quantum Electron., 27:178-192, 1991. doi:10.1109/3.78219.
[107] C. H. Henry and R.F. Kazarinov. Stablilization of single frequency operation of coupled-cavity lasers. IEEE J. Quantum Electron., 20:733-744, 1984. doi:10.1109/JQE.1984.1072465.
[108] S. McCall and P. Platzman. An optimized $\pi / 2$ distributed feedback laser. IEEE Journal of Quantum Electronics, 21(12):1899-1904, Dec. 1985. doi:10.1109/JQE.1985.1072605.
[109] L.D. Landau and E.M. Lifshitz. Quantum Mechanics; non-relativistic theory. Pergamon Press, 3rd edition, 1977. ISBN 9780750635394.
[110] E. Snitzner. Cylindrical dielectric waveguide modes. J. Opt. Soc. Amer., 51: 491-498, 1961. doi:10.1364/JOSA.51.000491.
[111] Ashish M. Vengsarkars, Ioannis M. Besieris, Amr M. Shaarawi, and Richard W Ziolkowski. Closed-form, localized wave solutions in optical fiber waveguides. J. Opt. Soc. Am. A, 9(6):937-949, 1992. doi:10.1364/JOSAA.9.000937.
[112] G. R. Hadley, K. L. Lear, M. E. Warren, K. D. Choquette, J. W. Scott, and S.W. Corzine. Comprehensive numerical modeling of vertical-cavity surfaceemitting lasers. IEEE J. Quantum Electronics, 32(6):607-616, June 1996. doi:10.1109/3.488833.
[113] T. Makino. Spontaneous emission model of surface-emitting DFB semiconductor lasers. IEEE J. Quantum Electron., 29(1):4-22, 1992. doi:10.1109/3.199240.
[114] B. Tromborg, H. Olesen, X. Pan, and S. Saito. Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers. IEEE J. Quantum Electron., 23:1875-1889, Nov. 1987. doi:10.1109/JQE.1987.1073251.
[115] B. Tromborg, H. E. Lassen, H. Olesen, and X. Pan. Travelling wave method for calculation of linewidth, frequency tuning and stability of semiconductor lasers. IEEE Photon. Technol. Lett., 4(9):985-988, 1992. doi:10.1109/68.157123.
[116] D.C Streit and F.G Allen. Silicon triangular diodes by mbe using solidphase epitaxial growth. IEEE Electron Device Letters, 5(7):354-6, 1984. doi:10.1109/EDL.1984.25908.
[117] V. Fiorentini, F. Bernardini, and O. Ambacher. Evidence for nonlinear macroscopic polarization in iii-v nitride alloy heterostructures. Appl. Phys. Lett., 80 (7):1204, 2002. doi:10.1063/1.1448668.
[118] Vladimir A. Fonoberov and Alexander A. Balandin. Optical properties of wurtzite and zinc-blende GaN/AlN quantum dots. J. Vac. Sci. Technol. B, 22 (4):2190-2194, Jul/Aug 2004. doi:10.1116/1.1768188.
[119] M.F. Khodr, P.J. McCann, and B.A. Mason. Effects of band nonparabolicity on the gain and current density in EuSe-PbSe $0_{0.78} \mathrm{Te}_{0.22}$-EuSe IV-VI semiconductor quantum-well lasers. IEEE Journal of Quantum Electronics, 32(2):236 - 247, 1996. doi:10.1109/3.481871.
[120] H. Shen, M. Wraback, H. Zhong, A. Tyagi, S. P. DenBaars, S. Nakamura, and J.S. Speck. Unambiguous evidence of the existence of polarization field crossover in a semipolar ingan/gan single quantum well. Appl. Phys. Lett., 95: 033503, 2009. doi:10.1063/1.3167809.
[121] L.A. Coldren and S.W. Corzine. Diode Lasers and Photonic Integrated Circuits. Wiley-Interscience, 1995. ISBN 978-0471118756.
[122] Chris Kocot. private communication, Jan. 2014.
[123] G. Masetti, M. Severi, and S. Solmi. Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus- and boron-doped silicon. IEEE Transactions on Electron Devices, 30(7):764Ű769, July 1983. doi:10.1109/TED.1983.21207.
[124] N. D. Arora, J. R. Hauser, and D. J. Roulston. Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Transactions on Electron Devices, 29(2):292-295, February 1982. doi:10.1109/TED.1982.20698.
[125] S. Reggiani, M. Valdinoci, L.Colalongo, and G.Baccarani. A unified analytical model for bulk and surface mobility in si n- and p-channel mosfets. In Proceeding of the 29th European Solid-State Device Research Conference (ESSDERC), volume 1, pages 240-243, September 1999. ISBN 2-86332-2451. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&arnumber= 1505484\&isnumber=32274.
[126] E. Conwell and V. F. Weisskopf. Theory of impurity scattering in semiconductors. Phys. Rev., 77:388-390, Feb 1950. doi:10.1103/PhysRev.77.388. URL http://link.aps.org/doi/10.1103/PhysRev.77.388.
[127] H Brooks. Scattering by ionized impurities in semiconductors. In Physical Review, volume 83, pages 879-879. AMERICAN PHYSICAL SOC ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA, 1951.
[128] D.B.M. Klaassen. A unified mobility model for device simulationŮi. model equations and concentration dependence. Solid-State Electronics, 35(7):953959, 1992. ISSN 0038-1101. doi:10.1016/0038-1101(92)90325-7.
[129] Shin-ichi Takagi, Akira Toriumi, Masao Iwase, and Hiroyuki Tango. On the universality of inversion layer mobility in si mosfet's: Part i-effects of substrate impurity concentration. Electron Devices, IEEE Transactions on, 41(12):23572362, December 1994. doi:10.1109/16.337449.
[130] C. Lombardi, S. Manzini, A Saporito, and M. Vanzi. A physically based mobility model for numerical simulation of nonplanar devices. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 7(11):11641171, Nov 1988. ISSN 0278-0070. doi:10.1109/43.9186.
[131] Z. Yu, D. Chen, L. So, R. W. Dutton, et al. PISCES-2ET and Its Application Subsystems. Stanford University, 1984. URL http://www-tcad.stanford. edu/tcad/programs/pisces2et.html.
[132] C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi. A physically based mobility model for numerical simulation of non-planar devices. IEEE CAD, 7 (11):1164-1171, Nov. 1988. doi:10.1109/43.9186.
[133] F. Szmulowicz et al. Effect of interfaces and the spin-orbit band on the band gaps of inas/gasb superlattices beyond the standard envelope-function approximation. Phys. Rev. B, 69:155321, 2004. doi:10.1103/PhysRevB.69.155321.
