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PREFACE

AMPS is a very general program for analyzing and designing transport in microelectronic and
photonic structures.  It differs from other transport analysis programs such as PICES in a number
of ways.  Among them are its ability to handle any defect and doping energy gap and special
distribution, its incorporation of S-R-H and band-to-band recombination, its incorporation of
Boltzmann and Fermi-Dirac statistics, its ability to handle varying material properties, its very
general treatment of contacts, and its ability to handle transport in devices under voltage bias, light
bias, or both.

This manual for AMPS-1D is intended for those using our window ‘95/NT version. We apologize
in advance for the fact that this manual will get out of date but, as we are sure you understand,
AMPS is a constantly growing, developing package.  However, most of what is said here will
remain valid and should be useful.

AMPS would not exist without the support of the Electric Power Research Institute.  In particular
it would not exist without the encouragement, guidance, and questioning of Dr. Terry Peterson of
EPRI and without the vision of Dr. Ed DeMeo and Dr. John Crowley.

Stephen Fonash
Electronic Materials and Processing Research Laboratory
Penn State University
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CHAPTER 1
INTRODUCTION

1.1   AMPS and Its Features

This manual is an introduction to a very general, one-dimensional computer program for simulating
transport physics in solid state devices.  It uses the first-principles continuity and Poisson’s
equations approach to analyze the transport behavior of semiconductor electronic and opto-
electronic device structures.  These device structures can be composed of crystalline,
polycrystalline, or amorphous materials or combinations thereof.  This program, called AMPS
(Analysis of Microelectronic and Photonic Structures), numerically solves the three governing
semiconductor device equations (the Poisson equation and the electron and hole continuity
equations) without making any a-priori assumptions about the mechanisms controlling transport in
these devices.  With this general and exact numerical treatment, AMPS may be used to examine a
variety of device structures that include

• homojunction and heterojunction p-n and p-i-n, solar cells and detectors;

• homojunction and heterojunction p-n, p-i-n, n-i-n, and p-i-p microelectronic structures;

• multi-junction solar cell structures;

• multi-junction microelectronic structures;

• compositionally-graded detector and solar cell structures;

• compositionally-graded microelectronic structures;

• novel device microelectronic, photovoltaic, and opto-electronic structures;

• Schottky barrier devices with optional back layers.

From the solution provided by an AMPS simulation, output such as current voltage characteristics
in the dark and, if desired, under illumination can be obtained.  These may be computed as a
function of temperature. For solar cell and detector structures, collection efficiencies as a function
of voltage,  light bias, and temperature can also be obtained.  In addition, important information
such as electric field distributions, free and trapped carrier populations, recombination profiles,
and individual carrier current densities as a function of position can be extracted from the AMPS
program.  As stated earlier, AMPS’ versatility can be used to analyze transport in a wide variety of
device structures that can contain combinations of crystalline, polycrystalline, or amorphous
layers.  AMPS is formulated to analyze, design, and optimize structures intended for
microelectronic, photovoltaic, or opto-electronic applications.

A comparison of AMPS with other known programs shows that AMPS is the only computer
modeling program available that incorporates all of the following physics:

• a contact treatment that allows thermionic emission and recombination to take place at
device contacts;
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• a very generalized gap state model that can fit any density of states distribution in the
bulk or at an interface;

• both band-to-band and Shockley-Read-Hall recombination;

• a recombination model that computes Shockley-Read-Hall recombination traffic
through any inputted general gap state distribution instead of the often-used single
recombination level approach;

• full Fermi-Dirac, and not just Boltzmann, statistics;

• gap state populations computed with actual-temperature statistics rather than the often
used T=0K approach;

• a trapped charge model that accounts for charge in any inputted general gap state
distribution;

• a gap state model that allows capture cross-sections to vary with energy;

• gap state distributions whose properties can vary with position;

• carrier mobility that can vary with position;

• electron and hole affinities that can vary with position;

• mobility gaps that can differ from optical gaps;

• the ability to calculate device characteristics as a function of temperature in both
forward and reverse bias as well as with or without illumination;

• the ability to analyze device structures fabricated using single crystal, polycrystalline,
or amorphous materials or all three.

1.2   About This Manual

This manual assumes the user has completed an introductory course in semiconductor device
physics and is familiar with mathematical concepts such as Poisson’s equation and the continuity
equations.  A working knowledge of numerical methods is helpful, but not actually required for
working with the AMPS program.  This manual explains the approach used in AMPS for

• modeling of hole and electron transport, including a discussion of the basic equations
and solution techniques (Chapter 2);

• parameterizing material properties (Chapter 3)

• semiconductor materials

• insulators

• metals

• interfaces

• materials with position dependent properties;
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• running programs to obtain band diagrams in thermodynamic equilibrium and for
running programs for devices under voltage, light bias, or both (non-thermodynamic
equilibrium) (Chapter 5).

The manual begins by using the introductory chapter to offer a brief overview of AMPS, and to
present some examples of its capabilities.  Chapter 2 can be skipped but it has been included in this
manual for those who are interested it discusses the physical and mathematical bases of the
simulation programs.  Chapter 3 discusses parameterizing material properties and it shows that
close attention must be given to the particular types of materials the user intends to “build” his or
her structure.  The AMPS programs will ask the user to input these specific parameters.  Chapter 4
describes the heart of AMPS:  the procedures for obtaining the detailed physics and terminal
characteristics of devices under voltage bias, light bias, or both.

1.3   An Overview of How AMPS Works

In briefly overviewing our methods of modeling microelectronic and opto-electronic devices, we
first note that the physics of device transport can be captured in three governing equations:
Poisson’s equation,  the continuity equation for free holes, and the continuity equation for free
electrons.  Determining transport characteristics then becomes a task of solving these three coupled
non-linear differential equations, each of which has two associated boundary conditions.  In
AMPS, these three coupled equations, along with the appropriate boundary conditions,  are solved
simultaneously to obtain a set of three unknown state variables at each point in the device: the
electrostatic potential, the hole quasi-Fermi level, and the electron quasi-Fermi level.  From these
three state variables, the carrier concentrations, fields, currents, etc. can then be computed.  To
determine these state variables, the method of finite differences and the Newton-Raphson technique
are incorporated by the computer.  The Newton-Raphson Method iteratively finds the root of a
function or roots of a set of functions if given an adequate initial guess for these roots.  In AMPS,
the one-dimensional device being analyzed is divided into segments by a mesh of grid points, the
number of which the user decides.  The three sets of unknowns are then solved for each particular
grid point.  We note that AMPS allows the mesh to have variable grid spacing at the discretion of
the user.  As noted, once these three state variables are obtained as a function of x, the band edges,
electric field, trapped charge, carrier populations, current densities, recombination profiles, and any
other transport information may be obtained.

1.4   Examples of AMPS Output

The following examples illustrate the different types of semiconductor structures that AMPS can
simulate and also give a sampling of the output information AMPS can generate.  These are just
two straight-forward examples intended to give the reader some indication of the power and
versatility of AMPS.

1.4.1   An example — a Al0.3Ga0.7As/GaAs Heterojunction Diode

Figures 1-1. and 1-2. give the room-temperature current-voltage characteristic in forward and
reverse bias and the band structure in thermodynamic equilibrium for an Al0.3Ga0.7As/GaAs p-n
heterojunction diode.  The doping happens to have been taken to be 1016 cm-3 in both layers.
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Figure1-1 Current-Voltage characteristic in forward and reverse bias.
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Figure1-2 Band structure in thermodynamic equilibrium.

Figure 1-3. shows the space charge at -1, 0, and +1 volts (i.e., forward, zero, and reverse biases,
respectively).  This example demonstrates how AMPS can be used to determine the amount of
charge transfer in the space charge regions of heterojunction structures and the widths of these
space charge layers as a function of bias.  The current-voltage characteristic, along with other
output from AMPS, can be used to determine how different transport mechanisms become
important at different magnitudes of forward and reverse bias.
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Figure 1-3 Spatial dependence of the electric field at three different bias voltages.
-1V, 0V, 1V.

1.4.2   An Example — a Triple Junction Solar Cell

Figure 1-4. gives the illuminated current-voltage characteristic and the cell performance values
obtained from AMPS simulation of an a triple p-i-n solar cell.  The density of states used to model
the a-Si:H materials consists of exponential tail states and midgap states.  Fig 1-5. shows the band
diagram of this complicated cell in thermodynamic equilibrium.  Figure 1-6 shows the electron and
hole lifetime at open circuit voltage.  This example illustrates AMPS usefulness in determining the
transport mechanisms controlling cell performance and in optimizing cell design.  In addition, this
final example also highlights the versatility of AMPS by demonstrating its ability to model
complicated structures with many layers of different materials.
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Figure 1-4.  Illuminated current-voltage characteristic and cell performance values for this triple junction solar cell.
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Figure 1-5.  Band diagram of this triple junction in thermodynamic equilibrium.
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Figure 1-6.  Electron and hole lifetime at VOC versus position for a triple.  Only meaningful for regions where carrier
is the minority carrier.
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CHAPTER 2
MATHEMATICAL MODELING & SOLUTION TECHNIQUES

2.0   Introduction

As noted in Chapter 1, this chapter may be skipped.  It is intended for those who want to “open
AMPS up and get an idea how it ticks.”

Understanding of how AMPS “ticks” begins by noting that with the continuum approach used in
AMPS, the physics of device transport can be captured in three governing equations:  Poisson’s
equation, the continuity equation for free holes, and the continuity equation for free electrons.
Determining transport characteristics then becomes a task of solving these three coupled non-linear
differential equations subject to appropriate boundary conditions.  These three equations and the
corresponding boundary conditions, along with the numerical solution technique used to solve
them, will then be the subject of this chapter.

We assume in AMPS that the material system under examination is in steady state.  That is, it is
assumed that there is no time dependence.  It follows that the terminal characteristics generated by
AMPS are the quasi-static characteristics.

2.1   Poisson’s Equation

Poisson’s equation links free carrier populations, trapped charge populations, and ionized dopant
populations to the electrostatic field present in a material system.  In one-dimensional space,
Poisson’s equation is given by

d
dx⎝⎜

⎛
⎠⎟
⎞

-ε(x)
dΨ’
dx  = q•[p(x)-n(x)+ND

+(x)-NA
-(x)+pt(x)-nt(x)]

where the electrostatic potential Ψ' and the free electron n, free hole p,  trapped electron nt, and
trapped hole pt, as well as the ionized  donor-like doping  ND

+ and ionized  acceptor-like doping NA-

concentrations are all functions of the position coordinate x.  Here, ε is the permittivity and q is the
magnitude of the charge of an electron.

Since band diagrams show the energies allowed to electrons and since the electrostatic potential Ψ'
is defined for a unit positive particle, the use of Ψ' in the above equation can be inconvenient.  The
local vacuum level EVL, which is the top or escape energy of the conduction band, varies only due
to the presence of an electrostatic field [1].  Its derivative, therefore, is proportional to the
electrostatic field ξ.  In fact, if we remember to measure the position of the local vacuum level from
a reference using the quantity Ψ measured in eV, then ξ = dΨ/dx.  As seen in Fig. 2-1, AMPS uses
Ψ not Ψ' and always chooses the reference for Ψ to be the position of the local vacuum level in the
contact at the right hand side of any general device structure.  With this particular example in Fig.
2-1 of a Schottky barrier Ψ, as we have defined it, is seen to be a negative quantity in much of the
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n+ back-contact layer and a positive quantity essentially through the remainder of the device.
Using this way of locating the local vacuum level and remembering that its spatial derivative is the
electrostatic field allows us to rewrite Poisson’s equation in terms of the local vacuum level Ψ
measured in eV.  This gives

d
dx⎝⎜

⎛
⎠⎟
⎞ε(x)

dΨ
dx  = q•[p(x)-n(x)+ND

+(x)-NA
-(x)+pt(x)-nt(x)] (2.1)

Equation (2.1) is the form of Poisson’s equation that AMPS uses.

Having settled on a formulation of Poisson’s equation that will be convenient, we now realize that
AMPS needs expressions for the six new dependent variables n, p, nt, pt, ND

+, and NA
- introduced

in Equation 2.1.

EFEF

EC

EV

EG

χ e

x=Lx=0

n
+

layer

Φbo

ΦbL

Ψ
EVL

. . .

Figure 2-1.  A band diagram of a Schottky barrier in thermodynamic equilibrium.

2.1.1   The Delocalized (Band) State Populations n and p

Assuming that a parabolic relation between the density of states N(E) of the delocalized states of
the bands and the energy E - measured positively moving away from either band edge - exists such
that N(E) ∝ E1/2, the free carrier concentrations in thermodynamic equilibrium or under voltage
bias, light bias, or both are computed in AMPS using the general expressions [2]

n = NcF1/2 exp⎝
⎛

⎠
⎞EF-Ec

kT (2.1.1a)

p = NvF1/2 exp⎝
⎛

⎠
⎞EV-EF

kT  (2.1.1b)

These general expressions allow for the possibility of degeneracy; i.e. AMPS includes both Fermi-
Dirac and Boltzmann statistics.  In these expressions Nc and Nv are the band effective densities of
states for the conduction and valence bands, respectively.  In AMPS these are user chosen material
parameters.  For crystalline materials they are given by [2]
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Nc = 2⎝
⎜
⎛

⎠
⎟
⎞2πmn*kT

h
2  

3/2 

   (2.1.1c)

Nv = 2⎝
⎜
⎛

⎠
⎟
⎞2πmp*kT

h
2

 3/2 
 (2.1.1d)

where mn* is the electron effective mass, mp* is the hole effective mass, k is the Boltzmann
constant, and h is Planck’s constant.

The Fermi integral of order one-half appearing in Equation 2.1.1a and b is defined as [6]

F1/2(η)= 
2

π
E  E

1+  exp(E - )

1/2 d

η
0

∞

∫  (2.1.1e)

E1/2 where η - the Fermi integral argument - is expressed as

ηn= ⎝⎜
⎛

⎠⎟
⎞EF-Ec

kT (2.1.1f)

for free electrons and

ηp = ⎝⎜
⎛

⎠⎟
⎞Ev-EF

kT (2.1.1g)

for free holes.  We note that for ηn > 3 or ηp > 3, the function F1/2 reduces to the corresponding
Boltzmann factors

exp⎝
⎛

⎠
⎞EF-Ec

kT  (2.1.1h)

or

exp⎝
⎛

⎠
⎞Ev-EF

kT   (2.1.1i)

In our formulation of AMPS we have chosen to write n and p in terms of Boltzmann factors yet to
allow the possibility of degeneracy and the need for Fermi-Dirac statistics.  To do this we define
the Fermi-Dirac degeneracy factor γ as

γn = 
F1/2(ηn)
exp(ηn)

   (2.1.1j)

for free electrons and as

γp = 
F1/2(ηp)
exp(ηp)

   (2.1.1k)

for free holes.  With these definitions Equations 2.1.1a and 2.1.1b become

n = Ncγnexp(ηn)  (2.1.1l)
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p = Nvγ
nexp(ηp)  (2.1.1m)

which are valid for degenerate as well as non-degenerate situations.