[134] Zhibin Ren. NANOSCALE MOSFETS: PHYSICS, SIMULATION AND DESIGN. PhD thesis, Purdue University, 2001. URL http://docs.lib.purdue. edu/dissertations/AAI3075713/. Also available at: http://nanohub.org/ resources/1918/download/zhibin_ren_thesis.pdf.
[135] Z. M. Simon Li et al. Simulation of quantum cascade lasers. J. Appl. Phys., 2011. doi:10.1063/1.3660207.
[136] G. A. Baraff. Semiclassical description of electron transport in semiconductor quantum-well devices. Phys. Rev. B., 55(16):10745-10753, April 1997. doi:10.1103/PhysRevB.55.10745.
[137] C. S. Xia et al. Simulation of ingan/gan multiple quantum well light-emitting diodes with quantum dot model for electrical and optical effects. Optical and Quantum Electronics, 38:1077-1089, 2006. doi:10.1007/s11082-006-9029-5.
[138] Justin Iveland, Lucio Martinelli, Jacques Peretti, James S. Speck, and Claude Weisbuch. Direct measurement of auger electrons emitted from a semiconductor light-emitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett., 110:177406, Apr 2013. doi:10.1103/PhysRevLett.110.177406.
[139] Francesco Bertazzi, Michele Goano, Xiangyu Zhou, Marco Calciati, Giovanni Ghione, Masahiko Matsubara, and Enrico Bellotti. Comment on" direct measurement of auger electrons emitted from a semiconductor lightemitting diode under electrical injection: Identification of the dominant mechanism for efficiency droop"[phys. rev. lett. 110, 177406 (2013)]. arXiv preprint arXiv:1305.2512, 2013. URL http://arxiv.org/pdf/1305.2512.pdf.
[140] J. Kim et al. Theoretical and experimental study of optical gain and linewidth enhancement factor of type-i quantum-cascade lasers. IEEE Journal of Quantum Electronics, 40(12):1663 - 1674, 2004. doi:10.1109/JQE.2004.837666.
[141] Kale J. Franz. New quantum cascade laser architectures: IIÚVI quantum cascade emitters, high k-space lasing and short injectors. PhD thesis, Princeton University, 2009. URL http://search.proquest.com/docview/304987367.
[142] C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, G. Meneghesso, and E. Zanoni. Role of defects in the thermal droop of ingan-based light emitting diodes. Journal of Applied Physics, 119(9):094501, 2016. doi:10.1063/1.4942438.
[143] Andreas Gehring. Simulation of Tunneling in Semiconductor Devices. PhD thesis, Vienna University of Technology, 2003. URL http://www.iue.tuwien. ac.at/phd/gehring/node61.html.
[144] Andreas Wacker. Semiconductor superlattices: a model system for nonlinear transport. Physics Reports, 357(1):1-111, Jan. 2002. doi:10.1016/S0370-1573(01)00029-1.
[145] Kenji Nakamura, Akira Shimizu, Masanori Koshiba, and Kazuya Hayata. Finite-element analysis of the miniband structures of semiconductor superlattices with arbitrary periodic potential profiles. IEEE JQE, 27(8):2035, Aug. 1991. doi:10.1109/3.83413.
[146] A. Schenk. Rigorous theory and simplified model of the band-to-band tunneling in silicon. Solid-State Electronics, 36(1):19-34, 1993. doi:10.1016/0038-1101(93)90065-X.
[147] Andreas Schenk Alexander Heigl and Gerhard Wachutka. Correction to the schenk model of band-to-band tunneling in silicon applied to the simulation of nanowire tunneling transistors. In 13th International Workshop on Computational Electronics, pages 1-4, 2009. doi:10.1109/IWCE.2009.5091099.
[148] Raymond Woo. Band-to-band tunneling transistor scaling and design for lowpower logic applications. PhD thesis, Stanford University, 2009.
[149] Mehmet Dogan, Christopher P Michael, Yan Zheng, Lin Zhu, and Jonah H Jacob. Two photon absorption in high power broad area laser diodes. In Proc. SPIE, volume 8965, page 89650P, 2014.
[150] S. Blaser et al. Characterization and modeling of quantum cascade lasers based on a photon-assisted tunneling transition. IEEE Journal of Quantum Electronics, 37(3):448-455, 2001. doi:10.1109/3.910456.
[151] Kazuya Matsuzawa, Ken Uchida, and Akira Nishiyama. A unified simulation of schottky and ohmic contacts. IEEE TRANSACTIONS ON ELECTRON DEVICES, 47(1):103-108, 2000. doi:10.1109/16.817574.
[152] Boni K. Boksteen. A Simulation Study and Analysis of advanced Silicon Schottky Barrier Field Effect Transistors. PhD thesis, University of Twente, 2010. URL http://purl.utwente.nl/essays/59426.
[153] S. Adachi. Material parameters of $\mathrm{In}_{1-x} \mathrm{Ga}_{x} \mathrm{As}_{y} \mathrm{P}_{1-y}$ and related binaries. J. Appl. Phys., 53:8775-8792, 1982. doi:10.1063/1.330480.
[154] L. Landolt-Bornstein. In O. Madelung, editor, Numerical data and functions in science and technology, volume 17a \& 22a. Springer, 1982.
[155] L.D. Landau and E.M. Lifshitz. Electromagnetic flutuation. In Electrodynamics of continuous media, chapter 18. Addison-Wesley, 1960. ISBN 9780750626347.