When a device is driven out of thermodynamic equilibrium by a voltage bias, a light bias, or both
the quantities n and p can still be computed using Equations 2.1.1a - 2.1.1e.  It is only necessary to
replace the equilibrium Fermi-level EF with the quasi-Fermi level EFn in Equation 2.1.1a and the
quasi-Fermi level EFp in Equation 2.1.1b.  This is what AMPS does in going from thermodynamic
equilibrium to cases with voltage bias, light bias, or both.

2.1.2   Localized (Gap) State Populations ND
+, NA

-, nt, and pt

Having obtained expressions for the n and p terms appearing in Poisson’s equation, we must now
develop expressions for the other quantities contributing to the development of charge. Since we
have accounted for all the free charge, any additional charge must be in gap states.

In general there may be a variety of different types of gap (i.e., localized) states existing in the
energy gap of a semiconductor or insulator.  AMPS breaks these into states that are inadvertently
present due to defects and impurities and into states that are purposefully present due to doping.
There may be donor-like and acceptor-like states among both classes.  There may also be states
that are continuously distributed in energy or discretely distributed in energy in both classes.
AMPS allows for different distributions of these states at interfaces and at different places in the
bulk material.

In the case of the gap states which are not purposefully present, but are due to defects and
impurities, AMPS defines nt as being the number of charged acceptor-like sites per volume (i.e.,
trapped electrons) and pt as being the number of charged donor-like sites per volume (i.e., trapped
holes) in this class of states.  In the case of the gap states which are purposefully present due to
doping AMPS defines NA

- as being the number of ionized acceptor-dopant sites per volume.
Correspondingly ND

+ is defined as being the number of ionized donor-dopant sites per volume.

2.1.2.1   Doping Levels (ND
+ and NA

-)

We turn first to the charge residing in  localized doping levels.  The doping levels in our usage
include gap states which are characterized by discrete levels and gap states that form a band with a
bandwidth defined by an upper energy boundary and a lower energy boundary.  This latter case of
localized gap state bands can arise if heavy doping is present in a structure.  It is important to note
that any combination of these two unique types of states is acceptable to AMPS (see section
2.1.2.1c).  In any case, the total charge arising in these states can be represented by

ND
+ = NdD

+ + NbD
+ (2.1.2.1a)

for the donor-dopant levels and

NA
- = NdA

- + NbA
-  (2.1.2.1b)

for the acceptor-dopant levels.  Here, ND
+ and NA

- seen in Poisson’s equation (Equation 2.1), are
the total charges arising from both the discrete and banded dopant energy levels.  In these equations
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NdD
+ and NdA

- represent the total charge originating from discrete donor and acceptor
concentrations, respectively, while NbD

+ and NbA
- represent the total charge developed by any

banded donor and acceptor levels, respectively.

2.1.2.1a    Discrete Dopant Levels (NdD,iand NdA,j)

Discrete localized dopant sites are located at single energy levels and arise from the intentional
introduction of impurities.  These states are illustrated pictorially by Figure 2-2.

Acceptor Energy Level

Donor Energy Level

Ec

Ev

N(E)

E
N
E
R
G
Y

Figure 2-2.  Density of states plot representing discrete localized dopant levels.  The donor levels are located
positively down from the conduction band and the acceptor levels are located positively up from the valence band.

The charge arising from a set of i of these discrete dopant states can be expressed as

NdD
+ = 

i
∑ NdD,i fD,i  (2.1.2.1c)

if they are donor-like and from a set of j of these discrete dopant states as

NdA
- = 

i
∑ NdA,j fA,j  (2.1.2.1d)

if they are acceptor-like.  Here NdD
+ and NdA

-,represent the discrete donor and acceptor charge,
respectively.  We allow for a number of these levels in AMPS with volume concentrations of NdD,i

and NdA,j corresponding to the donor level energy Ei and the acceptor level energy Ej, respectively.
The number of these doping sites per volume and their energy levels may even vary with position in
AMPS as specified by the user.  The quantity fD,i is the probability that a discrete-level donor site
of energy Ei has lost an electron and fA,j is the probability that a discrete level acceptor site of
energy Ej has gained an electron.  In thermodynamic equilibrium, the occupation probabilities fD,i

and fA,j are represented by one minus the Fermi function and by the Fermi function, respectively.
That is, in thermodynamic equilibrium

fD,i = 
1

1+exp⎝
⎛

⎠
⎞EF - Ei

kT

    (2.1.2.1e)
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and

fA,j = 
1

1+exp⎝
⎛

⎠
⎞Ej - EF

kT

  (2.1.2.1f)

Under bias, however, the above two expressions must be modified.  The occupation probabilities
now must be determined by the kinetics of electron capture and emission and hole capture and
emission for the doping level in question.  Using the Shockley-Read-Hall (S-R-H) model for these
processes, and assuming that a donor-like discrete gap state of energy Ei  in the gap communicates
with the conduction band and the valence band only, allows us to write [1]

fD,i =   
σpdDi

•p + σndDi
•γni

•n1i

σndDi
(n+γ

ni
•n1i

) + σpdDi
(p+γ

pi
•p1i

)
   (2.1.2.1g)

The corresponding expression for the jth discrete acceptor-like gap state of energy Ej in the gap is

fA,j =    
σndAj

•n  + σpdAj
•γpj

•p1j

σndAj
(n+γ

nj
•n1j

)  + σndAj
(p+γ

pj
•p1j

)
 (2.1.2.1h)

In these expressions σndDi
(E

i
) and σpdDi

(E
i
) are the capture cross sections for electrons and holes of

the ith donor-like discrete levels, respectively.  σndAj
(E

j
) and σpdAj

(E
j
) are the capture cross section

for electrons and holes at the jth acceptor site, and n1k
(E

k
) and p1k

(E
k
)  are  parameters that can be

expressed as

n1k
(E

k
) = Ncexp⎝⎜

⎛
⎠⎟
⎞Ek - Ec

kT    (2.1.2.1i)

p1k
(E

k
) = Nvexp⎝⎜

⎛
⎠⎟
⎞Ev - Ek

kT    (2.1.2.1j)

In Equation 2.1.2.1g the degeneracy factor γni   
is given by

γni = 
F1/2(ηni)

exp(ηni)
   (2.1.2.1k)

where the argument ηni is expressed as

ηni  
= ⎝

⎛
⎠
⎞EF - Ei

kT (2.1.2.1l)

Likewise, in Equation 2.1.2.1h the degeneracy factor for holes in the valence band is

γnj = 
F1/2(ηnj)

exp(ηnj)
(2.1.2.1m)

where the argument ηpj is expressed as
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ηni  
= ⎝

⎛
⎠
⎞Ei - EF

kT (2.1.2.1n)

We point out that our formulation for NdD
+ and NdA

- allows for degeneracy and allows for both S-
R-H and band-to-band recombination to be present.  We note that Equations 2.1.2.1g and h can be
used in the form shown which involves the free carrier populations or they can be recast into an
alternative form which would be like Equations 2.1.2.1e and f with appropriately defined gap state
quasi-Fermi levels.  Unfortunately the latter course of action necessitates, in general, defining a gap
state quasi-Fermi level for each discrete donor and acceptor level.  In AMPS we avoid the use of
quasi-Fermi levels for each set of gap states and use Equations 2.1.2.1g and h for fD,i and fA,j for
systems under bias and Equations 2.1.2.1e and f for fD,i and fA,j for systems in thermodynamic
equilibrium.

2.1.2.1b   Banded Dopant Levels (NbD,i and NbA,j)

Banded localized dopant sites are located within an energy band which has a lower boundary E1

and an upper boundary E2.  These energies are measured positively down from EC for donor states
and positively up from EV for acceptor states.  They are shown in  Figure 2-3..

N(E)

Ec

Ev

Donor Energy Level

Acceptor Energy Level

E2

E1

E
N
E
R
G
Y

Figure 2-3.  Density of states plot showing a band of dopant states.  Energies for donor sites are measured positively
down to E1  from the conduction band and those for acceptor sites are measured positively up to E1  from the valence
band.

The charge arising from dopant states can be expressed as

NbD
+ = 

i
∑ NbD,i

+  (2.1.2.1o)

if they are donor-like states and as

NbA
-  
= 

i
∑ NbA,j

-  (2.1.2.1p)

if they are acceptor-like states.  Here NbD + and NbA
-
,  are the charges arising from the banded donor

and acceptor energy levels.  We allow for a number of these banded levels with band i of donor-like
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states having a site concentration of NbD,i
+ and  band j of acceptor-like banded states having a site

concentration of NbA,j
-
 .

Considering the ith band of banded dopant donor states we assume the concentration across the
width of the band, defined by WDi = E2i-E1i, to be NbD,i states per volume.  Hence, NbD,i

+ coming
from these states is

NbD,i
+ =  

NDi  

WDi  
⌡⌠
E1i

E2i

  fDi
(E) dE,          WDi = E2i-E1i 

> 0  (2.1.2.1q)

Corresponding to the jth band of banded acceptor dopant levels, we obtain

NbA,j
- =  

NAj 

WAj  
⌡⌠
E1j

E2j

  fAj(E) dE,          WAj
= E2j-E1j

> 0 (2.1.2.1r)

The quantity fbDi
 is the probability that one of these dopant donor sites of energy between E and

E+dE has lost an electron and fbAj
 is the probability that one of these dopant acceptor sites of

energy between E and E+dE has gained an electron.  In thermodynamic equilibrium, the occupation
probabilities fbDi

 and fbAj
 are represented by the Fermi functions

fbD,i = 
1

1+exp⎝
⎛

⎠
⎞EF - E

kT  
 (2.1.2.1s)

and

fbA,j = 
1

1+exp⎝⎜
⎛

⎠⎟
⎞E - EF

kT   

(2.1.2.1t)

Once again, under bias the above two expressions must be modified.  Under voltage bias, light
bias, or both the occupation probabilities are determined by the kinetics of electron capture and
emission and hole capture and emission.  Using the Shockley-Read-Hall model for these processes,
and assuming that a donor-like banded gap state of energy between E and E+dE falling within the
band E2i-E1i in the gap only communicates with the conduction band and the valence band, allows
us to write [1]

fbD,i = 
σpbDi•p + σnbDi•

γ
ni•n1i

σnbDi(n+γ
ni•n1i) + σpbDi(p+γ

pi•p1i)
    (2.1.2.1u)

for the ith banded donor-like gap state.  The corresponding expression for the jth banded acceptor-
like gap state of energy between E and E+dE is

fbA,j = 
σnbAi•n  + σpbAj•

γ
pj•p1j

σnbAj(n+γ
nj•n1j)  + σpdAi(p+γ

pj•p1i)
 (2.1.2.1v)
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In these expressions σnbDi
(E) and σpbDi

(E) are the capture cross sections for electrons and holes of

the ith donor-like band, respectively,  σnbAj
(E) and σpbAj

(E) are the capture cross section for electrons

and holes of the jth acceptor like band, and n1k
(E) and p1k

(E)  are  the S-R-H parameters that can be

expressed as

n1k
(E) = Ncexp⎝⎜

⎛
⎠⎟
⎞E-Ec

kT         (2.1.2.1w)

p1k
(E) = Nvexp⎝⎜

⎛
⎠⎟
⎞Ev-E

kT            (2.1.2.1x)

2.1.2.1c   Generalized Dopant Level Distributions

As indicated earlier, AMPS is capable of modeling any dopant gap state density of states
distribution N(E) that the user desires.  This is accomplished by piecing as many banded and
discrete doping levels together as is necessary to represent N(E).   Figure 2-4. illustrates a
generalized distribution.  ND

+ and NA
-, as appropriate, are calculated as discussed above with each

“rectangle” used in the general distribution having the energy width and kinetic features (cross-
sections for communication with bands) specified by the user.

EC

EV

E
N
E
R
G
Y

N(E)

Delocalized states of the
conduction band.

Delocalized states of the
valence band.

Figure 2-4.  Density of states plot representing a generalized distribution of dopant states.

2.1.2.2   Defect (Structural and Impurity) Levels (nt and pt)

We reiterate that we break gap states into those that are purposefully present (dopant states) and
those that are inadvertently present (defect states).  We now consider the latter category and
examine how AMPS determines nt and pt  residing in these defect levels.
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These states can be donor-like or acceptor-like, discrete and/or banded just like the dopant states of
the previous section and they can be distributed across the whole bandgap.  In addition, they can
also be described by discrete levels and bands.  AMPS also allows for continuous exponential,
Gaussian, or constant distributions across the band-gap for defect states.  In any case, the total
charge arising in these states can be represented by

p
t
 = pdt 

+ pbt
+ pct

 (2.1.2.2a)

for the donor-like states and

n
t
 = ndt

 + nbt
  + nct

   (2.1.2.2b)

for the acceptor-like states.  Here, the pt and nt seen in Poisson’s equation (Equation 2.1), are the
total charges arising from the discrete, banded, and continuous defect (structural or impurity)
energy levels.  In these equations, ndt and pdt represent the total charge, originating respectively
from discrete acceptor and donor concentrations, while nbt and pbt, respectively, represent the total
charge developed by any banded acceptor and donor concentrations.  Finally, nct and pct,
respectively represent the total charge developed by any continuous (exponential, Gaussian, or
constant) acceptor and donor concentrations.  In the case of the donor-like states, Poisson’s
equation shows that we need the number of these states per volume that have lost an electron or,
equivalently, have trapped a hole.  For acceptor-like states, Poisson’s equation shows that we need
the number of these states per volume that have trapped an electron.

2.1.2.2a   Discrete and Banded Defect (Structural and Impurity) Levels

The populations of discrete and banded defect levels arising from structural and/or impurity causes
are computed identically to the computation performed on discrete and banded dopant levels. This
computation has been outlined in Sections 2.1.2.1a and 2.1.2.1b.  We stress, however, that AMPS
distinguishes between discrete and banded defect levels and discrete and banded doping levels in
the input, for the user’s convenience.  Chapter 3 will further explore this versatility.

2.1.2.2b   Generalized Defect (Structural and Impurity) Level Distributions

The number of trapped holes per volume pct in continuous donor-like defect states is given by

pct 
= ⌡⌠

Ev

Ec

gDc
(E)fDc

(E)dE  (2.1.2.2c)

where gD(E) is the continuous distribution function or density of states per unit volume per unit
energy for the  energy E in the gap.   The quantity fD(E) is the probability that a hole occupies a
state located at energy E.  In thermodynamic equilibrium fD(E) is given by the Fermi function in
Equation 2.1.2.1s - with the exception that the subscript i must be removed - whereas in non-
thermodynamic equilibrium (situations of voltage bias or light bias), it is given by Equation
2.1.2.1u (with i removed).