Index

.gain, 38
.geo, 38, 43
.layer, 38, 43
.mplt, 38
.plt, 38, 68
.sol, 38
2nd_harmonic, 465
2ndmode_phase, 647
3D current flow, 469
3_points, 972
3d amplifier, 328
3d_amplifier_model, 328, 466
3d_attachment, 467
3d_plane_control, 468
3d_solution_method, 469
3drayplot_angle, 470
3drayplot_bias, 472
3drayplot_phi, 473
3drayplot_project, 474
3drayplot_spectrum, 476
3drayplot_surfpower, 476
3drayplot_theta, 477
4_points, 972
a1_bar, 505
a_bar, 478
a_bulk, 478
a_well, 479
Abrupt heterojunction, 182
abrupt heterojunction, 96
abs_spectrum_file, 801
absorption, 479
absorption coefficients, 143
absorption_coef, 801
AC analysis, 480, 482, 485
ac__bar, 479
ac_bulk, 480
ac_light, 480
ac_parameters, 482
ac_sparse_solver, 484
ac_voltage, 485
ac__well, 489
acceptor_type2, 1090
active region, 490
active_layer_depth, 801
active_macro_override, 490
active_reg, 490
active_reg_zdim, 497
active_regnum, 852
active_temper, 498
acz_bar, 499
acz_well, 499
adaptive bias, 107
add_acmemory, 499
add_arnoldimemory, 500
add_boundary, 51, 500
add_mainmemory, 501
add_oxd_memory, 913
add_rcled_lambertian, 502
add_thermalmemory, 502
add_variable, 1023
adjust_active_reg, 503
adjust_column_screening, 503
adjust_current, 703
adjust_doping, 504
adjust_layer_screening, 504
affinity, 505
ai_bulk, 506
ai_well, 507
alias, 580
align_complex, 508
alignment_ref, 508
all_interface, 715
alpha factor, 153
alpha_n, 508
alpha_p, 508
alpha_wavel, 508
aluminum_mater , 1090
analytical_gain, 509
angle, 1025
anisotropic parabolic, 131, 133
antiguiding, 232
applications, 30, 32, 33
Arbitrary barrier, 182
ARROW, 232
at_mesh_near_x, 1023
auger_n, 510
auger_p, 510
auto_finish, 74, 75, 665
auto_pn_ratio, 1073
auto_tunneling, 510
Auxiliary Contact, 82
av_index, 694, 1073
average_index, 801
average_refr_index, 1011
axial approximation, 131
az_bar, 511
az_well, 511
b_bar, 511
b_well, 512
back_index, 512
back_reflection, 512
backg_loss, 1069
backward Euler method, 108
band offset, 193
band splitting, 132
band_discont, 512
band_discont_right, 513
band_distance, 513
band_gap, 515
band_offset, 515
bandgap narrowing, 102
bandgap reduction, 82
bandgap renormalization, 490
bandgap shrinkage, 147
bandgap_narrow, 516
bandgap_optical_gen, 516
bandgap_reduction, 632, 1048
barrier_correction_by_qw_model, 516
basic equations, 87, 303
basic variables, 78
basic__var_symbol, 517
beam divergence, 230
Bednarczyk, 90
begin_bpmplot, 517
begin_cavity, 517
begin_complex, 519
begin_geometry, 51
begin_meshgen, 53
begin_qwire_complex, 520
begin_zdir_complex, 521
begin_zmater, 522
bend_extern, 522
bend_xy_plane, 523
bessel_order , 930
beta_mte, 524
beta_n, 525
beta_p, 525
bias variables, 1251
bias_output_at_maximum, 525
bias_output_curr_flux, 527
bias_output_ii_integral, 528
bias_output_longitudinal, 529
bias_output_mater_average, 530
bias_output_near_point, 531
bias_output_peak_wavelength, 532
bias_output_spatial_integral, 533
bias_output_tunneling, 534
bias_output_wave_average, 535
Binding Energy, 165
blank_area, 537
Bloch function, 134
blue shift, 147
Boltzmann, 90, 178
bottom_contact, 538
boundary, 76
boundary conditions, $77,95,568,571$
boundary conditions, thermal, 568, 571, 1103
boundary_i, 972
boundary_smooth, 538
boundary_type, 666
boundary_type1, 885
boundary_type2, 885
boundary_xpoint, 539
BPM, 328, 329
bpm, 540
bpm_coupled_mode, 543
bpm_initial_import, 544
bpm_longmode_splot, 544
bpm_multimode, 545
bpmintegr_xy, 546
bpmplot_xy1d, 547
bpmplot_xyz1d, 548
bpmsplot_xy, 549
bpmsplot_xz, 549
bpmsplot_yz, 550
broad-area, 593, 911
broaden , 1025
broadening, 490
bulk laser, 34
bulk material, 143
bulk semiconductor laser, 32
bulk_dos_model, 550
bulk_treatment, 551
bulk_xfunc1, 552
bulk_xfunc2, 552
bulk_xfunc3, 552
bulk_xfunc4, 552
bulk_xfunc5, 552
bulk_xfunc6, 552
bulk_xfunc7, 553
bulk_xfunc8, 553
bulk_xfunc9, 553
c11_bar, 553
c11_bulk, 554
c11_well, 554
c12_bar, 553
c12_bulk, 554
c12_well, 555
c13_bar, 553
c13_bulk, 554
c13_well, 555
c33_bar, 553
c33_bulk, 554
c33_well, 555
c44_bar, 554
c44_bulk, 554
c44_well, 555
calibration to experimental data, 150
capabilities, 31, 32, 34
capture coefficients, 89
capture cross section, 1115
capture, k-space, 210
capture, real space, 209
Carrier density, 133
carrier flux, 88
carrier fluxes, 106
carrier number, 894
carrier statistics, 90
carrier transport, 209
carrier-carrier scattering, 148
CCD, 78
cell size, 665
change_variable, 78
Chirp Grating, 329
column, 556
column_position, 557
compact_junction_region, 557
compact_semiconductor_model, 558
complex frequencies, 305
complex structure, 135
complex_index1, 1018
complex_index1, 1022
complex_index2, 1018
complex_index2, 1022
complex_index3, 1022
complex_index4, 1022
complex_index5, 1022
complex_region, 560
complex_var_symbol, 561
compute_inductance, 561
conc_points, 1008
conc_range, 694, 1008, 1073
cond1_mass_para, 564
cond1_mass_perp, 565
cond1_para_e_dep_mass1, 566
cond1_para_e_dep_mass2, 566
cond1_perp_e_dep_mass1, 567
cond1_perp_e_dep_mass2, 567
cond1_valley_prop1, 567
cond2_mass_para, 565
cond2_mass_perp, 566
cond2_para_e_dep_mass1, 567
cond2_para_e_dep_mass2, 567
cond2_perp_e_dep_mass1, 567
cond2_perp_e_dep_mass2, 567
cond2_valley_prop1, 568
cond_band1_valley, 562