The number of trapped electrons per volume ntc in these continuous acceptor-like defect states is

given by
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ntc 
= ⌡⌠

Ev

Ec

gAc
(E)fAc

(E)dE  (2.1.2.2d)

where gAc
(E) is the distribution or density of these acceptor-like  states per unit volume per unit

energy for the energy E in the gap.  The quantity fAc
(E) is the probability that an electron occupies a

state located at energy E.  In thermodynamic equilibrium, fAc
(E) is given by Equation 2.1.2.1t

whereas in non-thermodynamic equilibrium fAc
(E) is given by Equation 2.1.2.1v (provided the

subscript i removed from both equations).  As noted earlier, the functions of gD(E) in Equation
2.1.2.2c and gA(E) in Equation 2.1.2.2d can be exponential, Gaussians or simply a constant.  The
exponentials can be either acceptor-like tails coming out of the conduction band or donor-like tails
coming out of the valence band.  The constant distribution can be of donor-like states from EV to
some energy EDA and of acceptor-like states (of another constant value) from EDA to Et.  Chapter 3
will continue discussion of these possibilities.

2.2   The Continuity Equations

Section 2.1 has provided expressions for all the quantities contributing to the charge in Poisson’s
equation.  A close inspection of these expressions shows that they all are ultimately defined in
terms of the free carrier populations n and p.  We now need more information on n and p to
determine how they change across a device and under different biases.  The equations that keep
track of the conduction band electrons and valence band holes are the continuity equations.  In
steady state, the time rate of change of the free carrier concentrations is equal to zero.  As a result,
the continuity equation for the free electrons in the delocalized states of the conduction band has
the form

1
q⎝⎜
⎛

⎠⎟
⎞dJn

dx  = -Gop(x) + R(x) (2.2a)

and the continuity equation for the free holes in the delocalized states of the valence band has the
form

1
q⎝⎜
⎛

⎠⎟
⎞dJp

dx  = Gop(x) - R(x) (2.2b)

where Jn and Jp are, respectively, the electron and hole current densities.  The term R(x) is the net
recombination rate resulting from band-to-band (direct) recombination and S-R-H (indirect)
recombination traffic through gap states.  Band-to-band recombination will be discussed in Section
2.2.2.1 and S-R-H recombination in Section 2.2.2.2.  Since AMPS has the flexibility to analyze
device structures which are under light bias (solar cells, photodetectors) as well as voltage bias, the
continuity equations include the term Gop(x) which is the optical generation rate as a function of x
due to externally imposed illumination.  This is discussed in Section 2.2.3.

2.2.1  Electron and Hole Current Density

Once again, we must develop expressions for the terms in a key equation.  Before it was Poisson’s
equation; now it is the two continuity equations.  Turning to Jn and Jp , we first note that transport
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theory allows that, even in cases where the electron population may be degenerate or the material
properties may vary with position, the electron current density Jn  can always be expressed as [1]

Jn(x) = qµnn⎝
⎜
⎛

⎠
⎟
⎞dEfn

dx
 (2.2.1a)

where µn is the electron mobility and n is defined in Equation 2.1.1a.

Similarly, even in cases where the hole populations may be degenerate or the material properties
may vary with position, the hole current density still may always simply be expressed by [1]

Jp(x) = qµpp⎝
⎜
⎛

⎠
⎟
⎞dEfp

dx
 (2.2.1b)

where µp is the hole mobility and p is defined in equation 2.1.1b.  It is important to note that
Equations 2.2.1a and 2.2.1b are very general formulations that include diffusion, drift, and motion
due to effective fields arising from band gap, electron affinity, and densities-of-states gradients [1].
Therefore, as noted earlier, AMPS is formulated to handle structures with varying material
properties including graded structures and heterojunctions.

2.2.2   The Recombination Mechanisms

There are two basic processes by which electrons and holes may recombine with each other.  In the
first process, electrons in the conduction band make direct transitions to vacant states in the
valence band.  This process is labeled as band-to-band or direct recombination RD (also known as
intrinsic recombination).  In the second process, electrons and holes recombine through
intermediate gap states known as recombination centers.  This process, originally investigated by
Shockley, Read, and Hall, is labeled indirect recombination RI or S-R-H recombination (also
known as extrinsic recombination).  The model used in AMPS for the net recombination term R(x)
in the continuity equations takes both of these processes into consideration such that

R(x) = RD(x) + RI(x)  (2.2.2a)

The sections to follow will discuss these two processes and their mathematical representations.

2.2.2.1   Direct (Band-to-band) Recombination

The model used in AMPS for direct or band-to-band recombination RD(x) assumes that, since this
recombination process involves both the occupied states in the conduction band and the vacant
states in the valence band, the total rate of recombination is given by [1]

R = βnp   (2.2.2.1a)

where β is a proportionality constant which depends on the energy-band structure of the material
under analysis, and n and p are the band carrier concentrations present when devices  are subjected
to a voltage bias, light bias, or both (see section 2.1.1).  Under thermal equilibrium, the generation
rate must equal the recombination rate; that is

Rth = Gth = βnopo   (2.2.2.1b)
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where, again,   β is a proportionality constant.  The no and po factors are the carrier concentrations
in thermodynamic equilibrium, expressed by Equations 2.1.1a and b.  The net direct recombination
rate is equal to the difference of equations 2.2.2.1a and b; that is

RD(x) = R - Gth =  β(np - nopo) =   β(np - ni
2)  (2.2.2.1c)

2.2.2.2   Indirect (Shockley-Read-Hall) Recombination

The model used in AMPS for indirect recombination RI(x) assumes that the traffic back and forth
between the delocalized bands and the various types of localized gap states is controlled by
Shockley-Read-Hall (S-R-H), capture and emission mechanisms.  This S-R-H recombination
model allows RI(x) to be expressed as  [1]

RI(x) = (np-ni
2
)

⎩⎪
⎨
⎪⎧∑

i

 

 
⎣
⎢
⎡ NdD

i
σndDi

σpdDi
νth

σndDi
(n+n1(E

i
))+σpdDi

(p+p1(E
i
))

+ 
NbDi

WDi ⌡
⎮
⌠

E1i

E2i

 
⎦
⎥
⎤σnbDi

σpbDi
νthdE

σnbDi
(n+n1(E))+σpbDi

(p+p1(E))

+ ∑
j

 

 
⎣
⎢
⎡ NdA

j
σndAj

σpdAj
νth

σndAj
(n+n1(Ej

))+σpdAj
(p+p1(Ej

))
 + 

NbAj

WAj⌡
⎮
⌠

E1j

Ejj

⎦
⎥
⎤σnbAj

σpbAj
νthdE

σnbAj
(n+n1(E))+σpbAj

(p+pj(E))

+ ∑
i

 

 
⎣
⎢
⎡
 

ndDti
σndDi

σpdDi
νth

σndDi
(n+n1(E

i
))+σpdDi

(p+p1(E
i
))

+ 
nbDti

WDti⌡
⎮
⌠

E1i

E2i

⎦
⎥
⎤σnbDi

σpbDi
νthdE

σnbDi
(n+n1(E))+σpbDi

(p+p1(E))

+ ∑
j

 

 
⎣
⎢
⎡ ndAtj

σndAj
σpdAj

νth

σndAj
(n+n1(Ej

))+σpdAj
(p+p1(Ej

))
 + 

nbAtj

WAtj⌡
⎮
⌠

E1j

E2j

⎦
⎥
⎤σnbAj

σpbAj
νthdE

σnbAj
(n+n1(E))+σpbAj

(p+p1(E))

+ 
⌡
⎮
⌠

Ev

Ec

 
gD(E)σncDσpcDνth dE 

σncD(n+n1(E))+σpcD(p+p1(E)) 
 +

⎭
⎬
⎫

⌡
⎮
⌠

Ev

Ec

gA(E)σncAσpcAνth dE

σncA(n+n1(E))+σpcA(p+p1(E))  (2.2.2.2a)

Here the first two terms on the right-hand-side account for S-R-H traffic through discrete and
banded donor dopant levels.  The second two terms give the corresponding quantities for discrete
and banded acceptor-dopant levels.  The next two terms give the S-R-H recombination traffic
through discrete and banded defect levels that are donor-like.  The next two terms give the
corresponding quantity for discrete and banded defect levels that are acceptor-like.  The final two
terms give the S-R-H contributions coming from donor and acceptor-like states that can be
described by the exponential, Gaussian, or constant distributions available.
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2.2.3   Optical Generation Rate

AMPS is formulated to fully analyze the behavior of any device structure subjected to bias,
illumination, or both.  In this section we discuss how illumination is handled by AMPS.  We begin
by noting that, when a semiconductor is subjected to an external source of illumination and hν is
greater than some threshold Egop at some point x (termed the optical bandgap at x), free electron-
hole pairs are produced.  This is the process encompassed by the term Gop(x) in the continuity
equation of 2.2a and 2.2b.  We now assume that a structure illuminated by a light source of
frequency νi  with a photon flux of Φoi(νi)   (in units of photons per unit area per unit time)  has
photons obeying hν ≥ Egop.  This photon flux Φoi(νi) is impinging at x=0-(see the example of Fig
2.1).  As the photon flux travels through the structure, the rate at which electron-hole pairs are
generated is proportional to the rate at which the photon flux decreases.  Therefore, the optical
generation rate can be expressed as

Gop(x) =  
-d  
dx∑

i

 

 Φi
FOR(νi) + 

d 
dx ∑

i

 

 Φi
REV(νi) (2.2.3a)

where Φi
FOR(νi) represents the photon flux of frequency νi at some point x which is moving left to

right in Fig 2-5 and Φi
REV(νi)  represents the photon flux of frequency νi at some point x which is

moving right to left in Fig 2-5.

ΦFOR

ΦREV

j j+1

lj+1

j+1 material region

Figure 2-5.  This figure illustrates the photon flux at some point x moving to the left and the photon flux at some
point x moving to the right in the j+1 material region.1

Both Φi
FOR(νi) and Φi

REV(νi) exist in the device since some part of the Φοi(νi) impinging at x=0-

reaches the back surface and reflects.  Since there may be some distribution of frequencies each
with an Φοi(νi) value, Equation 2.2.3a must contain a sum (in frequency) over the incoming
spectrum of light as shown.

If a device has optical properties that do not vary across the structure then, at some general point x,
we have

Φi
FOR(νi) = Φοi(νi)•{exp[-α(νi)x] + RFRB[exp(-α(νi)L)]

2

•exp[-α(νi)x] +  …} (2.2.3b)

                                                       
1 It is noted that these are material layers with different properties as inputted by the user.  They should not be

confused with the layers defined by the mathematical grid implemented by the solution scheme.  See Section 2.3.1.
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whereas

Φi
REV(νi) = RBΦοi(νi)•{exp[-α(νi)L]•exp[-α(νi)(L-x)] +

RFRB[exp(-α(νi)L)]
3

•exp[-α(νi)(L-x)] +  …  } (2.2.3c)

In these expressions RF is the reflection coefficient for the internal surface at x=0 and RB is the
reflection coefficient for the internal surface at x=L (the back surface). All of these reflection
coefficients can be functions of the frequency νi.  Any reflection and loss that may occur before
x=0 (such as that at any air/glass and that in any transparent conductive oxide layer) must be
accounted fro a priori by the user appropriately adjusting Φοi(νi).

AMPS, of course, allows for more general situations than those covered by Equations 2.2.3b and
c.  Specifically, AMPS allows for the very general situation where the device structure can be
made up of N regions each with its own set of optical properties (relative dielectric constant ε,
absorption coefficient α for each wavelength, and index of refraction n).   The (j+1)th such region,
of width lj+1 is shown in Fig. 2-6.

j j+1

lj+1

j+1 material region

Rj

Rj+1

Figure 2-6.  This figure illustrates the reflection of the photon flux at the j+1 boundary and at the j boundary of the
j+1 region.

As this figure shows, we now have to consider reflection at the j - boundary and at the j+1 -
boundary of such a region.  The reflection coefficient Rj at the j - boundary can be written as [5]

Rj = 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫⎣⎢

⎢⎡

⎦⎥
⎥⎤

⎝
⎜
⎛

⎠
⎟
⎞εj-1

εj

1/2

 -1

⎣⎢
⎢⎡

⎦⎥
⎥⎤

⎝
⎜
⎛

⎠
⎟
⎞εj-1

εj

1/2

 +1

2       

(2..2.3d)

and the reflection coefficient Rj+1 at the j+1 - boundary can be written as

Rj+1 = 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫⎣⎢

⎢⎡

⎦⎥
⎥⎤

⎝
⎜
⎛

⎠
⎟
⎞εj+1

εj

1/2

 -1

⎣⎢
⎢⎡

⎦⎥
⎥⎤

⎝
⎜
⎛

⎠
⎟
⎞εj+1

εj

1/2

 +1

2

(2.2.3e)
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where the epsilons are the relative dielectric constants of each material.  These reflection
coefficients for the boundaries which may exist internally in a device structure can be functions of
the frequency νi.

With these definitions for the internal reflection coefficients for the j+1 material region the
quantities Φi

FOR(νi) and Φi
REV(νi) needed in Equation 2.2.3a for Gop(x) can be written for every

layer of any general material structure.2

As outlined in Appendix A, the result for the j+1 material layer is

Φi
FOR(νi) = Φj

LR{1 + RjRj+1[exp(-αj+1lj+1)] 
2 

 +  … }exp[-αj+1(x-xj)]

+ RjΦj+1
RL{exp(-αj+1lj+1)+RjRj+1[exp(-αj+1lj+1)]

 3
 + …}exp[-αj+1(x-xj)]  (2.2.3f)

Similarly, for the j+1 material layer

Φi
REV(νi) = Φj+1

RL{1 + RjRj+1[exp(-αj+1lj+1)]
 2 

 +  … }exp[-αj+1(xj+1-x)]

+ Rj+1Φj
LR{exp(-αj+1lj+1)+RjRj+1[exp(-αj+1lj+1)]

 3
 + …}exp[-αj+1(xj+1-x)] (2.2.3g)

By using expressions like these for every layer of material and by matching the flux at each
boundary, the set of terms Φj

LR and Φj
RL appearing in these equations can all be determined.  As

outlined in Appendix A, AMPS consistently obtains all these Φj
LR and Φj

RL  terms for each
frequency νi allowing it to completely specify Equations 2.2.3f and g for each material region and
for each frequency νi.  This allows Equation 2.2.3a to be completely determined and available for
use in the continuity equations (Equation 2.2a and 2.2b).