cond_band2_edge, 562
cond_band2_valley, 563
cond_band3_edge, 562
cond_band3_valley, 563
cond_dos_mass_ratio_n, 563
cond_dos_mass_ratio_p, 564
connect_planes, 942
contact, 568
contact description, 54
contact_heating, 571
contact_metal_interface, 571
continuity equations, 105
continuous traps, 103, 1114
convention, 572
convergence, 73
convolution integral, 148
core_radius, 930
cos_amp , 1049
cos_constant , 1049
cos_period, 1049
cos_phase, 1049
Coulomb enhancement, 490
Coulomb Potential, 163
couple_input_power, 572
couple_next, 573

Coupled MQW, 183
Courant factor, 672
cplot_xy, 573
cplot_xyz, 575
csuprem_mask, 576
current bias, 73
current boundary, 99
current continuity equations, 87
current densities, 88
current flow, 1217
current_conc, 577
curve__math, 952
curve_number, 1073
cylindrical, 578
d1_bar, 587
d1_bulk, 588
d1_well, 589
data_file, 694, 789, 937, 940, 947, 949, 952, 1011, 1027, 1073, 1150
data_file, 1098, 1100
data_file, 942
data_file, 1023
data_file, 1025
data_point, 694, 1073
data_point , 1098, 1100
dataset_end, 952
dataset_start, 952
DBR, 33, 311, 329
dbr_truncate, 579
deep level traps, 89
define_alias, 580
define_cavity, 581
define_material, 582
define_symbol, 582
define_vertical_position, 583
delta1_bar, 585
delta1_bulk, 586
delta1_well, 587
delta2_bar, 586
delta2_bulk, 586
delta2_well, 587
delta3_bar, 586
delta3_bulk, 587
delta3_well, 587
delta_affinity, 1072
delta_real_index_caxis, 585
delta_so_bar, 585
delta_so_well, 585
density, 1100
density of states, 90, 179
density_end, 1098
density_start, 1098
detect_ratio, 887
DFB, 311, 329, 332, 748
DFB, gain/loss coupled, 329
DFB, phase shifted, 329
diagonal_split, 590
dielectric_constant, 591
differential_gain, 591
dipole enhancement, 145
direct_eigen, 592
directory, 852
disconnect_zmesh, 594
discretization, 106
dispersion, 653
distance_range, 1023
Distributed Bragg Reflector, 33
distributed feedback laser, 33
do_raytrace_3d, 594
donor_type2, 1090
dopant_index_from, 915
dopant_index_to, 915
dopant_ionization_model, 600
doping, 601
doping profile, 601
double_mesh, 53, 608
dox2_el_weight, 613
dox2_extern_spectrum, 614
dox3_el_weight, 615
dox3_extern_spectrum, 615
dox4_el_weight, 616
dox4_extern_spectrum, 617
dox5_el_weight, 617
dox5_extern_spectrum, 618
dox_efield0_pf_elec, 610
dox_efield0_pf_hole, 611
dox_el__weight, 611
dox_exciton_eg, 612
dox_extern_spectrum, 612
dox_gaussian_divj, 613
dox_gaussian_sdj, 613
dox_hopping_energy, 613
dox_peak_abs, 613
dox_vib_quanta, 613
dox_xp_coupling, 613
dynamic behavior, 211
e15_bulk, 625
e31_bulk, 625
e33_bulk, 625
edge, 619
edge_curve, 52, 619
EEIM, 231
eeim_optic, 620
effective index, 231, 339
effective mass, 132, 133
effective Rydberg, 163
effective_medium, 622
effective_miniband_model, 622
efficiency, 329
efield0_pf_elec, 623
efield0_pf_hole, 624
efield_ref, 915
eg0_bar, 624
eg0_bulk, 624
eg0_well, 625
eigenfunctions, 233
EIM, 231
EIM/VCSELs, 339
el_frac_non_active, 913
elastic scattering, 210
elec_capture, 715
elec_carr_loss, 625
elec_dos_energy, 626
elec_level , 1098, 1100
electro-absorption, 162
electrode, 568, 647
electron affinities, 96
electron affinity, 505
electron_mass, 626
electron_mobility, 627
electron_ref_dens, 627
electron_sat_vel, 627
eliminate_mesh, 628
embedded_material, 629
end, 952
end, 1055
end_bpmplot, 629
end_cavity, 630
end_complex, 630
end_geometry, 51
end_loop, 630
end_meshgen, 53
end_qwire_complex, 630
end_same_complex, 630
end_zdir_complex, 630
end_zmater, 630
endloopif, 631
envelope function approx., 134
equilibrium, 631
Esaki junction, 188
evaluate_parameter, 633
exciton, 162
exciton absorption, 166
excitons, 292
exclude_from_electrical, 634
experimental data, 150
export_3dgeo, 635
export_eeimmsg, 620
export_fdtd_inputdata, 635
export_gain_data, 635
export_kp_data, 636
export_kp_para, 636
export_layers_to__suprem, 637
export_raytrace, 637
export_spectrum, 1011
export_to_iccap_mdm_file, 638
export_wave, 641
ext_funck, 642
external cavity, 33
external circuit, 846, 883
external_heat_source, 642
external_stress_band_model, 643
extract_contour, 644
extraction efficiency, 472
extrap_conc, 1008
extrap_energy, 1008
extrap_pn_ratio, 1008
extrap_temper, 1008
Fabry-Perot, 32, 33, 300, 306, 329
facet, 947
factor_file, 863
far-field, 658, 675
far-field distribution, 230
farfield, 645
farfield_couple, 647
FDTD, 649, 651, 653, 658, 660-662, 665, 674-681, 737
fdtd_background_mater, 648
fdtd_CLFDTD_control, 649
fdtd_data_analysis, 649
fdtd__define_region, 651
fdtd_dispersion, 653
fdtd_far_field, 658
fdtd_field_monitor, 660
fdtd_fourier, 661
fdtd_glass_coating, 662
fdtd_group_monitors, 665
fdtd_mesh_density, 666
fdtd_model, 665
fdtd_modify, 674
fdtd_monitor_box, 675
fdtd_output_structure, 676
fdtd_plane_refl, 677
fdtd_plane_trans, 678
fdtd_push_job, 678
fdtd_replace_FDTDgrid, 679
fdtd_replace_mater, 680
fdtd_source, 681
FEM, 109
Fermi level splitting, 74
Fermi-Dirac distributions, 90
FFP, 658, 675
fiber grating, 33
fiber-like, 337
field induced emission, 91
field_dep_curves, 1073
field_range, 1073
file , 635,636
finite element method, 109
fit_gain_wavel, 683
fld_center, 1156
flux_plot, 686
FM, 34
force_last_barrier_offset, 684
fourier_power, 685
Franz-Keldysh, 493
franz_keldysh, 490
free-carrier loss, 490
freeze_carrier, 894
freq_control, 686
from, 937
front_back, 888
front_index, 687
front_reflection, 687
full_ionization, 688
gaas_mater , 1090
gain broadening, 148
gain function, 150
gain preview, $508,513,577,591,626,689$, 694-696, 717, 745, 763, 1098-1100
gain saturation, 153
gain spectrum, 38, 169
gain suppression, 153
gain, bulk material, 149
gain, non-linear, 153
gain_correction, 620
gain_density, 689
gain_module, 690
gain_spectrum, 692
gain_spon, 694
gain_wavel, 696
gamma_detail , 1098, 1100
gamma_subband, 1150
gammak_bar, 697
gammak_well, 698
gen_datafile, 801
gen_datatype, 801
generation_rate, 698
generic_impurity, 1090
get_active_layer, 699
get_data, 701
get_raytrace_data, 702
global_model_setting, 703
grade_active_mater, 708
grading, 834, 839
graphene_index_model, 710
grating compos, 705
grating_dia_ratio, 931
grating_height, 931
grating_model, 706
Green's function, 304
grid_sizes, 940, 943
group1, 710, 841
group_index, 930
gsn_dt, 1049
gsn_s1, 1049
gsn_s2, 1049
gsn_t1, 1049
half-width, 148
half_mesh, 53, 710
HDF5 format, 665
heat flow, 218
heat_flow, 711, 1102
heat_flow_simple, 715
Heaviside step function, 305
heavy hole, 131
height, 619
height_range, 931
Henry, 304, 306
heteroj_capture, 715
heteroj_scrn_factor, 913
heterojunction, 177
hh_or_lh, 1098, 1100
high resistant junction, 184
hole burning, 329
hole_capture, 715
hole_carr_loss, 717
hole_dos_energy, 717
hole_level , 1098, 1100
hole_mass, 718
hole_mobility, 718
hole_ref_dens, 718
hole_sat_vel, 719
Holstein model, 287
hopping, 94
hot electrons, 1217
hydrodynamic model, 1217
ignore_local_current, 719
imag_part, 937
impact_baraff, 719
impact_chynoweth, 720
impact_dopant_dependent, 722
impact_lackner, 723
impact_mean_free_path, 724
impact_model, 725
impact_okuto_crowell, 727
import_basic, 728
import_complex, 729
import_fdtd__data, 737
import_gain_data, 730
import_kp_data, 737
import_qcl_gain_para, 738
import_raytrace, 739
impurity dependence, $94,508,627,718$, 812, 843, 844, 846
Incident Light, 241, 292
incident light, 797, 801
incident_power, 801
include, 740
include_data, 694
incomplete ionization, $90-92,504,600$, 601, 932, 1071
independent_mqw, 740
independent_zdir_mqw, 740
index change, 153
index change model, 742
index_cladding, 930
index_core, 930
index_field_dependence, 741
index_model, 742
index_spectrum, 744
index_wavel, 745
init_wave, 746
initialize_bpm, 885
inner_bar_gain, 752
input files, 38
input_file, 937, 947, 949
insert_mesh_order, 753
insert_mesh_plane, 753
insert_mesh_range, 754
Insulators, 81
integer_func, 754, 761
integration, 940
integration_xrange, 940
integration yrange, 940
interband absorption, 142
interband transition, 143
interband transitions, 153
interband tunneling, 187
interface, 755
interface_leakage, 759
interface_mater, 715
interface_mesh, 759
interface_trap_capacitor, 760
intern_loss, 930
internal extra point, 760, 761
internal loss, 300
internal_xpoint, 761
internal_z_xpoint, 760
intervalence band absorption, 494
intra-band scattering, 145
isolate_complex, 762
isolate_mesh_segment, 762
isothermal, 218
Jacobian matrix, 107
jdos_energy, 763
JFET, 78
joule, 711
junction_type, 1008
k-space, 131
k.p theory, 34
kane_para_f_bar, 763
kane_para_f_well, 763
Kazarinov, 306
Kerr, 741
Kirchoff, 98, 99
kp__model_setting, 764
Kramers-Kronig formula, 153
label, 968
label, 1049
Landsberg model, 148, 150
Langevin force, 304, 1241
lastip_compact_model, 767
latchup, 1042
lateral mode, 223
lateral_mode3d, 767
lattice_bar, 768
lattice_base, 768
lattice_bulk, 769
lattice_c_bar, 769
lattice_c_base, 769
lattice_c_bulk, 769
lattice_c_constant, 770
lattice_c_well, 770
lattice_constant, 770
lattice_well, 771
lax_mass_bar, 771
lax_mass_well, 771
layer, 772
layer1, 1018
layer1, 1022
layer2, 1018
layer2, 1022
layer3, 1022
layer4, 1022
layer5, 1022
layer_conf, 774
layer_height_ref, 775
layer_input_convention, 775
layer_mater, 777
layer_position, 780
layer_type, 782
layer_xrange, 774
layer_yrange, 774
layers_for_semicrafter, 784
lband_bar, 785
lband_well, 786
lbdata_num, 1156
LED extraction, 472
led_control, 786
led_eff_distr, 789
led_farfield, 789
led_simple, 790
led_spectrum, 790
led_top_coating, 791
left contact, 792
length, 1055
LET, 1013
lifetime_model, 792
lifetime_n, 793
lifetime_p, 793
light hole, 131
light ray propagation, 272
light_current, 793
light_dir, 801
light_power, 797, 1165
light_power_qwip, 801
limit_gain, 1169
limits_i, 972
linear_heat, 803
linewidth enhancement factor, 153
load_macro, 804
load_mesh, 61, 805
local gain, 159
localized, 137
longitudinal, 807
Longitudinal Graded Index laser, 329
longitudinal modes, 305, 808
loop_integer, 810
loop_real, 810
loopif, 811
Lorentzian function, 146, 148, 150
loss, 479, 1127
low_field_mobility_model, 812
lplot_xy, 824
lplot_xy_qw_states, 825
lplot_xyz, 826
lumped elements, 98
Luttinger-Kohn, 492
Luttinger-Kohn Hamiltonian, 133, 134
macro library, 804, 834
macro1, 1034
macro2, 1034
macroj, 1131
main_input, 701
makebend dome, 827
makebend_rectangle_based_pyramid, 829
makebend_tilt, 831
many-body effects, 490
Martin, 148
mass_density, 832
mass_gamma_bar, 832
mass_gamma_bulk, 832
mass_gamma_well, 833
mass_l_bar, 833
mass_l_well, 833