2.2.4   Boundary Conditions

The three governing equations (2.1), (2.2a), and (2.2b) must hold at every position in a device and
the solution to these equations involves determining the state variables Ψ(x), EFn(x), and Efp(x) or,
equivalently, Ψ(x), n(x), and p(x) which completely defines the system at every point x.  Because
the governing equations for Ψ(x), EFn(x), and EFp(x) (or, equivalently, Ψ(x), n(x), and p(x)) are
non-linear and coupled, they cannot be solved analytically.  Hence, numerical methods must be
utilized.  Section 2.3 discusses the Newton-Raphson technique, which is used in AMPS and AMPS
to numerically solve the resulting algebraic equations.  Like any other mathematical analysis, there
must be boundary conditions imposed on the set of equations.  These are expressed in terms of
conditions on the local vacuum level and the currents at the contacts.  To be specific the solutions
to equations (2.1), (2.2a), and (2.2b) must satisfy the following boundary conditions:

Ψ(0) = Ψo - V  (2.2.4a)

Ψ(L) = 0    (2.2.4b)

Jp(0) = -qSpo(po(0) - p(0)) (2.2.4c)

                                                       
2 It is noted that these are material layers with different properties as inputted by the user.  They should not be

confused with the layers defined by the mathematical grid implemented by the solution scheme.  See Section 2.3.1.
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Jp(L) = qSpL(p(L) - po(L)) (2.2.4d)

Jn(0) = qSno(n(0) - no(0)) (2.2.4e)

Jn(L) = -qSnL(no(L) - n(L)) (2.2.4f)

where x=0 refers to the left-hand side and x=L to the right-hand side of any general device
structure under consideration.

In boundary conditions 2.2.4a and 2.2.4b the quantities Ψ(0) and Ψ(L) are the function Ψ in
Equation 2.1 evaluated at x=0 and x=L in.  We restate that Ψ(x) is, in general, the energy
difference between the local vacuum level at point x and its value at the contact on the right hand
side of any device structure (see Figure 2-1).  Its value at x=0 in thermodynamic equilibrium is Ψο,
and using our definition its value is zero in thermodynamic equilibrium at x=L.  In fact Ψ(L) is
always zero no matter what the light or voltage condition because of our choice of reference for Ψ.
However, Ψ(0) becomes Ψο-V if a voltage bias, light bias, or both exist.  Here V is taken as
positive if the Fermi level in the right contact (at x=L) is raised by V above the Fermi level at the
left contact (x=L).  All of this leads to conditions described by Equations 2.2.4a and 2.2.4b which
are valid for all structures for all situations.

We summarize by noting that in thermodynamic equilibrium Equation 2.2.4a shows that
Ψ(0)=Ψο(0) whereas Equation 2.2.4b shows that Ψ(L)=0. If a voltage V develops between the
contact at x<0 and the contact at x>L, Ψ(L) does not change but Ψ(0) does change with respect to
the local vacuum level in the right hand contact and the amount of this change is V.  In AMPS we
adopt the convention that, if the contact at x<0 is positive with respect to the contact at x>L, then
V is taken as positive.  We reiterate that, under any bias Ψ(0) = Ψ0(0)-V which, as seen, is
boundary condition 2.2.4a and Ψ(L)=0 which, as seen, is boundary condition 2.2.4b.

In boundary condition statements 2.2.4c-2.2.4f p0(0) and p0(L) are the valence band hole
populations at x=0 and x=L, respectively, in thermodynamic equilibrium whereas n0(0) and n0(L)
are the conduction band electron populations at x=0 and x=L, respectively, in thermodynamic
equilibrium.  The quantities p(0) and p(L) are the corresponding hole populations, under operating
conditions, at x=0 and at x=L, respectively.  The quantities n(0) and n(L) are the corresponding
electron populations, under operating conditions, at x=0 and at x=L, respectively.  The quantities
Sp0,SpL,Sn0, and SnL, appearing in conditions 2.2.4c-2.2.4f are effective surface recombination
speeds for holes at x=0 and x=L, respectively, and for electrons at x=0 and x=L, respectively.  We
will comment on these quantities shortly.  Conditions 2..2.4c-2.2.4f must be matched by equations
2.2.1a and 2.2.1b at x=0 and x=L under operating conditions.  Under thermodynamic equilibrium
conditions 2.2.4c-2.2.4f are identically equal to zero.

At this point we make two additional comments on the boundary condition approach used in
AMPS.  First we note that, although we called the S quantities in equations 2.2.4c-2.2.4f effective
surface recombination speeds, these equations do not limit the transport mechanisms at the
boundaries to surface recombination.  With this general formulation of 2.2.4c-2.2.4f the transport
in each of these four statements could be recombination [1] or thermionic emission depending on
the value of S which is chosen.  For example, if Sp0, is taken to be the thermal velocity for holes,
then the holes are crossing x=0 by thermionic emission.  If a value of S is chosen to represent
surface recombination, the value selected can be used to reflect the degree of surface passivation.
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This freedom in choosing S (and the barrier height at x=0 and x=L  which is documented in
Section 3.3) also means one has freedom in choosing the degree of ohmicity at a contact.
Obviously, to have an ideal ohmic contact at x=L for electrons, for example, one has to select SnL

large enough to insure that n(L)=n0(L) for all biasing conditions that are to be considered.  This
follows from Equation 2.2.4f.

To try to further convey how versatile the treatment of boundaries in AMPS we consider a case in
which current is flowing at a boundary by recombination but the user wishes to account for surface
recombination speeds that may vary with carrier populations, currents, and bias. To gain this extra
flexibility one simply chooses low S values for the boundary where this is to occur.  Adjacent to
this boundary one then defines a surface region, with a specified gap state distribution and its
concomitant capture cross-section values.  With S chosen low enough, it is insured that current
flow will be controlled by recombination in the surface layer created by the user.  This surface
region thus can be chosen to control recombination at the boundary. This recombination will be
described with the full S-R-H formulation described previously in section 2.2.2.

2.3   Solution Techniques

We have now developed all the equations needed to analyze transport phenomena in a wide variety
of device types and biasing situations.  These equations are obviously both highly non-linear and
coupled. Due to this non-linearity and coupling, numerical methods are necessary to obtain a
solution.  Because of the discrete nature of these solution techniques, the definition domain of our
equations must also be discretized.  This section will detail our approach to implementing this
discretization scheme and we hope to familiarize the reader with the numerical solution techniques
used by AMPS.  To better explain our approach to solving the set of three coupled non-linear
differential equations, we will divide this section into three parts.  First, our approach to
discretizing the definition domain of the dependent variables will be defined.  Next, the
discretization of the differential equations through the method of finite differences will be
discussed.  Lastly, a discussion of the numerical algorithm used by AMPS to solve the set of
discretized equations will be presented.

2.3.1  Discretization of the Definition Domain

The definition domain in AMPS is the region 0≤x≤L.  The device exists in this region is defined
solely by the user. It clearly can be a very general microelectronic or photonic structure.  Once it is
defined, AMPS breaks the structure down into N slabs and N+1 major grid points (see Fig. 2-1).

1 2 3 4 5 N-3 N-2 N-1 N N+1

slab#

grid#

x=L

1 2 3 4 N-3 N-2 N-1 N

x=0 .............

Figure 2-7.  A grid used in numerical methods.  There are N slabs (dashed lines) and N+1 major grid points (solid
lines).  The example shown here is a uniform grid.
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The major grid points, represented by the solid lines, are the points in the device for which the
unknowns, Ψ, EFp, and EFn are solved.  The minor grid points, represented by the dashed lines, are
the points in the device for which the current densities are formulated using the Scharfetter-
Gummel approach which will be discussed in Section 2.3.2. [4].  A non-uniform grid spacing is
usually adopted such that the spacing is decreased in regions where the dependent state variables
change more rapidly.  This is at the discretion of the user. (see Chapters. 3 and 4)

2.3.2   Discretization of the Differential Equations

To discretize the differential equations the method of finite differences is utilized [5].  This method
replaces the differential operators with difference operators.  For example, the second derivative of
the vacuum level in Poisson’s equation is represented by finite central differences.  In this manner,

d
2Ψ(xi)

dx
2  = 

Ψxi+1 - 2Ψxi + Ψxi-1

h+H (2.3.2a)

where h is the backward distance between adjacent grid points and H is the forward distance
between adjacent grid points in the device.  AMPS allows for the fact that these distances may be
different if a variable grid size is implemented by the user.

In the continuity equations the derivative terms are the derivatives of the current densities.
Typically, the current densities for holes and electrons are given by equation 2.2.1a and b.
However, if those expressions are used for the current densities, and their derivatives are expressed
as differences, numerical methods have extreme difficulty converging to a solution.  To avoid this
problem, Scharfetter and Gummel derived a so-called trial function representation for Jn and Jp that
allows their derivatives to be more amenable to numerical methods [3].  These derivatives are
represented by

dJ

dx
J J

h+H

p p p⎡
⎣⎢

⎤
⎦⎥

= − −

i

i i+ 1 2 1 2/ /

(2.3.2a)

for the hole continuity equation and

dJ

dx
J +J

h+H

n n n⎡
⎣⎢

⎤
⎦⎥

= −

i

i i+ 1 2 1 2/ /

(2.3.2b)

for the electron continuity equation where trial functions are used for the current densities Jn and Jp

in Equations 2.3.2a and 2.3.2b.  The trial function for Jn, derived in Appendix B, is given by

Jn,i+1/2  = 
⎣
⎢
⎡

⎦
⎥
⎤

qkTμnNc exp⎝⎛ ⎠⎞
-φbL

kT
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⎦
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⎛
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⎛

⎠
⎞ Ψi
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(2.3.2b)

and the trial function for Jp, also derived in Appendix B, is given by
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Jp,i+1/2  = 
⎣
⎢
⎡

⎦
⎥
⎤

qkTμpNv exp⎝⎛ ⎠⎞
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kT  
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⎠
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(2.3.2c)

By replacing i+1 with I-1 and H with h and by placing a negative sign in front of the entire
equation, similar expressions can be written for Jn,i-1/2 and Jp,i-1/2.

With this discretization of the derivatives in Poisson’s equation and in the two continuity equations,
these equations may be recast as three functions fi, fei, and fhi and expressed in difference form.  The
equation for fi, which corresponds to Poisson’s equation, is

fi(Ψ*i-1,Ψ*i,Ψ*i+1) = - (A*i-1Ψ*i-1 - A*iΨ*i + A*i+1Ψ*i+1) + ρi(Ψ*i) (2.3.2d)

This represents having all the terms in Poisson’s equation at grid point “i” written on the right hand

side and expressed in terms of the nondimensionalized variable Ψ*=Ψ/kT.   The three “A”
prefactors seen in Equation 2.3.2d are given by

A*i-1 = 
4εiεi-1kT

h(h+H)(εi+εi-1)
,  (2.3.2e)

A*i+1 = 
4εiεi+1kT

H(h+H)(εi+εi+1)
,  (2.3.2f)

and

A*i = A*i-1 + A*i+1 (2.3.2g)

where  A*
i = kT*Ai.  The function fei, corresponding to the electron continuity equation written at

point i, is given by

fei
(x) = 

2
q(h+H) [Jn,i+1/2(x) - Jn,i-1/2(x)] + Gop,i(x) - Ri(x) (2.3.2h)

and the function fhi, corresponding to the hole continuity equation written at the point i, is given by

fhi
(x) = - 

2
q(h+H) [Jp,i+1/2(x) - Jp,i-1/2(x)] + Gop,i(x) - Ri(x) (2.3.2i)

In these equations Gop and R are given, respectively, by Equations 2.2.2a and 2.2.3a.

There are N-1 sets of these equations (a set at every interior grid point in the device of Fig. 2-7).
In addition there are six boundary conditions from Equations 2.2.4a-2.2.4f.  This gives a total of
3N+3 equations that must be solved by AMPS.  Solving means finding the values of Ψ, EFn, and
EFp (the roots) in the right had sides of Equations 2.3.2d, 2.3.2h, and 2.3.2i that makes the left
hand side zero at every grid point.  We note that the Jn and Jp given by the Scharfetter-Gummel
trial function is also used in the expressions from Equations 2.2.4c-2.2.4f when setting up the
boundary conditions.
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2.3.3  Newton-Raphson Method

The Newton-Raphson Method is used in AMPS to solve this set of 3(N+1) algebraic equations
resulting from breaking a device structure into N slabs and from writing the governing differential
equations in terms of differences in the state variables Ψ, EFn and EFp at the grid points defining
these slabs.  It is a method that iteratively finds the roots of a set of functions fi, fei

, and fhi
, if given

an adequate initial guess for the roots.  We stress that the key to success (convergence) is having
an adequate initial guess.  Routines are built into AMPS to generate these initial guesses.

The Newton-Raphson technique is discussed in a number of standard texts on numerical methods
[4].  For AMPS to effectively use the Newton-Raphson method the required 3(N+1) equations
must be set up in an efficient matrix format.  As we noted, six of these come from the boundary
conditions and 3(N-1) from the discretization at the N-1 interior slab boundaries.  For each of these
equations the Newton-Raphson method also requires the partial derivatives with respect to the state
variables Ψ,EFp, and EFn be taken at each discretization point.  If we let the matrix A be the
Jacobian matrix of these partial derivatives, the matrix δ be the matrix of the δΨi, δEfn,i, and δEfp,i
where these are the difference between the initial guess for a state variable at point i and the
corrected value of the state variable at i, and B be the matrix formed by evaluating the functions fi,
fei

, and fhi
, at the point i, then

[A]•[δ] =[B] (2.3.2a)

The matrices A and B are initially evaluated using the initial guesses for the state variables.  They
are subsequently evaluated using the matrix δ to up-date the guesses as the solution evolves toward
the actual values of the state variables.  The matrix δ is constructed as

⇑
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⎢
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δ
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 E

 E

fp

fn

i

i

Ψ
(2.3.2b)

and the matrix B is constructed as
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⎥
⎥
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f

f

i

e

h

i

i

(2.3.2c)

We point out that the δ and B matrices are set up in an order that allows the Jacobian matrix A to
be a banded matrix of the smallest size possible.  This minimizes the amount of computer time
necessary to invert the matrix A to solve for the matrix δ.  To solve for the matrix δ, L-U
decomposition is used [4].
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In using the Newton-Raphson method it is important to note that Poisson’s equation and the
continuity equations must be arranged so that the root may be found; i.e., the equations must be
arranged so that they equal zero as was discussed in Section 2.3.2. After each iteration, the matrix
δ is added to the latest guess, as has been noted, until the smallest value contained within the
matrix δ is less than some predetermined error criterion.  In AMPS, this error criterion is equal to
10-6 kT for all the state variables (expressed in dimensional form) at each point.  This is seen to be
a very rigorous criterion.

To demonstrate the Newton-Raphson algorithm that AMPS uses, we briefly outline the  step-by-
step procedure.  This procedure begins by first finding a solution for thermodynamic equilibrium,
since only Ψ needs to be determined in that case.   Therefore, Poisson’s equation needs to be solved
simultaneously at the N-1 points within the device while imposing the thermodynamic equilibrium
boundary conditions at the two boundary points.  Choosing an initial guess for the solution for  Ψ
to begin the Newton-Raphson technique is very important.  For thermodynamic equilibrium the
initial guess built into AMPS for Ψ  is a straight line connecting the boundary values.  Poisson’s
equation is evaluated at the N-1 interior points with the initial guess to generate the fi at each point
as well as the values of the partial derivatives involved in the Jacobian matrix.  After solving for
the matrix δ, the matrix δ is added to the initial guess and Poisson’s equation and the partial
derivatives are recalculated.  This continues until every value of the matrix δ is less than 10-6kT.
When this condition is met, the initial guess for Ψ has been fully evolved to the actual Ψ at
thermodynamic equilibrium in the device.

With the solution in thermodynamic equilibrium known, AMPS now is able to handle any set of
voltage biases, light biases, or both called for by the user.  To do so, AMPS first uses the Ψ(x)
calculated from thermodynamic equilibrium as a basis for formulating its initial guess to Ψ(x)
under the biasing.  It uses a built-in routine to generate the initial guesses now needed for the other
two state variables that come into play with bias present, namely, Efn(x) and Efp(x).  In applying
voltages, such as when AMPS steps through a dark current-voltage sweep,  constant voltage steps
are used.  In each of these voltage steps AMPS needs new initial guesses for all the unknowns.
Routines for these are built into the program.

To determine the device characteristics with a light bias applied, AMPS generates the dark current-
voltage characteristics.  Light, as dictated by the user, is then turned on and AMPS steps through
the current-voltage characteristics under illumination.

2.4   Constructing the Full Solution

Once the state variables Ψ, EFn, and EFp are determined for a given set of biasing conditions
(voltage, light, or both) and temperatures, the current density-voltage (J-V) characteristics for these
conditions can be generated.  The J-V characteristic for some temperature T, with or without the
presence of light, is obtained from the fact that J=Jp(x) + Jn(x) where x is any plane in the device
and Jn and Jp are obtained from Equations 2.2.1a and 2.2.1b.  Similarly the electrostatic field ξ
throughout the device can be generated for the various conditions using ξ = dΨ/dx and
recombination can be generated using Equation 2.2.2a.  In fact all the internal “workings” going on
in a device (n,nt,pt,etc) can be generated for a given set of conditions, as desired by the user.
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CHAPTER 3
MATERIAL PARAMETERS

3.0   Introduction

Now that we have discussed in Chapter 2 the basic equations and solution techniques used in
AMPS to solve for the current density-voltage-temperature (J-V-T) characteristics of a device, the
recombination taking place as a function of position, temperature, voltage, etc. in a device, the
various populations present throughout the device, and the other “workings” going on inside a
general structure under bias, we are ready to further describe the parameterization approach used
in AMPS to represent semiconductors, insulators, and metals.  Parameterization of the properties
of these materials are needed since they are the building blocks of all the various types of devices
we are interested in designing, analyzing, and optimizing.  This section, which describes in detail
the material parameters needed in AMPS for these various materials, is divided into five major
subsections.  Subsections 3.1, 3.2, and 3.3 will describe the parameters used to represent
semiconductor materials, insulating materials, and metals.  Subsection 3.4 describes how AMPS
parameterizes interfaces of different regions within a device and the interfaces at the contacts.
AMPS also takes into consideration situations where the material parameters can vary with
position.  This case is described in section 3.5.

3.1   Parameters for Representing Semiconductor Properties

    This subsection is an in-depth discussion of the parameters needed to represent semiconductor
materials.  We will assume in this subsection that we are dealing with a semiconductor layer of
some thickness specified by the user.  There may be just one such layer in a device or a number of
such layers.  Cases where semiconductor properties are continuously varying are discussed in
subsection 3.5.  All three different classes of semiconductor materials are modeled within AMPS;
namely, crystalline material, polycrystalline material, and amorphous material.  Subsections 3.1.1,
3.1.2, and 3.1.3 discuss crystalline, amorphous materials, and polycrystalline cases respectively.

3.1.1   Lifetime picture

When using this lifetime picture of recombination/thermal generation described by Eqn (3.1.1 a)
and (3.1.1b) to model S-R-H or B-T-B process, there are some procedures that should be followed
and a few kept in mind:

p-type     Rn=Δn/τn (3.1.1a)

n-type     Rp=Δp/τp (3.1.1b)

(1) In steady state operation (which is what AMPS models) Rn must always equal Rp. hence
when using the linearized lifetime picture of Eqn (3.1.1a) and (3.1.1b), one must be
careful not to over specify the problem.
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For example, looking at Eqn (3.1.1a) and (3.1.1b), one notes that a lifetime value could
only apply to both carriers if n-n0=p-p0. AMPS/.windows set up to give you Self-
Consistancy-Check (SCC) lifetimes back at the end of a run by its calculating Δn/R and
Δp/R. So, if you believe the linearized models are good for both carriers and that there is a
lifetime that applied to both carriers, then you can check the self-consistency of this by
seeing if the AMPS calculated SCC lifetime are equal (equal to your inputted values). If
you think the lifetime concept and the linearization of R applied to electrons, then you are
assuming Eqn (3.1.1a) is valid. In this case you should not specify anything about holes.
You let AMPS worry about keeping Rn=Rp. At the end of the run, AMPS will calculate
the SCC lifetimes. If you were right initially, then the SCC electron lifetime will be equal
to what you inputted. The SCC hole is meaningless in this case.

The corresponding procedure is followed if you believe the lifetime applies to holes. The
key is to check that the SCC lifetime is what you inputted for holes; ie, you must check
that you are being self-consistent.

In general there will be regions in real devices where one is not sure if the linearized
lifetime model for electrons or the linearized lifetime model for holes is better applied. In
those situations assume the lifetime applies to both carriers (ie, assume recombination can
be linearized for both carriers and that the lifetime applies to both carriers) and run
AMPS. Then look at the outputted SCC lifetimes. in regions where the SCC lifetimes are
equal (and essentially equal to what you inputted), leave things alone. In regions where
the SCC electron lifetime << hole lifetime, AMPS is telling you it makes more sense to
think of the linearized model as being appropriate for electrons. It is telling you
conduction band electron are the controlling carrier and hence, your inputted lifetime has
to be redone as an electron lifetime. The procedure for when the SCC electron lifetime >>
SCC hole lifetime is, therefore, just the opposite.

(2) The lifetime picture uses Eqn (3.1.1a) and (3.1.1b) and consequently it does not account
for the details of S-R-H recombination; ie, it does not look at defect charging resulting
from carriers passing through these states (This charging is overlooked since neither DOS
nor capture-cross-sections are specified). This picture does not encompass, therefore, any
field redistribution effects which may occur during device operation due to charge build-
up in device states.

(3) Neither S-H-R nor B-T-B recombination/thermal generation are really the simple, linear
processes described in Eqn (3.1.1a) and (3.1.1b). For S-R-H net recombination the
trapping through each group of defects of density Nt is given by

R=Rn=Rp=  (np-n0p0)/(τp0(n+nt)+τn0(p+pt)) (3.1.1c)

where τp0 and τn0 are short hand for reciprocals of the thermal velocity-hole/electron
capture cross section and Nt product. The quantities nt and pt depends exponentially on
the position of the defects in the energy band gap. For B-T-B net recombination

R=Rn=Rp=k(np-n0p0) (3.1.1d)

where R is a constant that depends on the material and is to first order, independent of
carrier populations.
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Equation (3.1.1c) and (3.1.1d) made it clear that the linearized versions seen in Eqn
(3.1.1a) and (3.1.1b) are only rigorously true if you are lucky. You have to be especially
lucky in the case of S-R-H recombination since the carrier populations ever appear in the
factors multiplying (np-n0p0).

3.1.2   DOS picture

In this version of AMPS/windows, the user has the choice of two different approaches.  One is
what we term the density of states (DOS) picture; the other is what we term the carrier lifetime
picture.

In the DOS picture the details of recombination traffics, trapping and the charge state of the
defects (and the effects of this charge on the electric field variation across a structure) are fully
accounted for. Because all the recombination traffics, trapping, re-admission, etc. - and their
effects on the electric field- are in the DOS picture, this approach requires that the user input the
energy gap distribution of the defects as well as their spatial variation. This approach also requires
capture cross section information to quantify the attractiveness of the various defects to electrons
and holes. The Shockly-Read-Hall (S-R-H) model is used for the capture and emission process in
this DOS approach. AMPS also uses the resulting charge in the defect state in its calculation with
Possion’s equation.

This DOS picture is needed when dealing with material that have significant defect densities such
as amorphous silicon materials and grain boundary region of polycrystalline materials. If this DOS
picture is not used, one does not account for electric field distribution changes that occurs due to
charge build-up in defect states.

In the lifetime picture, the assumption is made that S-R-h or Band-To-Band (B-T-B) net
recombination/thermal generation can be modeled with linear models that look like

p-type     Rn=Δn/τn (3.1.2a)

n-type     Rp=Δp/τp (3.1.2b)

Here Δn is the change in the conduction band electron population n from its thermodynamic
equilibrium value n0. Corresponding Δp is the change in the valance band hole population p from its
thermodynamic equilibrium value p0. The quantity τn is referred to as the electron lifetime and τp is
referred to as the hole lifetime. In steady state (which is what AMPS/windows model) R=Rn=Rp is
always true.

3.1.2.1   Parameters for Single Crystal Semiconductor Materials

This section describes the parameters AMPS needs to tell the mathematics of Poisson’s equation
(Equation 2.1), the carrier transport (continuity) equations (Equations 2.2a & b), and the
recombination/generation equations (Equations 2.2.2a & 2.2.3a) about the presence of a single
crystal semiconductor material in some region of a device.  This single crystal layer existing in
some region of the device is seen in Fig. 3.1.
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3.1.2.1.1   Band State Parameters

The mathematical expressions given for n=n(x), the number of electrons at some point per volume
in the conduction band, and for p=p(x), the number of missing electrons at some point per volume
(i.e., holes per volume) in the valence band in Equations 2.1.1a and b require band parameters for
this layer of single crystal material.  This may be seen by noting that, for the single crystal layer of
constant material parameters seen in Fig 3.1, n from Equation 2.1.1a can be rewritten in terms of
our state variables Ψ, EFn, and EFp as

n = NcF1/2  ⎣⎢
⎡

⎦⎥
⎤EFn-ΦbL-χe(L)+χ

e-Ψ(x)
kT   (3.1.2.1.1a)

where Ec = ΦbL + χe(L) + Ψ(x)-χe       (3.1.2.1.1b)

Similarly p from Equation 2.1.1b can be rewritten as

p = NvF1/2  ⎣⎢
⎡

⎦⎥
⎤ΦbL+χ

e(L)-χe-EG+Ψ(x)+EFp

kT   (3.1.2.1.1c)

where

Ev = ΦbL + χe(L) -χe -EG + Ψ(x)      (3.1.2.1.1d)

These expressions are valid for this layer for thermodynamic equilibrium, in which case EFn=EFp=0,
since these assume EFn is measured positively up and EFp positively down from the Fermi level
position in the ohmic contact at x>L.3  They are also valid when biasing is present.

From Equations 3.1.2.1.1a and 3.1.2.1.1b, it can be shown that to specify n and p in this layer, we

must give the band effective densities of states Nc and Nv for the layer, the electron affinity χe for
the layer, and the energy gap EG for the layer.  It is also clear from these expressions that AMPS
will require the barrier height at the contact at x=L as well as the electron affinity in the
semiconductor adjacent to the contact at x=L.

EC

V
E

E
G

χe

EFn

EFp

EVL

Figure 3-1  A band diagram for a layer of a device that has constant material parameters.

                                                       
3 Note that this reference is chosen because, as discussed earlier, it does not shift with respect to the vacuum level

when the structure is subjected to a perturbation.

Pars
Opti

cs
.co

m

http://parsoptics.com


AMPS-1D Manual.ps 36

3.1.2.1.2   Localized (Gap) State Parameters

In general there may be a variety of different types of gap (i.e., localized) states existing in the
energy gap of the layer seen in Fig. 3.1, even though the material is single crystal.  As detailed in
Chapter 2, AMPS breaks these states into two classes: those that are inadvertently present due to
defects (structural and impurity) and those that are purposefully present due to doping.  As we also
noted, there may be donor-like and acceptor-like states among both classes.

3.1.2.1.2.1   Parameters for Doping Levels

We turn first to a survey of the parameters needed to describe doping levels in our single crystal
semiconductor layer of constant material parameters.  The doping levels in our usage include
states which are characterized by discrete levels and states that form a band  with a  bandwidth
defined by an upper energy boundary and a lower energy boundary.  This latter case of localized
gap state bands can arise if heavy doping is present in a structure as noted in Chapter. 2.  It is
important to note that any combination of these two unique types of states is acceptable to AMPS
(see section 2.1.2.1c).

3.1.1.2.1a   Parameters for Discrete Dopant Levels

Discrete dopant-caused localized sites have single energy levels and arise from the intentional
introduction of impurities.  For these types of states there can be up to nine donor energy levels and
nine acceptor energy levels.  Population in these sites is given by Equations 2.1.2.1c through
2.1.2.1n. The user has a choice of assuming full ionization or having AMPS compute the
populations using Fermi-Dirac statistics for these states.  If full ionization is assumed, then the
donor doping concentrations of the ith discrete level NdDj or the acceptor doping concentrations of
the jth discrete level NdA,j are all that need to be specified and they are charged such that

NdD,i

+
 = NdD and NdA,j

- = NdA,j.  In the fully ionized case, AMPS computes the total ionized donor
states per volume NdD

+ and the total ionized acceptor states per volume NdA
-  from a summation

taken over the number of energy levels (specified by the user).

In situations where the user does not insist that the dopants are all fully ionized, AMPS figures out
their degree of ionization.  For the discrete levels under discussion, it does so by using Equations
2.1.2.1c and d with fD,i given by Equation 2.1.2.1g and fA,j is given by Equation 2.1.2.1h.  The n
and p in these expressions are given for the constant-property semiconductor layer under
discussion, by Equations 3.1.1.1a and c, respectively.  These expressions, Equations 2.1.2.1c and d
and Equations 2.1.2.1g and h, are valid for biasing situations and for thermodynamic equilibrium.
In the latter case, the expressions for fD,i and fA,j pass over to the appropriate Fermi functions when
the thermodynamic equilibrium values are used for n and p.