mater, 1072
mater_from, 915
mater_to, 915
mater_var, 834
material, 836, 972
material parameters, 54, 1175
material_3d, 838
material_label_define, 839
material_lib, 840
material_par, 841, 1029
max_electron_mob, 843
maximum equation error, 67
maximum variable error, 67
Maxwell equation, 303
McCall, 309
mesh, 38, 109
mesh generation, $52,500,538,619,805$, 844, 956, 968, 972, 976
mesh generation, layer, 538, 556, 772, 777, 792, 1003, 1036, 1107
mesh generation, z, 1161
mesh refinement, 77, 608, 710, 1031
mesh, coarse, 76
mesh, fine, 77
mesh_output, 844
mesh_points, 1055
micro cavity, 581
microcavity_exit, 845
microcavity_model, 844
min_electron_mob, 846
minispice, 846
mmb_gaintable, 852
mobility, $88,93,508,517,524,525,561$, $627,718,719,728,729,836,843$, 844, 846, 907
mobility, two-piece model, 93
mobility_xy, 854
modal_base, 620
mode, 1148, 1150
mode_index, 647, 774, 940, 943
mode_num, 885, 887, 888
mode_srch, 856
model_points, 931
modify_bias_output, 858
modify_bulk_macro, 858
modify_gain, 859
modify_layer_height, 860
modify_light_spectrum, 862
modify_opt_gen_rate, 863
modify_plot, 863
modify_qw, 865
modify_taper_height, 873
modify_vector_plot, 874
modify_wurtzite, 874
modu_bias, 876
modulators, 33
momentum matrix elements, 143
monitor_emission, 877
more_dos_fermi_output, 877
more_output, 878
more_spectrum_output, 881
more_sym_polygon, 882
more_tcadmesh, 883
more_trap_output, 884

Mott transition, 92, 600
muller_functol, 620
muller_maxit, 620
muller_vartol, 620
multi-frontal, 714
multi-lateral mode, 153, 224, 300, 885
multiband mixing, 132
multimode, 34, 153, 224, 300, 885
multimode_detect, 887
multimode_mirror, 888
multisection DFB/DBR, 33
multisection PIC, 33
n__doping_level, 1090
n_doping_level2, 1090
n_lbdata, 1156
n_ubdata, 1156
n_variables, 952
name, 972
nca_deltapot, 888
nca_deltapot_right, 889
near-field distribution, 230
negative differential resistance, 94, 837
negative mobility, 83
negf_model, 890
negf_plot, 893
Neumann boundaries, 98
new_doping, 632, 1048
new_inset_planes, 893
Newton's method, 106, 894
Newton's method, initial guess, 79, 107
Newton-Raphson method, 106
Newton-Richardson, 107
newton_freeze_carrier, 894
newton_par, 894
nitride_mater, 1090
no_auto_workfunction, 902
noise, 354
nomenclature, 88, 1245
non-convergence, 53, 73
non-local transport, 978, 994
non-ohmic behavior, 96
non-parabolic bands, 131
non-polar nitride, 874
nonlocal_path, 903
nonlocal_transp_model, 904
nonlocal_transp_region, 905
norm_field, 907
num, 1095
numerical techniques, 105
ohmic contact, 95
ohmic_junction, 907
OLED, 285, 287
oled_control, 908
optic_coating, 908
optical amplifiers, 33
optical confinement, 159
optical gain, 142
Optical generation, 666
optical mode, 223
Optical Pumping, 241, 292
optical transition, 142
optical_axis, 909
optical_field, 911
Organic semiconductor, 285, 287, 292
organic_exciton_diff, 913
organization, output data, 68
outer_section, 914
output, 914
output data organization, 68
output files, 38
output_suprem_mesh, 915
overlap integral, 148, 152
ox_dopant_el_transfer, 915
ox_el_weight, 916
ox_exciton_eg, 917
ox_extern_spectrum, 917
ox_gaussian_divj, 918
ox_gaussian_sdj, 918
ox_hopping_energy, 919
ox_life_field_dependence, 919
ox_peak_abs, 920
ox_vib_quanta, 920
ox_xp_coupling, 921
oxd2_diff_length, 923
oxd2_lifetime, 924
oxd2_quench, 924
oxd_diff_length, 921
oxd_lifetime, 922
oxd_quench, 922
oxide_mater , 1090
oxynitride_mater , 1090
p__doping_level, 1090
p__doping_level2, 1090
para_extract, 925
parallel_linear_solver, 927
parameterize, 1008
passive_3d, 928
passive_carr_loss, 929
passive_fiber, 930
Pauli matrix, 309
pc_led_model, 931
peltier, 711
period_number, 1018
period_thickness, 1011
pf_model_setting, 932
photo-carrier, 103, 1114
Photo-excitable, 103, 1114
photonic crystal, 270
photonic_crystal, 581
photoresist_mater, 1090
pick_xmode, 885
pick_ymode, 885
piezo_d11, 932
piezoelectric effect, 138
pinning effects, 91
Platzman, 309
plot_1d, 934
plot_2d, 938
plot_3d, 940
plot_3dcolor, 941
plot_3dmesh, 942
plot_3dvtk, 943
plot_ac_curr, 944
plot_ac_laser, 947
plot_ac_minispice, 948
plot_ac_modal_gain, 949
plot_ac_parameters, 950
plot_bias, 952
plot_data, 954
plot_device, 962
plot_longitudinal, 955
plot_mesh, 956
plot_minispice, 957
plot_more_dos_fermi, 959
plot_more_spectrum, 959
plot_more_trap, 960
plot_multilayer_optics, 960
plot_qw_raw_data, 961
plot_rtgain, 962
plot_scan, 963
plot_spectrum, 967
PML, 239, 666, 845, 967
pml, 967
pn_ratio, 694, 1073
pn_ratio , 1098, 1100
pn_ratio_points, 635
pn_ratio_points, 1008
pn_ratio_range, 1008
pn_ratio_range, 635
Pockels, 741
point, 51, 968
point_ll, 940, 1156
point_ur, 940, 1156
points, 647
Poisson's equation, 87, 105
poisson_ratio, 969
polar_num, 885
polarization, 969
polarization, TE, 144
polarization, TM, 144
polarization_charge, 969
polarization_charge_model, 970
poly_mater, 1090
polygon, 51, 972
Poole-Frenkel model, 91, 932
position label, 1159, 1160
positive_current_flow, 572
post-processing, 573, 644, 692, 701, 824826, 863, 934, 938, 940-943, 948,

950, 954, 961, 963, 1077, 1079
power_couple, 801
power_loss, 1024
power_refl, 1024
previous_layer, 972
print_active_layer, 973
print_macro, 973
print_optowizard_data, 974