If discrete dopant states are assumed to be fully ionized, they do not participate in recombination.
However, if the states are not fully ionized, then their occupation probabilities are given, in general,
by fD,i (Equation 2.1.2.1g) or fA,j (Equation 2.1.2.1h), respectively, as was just noted.  These fD,i

and fA,j are determined by the Shockley-Read-Hall recombination traffic through the levels.  These
levels, therefore, contribute recombination.  This contribution is embodied in the first and third
terms on the right-hand side of Equation 2.2.2.2a.

From Equations 2.1.2.1c, 2.1.2.1d, 2.1.2.1g, and 2.1.2.1h and Equation 2.2.2, it can be seen that
the modeling of these discrete dopant states which are not assumed to necessarily be fully ionized
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demands several additional pieces of information.  Now, in addition to specifying the donor or
acceptor concentration NdD,i or NdDj for each ith or jth level, we must specify its location in energy
from the conduction band (EDONi for donors) or its location in energy from the valence band (EACPj

for acceptors), and the capture cross-sections σndDi, σpdDi (for donors), σndAj and σpdDj (for
acceptors) for each level.

3.1.2.1.2.1b   Parameters for Banded Dopant Levels

As noted in Chapter 2, AMPS allows for the possibility that there may be dopant bands in the
energy gap.  Heavy doping, for example, can cause this in single crystal materials.  Banded
localized dopant sites are characterized by  lower and upper energy boundaries.  The total
population in these banded dopant states is given by Equations 2.1.2.1o and p.  The population in
some ith donor and jth acceptor band is given by Equations 2.1.2.1q and r, respectively.  In these
expressions, the probability of occupation function  is given by Equation 2.1.2.1u for donor levels
and Equation 2.1.2.1v for acceptor levels. In these expressions, n is given in general by 3.1.2.1.1a
and p is generated by Equation 3.1.2.1.1c.  In the special case of thermodynamic equilibrium
EFn=EFp=0 in these expressions.

Recombination through these bands of dopant states, which may be present in our single crystal
layer with constant material properties, is given by the second and fourth terms on the right hand
side of Equation 2.2.2.2a.  This equation, Equations 2.1.2.1u and v, as well as Equations 2.1.2.1q
and r, show that band dopant levels require the specification of a number of parameters.  For the ith

such dopant band, these are seen to be the energies E1i and E2i, the concentration (NDi or NAi), and
the capture cross-sections (σndDi and σpdDi or σndAj and σpdDj).

3.1.2.1.2.2   Parameters for Defect Levels

We now consider the charge residing in, and the recombination traffic taking place through, the
localized levels arising from structural or impurity defects (see section 2.1.2.2 for the mathematical
development) that may exist in the single crystal layer with constant material properties seen in Fig
3-1.  These states can be donor-like or acceptor-like, discrete or banded, just like the dopant states
of the previous section.  AMPS also allows certain continuous functions (exponential, Gaussian, or
a constant) for these states.

3.1.2.1.2.2a   Parameters for Discrete and Banded Defect Levels

Populations and recombination traffic through discrete and banded defect levels are computed in a
manner which is identical to the computation performed on discrete and banded dopant levels;
however, AMPS does distinguish between localized states arising from defects and from doping in
its input.  More will be said about this in Chapters 4 and 5.  Since the mathematical representation
of discrete and banded dopant defect states is identical, the parameters needed to model these states
are identical.  To be specific, discrete defect states are described by specifying a density, energy
position in the gap, and capture cross-sections for holes and electrons.  Banded defect states are
described by a density, by the two energies defining the width and location of the band, and by
capture cross-sections for holes and electrons.  Chapters 4 and 5 detail the input of this
information.
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3.1.2.1.2.2b   Parameters for the Continuous Defect Levels

Continuous defect states are those localized states that form a continuum throughout the band gap.
These continuum gap states are to be distinguished from the discrete and banded localized gap
states which only exist at specific energies or at a specific range of energies in the gap.  AMPS
offers the possibility of three different types of continuous distributions: exponential, Gaussian,
and constant distributions.  The possibility of an exponential distribution of gap states is included
in AMPS, because even single crystal materials, such as our layer in Fig. 3-1, are found to have
Urbach tails of states coming out of both the conduction band and the valence band.  The former
are acceptor-like and the latter are donor-like.  These tails of localized states are usually very
adequately modeled by an exponential distribution increasing in concentration as the bands are
approached.  Of course, in crystalline materials these tails are found to fall off sharply away from
the bands, whereas in amorphous materials they fall off more slowly.

The possibility of Gaussian states that are either donor-like or acceptor-like, and located anywhere
in the band gap, is provided by AMPS.  The possibility of a constant distribution of gap states is
also included in AMPS to allow the user to introduce a background baseline of defects in a
material.

These donor-like Urbach tail states coming out of the valence band are modeled in AMPS by

gd(E) = Gdoexp(-E/Ed),  (3.1.2.1.2.2a)

where E is measured positively up from wherever the valence band edge Ev is located at some point
x.  Those acceptor-like Urbach tail states coming out of the conduction band are modeled by

ga(E') = Gaoexp(E'/Ea),  (3.1.2.1.2.2b)

where E' is measured negatively down from wherever the conduction band edge Ec is located at
some point x.  Ed and Ea are the characteristic energies that determine the slopes of their respective
tails.  They must be specified by the user, as must the prefactors Gdo and Gao (states per volume
per energy) in these equations.  Since these states can exchange carriers with the conduction and
valence bands, capture-cross sections for each tail must be specified for electron capture and for
hole capture  These Urbach tails are seen in Fig. 3-2.
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Figure 3-2.  Urbach tails only.

Figure 3-3. A more complicated density of states: Urbach tails and a constant mid-gap distribution (contributions
from constant distribution are ignored beyond ELo and EUp.

The Gaussian distributions provided by AMPS are of the form
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(3.1.2.1.2.2c)

where the prefactor GGd (for donors) or GGa (for acceptors) is in states per volume per energy.  Here
Epkd locates the center of a donor Gaussian with respect to the conduction band and Epka locates the
center of an acceptor Gaussian with respect to the valence band.  The quantity σd,a is the standard
deviation.

Rather than requiring GGd,a, AMPS is set-up to ask for the total number of states per volume in a
Gaussian.  It also needs Epkd,a , σd,a, and a set of capture cross-sections for each Gaussians.  All of
these quantities must be inputted by the user into AMPS as is needed to describe the situation to be
analyzed by AMPS.

The constant density of states distribution also provided by AMPS can be donor-like from the
valence band edge Ev up to an energy Eda specified by the user.  From Eda to the conduction band
Ec, these states can be acceptor-like.  The value of the constant density of states EMGD (states per
volume per energy) below Eda need not be the same as the value of the constant density of states
GMGA(states per volume per energy) above Eda.  This “switch-over”  energy Eda is measured
positively up from Ev in AMPS.  Both the constant acceptor and constant donor distributions must
each be assigned a set of capture cross-sections.
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AMPS computes the populations of the Urbach tail states, Gaussians, and  any constant density of
states distributions using Equations 2.1.2.2c and d, developed in Chapter 2.  The occupation
functions in these expressions are given by Equations 2.1.2.1u and v.  The n and p appearing in
Equations 2.1.2.1u and v are given by Equations 3.1.2.1.1a and 3.1.2.1.1c, respectively, for our
single crystal layer of Fig 3-1.  These expressions are all valid for both biasing situations (voltage,
light, or both) and thermodynamic equilibrium.  In the latter case, AMPS uses the thermodynamic
equilibrium values of n and p in Equations 2.1.2.1u and v.  AMPS computes the recombination
traffic through exponential tail, Gaussian, and any constant density of states distribution by using
the seventh and eighth terms of Equation 2.2.2.2a.

To reiterate we see from our description of these continuous state distributions and from our
outline of the computations involved in determining their contributions to nt, pt, and recombination
that the user must input the appropriate material parameters when these states are present.  For the
donor Urbach tails, the user must input Gdo and Ed as well as the capture cross-sections.  For the
acceptor Urbach tail the corresponding quantities are required.  For the Gaussian donor or acceptor
distributions the densities of states in the Gaussians, peak energy, standard deviation, and capture
cross-sections must be input by the user if they are needed in modeling.  For the constant
distributions, GMGA, GMGD, and Eda are required as are the capture cross-sections.  AMPS allows the
capture cross-sections to be different for the acceptor and donor states of this type.

3.1.2.1.3   Parameters for Optical Properties

The optical properties of the region seen in Figure 3.1 are specified by absorption coefficients and
by relative dielectric constants.  The absorption coefficients for this material are entered in tabular
form as a function of wavelength.

3.1.2.2   Parameters for Amorphous Semiconductor Materials

In this section, we now consider the layer of semiconductor material seen in Fig. 3-1. to be an
arbitrary amorphous semiconductor with constant material properties.  We do not specify where it
is in the device; it simply is an amorphous semiconductor layer existing somewhere in a device.
We also note that all of the delocalized state, gap state, and optical parameters described in section
3.1.2.1 are applicable to this amorphous layer.  The major difference between amorphous and
single crystal semiconductors is the low mobility and the large numbers of localized gap states in
amorphous semiconductors.  The user simply reflects the enhanced role of gap states in amorphous
materials by appropriate adjusting the input parameter values for the various gap state models
discussed in Section 3.1.2.1.

Also,  it may be necessary when modeling amorphous materials to differentiate between a mobility
gap EGu and an optical gap EGop.  In single crystal materials EGu=EGop=EG; however, in amorphous
materials the states that support delocalized band transport may exist at a different threshold from
those states that support band-to-band optical transitions.  In AMPS EGu=Ec-Ev and EGop may be
separately inputted by the user.  We note that AMPS measures all energies defining gap state
distributions in terms of EGu ; that is, from Ev or Ec as discussed in Section 3.1.2.1.

We also note that Egop is only present in AMPS for book-keeping, that is, what really determines
what wavelengths cause photogenerated carriers is the absorption coefficient table.  If there is an
absorption coefficient present for some wavelength, then AMPS assumes the absorption produced
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photocarriers in the bands.  Hence Egop and the absorption table should be self-consistent but it
really is the absorption table tat controls the threshold of photocarrrier generation.

We stress here that by combining the exponential, Gaussian, rectangular, and discrete energy
distributions discussed in Section 3.1.2.1 and available in AMPS, any density of states profile in
an amorphous material can be simulated.  For example the Urbach tails which are so important in
amorphous semiconductors are modeled by the exponential distributions built into AMPS.  The
dangling bonds of a-Si:H are, for example, also easily modeled by AMPS using the Gaussian
distributions that are also built in.

3.1.2.3   Parameters for Polycrystalline Semiconductor Materials

In this section we now address the possibility that all of, or some part of, a device structure may be
composed of polycrystalline semiconductor material.  Polycrystalline semiconductors are materials
that have crystalline regions (grains) which are bounded by disordered regions (grain boundaries).
To simulate polycrystalline materials with AMPS, one need only to create a multi-region structure
consisting of crystalline regions interspersed with thin amorphous regions.  The crystalline regions
represent the semiconductor grains, while the thin amorphous regions  represent the disordered
grain boundaries.  With this approach of allowing for regions of different material parameters,
AMPS can simulate an extremely general semiconductor device structure that can consist of any
combination of single crystal, polycrystalline, and amorphous semiconductors.

3.2   Parameters for Insulator Properties

Insulators can be modeled using AMPS by assuming a wide bandgap material.  This can easily be
done by making EG large.  If the insulator is ideal, one can choose EG to give a desired conductivity

(or resistivity) by the formula σ = q(μn+μp)ni = q(μn+μp) NcNvexp(-EG/kT)..  Of course, all of the
material parameters discussed in Section 3.1.1. are available for this insulating material.
Consequently, deviations from the “perfect” insulator can be modeled by inputting gap states that
can, of course, have properties that vary with energy and position.

3.3   Parameters for Metal Properties

In AMPS, metals may exist at the contacts at x=0 and x=L.  The general boundary conditions used
by AMPS allow for modeling of a wide variety of these metal contacts.  In AMPS one inputs the
appropriate barrier height and electron affinity at the front (x=0) and back (x=L) of the device
structure, thereby establishing the work function of the metal from

φw,front = φbo + χ(x=0)  (3.3a)

φw,back = φbL + χ(x=L) (3.3b)

By choosing barrier heights (i.e., the metals) and surface recombination speeds (the quality of
interface) one can enhance or reduce the quality of the semiconductor contact and, hence, ideal
ohmic, non-ideal ohmic or rectifying contacts can be modeled.   For example, a low barrier contact
with high surface  recombination speeds could represent an ideal metal contact, while the same
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contact with low surface recombination speeds could represent a poorly prepared surface or an
electrolytic contact.

We note that AMPS also allows for tunneling at contacts; however this feature is currently not in
AMPS-1D.

3.4   Parameters for Interface Properties

The contacts at x=0 and x=L caused by the presence of metals can be thought of as special
interfaces.  From Section 3.3 it follows that these contacts are fully specified by inputting the
barrier height and the surface recombination speeds for each carrier.  As was discussed in Section
2.2.4, AMPS allows for transport at these contacts from recombination to thermionic emission to
be rigorously modeled, as outlined in Section 2.2.4; by adjusting the effective surface
recombination speeds.  If tunneling is chosen to be present by the user, it exists parallel to the other
transport mechanisms at the contact.  Invoking the presence of direct tunneling for a carrier
necessitates that the user input an effective tunneling mass for the carrier.  Again tunneling is not
currently available in AMPS-1D.

These special interfaces at x=0 and x=L which are the metal contacts also have optical properties.
These are captured in reflection coefficients RF and RB.

AMPS allows interface regions to be created adjacent to these contacts as x=0 and x=L and to be
created anywhere in a device.  These interface regions are thin regions which have a large number
of defect states.  The user can input an interfacial layer anywhere by adding a thin region with
different properties.  Often people speak in terms of the interfacial area defect density at an
interface.  This can be computed by multiplying the volume density of states in the interfacial layer
by the thickness of the interfacial region.  We stress that, since this interfacial region can have its
own material parameters, the user can create an interfacial layer that is entirely independent of the
surrounding bulk materials.

3.5   Parameters for  Materials with Spatially Varying Properties

The discussions in the previous sections have pointed out the great range of the material
parameters and device structures that AMPS can simulate.  In particular, as has been mentioned in
the discussions on polycrystalline grain boundaries and interfaces, AMPS can model structures
with as many different regions of different material parameters as desired.  By judiciously
positioning these different material layers, regions of continuously-varying material parameters can
be created.  This ability to spatially vary material parameters gives the user a great deal of
flexibility in creating a very general device structure using AMPS.  Chapter 4 detail the input
parameters.
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CHAPTER 4
PROCEDURE FOR RUNNING AMPS

_____________________________________________________________________________________

4. 1 Overview

First AMPS will calculate the basic band diagram, built-in potential, electric field, free carrier
populations, and trapped carrier populations present in a device when there is no (voltage or light)
biasing of any kind.  These thermodynamic equilibrium solutions allow the device designer to “see
what the device will look like.”