print_sparse_matrix, 974
profile, 801
prop_constant_model, 975
pulse_dt, 1049
pulse_s1, 1049
pulse_s2, 1049
pulse_t1, 1049
pulse_tf, 1049
pulse_tr, 1049
pure_index_loss, 620
put_mesh, 52, 53, 976
q_transport, 978, 994
qc_laser_preview, 994
qc_laser_vs_current, 996
qc_net_gain_spectrum, 997
qcl_3level_model, 998
qcl_lo_phonon_scattering, 1001
qcl_period_location, 1001
qcl_qw_region, 1002
qcl_temperature_model, 1002
qdot_individual, 1003
qdot_layer_mater, 1003
qdot_material, 1005
quantum capture, 209, 978, 994
quantum cascade laser, 994, 996-998, 1001
quantum dots, 169
quantum escape, 209, 978, 994
quantum flyover, 978,994
Quantum Transport, 81
quantum transport, 209
Quantum Tunneling, 177
quantum tunneling, 98
Quantum well, 129
quantum well, 129, 143
quantum well laser, 32, 34
quantum well model, 865
quantum well, valence mixing, 133
quantum well,complex, 141
quantum well,valence mixing, 141
quantum wells, 279
quantum wells,complex, 135
quantum wells,simple, 130
quantum-MOS, 142
quasi-Fermi levels, 88, 89, 148
qw_optics_control, 1008
qw_silicon_mater, 1090
qw_thick, 1090
qw_trap_assisted_tunneling, 1009
qw_xrange, 1090
qwell_normal, 1007
QWIP, 801
qwip_model, 1011
qwip_period, 801
qwip_preview, 1011
qwire_complex_region, 1012
radiation_heavy_ion, 1013
radiative mode, 239
radiative_boundary, 1016
radiative_recomb, 1016
rate equation, 299
raw_output, 1017
ray tracing, 272
RCLED, 269, 879
rcled_dbr, 1018
rcled_mix_lambertian, 502
rcled_model, 1019
rcled_optic_layer, 1022
rcled_plot_y, 1023
rcled_power_angle, 1024
rcled_refl_coating, 1024
rcled_spectrum, 1025
rcled_spectrum_angle, 1026
rcled_surface_plot_xy, 1027
re_emission, 1027
real_func, 1029
real_index, 1029
real__index_spec, 1029
rec__absorb__pow__dens, 1030
recombination, Auger, 89, 510
recombination, $\mathrm{SRH}, 89$
recombination, surface, 91
recombination, thermal, 96
rectangle, 931
rectangular barrier, 181
red shift, 147
reduction, 82
reference concentration, 311
reference index, 311
reference wavelength, 311
refl__phase__in_pi, 1024
refraction, 272
refractive index, 1029
regrid, 1031
reload_mater, 1033
remove__section, 1033
renumber_mater, 1033
replace__macrofile, 1034
report__node, 1035
Resistor Regions, 100
Resonant cavity, 269
restart, 1035
results, 68
returned, 1095
right__contact, 1036
RIN, 34, 354
ring laser, 1036
ring_structure, 1036
rotation, 1036
rt3d_contact_reflector, 1038
RTG method, 34, 75, 117, 345, 348, 351, $421,422,445,446,454,457,469$, 749, 975
rtgain__data, 962
rtgain_phase, 1037

S-parameters, 127
scalar wave, 223
scale__abs_spec , 801
scale__add__variable, 1023
scale_curr, 647
scale_lit, 647
scale__power, 952
scale_radiative__recomb, 1040
scale__variable , 1023
scale_x, 952
scale_y, 952
scan, 1042
scan variables, 1047,1251
scan_data, 701
scan_function, 1049
scan__num, 1069
scanline, 1069
scanvar , 1069
scanvar_facet , 1069
scanvar__horizontal_power , 1069
scanvar__mode__index , 1069
scanvar_scale , 1069
scanvar__scale_curr , 1069
scanvar__scale__horizontal , 1069
scanvar_scale_lit , 1069
Schottky contact, 177, 539
Schottky contacts, 95, 96
Screened Potential, 163
screening, 969, 970, 1064
SCXLIB, 56, 197, 516, 684, 840
sec__num, 1055
sec__num , 930
second harmonic distortion, 34, 354
section, 1051
section__air, 1055
section__location, 1055
self-consistent, 137, 138
self_consistent, 1056
semi-classical, 180
semi-polar nitride, 874
set__3dray_internal__interface, 1059
set__3dray__mirror, 1060
set__active_reg, 1060
set__barrier_width, 1060
set_fdtd_interface, 1061
set_include, 1062
set_index, 1062
set_initial_stress, 1063
set_lp_mode_index, 1063
set_minority_carrier, 1064
set_negative_stim, 1064
set_polarization, 1064
set_screening_factor, 1067
set_stress, 1068
set_temperature, 1068
set_wavelength, 1069
set_xydata_for_scan, 1069
setup_raytrace, 1070
SetupApsys, 58, 60
SetupLastip, 58, 60
SetupPics3d, 58, 60
shal_acpt_level, 1071
shal_acpt_level_i, 1071
shal_dnr_level, 1071
shal_dnr_level_i, 1071
shape, 619
shear__modulus, 1072
Sheet density, 691
shift_affinity, 1072
Shockley-Read-Hall, 89
Si/SiGe, 279
side, 789
silicon_mater, 1090
sin_amp, 1049
sin_constant, 1049
sin_period, 1049
sin_phase, 1049
Slotboom model, 102
SMSR, 1243
SOA, 328
sol_inf, 701
solve_lateral_wave, 1072
SOR, 911, 1134
sor_par, 1134
sort_imag, 620
sort_modepeak, 885
sort_modespan, 885
sp.rate_wavel, 1073
sparse_eigen_solver, 1074
spatial hole burning, 334
spec_heat, 1076
special_suprem_contact, 1075
spectral dep. index, 1029
spectral hole-burning, 34
spectrum, 287
spectrum_points, 1011
spectrum_tau, 1011
spinor, 310
splot_xy, 1079
splot_xyz, 1077
spont_charge, 1080
spontaneous emission, 301, 1073
spontaneous emission rate, 146
spontaneous recombination coefficient, 1016
SRH, 89
SRH recombination, 793
stack_refl, 1025
standard output, 68
standing_wave, 962
start, 952
start, 1055
start_loop, 1081
start_qwire_complex, 1082
start_same_complex, 1082
statistics, 90
std_wave_range, 962
steady state, 91
stimulated emission, 299
stop, 1083
Stormer, 148
strain, biaxial, 131
strain, compressive, 131
strain_bar, 1083
strain_well, 1083
strained silicon, 279
strained_mobility, 1084
stress_solution, 1087
stretch_vertical_line, 1085
structures, 328