Then AMPS will take these thermodynamic equilibrium solutions and use them as starting guesses
for the iterative scheme that will lead to the complete characterization of a device under voltage
bias, illumination bias, or voltage and illumination bias.  AMPS will generate output such as the
band diagram (including quasi-Fermi levels), carrier  populations, currents, recombination profiles,
current-voltage (I-V) characteristics, and spectral response can be obtained for devices under
various levels of voltage, illumination, or voltage and illumination bias.

4. 2 How to Generate Device Characteristics

4. 2. 1  Dark IV Characteristics

In the window where user specify the voltage bias conditions, all you have to do is give the range
of voltage biasing. For example, voltage biasing from -1v to 1v. This voltage range will apply not
only to dark I-V, but also light I-V. If user want to see band diagram at certain bias condition, he
(she) may open the window of selected biasing to give AMPS the value Thai must: 1) fall into the
voltage he (she) specified in the previous window; 2) be consistent with voltage step chosen before.
For example, if a user choose a voltage step as 0.05 volts between 0 and 1 volts and he wants to
see the band diagram at 0.88 volts. AMPS will round it off to 0.9 volts. In this case user has to
reduce his voltage step to 0.04 volts at least. Note that the more voltage points you input, the
longer time AMPS will take to calculate.

4. 2. 2  Light IV Characteristics

The only difference between light and dark IV at user input window is that user has to check “light
on “ at the illumination window. AMPS provided AM1.5 as default, but the photon flux and
spectrum can be defined by user. A neutral filter/concentrator is given as a box named “light-x”.
The absorption coefficient has to be input by user manually. But AMPS does provide a option in
the box “Eopt” for user to linearly shift the absorption coefficient. Because most of the time the
data of absorption coefficient is not easy to obtain, this linear shift may help user to count the
change of band gap. Details can be seen at user interface.
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4. 2. 3  Spectral Response

If user want to see the current generated at each wavelength, he (she ) has to check “spectral
response” box. AMPS will always generate spectral response both with and without light bias. The
light bias is defined by the spectrum and flux in the spectrum window. The range of QE plot is also
determined by this spectrum defined by user. User can change the probe beam intensity as well.
AMPS can generate QE at specified voltage bias as long as the voltage point obey the rules
described above.

4. 3 Surface Photovoltage Response

Typically, the SPV technique is performed using one of two methods: Method A or Method B. 1,2

Basically, both methods involve a relationship between four quantities: the open circuit voltage
Voc, the photon flux intensity Φo, the light penetration depth 1/α at known wavelengths λ of
monochromatic light, and the minority carrier diffusion length Ln (p-type). Both methods require a
linear relation between the independent variable (which differs for Methods A and B) and the
dependent variable 1/α (which is the same for both methods). With Method A, if Voc is held
constant while λ is varied, then the required linear relationship must be formed in a plot of Φo
versus 1/α. This plot, when extrapolated to the 1/α axis, yields Ln, according to Method A. With
Method B, on the other hand, if Φo is held constant while λ is varied, then the required linear
relationship must be found in a plot of 1/Voc versus 1/α. This plot, when extrapolated to the 1/α
axis, yields the correct value of Ln according to Method B.

1. A.M. Goodman, “A Method fro the Measurement of short Minority Carrier Diffusion Lengths in
Semiconductors,” Journal of Applied Physics, 32 (1961) P.2550

2 A. Quilliet and M.P. Gosar, “L’Effet Photovoltaique De Surface Dans Le Silicium Et Son Application A
La Mesure De La Duree De Vie Des Porteurs Minoritaires,” Journal de Physique et le Radium, 21
(1960), pp 3335-3338

4.4   Procedure for Inputting Parameters

When you run one of our simulations, the program expects a default set of parameters.  We have
created a default set of parameters for a-Si:H and for a crystalline silicon p-n junction that can
always be used.  Our intent is that most people will start with the our default files and modify them
as appropriate crating their own default cases.  If you have an old case saved in one of your
directories and you would like to use these parameters as your default file, you can do so by saving
the old case as the case name you wish and reset the parameters. This default option can be
useful if you have previously run a case similar to your current interests, and you wish only to
change a few parameters.

Once the program has accepted the default parameters, you may edit them as desired to fit your
particular configuration.  You may review all of the parameters by selecting the appropriate
options when they are displayed on the screen.
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4.4.1   List of Input Parameters

The following is a list of input parameters that AMPS needs to solve the set of transport equations
and boundary conditions.  In general, this list will apply to all current program versions, with some
minor exceptions.  The differences in the parameter list between each program version will be
mentioned as they are discussed.  Parameters which only apply to non-equilibrium are tagged.

For the programs of all parameters fall into one of three general categories:

1. Parameters that apply over the entire device.

2. Parameters that apply to a particular region.

3. Parameters that define the illuminating spectrum (for cases with light).

4.4.1.1   Parameters that Apply to the Entire Device

The parameters that apply to the entire device (category 1) include (units used in AMPS are in
parentheses) the following:

1. Boundary conditions

Please see Figure 4-1 for more details on where PSIBO and PSIBL are applied.

a. PHIBO = Φb0 = EC - EF at x=0 (eV)

b. PHIBL = ΦbL = EC - EF at x=L (eV)

2. Surface recombination speeds4,5

a. SNO = SNO = electrons at x=0 interface (cm/sec)

b. SPO = SPO = holes at x=0 interface(cm/sec)

c. SNL = SNL = electrons at x=L interface (cm/sec)

d. SPL = SPL = holes at x=L interface (cm/sec)

3. Reflection coefficient for light impinging on front and back surfaces

a. RF = RF = reflection coefficient at x=0 (front-surface)

b. RB = RB = reflection coefficient at x=L (back-surface reflection)

4. Temperature T (K)

These parameters are entered only once, and apply in general to the entire device.

                                                       
4 These parameters are unique to non-equilibrium.

5By taking S=1/4(thermal velocity), AMPS will then be modeling thermionic emission for that carrier and plane.
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4.4.1.2   Parameters that Apply to a Particular Region

The parameters in Category 2, however, may have different values in different regions.  These
parameters include (units in parentheses):

1. The width W or XLAYER (A) of a region

2. Basic material properties

Figure 4-1 shows a band diagram with CHI, EG, etc.

Vapp

EF(x=0-)

φb0 φb\L
EF(x=L+)

EFn(x)

EFp(x)
EGμ

EC(x)

χe(x)

x=0 x=L

EV(x)

Figure 4-1  Schematic band diagram of a semiconductor device under an applied voltage Vapp .

a. EPS = relative permittivity εr at temperature T such that εs = εrε0, where εs is the
permittivity of the semiconductor.

b. NC = effective density of states NC (cm-3) in the conduction band at temperature T

c. NV = effective density of states NV (cm-3) in the valence band at temperature T

d. EG = the mobility bandgap EGμ (eV) at temperature T

e. EGOP = the optical bandgap EGopt (eV) at temperature T

NOTE: This parameter  determines the longest wavelength photon used in
calculating photo generation.  Even if absorption coefficients are entered for λ >
Egopt/1.24 , these wavelength will not be used for calculations such as those needed
for Jsc and QE.



AMPS-1D Manual.ps 47

f. CHI = electron affinity χe (eV) at temperature T

g. MUN4 = Electron mobility μn (cm2/V-sec) at temperature T

h. MUP4 = Hole mobility μp (cm2/V-sec) at temperature T

3. Discrete Localized Defect States

DLVS is the number of discrete donor-like levels (0≤DLVS≤25) and ALVS is the number
of discrete acceptor-like levels (0≤ALVS≤25).  Figure 4-2 shows the variables EDON,
EACP, ND, NA, WDSD, and WDSA.

EV

ND

Energy

EC

EDON

NA

 WDSD

 WDSA

EACP

Figure 4-2  An example of one discrete donor level and one discrete acceptor level.

a. Discrete donor level concentrations and ionization energies

i. For full ionization input DLVS = 0 and the following

a) ND(i) = ND,i = Concentration (cm-3) at the ith donor level

ii. If DLVS>0 (partial ionization), then input for each of the i = DLVS discrete levels

a) ND(i) = ND,i = Concentration (cm-3) at the ith donor level

b) EDON(i) = Ionization energy (eV) of the ith donor level measured positively
from the conduction band edge EC

c) WDSD(i) = WD,i = Width (eV) of the ith banded donor dopant level
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d) DSIG/ND(i)4 = Electron capture cross section. (cm2) for the ith discrete donor
level

e) DSIG/PD(i)4 = Hole capture cross section (cm2) for the ith discrete donor level

b. Acceptor level concentrations and ionization energies

i. For full ionization input DLVS = 0 and the following

a) NA(i) = NA,i = Concentration (cm-3) at the ith acceptor level

ii. If ALVS>0 (partial ionization), then input for i=1 to ALVS,

a) NA(i) = NA,i = Concentration (cm-3) at the ith acceptor level
b) EACP(i) = Ionization energy (eV) of the ith acceptor level measured positively

from the valence band edge EV

c) WDSA(i) = WA,i = Width (eV) of the ith banded acceptor dopant level
d) DSIG/NA(i)4 = Electron capture cross section (cm2) for the ith discrete

acceptor level
e) DSIG/PA(i)4 = Hole capture cross section (cm2) for the ith discrete acceptor

level

4. Continuous Localized Defects in the Tails and Midgap States (SHAPE = “V” or “U”)

E
V

GDO

Energy

 G(E)

 (log)

E
C

GAO

G (E) =  G
E-E

ED DO
V

D

⋅ −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟exp

 G (E) =  G
E-E

EA AO
C

A

⋅
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟exp

Figure 4-3  “V-shaped” representation of density of states.
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GMGd GMGa

Acceptor like statesDonor like states

Mid-gap states

 EDA
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GDO

Energy

 G(E)
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Figure 4-4.  “U-shaped” representation of the density of states.

a. If “V-shaped”, then the following apply

i. GDO = Prefactor (in 1/cm3/eV) in equation: gd= Gdoexp(E-EV/Ed)

ii. GAO = Prefactor (in 1/cm3/eV) in equation:  ga= Gaoexp(E-EC/Ea);

iii. ED = Characteristic energy Ed (eV)  for donor-like tails

iv. EA = Characteristic energy Ea (eV) for acceptor-like tails

v. TSIG/ND4 = Capture cross section for electrons in donor tail states (cm2)

vi. TSIG/PD4 = Capture cross section for holes in donor tail states(cm2)

vii. TSIG/NA4 = Capture cross section for electrons in acceptor tail states (cm2)

viii.TSIG/PA4 = Capture cross section for holes in acceptor tail states (cm2)

b. If “U-shaped” then the following apply in addition to the “V-shaped” parameters

i. GMGA = Density of midgap acceptor-like states GMGa (1/cm3/eV)

ii. GMGD = Density of midgap donor-like states GMGd (1/cm3/eV)

iii. EDA = “Switch-over energy” EDA (eV) measured positively from EV

iv. MSIG/ND4 = Capture cross section for electrons in donor midgap states (cm2)

v. MSIG/PD4 = Capture cross section for holes in donor midgap states(cm2)

vi. MSIG/NA4 = Capture cross section for electrons in acceptor. midgap states (cm2)

vii. MSIG/PA4 = Capture cross section for holes in acceptor midgap states (cm2)

5. Gaussian levels (0, 1, or 2 acceptor and 0, 1, or 2 donor levels)
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NDG

E
V

Energy

log G(E)

E
C

Energy

NAG

 EACP

 EDON

WDS,d

WDS,a

Figure 4-5  An example of one Gaussian donor level and one Gaussian acceptor level.

a. Number of Gaussian donor levels.  If DLVSG > 0, then enter the following which are
referenced in Figure 4-5 for each of the i = DLVSG ≤ 2 Gaussian donor levels.

i. NDG(i) = The Gaussian donor state density (1/cm3) for the ith donor Gaussian

ii. EDONG(i) = The donor Gaussian peak energy (eV) measured positive from EC for
the ith donor Gaussian

iii. WDSDG(i) = The standard deviation (eV) of the ith Gaussian donor level

iv. GSIG/ND(i)4 = Capture cross section of the ith donor-like Gaussian state for
electrons (cm2)

v. GSIG/PD(i)4 = Capture cross section of the ith donor-like Gaussian state for holes
(cm2)

b. Number of Gaussian acceptor levels.  If ALVSG > 0, then enter the following which
are referenced in Figure 4-5 for each of the i = DLVSG ≤ 2 Gaussian acceptor levels.

i. NAG(i) = The Gaussian acceptor state density (1/cm3) for the ith acceptor
Gaussian

ii. EACPG(i) = The acceptor Gaussian peak energy (eV) measured positive from EV

for the ith acceptor Gaussian

iii. WDSAG(i) = Standard deviation (eV) of the ith Gaussian acceptor level

iv. GSIG/NA(I)4 = Capture cross section of the ith acceptor-like Gaussian state for
electrons (cm2)
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v. GSIG/PA(I)4 = Capture cross section of the ith acceptor-like Gaussian state for
holes (cm2)

4.4.1.3   Parameters that Define the Illumination Spectrum

The third set of parameters are those used to define any impinging illuminated spectrum as well as
the absorption coefficients.  These parameters are obviously necessary if the device is under
illumination.  The first of these parameters, called LIGHT in our program, determines if light is
desired in the program.  If LIGHT = NO, then no spectrum need to be defined and the user is only
interested in the device characteristics in the dark under voltage bias.  If, however, the user wishes
to have the device under illumination, then for each wavelength in the spectrum, the following
parameters need to be defined (units in parentheses):

1. The wavelength LAMBDA (μm)

2. The incident FLUX at this wavelength (1/cm2/sec)

3. The absorption coefficient ALPHA (1/cm) at that wavelength in each region of the
structure.  We emphasize that this information must be specified by the user for each
region of the device structure.

In addition, the user has the option of calculating the quantum efficiency, (also called spectral
response or SR) which is current per unit flux for each band width.  This SR may be calculated at
short circuit (which is the usual experimental situation) or at various forward and reverse bias
situations.  If a spectral response (SR) is requested, then the flux level (SRFLUX) of the probing
stepped monochromatic light used in such a measurement must be specified.  This freedom is
provided, since, in general, the spectral response may be different for different values of flux. If
light bias is chosen, the spectrum of that bias light,  present while the superimposed
monochromatic radiation is varied throughout the response range, is chosen by the user.

4.5   Choosing A Grid

To obtain valid results from AMPS good grid spacing must be chosen.  AMPS offers both equal
grid spacing and variable grid spacing.  All program versions offer equal grid spacing and some
offer variable grid spacing.  If you use equal grid spacing, AMPS will always use 400 equally
spaced points.  The number 400 is an arbitrarily chosen upper bound we are now using for the
total number of points  Most of the time 400 equally spaced points are adequate for AMPS to
quickly find valid results.  However, if the simulation is rather complex or better performance is
wanted, use variable grid spacing.  This gives the user the ability to adjust both the number of
points and their location.  (To use variable grid spacing append a “v” to the end of the program
version name.) An optimized grid allows AMPS to quickly calculate valid results.  AMPS can do
this if the grid provides the minimum number of grid points clustered in regions where the fields
and material parameters are changing the most.

In AMPS is changing from the interface of each layer. The grid space at the interface of all the
layers is kept same, but this value can be modified by user. AMPS allow user to specify the unique
grid space in the middle of each layer. For example, if the layer is thick, user may choose a large
number of grid spacing. The middle grid spacing can be any number as long as the total number
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grid points has to be less than the limitation. AMPS will list the first three layers that has the most
grid points and user can adjust by himself to reduce the total number.
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APPENDIX A
OPTICAL GENERATION RATE

We embark on a very general derivation of the Φi
FOR(νi) and Φi

REV(νi) appearing in Section 2.2.3 by
considering a structure with N different semiconductor regions each of thickness lj (see Fig. A1),
such that

∑
j=1

N

 lj

 

= L (A.1)

where L is the total device length.  These N regions have different physical properties.  In
particular, they can have different properties such as absorption coefficients; we assume that the
material parameters vary from region to region but are constant within a particular region.

Since the permittivity can vary from region to region, there can be internal reflection at the
boundaries of these N layers.   AMPS is formulated to consider this general possibility.

Φ ο 

Incident  
photon  
flux

l j l j+1 l j+2 l j+3 l j+4 

x=0 x=l j x=l j+1 x=l j+2 x=l j+3 x=L 
Figure A-1.  Reflection and transmission within a device of five regions of differing material parameters.

To outline this formulation, we begin by assuming that the semiconductor is subject to an external
source of illumination with a photon flux of Φoi (in units of photons per unit area per unit time)

impinging on x=o- (from left to right).  These photons have the frequency νi..  If hνi is greater than
Egop somewhere in the device (the optical bandgap), then optical generation takes place and a free

electron-hole pair is produced.  The flux transmitted through the back contact ΦL
RL into the

material at x=L- is zero since AMPS assumes that no illumination is impinging from the back; i.e.,

ΦL
RL =0 (A.3)
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The flux Φi(x) set-up in the j+1 material layer by this illumination of frequency νi, allowing for
multiple reflections at the j and j+1 boundaries of this layer, is

Φi(x) = Φj
LRe-αj+1(x-xj) + Φj+1

RLe-αj+1(xj+1-x)

+ RjΦj+1
RLe-αj+1lj+1 e-αj+1(x-xj) + Rj+1Φj

LRe-αj+1lj+1  e-αj+1(xj+1-x)

+ RjRj+1Φj
LR(e-αj+1lj+1 )2e-αj+1(x-xj) + Rj+1RjΦj+1

RL(e-αj+1lj+1 ) 2 e-αj+1(xj+1-x)

+ RjRj+1RjΦj+1
RL(e-αj+1lj+1 ) 3e-αj+1(x-xj)

+Rj+1RjRj+1Φj
LR(e-αj+1lj+1 )3 e-αj+1(xj+1-x) +  …  +  … (A.4)

This expression arises by assuming some flux Φj
LR enters the j+1 material layer at xj and some flux

Φj+1
LR enters this material layer at xj+1 due to reflection at the back contact and at material

interfaces to the right of x=xj+1.  Equation A.4 then follows by computing the multiple reflections
that these two fluxes undergo inside this j+1 material.

If there are N different material regions, then there are N-1 ΦLR and N-1 ΦRL values in Equation
A.4 to be determined for each frequency νi.   Once these are determined, then Φi(x) is completely
known and the Φi

FOR(νi) of Equation 2.2.3f and the Φi
REV(νi) of Equation 2.2.3g are also known for

the j+1 material.  The latter statement follows from the fact  that the odd numbered terms of the
right-hand side of Equation A.4 can be seen to be Φi

FOR(νi), whereas the even numbered terms can
be seen to be  Φi

REV(νi).

The determination of the ΦRL  for the jth material layer can be achieved by recognizing that ΦRL  at
the jth boundary must be equal to the function ΦREV(νi), present in the (j+1)th layer,  evaluated at
x=xj and multiplied by (1-Rj), viz.,

Φj
RL = (1-Rj){Φj+1

RL[(e-αj+1lj+1)+Rj+1Rj(e
-αj+1lj+1)

3
+  … ]

+ Rj+1Φj
LR[(e-αj+1lj+1)2+Rj+1Rj(e

-αj+1lj+1)
4
+  … ]} (A.5)

Similarly, ΦLR  at the (j+1)th boundary must be ΦFOR(νi) for the (j+2)th evaluated at x=xj+1 and
multiplied by (1-Rj+1).  The result is

Φj+1
LR = (1-Rj+1){Φj

LR[(e-αj+1lj+1)+Rj+1Rj(e
-αj+1lj+1)

3
+  … ]

+ RjΦj+1
RL[(e-αj+1lj+1)

2
+Rj+1Rj(e

-αj+1lj+1)
4
+  … ]} (A.6)

The needed 2(N-1) values of ΦLR   and ΦRL  are obtained by AMPS by solving the 2(N-1) equations
of the type A.5 and A.6 and by using Equation A.2 and Equation A.3.  Once these are obtained for
each frequency νi the Φi

FOR(νi) and Φι
REV(νi) are completely specified and, thus, Gop(x) can be

evaluated.
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APPENDIX B
TRIAL FUNCTION FOR THE CURRENT DENSITY

The first term in the continuity equations (Equations 2.2a and b) is the derivative of the current
densities.  Typically, the current densities for holes and electrons are represented, by [2]

Jp = -qμpp⎝
⎜
⎛

⎠
⎟
⎞dEfp

dx     (B-1)

and

Jn = qμnn⎝
⎜
⎛

⎠
⎟
⎞dEfn

dx     (B-2)

The signs in Equations B-1 and 2 are chosen to be consistent with our measuring scheme for Efp

and Efn (Fig. 3-2).  Quasi-Fermi level formulations for Jp and Jn are used in AMPS because they
allow for diffusion, for drift, and for effective forces that may arise from material property
variations [1].  This quasi-Fermi level formulation is also used in AMPS because it avoids the
possible problem of adding diffusion and drift currents to get the total current.  This is a possible
numerical problem, because both current components could be large yet their algebraic sum could
be very small.

The above expressions for Jp and Jn cannot be used as they stand in the necessary numerical
solution scheme of AMPS.  When they are expressed as differences in representing the  dJp/dx and
dJn/dx terms of Equations 2.2a and b, numerical methods have extreme difficulty in converging to a
solution.  To avoid this  well-known problem, Scharfetter and Gummel derived “trial functions”
based on Equations B-1 and B-2 for the current densities which can then be used to evaluate
dJp/dx and dJn/dx in an approach that is much more amenable to numerical methods [3].  The trial
functions are derived here for reference.

Figure B.1 shows a device that has N slabs and N+1 major grid points.  The major grid points,
represented by solid lines, are the points in the device for which the unknowns, Ψ Efn, and Efp are
solved.  The minor grid points represented by the dashed lines, are the points in the device for
which the current densities are solved in the Scharfetter-Gummel approach.  To outline the
Scharfetter-Gummel approach to evaluating these  dJp/dx and dJn/dx terms of the continuity
equation, we become specific and consider the trial function for Jp.  To derive it, we begin by
assuming the hole current density, described by Jp between the major grid points i and i+1, is
constant and equal to Jp, i+1/2.  Hence we can write

Jp,i+
1
2 = -qμppi ⎝

⎜
⎛

⎠
⎟
⎞dEfp

dx   (B-3)
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       = -qμpNvexp⎝⎜
⎛

⎠⎟
⎞ΦbL

-EG+Efp+Ψ
kT ⎝

⎜
⎛

⎠
⎟
⎞dEfp

dx  (B-4)

where the left hand-side of these equations are constant.  The EFp and Ψ are still considered
functions of x, however, multiplying both sides of Equation B-4 by exp(-Ψ)dx gives

Jp,i+
1
2 exp(-Ψ/kT)dx = -qμpNvexp⎝

⎜
⎛

⎠
⎟
⎞ΦbL

-EG+Efp

kT defp
(B-5)

1 2 3 4 5 N-3 N-2 N-1 N N+1

slab#

grid#

x=L

1 2 3 4 N-3 N-2 N-1 N

x=0 .............

Figure B-1.  A grid used in numerical methods.  There are N slabs and N+1 major grid points (represented by solid
lines).  The dashed lines are the points where the current density trial function is solved.

It may be immediately noted that the right-hand side of B-5 can be integrated analytically.  We can
also analytically integrate the LHS of B-5 if we now make the additional assumption that the
electric field is constant between i and i+1.  Hence, we can write Ψ(x) between xi and xi+1, as

Ψ(x)   =⎣⎢
⎡

⎦⎥
⎤

 
Ψi+1 - Ψi

Η  (x-xi) +  Ψi

where H is the forward difference between adjacent grid points.  This expression, which when
substituted into B-5, allows the LHS to integrate to

Jp,i+
1
2 •⎣⎢

⎡
⎦⎥
⎤kT•

exp(-Ψi+1/kT)-exp(-Ψi/kT)
(Ψi+1 - Ψi)/H

  (B-6)

while integrating the right-hand side of Equation B-5 gives

⌡⎮
⌠

i

i+1

qμpNvexp⎝⎜
⎛

⎠⎟
⎞ΦbL

-EG+Efp

kT •dEfp 
=⎣⎢

⎡
⎦⎥
⎤

 qμpNvexp⎝⎜
⎛

⎠⎟
⎞ΦbL

-EG+Efp

kT •kT
i

i+1

 (B-7)

evaluated from i to i+1

qμpNvkT exp⎝⎜
⎛

⎠⎟
⎞ΦbL

-EGi

kT ⎣⎢
⎡

⎦⎥
⎤

exp⎝⎜
⎛

⎠⎟
⎞Efpi+1

kT  - exp⎝⎜
⎛

⎠⎟
⎞Efpi

kT  (B-8)

Equating Equations B-6 and 7 yields
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Jp,i+
1
2  = 

⎣
⎢
⎡

⎦
⎥
⎤

qkTμpNv exp⎝⎛ ⎠⎞
-φbL - EG

kT  
H ⎣⎢

⎡
⎦⎥
⎤

exp⎝
⎛

⎠
⎞ Efpi+1

kT  - exp⎝
⎛

⎠
⎞ Efpi

kT ⎣
⎡

⎦
⎤Ψi+1

kT  - 
Ψi
kT

⎣
⎡

⎦
⎤

exp⎝
⎛

⎠
⎞ -Ψi+1

kT  - exp⎝
⎛

⎠
⎞ -Ψi

kT

(B-9)

Using the same approach as above, the corresponding expression for the electron current density is

Jn,i+
1
2  = 

⎣
⎢
⎡

⎦
⎥
⎤

qkTμnNc exp⎝⎛ ⎠⎞
-φbL

kT  
H ⎣⎢

⎡
⎦⎥
⎤

exp⎝
⎛

⎠
⎞ Efni+1

kT  - exp⎝
⎛

⎠
⎞ Efni

kT ⎣
⎡

⎦
⎤Ψi+1

kT  - 
Ψi
kT

⎣
⎡

⎦
⎤

exp⎝
⎛

⎠
⎞ Ψi+1

kT  - exp⎝
⎛

⎠
⎞ Ψi

kT

  (B-10)

By replacing i+1 with i-1, ΔxFOR with ΔxREV , and placing a negative sign in front of Equations B-9
and 10, similar expressions can be written for Jn,i-1/2 and Jp,i-1/2.  Having these four expressions for Jp

and Jn for some general points i+1/2 and i-1/2  allows us now to turn to the original problem of
evaluating Jp and Jn in a way that will be numerically stable.  This is then done by noting that
dJp/dx evaluated at i and dJn/dx evaluated at i can be written as

⎣⎢
⎡

⎦⎥
⎤dJp

dx
 i

  =  
Jpi+1/2

 - Jpi-1/2

H+h (B-11)

and

⎣⎢
⎡

⎦⎥
⎤dJn

dx
 i

  = 
Jni+1/2

 - Jni-1/2

H+h   (B-12)
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APPENDIX C
INSTALLATION

C. 1 System requirement
• 486 with math co-processor (Pentium or better is recommended)
• 16MB RAM (32MB or more is recommended)
• Hard Disk(HD) space required

• Compact installation 5.3MB
• Full Installation 10.4MB
• Run a case 50MB**

•  VGA or higher resolution monitor(Super VGA recommended)

• Windows '95 or Windows NT 4.0 (AMPS-1D has not been tested under Windows NT 3.51.  If
any ones is using Window NT 3.51 and find that it does work, we would appreciated you
letting us know.)

** This 50MB on the hard drive is only needed when a case is running.

AMPS-1D will return this disk space after the case is done.

C. 2  Installation Instructions

If you receive 5 disks of AMPS-1D software:

• Locate 'setup.exe'  in disk 1 and double click it.  AMPS-1D installation/setup will walk you through
the installation process.

If you receive AMPS-1D through e-mail or just 1 big file, then follow these instructions:

• Create a temp folder and place AMPS1D.exe in it (note not the short cut of "AMPS1D.EXE",).
• Double click "AMPS1D. EXE ", then close(use [ALT]+[F4]) the self-extracting window when it is

done(when "_isdel.exe" appear on the screen.)
• Then locate “Setup.exe” in the above temp folder that you have created and double click "Setup.exe"

(this should start the AMPS-1D installation/setup)
• Follow all instructions in AMPS-1D installation/setup
• When it prompts “Finish” then you are set to play with AMPS-1D

NOTE: There is a pre-compiled example in where you have installed AMPS-1D.  It is in Samples
folder.

C. 3 Running AMPS-1D

To start AMPS-1D, click on the Start button at the lower-left-hand corner of the Windows
desktop.  Select Programs from the Start menu, and then select “AMPS 1D” from the list of
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programs in the cascading window.  Click on the AMPS 1D application, and AMPS-1D will be
launched.

You can also launch AMPS-1D by double-clicking on any AMPS-1D case file.  It has “.AMP”
extension.  This will automatically launch AMPS-1D and load the selected case.

C. 4 Problems and questions

If you have any problem or question, please send via e-mail to

AMPS@emprl.psu.edu.

You are welcome to visit our web site at

http://www.emprl.psu.edu/amps

for latest news and information.
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