subbands, anti-crossing, 135
subbands, non-parabolic, 133
subbands, parabolic, 133
subpixel averaging, 666
sum_2ndmode, 647
superlattice, 872
suprem_contact, 1088
suprem_impurity_define, 1089
suprem_property, 1090
suprem_to_apsys_material, 1092
surf_elec_dens , 801
surface states, 91
surface_mater, 931
surface_y, 931
surface y _label, 931
sym_polygon_for_semicrafter, 1092
sym_polygon_quantum_well, 1094
sym_polygon_taper, 1094
symbol, 582
symbol_variable, 1095
symmetric, 647
symmetry properties, 134
taper_between_segments, 1096
taper_outer_boundary, 1097
tapered structure, 329
tau_density, 1098
tau_energy, 1099
tau_model, 1099
tau_temperature, 1100
tax_mass_bar, 1101
tax_mass_well, 1101
TE, 1148
TE/TM mode, 490
temp, 1103
temp_dep_macro_table, 1102
temp_end , 1100
temp_start , 1100
temper_points, 635
temper_points, 1008
temper_range, 1008
temper_range, 635
temperature, 1103
temperature dependence, 97, 498
temperature variation, 217
thermal model, 218
thermal_interf, 1103
thermal_kappa, 1104
thermal_kappa_xy, 1104
thermionic emission, 96
theta, 647
thomson, 711
TM, 1148
tmass_gamma_bar, 1105
tmass_gamma_bulk, 1106
tmass_gamma_well, 1106
to, 937
top_contact, 1107
top_emission, 931
top_emission, 1025
transfer matrix, 306
transfer_fraction, 915
transfer_from_host, 915
transient, 91
transient conditions, 89
transient simulation, 108
transparency, 181
trap absorption, 103, 1114
trap distribution, 103, 1114
trap dynamic equation, 89, 91
trap emission, 103, 1114
trap_assisted_tunnel_junc, 1108
trap_assisted_tunneling, 1109
trap_conc_1, 1112
trap_conc_2, 1113
trap_conc_3, 1113
trap_conc_4, 1113
trap_conc_5, 1113
trap_conc_6, 1113
trap_conc_7, 1113
trap_conc_8, 1113
trap_conc_9, 1113
trap_excitation, 1114
trap_index, 940, 943
trap_level_i, 1114
trap_ncap_i, 1115
trap_pcap_i, 1115
trap_type_1, 1115
trap_type_2, 1115
trap_type_3, 1116
trap_type_4, 1116
trap_type_5, 1116
trap_type_6, 1116
trap_type_7, 1116
trap_type_8, 1116
trap_type_9, 1116
traplevel_stddev_1, 1116
traplevel_stddev_2, 1117
traplevel_stddev_3, 1117
traplevel_stddev_4, 1117
traplevel_stddev_5, 1117
traplevel_stddev_6, 1117
traplevel_stddev_7, 1117
traplevel_stddev_8, 1117
traplevel_stddev_9, 1118
traplevel_tail_1, 1118
traplevel_tail_2, 1118
traplevel_tail_3, 1118
traplevel_tail_4, 1118
traplevel_tail_5, 1118
traplevel_tail_6, 1118
traplevel_tail_7, 1119
traplevel_tail_8, 1119
traplevel_tail_9, 1119
tunnel junction, 188
tunnel_junc, 1124
Tunneling, 177
tunneling, 1119, 1124
tunneling current, 182
Tunneling transparency, 181
two-photon absorption, 490, 498, 929, 1060, VCSEL, 33, 332

1127

Two-Port Network, 126
two_photon_carr, 1127
two_photon_loss, 1127
type, 1049
Type II band alignment, 512, 888, 889
type2_qw_setting, 1128
ubdata_num, 1156
unconfined, 866
unified_schottky_local_tunneling, 1130
uniform model, 260
uniform_extraction, 801
unphysical, 76
use_bulk_affinity, 1130
use_bulk_bandgap, 1131
use_bulk_property, 1131
use_gain_spec, 852
use_index_spec, 852
use_macrofile, 1131
use_sor, 1134
use_spon_spec, 852
user_datafile, 1049
user_defined_mobility, 1132
val1_valley_prop1, 1139
val2_valley_prop1, 1139
val_bandj_edge, 1139
valence band mixing, 131
valence mixing, 133, 141, 490
valj_mass_para, 1135
valj_mass_perp, 1136
valj_para_e_dep_mass1, 1138
valj_para_e__dep_mass2, 1138
valj_perp_e_dep_mass1, 1138
valj_perp_e_cdep_mass2, 1139
var_num, 952
variable, 937, 940, 943, 952, 1027
variable, 1023
variable_range , 1023
variables, 1251
variation, 1095
vcsel_cavity_region, 1140
vcsel_model, 1141
vcsel_section, 1145
Vector Helmholtz, 224
vectorial variables, 1260
vectorial_wave, 1148
vertical_dbr_layer_mater, 1149
view_dipole, 1150
view_ganvalence, 1151
view_kpsubband, 1152
view__kpwave, 1152
view_macro, 1153
view__vtkfile, 1153
view__xrot, 940
view_xrot , 942
view_zzincblende__valence, 1151
view_zrot, 940
view_zrot , 942
virtual_time_setting, 1153
voltage bias, 73
vplot_xy, 1154
vplot_xyz, 1155
vtk_file, 943
watch point, 665
Wave Equation, 224
wave equation, $303,592,746,911,1134$
wave-guiding structure, 303
wave__boundary, 1156
waveguide $\mathrm{PD}, 33$
waveguide__input, 1158
wavel__points , 1008
wavel_range, 694, 1073
wavel_range , 1008
wavelength, 908, 1069
wavelength , 801
wavelength_range, 1011
wavelength_range , 1025
wi , 620
WKB theory, 178, 182
wurtzite active, 1203
wurtzite__offset__model, 1158
x-root, 234
x1_label, 1156
x2_label, 1156
x_end_label , 1018, 1024
x_end_label , 1022
x__position, 1159
x_range, 931
x_start_label , 1018, 1024
x_start_label , 1022
xrange, 940, 943, 947, 949, 1027
xrange, 942
xsearch_imag, 620
xsearch_range, 620
xsearch__real, 620
xy, 968
xy-mode, 260
xy__data, 701
y-mode, 260
y-root, 234
y1_label, 1156
y2_label, 1156
y__at__bottom , 1018
y__on_top , 1018, 1024
y__on_top , 1022
y__position, 1160
y__start_label , 1018
Yee lattice, 671
ymode_num, 885
young_modulus, 1161
yrange, 940, 943, 947, 949, 1027
yrange , 942
z connect, 469
z_structure, 1161
zdir_cx, 1164
zdir_light__source, 1165
zener, 1166
Zener diode, 187
Zener tunneling, 187
zero_doping, 1167
Zielinski, 149
zincblende_offset_model, 1167
zplane_label, 1168
zplane_position, 1169
zrange, 940, 943
zrange , 942
zseg_num, 1033, 1169
zsegment_setting, 1169

